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1. INTRODUCTION

Let (M", g) be Riemannian manifold of dimension n, with curvature tensor R. The Ju-
cobi operator Rx is the symmetric endomorphism of T, M defined by Rx(Y) = R(X,Y)X
and we will usually restrict X to lie in the unit sphere S,M. In [29], based on results
obtained in [30,7], Osserman made the following conjecture:

Conjecture (Osserman). If the eigenvalues of the Jacobi operator Rx are independent
of the choice of X € §,M and of the choice of p € M, then either M is locally a rank-one
symmetric space or M is flat.

It may be checked directly that the Jacobi operator of a rank-one symmetric space
satisfies the hypotheses of the conjecture; indeed, such a space is two-point homogeneous
so the isometry group is transitive on the unit sphere bundle. Chi [12] has already proved
the Osserman Conjecture in dimeunsions n = 1 (mod 2), n = 2 (mod 4) and n = 4 (and
obtained further results in [13,14}); however, in [21] examples were given of metrics which
are not locally symmetric but which nevertheless have a point p over which the eigenvalues
of the Jacobi operator are independent of X. This leads to a pointwise version of the above
conjecture:

Question 1.1. If the eigenvalues of the Jacobi operator Ry only depend on p € M and
not on the choice of X € S,M and M is not flat, is M locally isometric to a rank-one
symunetric space?

Manifolds satisfying these hypotheses on the Jacobi operator will be said to be pointwise
Osserman in contrast to the globally Osserman manifolds of the Osserman conjecture.

The main purpose of this note is to study the relationship between pointwise Osserman
and globally Osserman manifolds. In §2 we give some elementary properties of pointwise
Osserman manifolds, relate the pointwise Osserman condition to the notion of k-stein
manifold and give four-dimensional examples of pointwise Osserman manifolds which are
not globally Osserman. In the following section we show that various conjectures related
to isoparametric spheres lead to the global version of the Osserman conjecture.

The rest of the paper is deals with links between Osserman conditions and Clifford
structures. In 84, the results of [21] are used to outline a two-step approach to solving
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the Osserman conjecture. This immediately deals with the conjecture when the dimension
of M is odd and in §5 we rework Chi’s arguments [12,14] for the case dim M = 2 (mod 4) to
fit into this scheme. In §6, we show that the candidates for pointwise Osserman curvatures
tensors in §4 are often necessarily globally Osserman. These results are used in §7 to show
that if a Riemannian manifold (M, ¢) has a curvature tensor built in a non-trivial way
from a quaternionic structure as in §4, then M is necessarily locally isometric to HP(n) or
its non-compact dual.

Acknowledgement. We would like to thank Simon Salamon for useful comments.

2. POINTWISE OSSERMAN MANIFOLDS

If V is the Levi-Civita connection of g, our convention for the sign of the curvature
tensor R is that R(X,Y) = V(x y]—[Vx,Vy]. Let A; < A3 <--- < A, be the eigenvalues
of the Jacobi operator Ry with multiplicities oy,...,.. Since we always have Rx X =0
we will ignore this eigenvector, so ) . 0; = n — 1. In the following it will be important
to consider the functions iy = Zi(a;,\,-k) = Tr(Rx*). Indeed the pointwise Osserman
condition is equivalent to saying that ;i is independent of X € 5,M for all k and the
manifold is globally Osserman if in addition each jx is globally constant. Further, in the
terminology of {10], a manifold for which there exist functions fy such that,

Tr(Rx") = feol| X||*Y,  forall X € T,M and for all £ < k,
1s said to be k-stein. Note that 1-stem is the same as the Einstein condition. By taking
the functions fr to be ¢ we have:

Proposition 2.1. A pointwise Osserman manifold is k-stein for all k. In particular a
pointwise Osserman manifold is Einstein and hence analytic in normal coordinates.

Lemma 2.2. [13] A (locally) reducible pointwise Osserman manifold is flat.

Chi [13] gives a direct proof, but this also follows from [10] where it is shown that
reducible 2-stein manifolds are flat or from [11, Thm. 6.22).

Lemma 2.3. If M 1s pointwise Osserman and also locally symmetric, then either M is
flat or M 1s locally a rank-one symmnetric space.

Proof. (cf. [17]) By the previous lemina, if M is not flat then it is irreducible, so the
universal cover of M 1s a symmetric space G/ for some semi-simple Lie group G and
some compact group L. The Lie algebra g of G splits as g = ¥ @ p, where E is the Lie
algebra of K and p is isomorphic to T.(G/K). Let a be a maximal Abelian subalgebra
of p. By definition, the rank of G/ is the dimension of a. Let « be any root of a, this is
a linear function such that for some non-zero z in g€ we have

ad(v)z = [v, 2] = a(v)z, for all v € a.

If dima > 1 then there exist v;,v; € a such that a(vy) = 0 and a(vy) # 0. Now the
curvature of G/IK is given by R(w,y) = —[[,y], z] (see [24]), so the Jacobi operator is

R, = —ad(v)?.
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In particular Ryx = —a(v)?z and the eigenvalue —a(v)? is a non-constant function on the
unit circle { v = cos(8)v; +sin(6)v, }. Furthermore, the eigenvalues of R, on TcM are just
those of R, on TM with the multiplicities ¢; doubled. So dima > 1 implies that M is not
pointwise Osserman. 0O

Note that an indirect proof of this may be found in [10] where a case-by-case argument
shows that the only non-flat syminetric spaces which are k-stein for all k£ are those of rank
one. The result also follows from the fact that the hypotheses imply that M is a locally
symmetric harmonic space and hence locally isometric to a two-point homogeneous space
(see for example [5]).

