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GENERIC PROPERTIES OF THE ADJUNCTION

MAPPING FOR SINGULAR SURFACES AND APPLICATIONS

by

Marco Andreatta, Mauro Beltrametti and Andrew John Sommese

INTRODUCTION. Let X be an irreducible surface embedded in
some complex projective space P and let n : S -— 3% Dbe the
normalization of X with L +the pullback to S under 711 of
Opr(1). Let w : Sf — S be the minimal desingularization of

S and let ﬁs = w,K be the Grauert-Riemenschneider canoni-

S
cal sheaf of S. In [A-S1] the first and last authors showed
that Kgi @ L', L; = 7*L, 1is nef and big except when (§',L')
and (S,L) are'of a very restricted type. In the case when
KS, ® L' 1is nef, ho(KS, @ L') = ho(:ﬂS @ L) # 0 (see (0.7})
and it makes sense to look at the meromorphic map ¢ : § — PN
associated to F(ﬂs ® L). We call this the small adjunction

map (for the reason behind this name see §1). The meromorphic

map associated to I'(Kg ® L) is called the big adjunction map
\

or the adjunction map, for short.

In §1 we use Reider'’s theorem ([B],[R]) to show that ¢
is birational if KS' ® L' is nef with cl(L)2 2 10 or
cl(i.)2 29 and L' » 3D for some effective divisor D such

that D * D = 1. The analogue of this for a smooth S (goes

back to Van de Ven [V].



In §2 we prove a number of inequalities that are standard

tools in the smooth theory (S1]). E.g., if the Kodaira dimen-

sion of S' is non-negative and cl(L)2 2 10, then (see 2.1)

-2 ] - ’
¢y (Kg,)® + 29(L) 2 d + 2(py(S') = a(S'))

where pg(s’) = hz'o(S') and g{(S') = hl'O(S') are the geo-
" metric genus and the irregularity of S’ and g(L) is the

sectional genus of L.

In 83 we give some simple applications. For the main one
we derive a result, on when |L| contains even one smooth
hyperelliptic curve, that generalizes results of Sommese [S51]

and Van de Ven [V]. The result is the following (see (3.1)).

THEOREM. Assume c,(L)° 2 10 o cl(-L)2 =9 and L' » 3D
for some effective divisor D with D+« D =1 g&g;g_(&L)ggi_
(s;L7) ﬂé’%ﬂm fipst ggrggralgln of this .introc]uctior\. Then if there
is a smooth hyperelliptic curve ¢ € |L| it follows that
n%:%s’) =0, d » 'g(L) + 2 and either

1) nt%sh) >0, 0% =01 = 4

ii) (S,L) is a cone or a scroll; or

iii) (s8',L') is a conic bundle over a smooth curve.




We would note that in [A-S2] the first and last authors
give very precise results on the set where KS ® L 1is spanned

by its global sections.

We would like to express our thanks to the Max-Planck-
Institut fiar Mathematik for making this joint work possible.
The third author would also like to thank the University of
Notre Dame and the National Science Foundation (DMS 8420315)

for their support.



§0. Background material

We work over the complex number field €. By variety we
mean an irreducible and reduced projective scheme X of di-

mension n. We denote its structure sheaf by © For any co-

x.
herent sheaf % on X, hl(@) denotes the complex dimension

of HY(X,%).

If X is normal, the canonical sheaf KX is defined to
‘be j*KReg(X) where Jj : Reg(X) — X 1is the inclusion of the
smooth points of X and KReg(X) 1s the canonical sheaf of

the holomorphic n-forms. Note that Ky is a line bundle if X

is Gorenstein.

Let ¢ be a liﬁe bundle on X. ¢ 1is said to be pumeri-
cally effective, nef for short, if ¢ +« C 2 0 for each irre-
ducible curve é on S, and in this case ¢ 1is said to be
big if cl(if)n > 0, where 01(2) is the first Chern class of
¢. We shall denote by |¢| the complete linear system asso-
ciated to ¢ and by TI'(¥) the space of its global sections.

We say that ¢ is spanned if it is spanned by T (¥).

(0.1) We fix some more notation.

~ (resp. % the numerical (resp. linear) equivalence of divi-
sors;

x(£) = E(—l)ihi(ﬁ), the Euler characteristic of a line bundle

£



k (X), the Ebggi;a dimension of X, that is the Kodaira dimen-

sion of a nonsingular model of X.

