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1. INTRODUCTJON

Let (Mn, g) be R.iemannian Inanifold of dilnension n, with curvature tensor R. The ]fL

cobi operator R x is the sYlnmetric endomorphism of T]JM defined by R.x(Y) = R(X, Y)X
anel we will usually restriet X to lie in the unit sphere S]JM. In [29], based on results
obtainecl in [30,7], üsserrnan luacle the following conjecture:

Conjecture (Osserluan). Jf tlle eigenvalues of tlle Jacobi operator R.x are independent
of tlle dloice of X E S]JA1 anel of the choice of p E M, t11en either M is locally a raJlk-one
sYlll1netric space 01' M is Bat.

It luay be checked clirectly that. the .1 acobi operator of a rank-one synuuetric space
satisfies the hypotheses of the conjccture; indeed, such aspace is two-point homogeneous
so the isoluetry group is transitive on t,he unit sphere bundle. Chi [12] has already proved
the 0 ssenuan Conjceture in di lueusions '/1 == 1 (Illf>d 2), n =2 (luod 4) and n = 4 (anel
obtained further results in [13,14}); however, in [21] exaluples were given of luetrics which
are not locally synuuetric hut which nevertheless have a point. p over which the eigenvalues
of the Jacobi operator are independent of X. This leads to a pointwise version of the above
conjecture:

Question 1.1. JE tlJe eigellvaltles of tlle .Ja.cohi operator Rx ollly elepend 011 p E M allel
not on tlle choice of )[ E S p A1 mlCl M is not Bat, is M locally iSOlnetric to a rank-olle
sYlll111etric space?

Manifolds satisfying; these hypotlleses on the .lacobi operator will be said to be pointwise

Os~.. erman in contrast to the globally O...... erma1L nlanifolds of the üssennan conjecture.
The olain purpose of this note is t.o study the relationship betwecn point.wise Ossernutn

allel globally üssenuall nHtnifolds. In §2 we give SOllle elelnent.ary properties of pointwise
üsserman manifolds, relate the pointwise üssennan condit.ion to the notion of k-stein
Inanifold anel give four-dilllensional cxalnples of pointwise Ossenuan lIlanifolds which are
not globally üsserlllau. In the following scction we show t.hat. various eonject.ures rclated
to isoparalnetric spheres lead to the global version of the üssennan conjecture.

The rest of the papel' is dea.ls wit.h links betwecn üssenllall conditions anel Clifford
structures. In §4, the results of [21) are used to outlille a two-step approach to solving
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the Osserman conjecture. This iuunediately deals with the conjecture when the dimension
of M is odd and in §5 we rework Chi's arguillents [12,14] for the case dilll M - 2 (mod 4) to
fit into this schenIe. In §6, we show that the eandidates for pointwise Ossennan curvatures
tensors in §4 are orten necessarily globally Ossennan. These results are used in §7 to show
that if a Riemannian lllanifolcl (/\1, g) has a curvature tensor built in a non-trivial way
fronl a quaternionic strueture as in §4, tohen M is necessarily loeally isometrie to IHIP(n) 01'

its non-compact dual.

Acknowledgement. We would like to thank Sinlon Salamon for useful eOlnments.

2. POINT\VISE OSSERMAN MANIFOLDS

If \7 is the Levi-Civita eonnection of 9, our eonvention for the sign of the curvature
tensor R is that R.(..:>':, J'~) = \7 [X, Yj - [\7x, \7 y]. Let Al< A2 < . . . < Arbe the eigenvalues
of the Jacobi operator R.x with lllultiplicities 0'1, . .. ,O'r' Since we always have R x X = 0
we will ignore this eigenvect.or, so L:i O'i = n - 1. In the following it will be irnportant

to consider the functions Jlk = L:i(ajA/) = Tr(Rx k ). Incleecl the pointwise Ossennan
condition is equivalent to saying that /I,k is independent. of X E S]JM for all k and the
manifold is globally Ossernlan if in addition each JLk is globally constant. Further, in the
tenninology of [10], a lnanifold for which there exist funct.ions f, such that.

for all X E TJlM anel for alle::;; k,

is said to be k-stein. Note t.hat I-stein is t.he srune as the Einst.ein conclition. By taking
the functions fl to be ILI we have:

Proposition 2.1. A pointwise OSSenllall lllanifold is k-stein for a11 k. In particular a
poilltwise OSSenllftn Dlallifold is Einstein aJlel bence allalytic in nonllaJ coordinates.