Whenever one has an equation such as Tr(Rx) = p1||X]||%, for all X and for some
function p,, there 1s always the question of whether u; is necessarily a constant. Such
problems are called Schur-like problems and in this context we have the following known
results.

Theorem 2.4. On a pointwise Osserman manifold M" we have:

(1) if n # 2, then y, is constant;

(2) if n # 2,4, then p, is constant.

Proof. (1) is a direct consequence of the corresponding well-known statement for Einstein
manifolds (see for example [6, Thm. 1.97]).
For (2), let {E;} be an orthonormal basis of T, M. Then

Tr(Rx?) = R(X,i, X, 5)R(X,j, X,1) = || X ||,

where we have written ¢ for E; when it is an argument of R and repeated indices are
summed. We may polarise this identity to obtain

R(X,, X, ))R(Y, ), Y, 1) + R(X,4, Y, ))R(X,5,Y,1) + R(X,4,Y,j)R(Y, 5, X,1)
= j2 ([](X,X)Q(Y,Y) + 2g(XaY)g(X!Y)) .

Putting ¥ = Ey and summing over k gives
R(X,i,X,])pji + R(X,1,k, ))R(X, 4, k,1) + R(X, 4, k, j)R(k, j, X, i) = piz(n + 2)| X%,

where p;; is the Ricci tensor of . However, M is Einstein with p = y,¢, so the first term
is 3| X||*. Now using the Bianchi identity one has

R(X,i,k, ))R(X, 5, k,i) = —R(X, i, k, ) )R(X, k4, 7) — R(X,%,k, 5 )R(X, 4,5, k)
= R(X,4,j, k)R(X, 5, k,1) + R(X, i, k, ) R(X, 4, k, 7),

and hence
E(X,X) = R(X,i, k,j)R(X,i, k,j) = 2R(X,i, k,j)R(X,j, k,2).

Thus
E0X) = 2pa(n + 2) — DX = LIRIFIXZ, (2.1)
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where ||R||? = RijxiRijxi. Thus M is super-Einstein in the terminology of [23], that is
M is Einstein and ¢ = fg for some function f (see also [5, p. 165]). Now differentiating,
we have

Eubip = Raiju;p Roije + RaijiRaijesp.

Since M is Einstein, Ryijip = —Rpiks;j — Rbivjii = pik;j — pij;k = 0. But we also have
11 pIi2
Raijkp Roijk = —Rivjkse Roiji — RoajniRoije = 1| R|lJa — RaijepRoijk.

Thus
Eatip = IR

On the other hand, (2.1) implies
Eutit = T R8s = LRI

So if n 3 4, ||R||* is constant and hence ji; is constant. (See also [5, p. 165] for another
proof.) O

Corollary 2.5. Suppose M is pointwise Osserman. If Ry has at most two eigenvalues,
then these eigenvalues do not depend on p and M is globally Osserman.

Theorem 2.6. For a four-dimensional manifold M the following are equivalent:
(1) M is pointwise Osserman;
(2) M is 2-stein;
(3) locally there is a choice of orientation of M for which the metric is self-dual and
Einstein.

Proof. We have already seen that (1) implies (2) in general. The equivalence of (2) and (3)
is proved in [33, §3]. This uses a result of [25] which states that M is 2-stein if and only if at
each point p € M there are local almost complex structures I, J and K with the following
three properties: firstly, they satisfy the quaternion identities I? = J? = K? = —1 and
IJ = K = —JI; secondly, the metric ¢ is Hermitian with respect to each of I, J and K ; and
thirdly, for any X' € §,M, the curvature tensor R regarded as a symmetric endomorphism
of A2T* M is diagonal with respect to the basis dual to

XAIX+JXANKX, XAJX+EKXAIX, XAKX+IXAJX,
XANIX-JXAKX, XANJX-KXAIX, XANKX-IXAJX,
and
R = diag(a — s,b— s,¢ — 5,8,38,8),

where s = (a+b-+¢)/6 and «, b and ¢ only depend on p. Using this one may check directly
that Rx has eigenvalues «, b and ¢ and so M is pointwise Osserman. O

Note that the fact that (1) implies (3) is equivalent to the equation (3.5) in [12]. Also
the deduction of (3) from (2) may be found in [31].
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Corollary 2.7. There exist pointwise Osserman four-manifolds which are not globally
Osserman and hence are not locally isometric to rank-one symmetric spaces. Also there
are examples where the function ||R||? is not constant.

Proof and Discussion. Since the Osserman conjecture is true in four-dimensions, for the
first part it suffices to give an example of a self-dual Einstein four-manifold which is not
locally symmetric. A compact example may be obtained by taking M to be a K 3-suiface.
By Yau’s proof of the Calabi conjecture, this carries a hyperKahler metric so in particular
it is self-dual and Ricci-flat (see for example [6]). Local examples with non-zero scalar
curvature may be obtained by taking a smooth open set in say one of the quaternionic
Kahler orbifolds constructed in [18] or {19] and further hyperKahler examples with many
possibilities for the eigenfunctions may be found in [26].