Abuses. Line bundles and divisors are used with little or no

distinction. Hence we shall freely switch from the multiplica-

tive to the.additive notation and viceversa.

(0.2) Throughout the paper, S always denotes an irreducible
projective normal surface. Let v : S’ — S Dbe the minimal
desingularization of S, i.e. S' 1is the unique desingulari-
zation of S which is minimal in the sense that the fibres of
7 contain no smooth rational curves C satisfying c? = -1.
If L 1is a line bundle on S we will denote by L' the in-'
versa image, w*L. We shall briefly say that (S8',L'}) 1is the
minimal desingularization of the pair (s,L). If D 1is a
(Well) divisor we will denote by D' the proper transform of
D. For every Welil ‘divisor D and line bundle L on S the
intersection L - OS(D) =L+ D=1L"+ D' 1s well defined.

tke inimal
(0.3) Let wmw: 8" — S8 be resolution of the singularities

of S§ and let 4 = n-l(Irr(S)), where Irr(S) denotes the

irrational locus' of S. We say that (S,L) is a-minimal if
there are no smooth rational curves E on s’/ - A, with

E+E=-1 and 7L+ E = 0. Note that the pair (S',L') in
i+ L is ample
(0.2) is clearly a-minimal; this allows us to apply to (S',L')

the results of [A-S1].



(0.4) The genus formula. Let L be a nef and big line bundle
on a normal surface S. Then the sectional genus, g(L), of L

is defined by the equality 2g(L) - 2 = (KS + L) * L.

It can be easily seen that g(L) 1is an integer. Further-
more if there exists an irreducible reduced curve ¢ in |L|,
g(L) is simply the arithmetic genus p,(C) =1 = x(0) of
C. Note also that g(L) = g(L'), where (S',L') is the mini-

mal desingularization of (S,L).

(0.5) Let S be a normal surface and let L be a nef and
big line bundle on S. We say that the (generically) polarized
pair (S,L) is geometrically ruled if S is a Pl-bundle,
p : S — R, over a nonsingular curve R and the restriction

L of L to a fibre f of p is Of(l). We say that (S,L)

f
is a scroll (resp. a conic bundle) over a nonsingular curve R
if there 1is a surjective morphism with connected fibres
p : S — R, with the property that L is relatively ample
with respect to p and there exist some k > 0 and some very
ample line bundle M on R such that (KS ® L2)k - p*M

K _ , 8k, **

K o J*.
(resp. (KS ® L) = p M); here KS = (KS )

The following result will be used several times through

the paper.



(0.6) LEMMA. Let S be a nonsingular surface and let L be a
nef and big line bundle on S. Assume (S,L) is a-minimal.
Then the following are equivalent

(0.6.1) hO(Ké + L) # 0

(0.6.2) h%((kg + L)™) # 0 for some N > 0;
(0.6.3) KS + L is nef;

(0.6.4) g(L) 2 1 and (Kg + )2 > o.

Proof. The equivalence between (0.6.2) and (0.6.3) is proved
in ([A-S1], (2.5), while (0.6.1) ® (0.6.2) and (0.6.3)
(0.6.4) are clear. So let us prove that (0.6.4) implies

(0.6.1). Now we have
0
h (KS + L) = )((KS + L) = g{(L) - 1 + x(os).

Hence if (0.6.1) would be false, then x(OS) ¢ 0. Let
g(L) = 1. Therefore (KS + L) *L=20 and the Hodge index
theorem combined with (KS + L)2 2 0 gives KS ~ -L whence
x(as) > 0, a contradiction. So g(L) > 1 and x(os) < 0. It
thus follows that S is ruled; further we claim that
g(L) = q(S). Indeed, since pg(S) = 0, we have

1

0 = h¥(Kg + L) = x(Kg + L) = x(L71) = g(L) - a(s).

Let d =L * L. Then the assumption (KS + L)2 2 0 and genus

formula (0.4) yvield



K§+4g(L) -4 d.

Therefore, since S 1is ruled and g(L) = q(S) > 1,
d { 8(1 - g(S)) + 49(S) - 4 = 4 - 49(S)

a contradiction.

(0.7) COROLLARY. Let S be a normal surface, L a nef and big
line bundle on S and let (S',L') be the minimal desingu-
larization of (S,L). Then Ko, + L' is nef if and only if

hO(KS + L) > length (Ks/i where A denotes the Grauert-

g)s where ¥

Riemenschneider canonical sheaf.