An example where ||R||? is clearly non-constant is given by the Calabi metric on
T*CP(1), see [8,9,20]. This is a complete hyperKahler metric which has an action of
U(2) such that the central U(1) fixes a complex structure I and rotates J and K. Thus
at any given point two of the eigenvalues of the Jacobi operator are equal and u; and g,
generate all the symmetric functions of the eigenvalues of the Jacobi operator. Now u; is
constant as M is Einstein (in fact Ricci-flat). However, p; can not be constant otherwise
M would be globally Osserman and hence locally symmetric. Thus ji2 and hence ||R||? are
non-constant functions for this metric. A second example with ||R||?> non-constant which
arises from the work of Olszak [28] will be discussed at the end of section 5.

[Since the hyperKahler metrics on K 3-surfaces form a 57-dimensional family it would
seem reasonable to suppose that compact examples with || R||* non-constant may be found
amongst them. However, this seems hard to verify, partly because no explicit expressions
for these metrics are known.| O

3. ISOPARAMETRIC GEODESIC SPHERES

If we fix a point p of our Riemannian manifold M then we may look at small geodesic
spheres G,(r) centred on p. For x € G,(r) one can consider the second fundamental
form I(z,p,7) of G,(r) C M. The following is due to Tricerri & Vanhecke [38].

Isoparametric Conjecture. Suppose the eigenvalues of I(z,p,7) depend only on p
and r, then either M is locally a rank one-symmetric space or M 1s flat.

This conjecture is already known to hold in dimensions 2, 4 and 1 (mod 2) [38]. The
following proposition shows that the Isoparametric Conjecture is also valid in dimensions
2 (mod 4) by [12] (and also under the other hypotheses shown by Chi [13,14] to imply the
Osserman conjecture).

Proposition 3.1. If M is a manifold for which the eigenvalues of Il(z,p,r) depend only
on p and r, then M 1s globally Osserman.

Proof. Fix a point p and a tangent vector £ € S,M and let = = exp,(rf). From {11] we
have the following series expansion relating the second fundamental form and the Jacobi
operator

Iz,p,r) = 3— Id—5Re — %?-VERE + 0O(%),



6 PETER GILKEY, ANDREW SWANN AND LIEVEN VANHECKE

where V is the Levi-Civita connection and all terms on the right are evaluated at p. Under
our hypotheses, I(x, p,r) has eigenvalues independent of £ so this also holds for

f(€.,7) = Re + $r9eRe + 0()

and any power of f. In particular,
Te(f(€,p,r)*) = T (RE" + 3k RV Re + O(%))

is independent of £, which implies that Tr(R¢*) and Tr(Re*™'V¢Re) are also. The first
of these implies that M is pointwise Osserman. Defining y as in the previous section, we
have that

& = € Tr(Re*)

15 independent of £, so replacing ¢ by —£ shows that £y = 0. Hence the eigenvalues are
constant and the manifold is globally Osserman. O

Note that although under the hypothesis of Proposition 3.1, M is necessarily harmonic,
the recent examples of Damek & Ricci [15] of harmonic manifolds which are not symmetric
do not provide counterexamples to the Isoparametric Conjecture [38, Prop. 6.1}].

The Isoparametric Conjecture considers geodesic spheres centred on a point p. Alterna-
tively one may consider geodesic spheres passing through p. In [40] it is shown that if s 1s
the geodesic symmetry about p, then I(p,z,r) = K(p, s(z),r) as endomorphisms of T, M
for all z, p sufficiently close if and only if M is locally syminetric.

Proposition 3.2. If M is a manifold for which the eigenvalues of U(p, x:,7) depend only
on p and r then M is globally Osserman.

Proof. Write x = exp,(r§), then [39] (see also [4]) shows that
I(p,«,7) = +Id —ZR — %VERE + O(r*).

The result now follows exactly as in the previous proposition. O

Thus non-flat manifolds with the eigenvalues of I(p, z,r) depending only on p and r are
rank-one symmetric if their dimension is 4, 1 (mod 2) or 2 (mod 4) (and other cases as
in [13,14]). Also, these manifolds are necessarily harmonic (see [4, Prop. 1] where these
spaces arise as particular examples of T€-spaces).

An intrinsic version of the Isoparametric Conjecture may be obtained by considering
the Ricci endomorphism Q(z, p,r) at = of the induced connection on the geodesic sphere
of radius r centred on p.

Proposition 3.3. If M is a manifold of dimension n > 2 for which the eigenvalues
of Q(z,p,r) depend only on p and r, then M 1is globally Osserman.

Proof. For z = exp,(r€), from [16] we have

Q(z,p,r) = 22 1d+ {Q — p(£,)¢ — 1p(€,€)Id —2 R}
+7{VeQ — (Vep)(€,)E ~ X(Vep)(€,6)1d - 2LV Re } + O(r?),
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where @Q is the Ricci endomorphism of M. Hence, the first two terms of Tr(@) are

!n—lr!!n—Z! 45— 2!n3+] )p(g’ E);

where s is the scalar curvature of M. By the hypothesis, these terms are independent of £,
so M is Einstein. The second term in the expansion of Q is now a linear combination of
Id and R and the third is —r(n + 1)V R /4. Thus we may apply the same arguments as
in the previous two propositions to show M is globally Osserman. 0O

Since manifolds satisfying the hypotheses of Proposition 3.1 or Proposition 3.3 are har-
monic [11], we have:

Corollary 3.4. Under the hypotheses of Proposition 3.1 or Proposition 3.4 the spaces
are locally isometric to two-point homogeneous spaces in all cases where the Osserman
conjecture or the Lichnerowicz conjecture on harmonic spaces are proved to be true.