Proof. Look at the exact sequence

0 A, Q@ L — KS @ L —9¥Ye L —0

S

and note Hl(:ﬂS ® L) = (0) by the Grauert-Riemenschneider
vanishing theorem and h0(9 ® L) = length (KS/JS). Now the

statement is an immediate consequence of Lemma (0.6).

In section 1 we shall use Reider's result for separating

general points in the following form



(0.8) THEOREM (Reider, [(R]). Let L be a nef and big line
bundle on a smooth surface S. If L * L 2 9 and the map as-

soc e F(KS + L) is not a b onal morphism, then

there exists an effective divisoer D on & such that

L+D=0, D?=-1;

2
L - D=0, D" = -1 or O;
L+«D=2, D?®=0; or
L ~ 3D, p? = 1.

(0.9) cCastelnuovo's bound. Let X be a n-dimensional normal
variety and let L be a big and spanned line bundle on X.
Further assume that the map ¢ ¢ X — PN associated to T (L)
is generically one to one. Let C be a smooth curve obtained
as transversal intersection of n - 1 general members of | 1.}

and write d = L". Then
d-2 d-2 N-n
g(c) ¢ [N_n] (d-N+n-1 -([ﬁ 1)=5-) .

Indeed C 1is nothing but the normalization of C' = ¢(C), so
deg C' = d and inequality above is a consequence of the usual

Castelnuovo’'s bound for the embeddings C' C ¢(X) C PN.

Finally, let us give the following general results we use

in the sequel.
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(0.10) LEMMA (Nef and big degree Lemma). Let X be a normal

variety of dimension n and let ¢ be a nef and big line

undle o X. eno b T the rational map associated to

l¢| and let #. be the sheet number of the Stein factoriza-
tion of ¢ . Then

(0.10.1) ¢, ()" 2 #, (deg v (X)):
(0.10.2) cl(E)n 2 2(h0($) - n) if «k(X) 2 0 and
dim ¢ (X) = n.
Proof. Look at a resolution of the fundamental locus of ¢

Y N

X > P

. * .

where ¢ = hO(Q). Then ¥¢' =7 ¢£ X A+ F where Md 1is spanned
and ¢’ is the morphism associated to |#|. Further we can
assume X' to be nonsingular. Take the Remmert-Stein factori-

-1

’ *
zation sor : X' —Y—0P of ¢'. Therefore Md 2 rM

for some ample line bundle M on Y. Let #S be the degree

of s and m = dim Y. Then
*) r'c, ™ = c, (™ and o (M™[Y] = §_(deg s(¥)).

If m= n,
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#x) e ()™ = (ot F) - e @)™ 2 M e @)™ 2 e (7
and *), **) yield (0.10.1). If m < n,

*Hhk) c (2™ 2 e (™ ¢ e )M 2 e ()

and (0.10.1) follows now from *), *%&),

As a consequence of (0.10.1) we get

—a———

c (@) 2 #s(ho(f) - n).

Whenever #s 2 2, (0.10.2) is proved. If #s =1, ¢(X) has a

desingularization of non-negative Kodaira dimension. It thus

pE*1I N pas a

follows that the general surface section S C
desingularization of non-negative Kodaira dimension. Now a
standard argument shows that deg (S) 2 2(N - 1) = 2(h0($) - n)

(see also [L-S], §0).

(0.11) LEMMA. Let ¢,L be two line bundles on an irreducible
varjety X. Assume that L is spanned_and big and ho(i) 2 2.
Then, given a general element D € |L|, the restriction

FE) — I'<y)

has an image of dimension > 2.
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'

Proof. Look at the exact sequence

0 — ¢ o 1,1

— ¢ — ¥ — 0,

D

If the statement is not true, then there exists a non-zero

1

element t € I'(¥£ ® L ~). Consider the restriction map

5 : T8 L) 5r¢e LT})).

Since L 1is spanned and big we can find non-trivial

tl,t2 € ho(L) whose restrictions on D are not multiples of
one another. If. &(t) # 0, then t, 8 t, t, ® t are not
multiples of one another on D and we are done. Otherwise we

would have 6(t) © (t1 - tz)D =0 in T (¢ after possibly

D)
multiplying the ty by non zero constants. Since (tl - t,) %0

by the above, this leads to a contradiction; here we use that

D is irreducible since it is general. Hence 6 is the

2 1

) =T(¢ ® L ) # (0). By

repeating the same argument we find that

zero-map and therefore r(¢ & L~

r¢ e L-m) # (0),m >> 0, again a contradiction.