For discussion of the Lichnerowicz conjecture see [35].

4. CLIFFORD STRUCTURES

We recall the discussion of [21]. If we assume M is pointwise Osserman then in each

fibre T,M the eipenspaces of Ry define distributions in TS™~!. There are topological
P gensy polog

restrictions to the existence of such distributions and these are linked to the existence of

Clifford structures on TM.
Theorem 4.1. (3, Prop. 15.14; 1, Thm. 1.1; 34, Thm. 27.16, p.144] Let n = 2"ny with
21 ng and define v(r) by v(i) =2' — 1, fori = 0,1,2,3, and v(v + 4) = v(z) + 8. Then

(1) R™ admits a Cliff(v)-module structure if and only if v < v(r);
2) TS™ ! admits a ¢-dimensional distribution for 2¢ < n — 1 if and only if ¢ < v(r).
i q /f

Note that the curvature tensor R® of a metric of constant curvature is given up to scale

by
RY(X,)Y,Z)=¢(X,2)Y —g(Y,2)X

and that, if I is an almost complex structure making ¢ Hermitian, then the curvature
tensor of (a multiple of) the Fubini-Study metric on CP(n/2) is R® 4+ R', where

RUX,Y,Z) = g(Y,IZ)IX — g(X,IZ)IY - 2¢(X,IY)IZ.

The Jacobi operator of R¢ has the single eigenvalue 1 and R has eigenvalues 3 and 0 with
multiplicities 1 and 7 — 2, and moreover the eigenvector corresponding to the eigenvalue 3
18 IX.

Theorem 4.2. [21] Suppose there is a Chff(v)-structure on R™ and consider a set of
generators {Iy,...,1,} such that I,)I; + I;I; = =26;;. Let Xq,..., A, be any real numbers.
Then

R=XR+ > (N~ Ao)R"

=1
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is an algebraic curvature tensor such that
Rx([;X)=MLX and RxY =AY, (4.1)
where X, Y € SyR" and Y 1s orthogonal to X, L X,..., I, X.

The theory of normal coordinates shows that such algebraic curvature tensors may be
realised at a point as the curvature tensor of a Riemannian metric defined in a neighbour-
hood of that point (see for example [6]).

The theorem suggests the following two-step approach to solving the Osserman conjec-
ture. First, show that the pointwise Osserman condition implies the existence of a Clifford
structure so that the eigenspaces of the Jacobi operator are as in (4.1). One then has the
following fact which was also observed by Neda Bokan and Novica Blazi¢:

Proposition 4.3. For a given Clifford structure with generators {Iy,...,I,} and given
Ao, - -+, Ay there is precisely one algebraic curvature tensor satisfying (4.1).

Proof. If there are two such curvature tensors, then their difference is an algebraic curva-
ture tensor all of whose Jacobi operators are identically zero. O

The second step is then to decide which of these algebraic curvature tensors may be
realised as curvature tensors of a Riemannian manifold.

The first case to consider 1s when M is pointwise Osserman and dimM =n =2m + 1.
Theorem 4.1 says that Ry can only have one eigenvalue, so M is globally Osserman and
has constant curvature. This is exactly the argument given by Chi [12]. He also deals with
the case when dim M = 2 (mod 4). In the next section we rework his arguments to make
explicit the relationship with almost complex structures.

5. THE POINTWISE OSSERMAN CONJECTURE FOR dim M = 2 (mod 4)

If M is pc‘)intwise Osserman and dinM = n = 4m + 2 > 0, then Theorem 4.1 implies
that Rx has at most two eigenvalues b and ¢, with b of multiplicity n—2 and ¢ of multiplicity
one. First note that if X is either b or ¢, then

RyY =AY ifandonlyif (R(X,V)X,Y)=2A

if and only if Ry X = AX.

Let L be the line bundle over SM corresponding to the eigenvalue ¢ and without loss of
generality assume that M is contractible. As any line bundle over S*~' = S, M is trivial
(see for example [34]), we can find a (smooth) global unit section 71X = I(X).
Lemma 5.1. I*(X) = —X and I(-X) = -I(X).
Proof. Let Vx be the span of X and IX and note that Y 1 Vy if and only if X1 Vy. If
U is an element of Vy of unit length, then U = cos(6)X + sin(#)IX and we may define
Z(U) to be —sin(#)X + cos(8)IX. The sectional curvature of Vy is

(R(U, Z(U)U, 2(U)) = (R(X, [X)X,IX) = ¢,
so RyZ(U) = ¢Z(U) and Z(U) = £1IU. By continuity the sign is independent of #. Thus
PFX)=2*X)=-Xand [(-X)=4+Z(-X)=FZ2(X)=-I(X). O

We now have a well-defined extension of I to the whole of TM via the formula I(rX') =
rI(X), for r € R,
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Theorem 5.2. The extension of I to TM is linear.

Proof. Tt is sufficient to show I(X +Y) = IX 4+ IY for Y LVx, because if we consider
I(A+ B), we may rescale so that 4 has unit length and write B = A’ + B’ where A’ € V4
and B’ LV4, and then obtain
I(A+B)=I(A+A'+B") = I(A+A")+IB' = IA+IA'+IB' = TA+I(A'+B'y = IA+IB.
By rescaling we need only show
I{cos(6)X + sin(8)Y) = cos(8)IX + sin(6)1Y, (5.1)
for | X|| = Y] = 1 and Y LVx. Fix such a pair X,Y, let & = cos(8), 8 = sin(f) and for
convenience define I' = el for some € = +1. Let
Ag=aX +BY, Bsg=olX +BI'Y.
Suppose we can show that for some choice of €
.r\g = (R(Ag,Bg)Ag, Bg) =c (52)
for all 8. Then By = +I(Ay) and by continuity the sign is constant. Calculating at § =0
shows By = I{Ay), whereas taking 6 = n/2 shows I'Y = I'Y, e = 1, proving (5.1).
To prove (5.2) first note that the curvature identities and the eigenvalue property imply
that R(-,-,-,-) = 0 when three of the arguments lie in {X,IX} and one lies in {Y,I'Y},

or vice versa. Thus, when we expand Ay in terms of X, IX, Y and I'Y, the coefficients of

o®f and aff® vanish. Also R(X,I'Y, X, I'Y) = R(Y,IX,Y,IX) =, so

Ao = (&' + e+ 20°BH{R(X,IX,Y, I'Y) + b+ R(X,I'Y,Y, IX)} (5.3)
and to prove (5.2) it suffices to show that the last bracket equals ¢, that is
RX,IX,) Y, I'YY+ R(X,I'Y,Y,IX)=c—b. (5.4)

Lemma 5.3. (1) R(S,U)T = —R(T,U)S when SLT and S,T € V;
(2) R(S,T)U =0 when S1Vy and S, T € V7-;
(3) 2R(X,Y,IX,I'Y) = R(X,IX,Y,I'Y);
(4) 2R(X,I'Y,IX|)Y)=—-R(X,IX|Y,I'Y).

Proof. Let W = cos(¢)S + sin(¢)T. Then U is orthogonal to Vi, so R(W, U)W = bU.
Expanding this identity gives

(cos® ¢ + sin® ¢)bU + cos ¢ sin ¢(R(S,UNT + R(T,U)S) = bU,

proving (1). For (2) we see that the roles of S, T, U are symmetric, so we may use (1) and
the Bianchi identities to get

R(S,TYU = -R(T,U)S — R(U,S)T = R(U,T)S + R(T,S)U = -2R(S5,T)U,
as required. For (3), using (1) we have
RX,)Y,IX,I'Y)=-R(X,IX, I'Y,)Y)- R(X,I'Y,Y,IX)
=R(X,IX,Y,I'Y)- R(IX,I'Y,X,)Y)
and (4) follows from
R(X, I'Y,IX)Y)=—-R(IX,I'Y,X,Y)=-R(X,Y,IX,I'Y) = ~1R(X,IX,Y,I'Y). O
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Lemma 5.4. R(X,IX,)Y,I'Y) = £2(h - ¢)/3.
Proof. Let A= An/q = (X +Y)/V2, B =B, =IX+1Y)/V2 and define

C=(X-Y)V2, D=(IX-IY)/V2.

Then {A, B,C,D} is an orthonormal basis for Vy & Vy and we now prove that B is an
eigenvector of R 4.

If Z is orthogonal to Vx & Vy, then

28/2(R(A, B)A, Z)
=R(X,IX,X,Z)+ R(X,IX,Y,Z)+ R(X,I'Y,X,2)+ R(X,I'Y,Y, Z)
+R(Y,IX, X,2)+ R(Y,IX,Y,Z)+ R(Y,I'Y,X,Z)} + R(Y,I'Y,Y, Z).
As R(X,IX)X = cIX, the first term is zero and R(X,IX )Y, Z)= -R(Y,Z,X,IX) =0,
so the second term 1s also zero. The remaining five terms may be dealt with in a similar
way and so (R(A,B)A,Z) = 0.
Now compute
4R(A,B,A,C)
=2R(X+Y,IX+I'Y X)Y)
= -2(R(X,IX, X,Y)+ RX, 'Y, X,)Y)+ R(Y,IX,X,)Y)+ R(Y,I'Y, X,Y))
=0

and

4R(A, B, A, D)

= R(X,IX,X,IX) - R(X,IX,X,I'Y) + R(X,IX,Y,IX) - R(X,IX,Y,I'Y)
+R(X,I'Y,X,IX)- R(X,I'Y,X,I'Y) + R(X,I'Y,Y,IX) - R(X,I'Y,Y, I'Y)
+R(Y,IX,X,IX) - R(Y,IX,X,I'Y)+ R(Y,IX,Y,IX) - R(Y,IX,Y,I'Y)
+R(Y,I'Y,X,IX) - R(Y,I'Y,X,I'Y) + R(Y, I'Y,Y,IX) - R(Y,I'Y,Y,T'Y)

=c—0+0—R(X,IX,)Y,I'Y)+0—b+R(X,I'Y,Y,IX) -0

+0-RY,IX, X, I'Y)+b-0+ RY,I'Y,X,IX) -0+ 0~c
=0.