For any further background material we refer to [A-S1]

and [A-S2].
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§1. The birationality theorem

Let L be an ample and spanned line bundle on a normal
surface S. Let (8',L’) denote the minimal desingularization
of (S,L) and let us = "*KS be the Grauert-Riemenschneider

canonical sheaf. Then the following can be proved

(1.1) THEOREM. Let (S,L), (S',L') be as above with Ko, + L'
nef and big. Further assume that I'(L) gives a generically
one to one map. If cl(L)2 > 9 then I (g + L) gives a bira-
tional map unless possibly L' ~ 3D, for some effective divi-
sor D with D+« D= 1.

Proof. From Lemma (0.6) we see that hO(KS, + L') =
= ho(:.'{S + L) > 0. Hence looking at the meromorphic maps ¢,¥
associated to r(xs + L), F(KS, + L') respectively and from

the commutative diagram

S'L}S
A | v
PN

we see that it suffices to work with ¢ on S'. To go on as-
sume that V¥ 1is not birational. Then given a general point x
of S' there is a general point y of S' such that the

morphism
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M(Kg, ® L') — K, 8 L' 8 (C 0 C )

S'
is not onto, where c,® Cy is the skyscraper sheaf

OS,/mx ® my. By Reider’s theorem (0.8) there exists on S' an

effective divisor D passing through X,y such that.

L' +D=0,1L or ' 2 or L' *» D=3 and D -+ D = 1.

The case L' * D =0 can be easily ruled out. Indeed, if
L' + D=0, then w(D) 1is a finite set. Therefore x,y be-
long to some positive dimensional fibre of =, so that either

X nor y 1is a general point; a contradiction.

The case L' * D = 3 with D*D = 1 gives (L' - 3D)*D = 0.
Hence L' ~ 3D or (L' - 3D)2 < 0 by the Hodge index theorem;

since

2 2

(L' =30)2 =12 -6L' + D+9D+D=1'2=-90

it has to be L' ~ 3D.

Finally, lef L' «* D=2 or 1. Since L is ample and
spanned and T (L) gives a generically one to one map it thus
follows that (D) is either a smooth line or a (possibly
singular) conic. Then the proper transform D' of w(D) (or
of a reduced cogponent of w(D)) under 7w 1is a nonsingular

rational curve. Since x,y are general points we find in this

way an uncountable set of distinct nonsingular rational curves

9
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on S'. Now the general theory on the Hilbert scheme says that

Hilb(D',S8') has countably many components. Therefore there is

an irreducible component T of the Hilbert scheme Hilb(D',S’)

with a subset corresponding to uncountably many of these
2

singular rational curves. Fix a curve ¢ € T. Then t° 2 0

on §S' and hence Hl(S',Nc) = (0) where N, is the normal

(4

" bundle of € in 8'. It thus follows that there exist

irreducible projective varieties € and % with Z C 8' x ¥
and if p : Z — € and q : Z — S' denote the maps induced
by the product projections, then p 1is a flat surjection and
g identifies p-l(c) with € for a general point '¢c € €.
Therefore we have KS' + £ { -2 and hence (KS, + L') « ¢ £ 0.
Since KS' + L' 1is nef and big, this leads to a contradiction

by the Hodge index theorem.

{1.2) REMARK. Note that KS + L could also be considered to
obtain an analogous result to that of the Theorem above. Ho-
wever, the exact sequence

0—)JS®L—)KS@L—>9®L——>O
gives an inclusion F(JS ® L) C F(KS ® L), so that the bira-
tional results proved for A ® L imply birationality results

for the adjunction mapping associated to I'(Kg + L).



§2. Some inequalities

The first two theorems we prove below generalize some re-

sults contained in [S4], §3.

The following is a consequence of Theorem 1.1.

(2.1) THEOREM. et L be a nef and big line bundle on a nor-

mal surface S and let (S’',L') be _the minimal desingulari-

zation of (S,L). Suppose Ky, + L' to be nef and big.

Further assume «(S) 2 0 and let cl(L)2 2 10 or cl(L)2 2 9

and L' 4+ 3D, D effective divisor with D * D = 1. Then

' 2 ' [ -
(Kg, + L) 2 2(g(L) = a(8") + py(8") - 2)

or, equivalently,

Kg, + 29(L) 2 2(pg(s') = a(s')) + a.