Thus R(A, B)A = X' B for some X', as claimed. As in (5.3) we now have
N=g(c+bh)+3IR(X,IX,Y,I'Y)

and the Lemma follows. O

The proof of Theorem 5.2 is completed by choosing I' = €l so that R(X,IX,Y,I'Y) =
—2(b — ¢)/3. This means that (5.4) is satisfied, as required. O
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Corollary 5.5. The curvature tensor of M is given by
R=0bR*+ 'R,
where ¢! = (c — b)/3.

However very few of these tensors occur as the curvature tensor of a Riemannian man-
ifold, as the next result shows.

Theorem 5.6. [37] If M is an almost Hermitian manifold of dimension strictly greater
than four with curvature tensor of the form R = bR® + ¢'R!, for some functions b, ¢' and
¢ #0, then b= ¢ and M is locally isometric to CP(n/2) or its non-compact dual.

Applying this to a pointwise Osserman manifold gives the following generalisation of
one of Chi’s results [12].

Theorem 5.7. If M is a pointwise Osserman manifold of dimension n = 4m + 2 > 2,
then M is either flat or locally a rank-one symmetric space.

Note that Theorem 5.6 is also valid for dim M = 4 when b or ¢’ is assumed to be con-
stant [37]. Olszak (28] showed that this additional assumption is necessary by constructing
examples of four-dimensional almost Hermitian manifolds with curvature tensor bR +¢'R!
with b and ¢ non-constant. Since in this situation the Jacobi operator only has two eigen-
values, his construction provides us with further examples for Corollary 2.7 of pointwise
Osserman four-manifolds with ||R]|? non-constant.

6. THE GLOBAL OSSERMAN CONDITION AND CLIFFORD STRUCTURES

In this section we discuss the relationship between the global Ossetman condition and
the pointwise Osserman algebraic curvature tensors which were associated to a Clifford al-
gebra structure in §4. This is partly technical preparation for the computations of the next
section where we will concentrate on the cases of Cliff(2)- and certain Clff(3)-structures.

Suppose we have a Cliff(v)-structure with generators {I;,...,I,} as in Theorem 4.2.
We assume that the curvature tensor R is in the form

R=X\NR°+)_ MRE,

=1
for some functions A;.

Proposition 6.1. Let n = dim M and assume the Cliff(r)-structure on M satisfies one
of the following six conditions:

(a) v>09;

(b) n> 4w,

(c) v =3, n > 8 and TM decomposes as a direct sum of isomorphic irreducible

CLff(3)-modules (or, equivalently, Iy = +1,1,);

(d) v =5 and n > 16;

(e) v =6 and n > 16;

(f) v =7, n > 16 and TM decomposes as a direct sum of isomorphic irreducible

Cliff (7)-modules.
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Then we have:
(1) for all X € TM and alli = 1,...,v, the vector field \{(VxI;)X is in the linear
span of {I; X :j #1};

(2) the functions Ay, ..., A, are constant.

Proof. In this and following calculations we will make repeated use of the differential
Bianchi identity

0= 6

A,B,C(WAR)(B,C’D) (6.1)

= A"+ )AL+ A AT+, AT,

j=1
where
A’ = A,gCA(/\u)(y(B,D)C -9(C,D)B),
A; =, AW (9(C, DB - ¢(B, ;D);C - 29(B, ;C)I;D),
Al = AECU(C, (VaL;)D);B — ¢(B,(Val;)D)I;C — 2¢4(B,(V al;)C); D,
Aj = A’gcg(c, I;DYV AI;))B — ¢(B,I; D)V al;)C — 2¢(B,;C)(V 4I;)D.

We first prove (1). Fix ¢ and let X be any unit vector. Let ¥ be a unit vector orthogonal
to X and I;X, 7 = 1,...,v and choose a unit vector Z such that I;Z and LI;Z are
orthogonal to both X and Y for 5 = 1,...,»v. This i1s a total of at most 4 conditions
on Z, so this may certainly be satisfied under hypothesis (b).

For condition (a}), recall that for » # 3 (mod 4), Cliff(v) has a unique irreducible
representation over R and this representation is of dimension 2(*+9/2 where v = 34+(3—6)¢
(mod 8) for 0 £ § £ 2 and € = 1. On the other hand for ¥ = 3 (mod 4), there are two
non-isomorphic irreducible representations, each of dimension 2(*~9/2 where v = 5 + 2¢
(mod 8) and € = +1 (see for example [3]). One may now directly check that condition (a)
implies condition (b) and so once again the conditions on Z may be satisfied.

The other four hypotheses are just the cases where the bound n > 4» may be lowered.
The hypotheses (c) and (f) both imply that for 7 # k and any Y € TM, I;I;Y lies in
the linear span of {I,Y : € # j,k}. Thus in these cases we only have 2(» + 1) conditions
on Z. Our hypotheses on 7 are now exactly those required for the existence of such a Z.
Hypotheses (d) and (e) now follow from the fact that Cliff(5) and ChLff(6)-structures give
rise to CLff(7)-structures of the type described in (f).

Now consider (6.1) with A =2, B= X, C =1;Z and D = X. The assumptions on Y
and Z immediately imply

g(A°,Y) = g(ALY) = g(ALY) =0,



ISOPARAMETRIC SPHERES AND THE JACOBI OPERATOR 13

for y = 1,...,r. Thus the Bianchi identity gives

0= XNg(ALY) ==Y 2)\g(LiZ,I;Z)g((VxI;)X,Y)

=1 i=1

= —2Xig((Vx L)X, Y).

Thus A;(V xI;)X lies in the linear span (X, I; X). However, as g is Hermitian with respect
to I;, we have
g(Vx )X, X) =0=g((VxL})X, LX),

so M(VxIX € (I;X : j # 1), as required.

For (2) we first show that A¢ is constant. Fix ¢ > 0, let ¥ be an arbitrary unit vector.
Let Z = LY and choose X to be a unit vector with I;X and I;I; X orthogonal to Z.
We now consider the same Bianchi identity as before but this time take the inner product

with Z. Thus

A\ 2) = (D)) = YO, o(A,2) =
I(45,2) = 0 (VL)X (12 Z) ~0,
and summing, the Bianchi identity implies Y(Ao) = 0, as required.

To show A; is constant, first fix a unit vector X and then choose Z to be a unit vector
with I;Z and I;1;Z orthogonal to X. Again consider the same Bianchi identity, but now
take the inner product with I;X. This gives

Q‘(AU, I,X) = 0, _(/(.A;,I,X) = —QX(/\J')_(](L'Z, IjZ)(S,'J' = —2X()\,')5,']',
g(A}, LX) = =29(5;2, 1;Z)g((Vx I;))X, ;X)) =0
and
g(AL LX) = (9(1:i3,(V2I))X) = 29(X, (V2 1), Z) - 3¢(Z,(V 1,21;)X)

- 29(5;2,(VxI;)Z))é;

(—o(V 2L 2, X) + 24(X, (V2 1)Z) + 3¢((V 1,21) 2, X) + 053
(=39((V2I)Z, X))+ 39((V ;21 Z, ;X)) 65
0.

Thus X(A;) = 0 and the proof is complete. O
If we assume that A, is constant, but relax the restrictions on v, we may obtain:
Proposition 6.2. Let n = dim M and assume the Ciff(v/)-structure on M satisfies either

(a’) v > 8 or (b’) n > 2v. Now suppose that Ay Is constant. Then we have:

(1) forall X € TM and all: = 1,... v, the vector field A\;(V x I;)X is in the orthogonal
complement of I, X in the linear span of {[; X, [;[;X : j #1};
(2) the functions Ay,..., A, are also constant.
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Proof. The proof of (1) is almost exactly as before. The only change is that we take Y = Z
and only require Z to be such that I;Z and I;I;Z are orthogonal to X. This is now at most
2v conditions on Z and analysis similar to before leads to the hypotheses (a’) and (b’).
One now uses the same Bianchi identity to obtain the desired conclusion.

(2) is deduced using the same method as in part (2) of the previous proposition. O

7. Cliff(2)-STRUCTURES AND CERTAIN QUATERNIONIC STRUCTURES

In this section we consider the special case of a pointwise Osserman manifold which
admits a compatible Cliff(2)-structure with generators I, J satisfying I = —1 = J* and
IJ = —JI. It will be helpful to define K = I.J and consider the more general case arising
from the resulting ClLiff(3)-structure. The curvature tensor may then be written as

R = XR°+ MR+ MR7 + MR,

where A; are real functions and I, J, K satisfy the quaternion identities I? = J? = K% = —1
and IJ = K = —JI. (Note that for an arbitrary CLff(3)-structure it is not possible to
choose generators in this way.) In the case of a Chff(2)-structure we have that Az 1s
identically zero.

Theorem 7.1. Let M be a pointwise Osserman manifold with a quaternionic structure
as above. If one of the following two conditions is satisfied

(1) dimM > 12, or

(2) dim M 2 8 and Ay is constant,
then M is either flat or locally isomorphic to a rank-one symmetric space of real, complex
or quaternionic type.

Note that in the case that Ay = A} = Ay = Az, since the manifold M is Einstein,
Au, - - ., A3 are automatically constant and the theorem reduces to a result of Marchi-

afava {27].

Proof. First, by Propositions 6.1 and 6.2 we have that Ay, ..., A3 are constant. We may
now assume that Ay Ay # 0, otherwise we are reduced to the case with just one complex
structure considered in section 5. The Propositions also give that (VxI)X € (JX, KX).
Calculating the coefficients of JX and KX from the Bianchi identity pives

20 (VDX = MJX(20((VxI)Y,JY) = 3¢(Y, (Vv J)X) + 39(IY,(Vy ) X))
+ MEX(29((Vx DY, KY) = 3g(Y,(Viy K)X) + 39(IY, (Vy K)X)).
(7.1)

Lemma 7.2. The constant Ay Is not zero.