Proof. Under the hypotheses made the map V¥ associated to
F(KS, + L') is birational by Theorem (1.1). Then Lemma
(0.10.2) yields

2

(Rg, + L)% 2 2(m%(kg, + L) - 2)

S'

Now



...17...

h0

(Kg, + L') = x(Kg, + L') = g(L) - 4(S') + py(S")

sO we are done.

(2.2) THEOREM. Let L be a nef and big line bundle on_a nor-

mal surface S and let (S',L') be the minimal desingulari-

zation of (S,L). Assume KS, + L' to be nef and big. Then

(2.2.1)  (Kg, + L)% 2 g(L) - q(S') + py(S') = 2;
(2.2.2) (Kg, + L)% 2 g(L) + q(s8') - 2.

Proof. Look at the map V¥ associated to T (K + L'). Then

Sl

Lemma (0.10.1) gives us

2

(Kg, + L')% 2 cod w(s') + 1 = hO(kg, + L') - 2

S!
and again hO(KS, + L') = x(KS, + L') = g(L) - q(S') + pg(S‘),
this leading to (2.2.1). '

To prove (2.2.2) note that there exists an effective mem-
ber C' € |KS, + L'l in view of Lemma (0.6). Then the exact

sequence
0 — K — 2K @ L' —m w

where denotes the dualizing sheaf of C', gives a sur-

wc,

jective morphism
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0 1 ~ 171 .
H (C':wcv) - H (S',KS,) = H (S'losl)

since Hl(S’,ZKS, + L') = (0) by the Kawamata-Viehweg vani-
shing theorem. Now, hl(-L) = 0 since L 1is nef and big, so

= hO(OS) =1 and hence ho(mc,) = ht (o

that nO(o

cr) ct)

= g(KS, + L'). Therefore
9(Kg, + L') 2 a(S')
so by the genus formula we find

2g(S') - 2 € 29(Kg, + L') - 2 = (2Kg, + L)+ (Kg, + L') =

2

= ' - P, '
= 2(KS, + L') L (KS, + L'},

that is

2

(Ko, + L)% 2 g(L) + q(s') - 2.

Sl

(2.3) COROLLARY. Let (S,L), (S',L'} be as in Theorem (2.2)
and_let d= L - L. Further assume that q(s’) > 0 and
pg(S') = 0. Then

g(L) 2 4/3 + 3q(s8') - 2.

Proof. From [S1] (0.8.2) we know that

K + K < 8(1 - gq(S8')) and the genus formula reads
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+ L) +d=K, * K

g g * 4g(L) - 4.

Hence

2 44 - 4g(L) + 4.

8(1 - q(8')) 2 (Kg, + L')
By combining the inequality above with (2.2.2) we get the re-

sult.

(2.4) REMARK. ©Note that whenever §' is birationally ruled
and |L’| contains a smooth curve C which meets a general
fibre of the ruling §S' — R, R nonsingular curve, in t

points, then the Hurwitz theorem gives us
g(L) 2 1 + £(q(S8') - 1).

However, such an inequality is usually weaker than (2.3) for

t around 3.

(2.5) COROLLARY. Let (s,L), (s',L') be as in Corollary
(2.3). Further assume g(L) £ 6. Then g(s') £ 2. If

g(sS') = 2, then either g(L) =5 with d < 3 or g(L) = 6

with d ¢ 6. Furthermore if L is spanned and T (L) gives a

denerically one to one map then q(s')y = 2 implies that

no(L) = 4,9(L) =6 and d =5 or 6.
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Proof. 1Indeed q(S') 2 3, implies g(L) > 7 by (2.3) above,
so that g(S8') £ 2. Again (2.3) and g(S') = 2 imply g(L) = 5

or 6 with the stated bound for d.

If L is spanned and T (L) gives a generically one to
one map then Castelnuovo’s bound (0.9) shows d 2 4 if
g(L) = 5. Therefore g(L) = 6. By combining (2.3) and (0.9) we

find d =5 or 6 and hO(L') = hO(L) = 4.

Finally let us give an easy but useful generalization of

some of Sommese's results contained in [S3].

(2.6) THEOREM. Let X be an irreducible variety of dimension

n. Let L be a spanned and big line bundle on X. Let 8 C X

be a general surface section obtained as transversal intersec-

tion of n - 2 general members of |L| and let (S',L') be

the minimal desingularization of (S,L). If «k(X) > O then

one has
{(2.6.1) KS' KS' 2 (n - 3)KS, . Lé, + (n - 2)L., - Lé,
(2.6.2) KS, . Lé, 2 (n - 2)L., - Lé,
» = . ! 4 . ' = v -
Note KS LS KS' LS' and LS' LS, LS LS. Further

more if either inequality is an_equality then «k(X) = 0.
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Proof. By using Bertini'’'s type theorems and the.fact that S

is general one sees that, there exists a commutative diagram

sy

§ &— X

where a,f are desingularizations, s” = ﬁ-l(s), a = ﬁISA
and it factorizes through some morphism h since 7w is the
minimal desingularization of S. Note that by hypothesis KXA
is @Q-effective. Note also that «(S') = 2 since «k(X) 2 0,
and hence K, + L' is nef and big by [A-S1]. Let " = g L.

From the commutativity of the diagram it thus follows that

L;A ~ h*Lé,. Then we can compute:
* t - ~ - ’\n‘“z =
0 {h (KS, + LS,) (KX L )
= h" (K., + L.,) + (K - 2)L3A) =
- ( gt Sr) ( SA (n ) SA) -

+ Lay) .' KS' - (n =~ 2)(KSJ + Lér) * L’S'=

= Kg, * Kq, = (n = 2)L4, + Ly, = (n = 3)Kg, - L,

which leads to (2.6.1). Similarly one has

* -~ A A ~ A ~
0 ! = . A= A A= -— A ~ - A AT
Kg, L&, = h Kg,Lga=Kgn+Lga=(K _ +(n-2)L3~)*Lg~2 (n-2) L~ Lg

5 X" |s



_'22_

e
h “
b

that is (2.6.2). To prove the lasﬁ part of the statement, note

that the equality in (2.6.1) or (2.6.2) gives respectivgly

*
~ ~ . ' =
KX |S h (KS, + LS,) 0

or

Now if hO(KgA) 2 2 for some N 2 1, then ho((KxalsA)N) 2 2
*
by Lemma {(0.11). Therefore since h (KS, + Lé,) and Lé, are
nef and big a straightforward check shows that the intersec-
1 ~ ~ . * d
tion numbers KX |s h (KS, + LS,) and

KXA|SA . LSA must

be positive. It thus follows that hO(Kgﬁ) < 1 for all N > 0,

whence «(X) = 0.

The following consequence of the Theorem above 1is a

slight generalization of (0.5.1) in {L-S].

(2.7) COROLLARY. Let (X,L) be as in Theorem (2.6) and let

d = LoN. Then }

with equality only if k(X)) = 0.
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Proof. From (2.6.2) and the Qenus formula we get

2g(L)-2 = Kg, *Kg, + L&, °LL, 2 (n=1)Lg,-LL, = (n-1)d.



- 24 -

§3 An lication to erelliptic hyper e sections

Firsf of all note that it is equivalent to consider pairs
(S,L) where S is a normal surface with L an ample and
spanned line bundle such that T (L) gives a generically one
to one map and pairs (S,L) where S 1is the normalization
n : S — 2 of an irreducible 'surface. 5 cPfand L= n*O(l) .
Indeed, n*a(l) is ample and spanned and I‘(n*O(l)) gives a

generically one to one map.

Now let (s',L") be the minimal desingularization of a
pair (S,L) as above. The following is the analogue of a
result of Sommeses working in the case when q(sS') = 0 (see
[S1], §4) and of a result of Vande Van’s where L has to verify
.the two extra conditions ho(L) 27 and L * L 2 10 (see ([V],

Cor. IV).