Proof. An almost Hermitian manifold (N, ¢,7) is said to be nearly Kihler if (VxZ)X =0
for all X. Gray [22] shows that a nearly Kahler manifold of constant holomorphic sectional
curvature and dimension strictly bigger than 6 is either flat or locally isometric to CP(n/2)
or its non-compact dual. We will prove the Lemma by showing that A3 = 0 implies that
M is nearly Kahler and of constant holomorphic sectional curvature.
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Consider the Bianchi identity (6.1) with A= X, B=IX,C =JX and D =Y, where
X and Y have unit length and Y is orthogonal to the quaternionic span (X )m. Taking the
inner product with X gives

“Mg(JX, (VDY) + Ag(IX, (Vx DY) + 30 g((Vyx I)Y, X) = 3ha9(X, (VixJ)Y) = 0.

Since, for each X, (VxI)X lies in the quaternionic span of X, we have ¢((VxI)JX,Y) =
—¢((V xD)X,Y). Using this identity, the previous equation reduces to

4(/\1 + Ag)g((VXI\’)X,Y) = 0.

However, A3 = 0 implies ¢((VxK)X,IX) = —g(KX,(VxI)X) = 0, by (7.1). So, if
Al # —Ag, we conclude that (VxI{)X = 0 and (M, ¢, K) is a nearly Kahler manifold. The
holomorphic sectional curvature is A, so Gray’s result {22] implies R = ;}/\U(RC + R,
which contradicts the assumption Ay Ay # 0.

If Ay = —A2 and A3 = 0, we will prove that (M, g, I) is nearly Kéahler. By (7.1), we only
need to show that (VxI)X has no JX-component. Consider the Bianchi identity (6.1)
with A=X, B=IX,C=JX, D= X and take the inner product with 7X. This gives

0 = =3Ag(IX,(VxD)IX) = 3Ag(J X, (V x 1)X) = 3ag((Vrx J)X, IX)
=0—3(A1 — A)g(JX,(VixD)X)
=3(M = A2)9(J2,(V2I)Z),
where Z = IX. Thus, we have (VxI)X = 0. The holomorphic sectional curvature of

(M,g,I)is Ay + 3); so, by [22], R is a multiple of R¢ + R’. However, this contradicts the
assumption Ay Ay # 0. O

We now have Ay # 0 and may define 1-forms «yj, etc., by
(VxDX = ar j(X)JX + arg(X)KX,
(v‘\' ])_Y = (tJ](X)IX + (LJ]((,X)I(X,
(VXI{)X = (L](](_X)IX + a;(_](X)JX.
Since ¢g((Vx DX, JX) + g(IX,(VxJ)X) =0, we have a;; = —ayy, etc.,
Lemma 7.3. If My Ay # 0 then M 1s quaternionic Kahler.

Proof. We need to show that
Vil = (L]J(_X)J + (I[[((X)I{, etc.
Now

(VxDIX = ~I(VxDX = —aj j(X)KX + aje(X)TX
= ((L[_](,X)J + {L]}((.X)I()IX
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and
(VxDJX =(VxK)X - I{(VxJ)X
=ap (X)X + ap (X)X + ay(X)X + ay(X)JX
= ap(X)X 4+ ajr (X)X
= (ar (X)) + arg(X)YK)J X.
The computation for (V xyI})K X is similar.

Let Y be a unit vector orthogonal to the quaternionic span of X. Then expanding
(Vx+yINX +Y) and using the expressions for (VxI)X and (VyI)Y gives

(VxDY + (Vy D)X = a;o(X)IY +ars(Y)IX + arc(X)KY + arc(K)KX.  (7.2)

Considering the differential Bianchi identity (6.1) with A =Y, B = X, C = IX and
D = X gives
MB(VyDX —(VxI)Y)e (JX,KX,JY,KY).

Together with (7.2) this implies that (VxI)Y € (JX, KX, JY, KY). However,
g(VxDY,JX)= -g(Y,(VxI)JX) = —g(Y,(VxI)X)+ ¢(Y, I(VxJ)X) =0,
so (VxI)Y € (JY,KY) and the result follows from (7.2). O

Since M is quaternionic Kahler we have R = AREF + R®, where REP is the curvature
of quaternionic projective space HP(n) and R° has the symmetries of a curvature tensor

of a hyperKahler manifold [32,2,36]. In particular, R*(4,B,IC) = IR%(A,B,C) and
RY(A,B,JC) = JR°(A,B,C). Now
RIH"’ — C(RC +RI +RJ + RK),
so R = R — ARHP = o R + oy R + cu R’ + a3 R for some constants «;. This gives
RU(A’Ba IC) = ay (U(AaIC)B - Q(BaIC)A)

+ o (—g(B,CYA+ g(A,C)IB + 2¢(A,IB)C)

+ a2 (—g(B,KCYJA+ g(A,KC)}JB + 2¢(A,JB)KC)

+ a3z (9(B,JC)KA - ¢(A,JC)KB - 2¢9(A, KB)JC)

and

IR"(A,B,C) = g (9(A,C)IB — ¢(B,C) A)
+ay (—g(B,ICYA+ ¢g(A, IC)B + 2¢(A,IB)C)
+ ay (¢(B,JC)KA - g(A,JC)KB - 2¢g(A, JB)KC)
+ a3 (—g(B,KC)YJA+ ¢g(A,KC)JB+ 29(A,KB)JC).
Now take A orthogonal to the quaternionic span of C. From the coefficient of A we have
g = ;. The coefficient of KA gives as = a3, whereas that of KC gives oy = —a3.

Therefore az = 0 = a3 and repeating the computation with I replaced by J shows R’ = 0.
This completes the proof of the theorem. O
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