(3.1) THEOREM. With the notation as above,. let L be an ample
and spanned line bundle on a normal surface §S. Further assume
that TI' (L) gives a _gepnerically one to one map ang.cl(L)2 2 1o
or cl(L)2 2 9 'gg_q L' 4 3D, D effective divisor with
D+« D=1. If there exists a_ _smooth hyperelliptic curve
c € |L| then pg(S') =0, d= cl(L)2 > g(L) + 2 and e;tge;‘

(3.1.1) q(s') > 0, h%(L) =4, g(L) + 2 » 3q(S') + d/3
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and there_ekist at_most finitely many smooth curves in |L

(3.1.2) (S,L) is a cone or a scroll; oxr
(3.1.3) (8',L') is a conic bundle over a smooth curve.
Proof. Let C be a nonsingular hyperelliptic curve belonging

to |L|. It should be noted that C¢C' = #"Y(c) is a nonsingu-

lar hyperelliptic curve in |L'| since ¢ does not pass
through the singular points of §S; viceversa, given any smooth

hyperelliptic curve ¢C' € |L'|, w(C') = ¢ is an hyperelliptic

curve in |L] since L' = v L.
From now on, we can assume that KS' + L' is nef and
big. Otherwise in view of [A-S1]}, (2.5), (2.7), (s',L') 1is

either a conic bundle or a scroll over a nonsingular curve or
the mininimal desingularization of a quadric cone. Now an easy
argument shows that if (s,L) # (s',L") and (s',L") is a
scroll then . (S,L) 1is a cone. Thus we fall in one of classes

(3.1.2) or (3.1.3).

First, note the fact that there exist at most finitely

many smooth hyperelliptic curves ¢ in‘|L| is clear. Other-
; . -1 ~

wise, 1f C' =w “(C), KC, ~ (KS, + L‘)lc,

associated to F(KS, + L') would be at least 2 to 1 on a

and hence the map

dense set of curves, this contradicting Theorem 1.1. To go on,

we need the following



CLAIM. Let K x €.C  be a ramification pqintvfgx.the‘canonigal
map associated‘ tp. F(KC),;;If:; ‘q(S’) = 0,,,..and, a smooth
c' € |[L' - x| is tangent to C at x or,if .g(s') > 0 and
a smooth C' € |L' - x| 1is tangent to C at x of the pnd

order, then <C' 1is hyperelliptic.

Proof of the Claim. Note that the proof in [S2], (4.2) works
with almost no change to give the qg(S') > 0 result; We give
here the proof of the stronger. statement when ¢q(S') = 0. Take
an element A € IKS, + L' - x|. Then the 1local intersebtion
multiplicity (A.C)x at x 1is nothing but the zero'’s order
of a 1-form belonging to F(KC), therefore (A - C)x 2 2. It
thus follows that (A - C’)X 2 2 also. Indeed, if (A - C')x = 1
then A would be smooth at x. and transverse to C' at x
and hence to any smooth curve C tangent to €' at x. Thus,
since the map

I'(Kg, + L') = I'(Ky,) — 0

S'

is onto g(S’') being zero, we see that any l-form o € T (K
nd

o)

which vanishes at x, vanishes to the 2 order at x. This

means that C' 1is hyperelliptic (see again [S2]).

From the Claim we infer that if q(s') = 0 and
ho(L') =4 or g(S') > 0 and ho(L’) 2 5 there is a pencil

of smooth hyperelliptic curves ¢’ € |[L‘|] on S'. Again,
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C!

gument as above leads to a contradiction in view of Theorem

looking at the restriction (KS, + L')lC, X~ K the same ar-

1.1. Note hO(L) 2 4 since hO(L) = 3 would imply

(S,L) = (Pz,o(l)), by Zariski’s Main Theorem, contradicting

L +* L2 9. Thus it has to be g(8'} > 0 and ho(L) = 4,

To prove that pg(S‘) = 0 the same argument as in [S1],
(0.8.3) works. We recall it for reader's convenience. First,
nt(L

= hO(KC, - L = 0 since c' is hyperelliptic.

Cf) 'C’)
Otherwise, let s be a non-zero element in F(C',KC, - L'C,).

Then s & I'(L) 1is a subspace V of T (K with the proper-

or)
ty that the map associated to V 1is generically one to one on
{(x € C', s(x) # 0}, a contradiction. Thus easily it follows
that hi(r.%) = n%(k,, - tL.,) =0 for all t > 1. Now, since
clearly h2(L't) = hO(KS, - tL’') = 0 for t >> 0, the long

exact cohomology sequence associated to

I A R A PR
for t 2 0, shows that pg(S') = 0.

Moreover, hO(LC) 2 3 because hO(L) 2 4. Therefore
x(Lg) =d - g(L) + 123 since  h'(L.) = 0, which gives
d 2 g(L) + 2.

Finally we apply Corollary (2.3) to get
g(L) + 2 2 d/3 + 3g(S') whenever q(s') > 0 and this

completes the proof.
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