Lenuna 2.2. [13] A (Jocally) reducible pointwise OSSenllall l1lalJifold is Bat.

Chi [13] gives a elirect proof, but this also follows frOlll [10] where it ·is shown that
rechlcible 2-stein lllanifolels are flat 01' fronl [11, Tlun. 6.22].

Lelnma 2.3. If A1 is pointwise OSSenllaJl RJld also locally sYl1l1l1etric, then eitller M is
Bat 01' M is locally a rallk-one synlllletric space.

Proof. (cf. [17]) By the previous lenuua, if M is not flat then it is irreelucible, so the
universal cover of !vI i~ a synlllletric space G /!( for sonle sellli-sinlpie Lie group G and
SOllle cOlllpact group Je Thc Lie algebra 9 of G splits aB 9 :: effi p, where t is the Lie
alge~ra of J( anel p is isoillorphic to Te (G/ !(). Let 0 be a maximal Abelian subalgebra
of p. By definition, the rank of G/!( is the dilnension of o. Let 0' be any root of tl, this is
a linear function such that for SOllle non-zero x in gC we have

ad(v)x = [v, x] = O'(v)x, for 3011 v E o.

If diln 0 > 1 then there exist VI, V2 E 0 such that 0'(VI) = 0 anel 0'(V2) =j:. O. Now the
curvature of G/ J( is giyen by R.(:I: 1 y) = - [[ :1:, y], z] (see [24]), so the .1 acobi operator is

R.t! = - acl(v)2.
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In particular Rv:r: = -n(v)2 x auel the eigenvalue -0'(v? is a non-constant function on the
unit circle { v = cos( B)Vl + sin( B)V2 }. Furtherrnore, the eigenvalues of R v on TcM are just
those of R v on TM with the llluitiplicities (j i doubled. So dirn 0 > 1 iluplies that M is not
pointwise Ossernuul. 0

Note that an inclirect proof of this may be found in [10] where'a case-by-case arguillent
shows that the only non-flat. synllnetric spaces which are k-stein for a11 kare those of rank
one. The result also follows froln the fact that the hypotheses ünply that M is a locally
sYlnmetric harnlolüc space anel henee locally isometrie to a two-point honlogeneous space
(see for example [5]).

Whenever one has an equation such as Tr(Rx ) = p'1IlXI1 2
, for a11 X anel for some

function J-ll, there is always the question of whether P'l is necessarily a constant. Such
problems are called Schur-like problems and in this context we have the following known
results.

Theorem 2.4. On a poültwise Ossennan Inanifold AI" we l1ave:

(1) iE n =I- 2, then JlI is constant;
(2) iE n =f 2,4, tllen Jl2 is constant.

Proof. (1) is a direct consequence of the corresponding well-known statenlent for Einstein
Inanifolels (see for exalnple [6, Thnl. 1.97]).

For (2), let {Ei} be an orthonon11al basis of TI} M. Then

where we have written i for Ei when it is an arglunent of R, anel repeated indices are
SU111111ed. We lnay polarise this ielentity to obtain

R.(X, i, X,j)R(Y,j, y~, i) + R.(X, i, Y, j)R(X,j, Y, -i) + R(X, i, Y,j)R.(Y,j, X, i)

= Jl2 (g(X, X)g(Y, Y) + 2g(X, Y)g(X, Y)) .

Putting Y = E k anel sUl1llning ovel' k gives

R(X, i, X,j)Pji + RC'l, i, k,j)R,(X,j, k, i) +R(X, i, k,j)R(k,j, X, i) = Jl2(n + 2)IIXI1 2
,

where Pij is the Ricci tensor of g. However, M is Einstein with P = Jllg, so the first tenn
is Ili IIX 11 2

. Now using the Bianchi ident.it.y one has

R.(X, i, k, j)R,(X, j, A: , i) = -R(X, i, k, j)R.(X, k, i, j) - R(X, i, k, j)R(X, i , j, k)

= R.(.">{, i,}, k)R(X,j, k, i) + R{.Y, i, k,j)R.(X, i, k,j),

and henee

~(X,.'l) := R(.'l, 1:, k, })R(.'l, i, k, j) = 2R.(X, i, k, j)R(X, j, k, i).

Thus
(2.1)
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where IIR1l 2 = RijklRijkl. Thus M is super-Einstein in the terminology of [23], that is
M is Einstein anel ~ = Jg for SOHle function f (see also [5, p. 165]). Now differentiating,
we have

~nb;lj = RaijkjbRbijk + RaijkRbijkjb.

Since M is Einstein, Rbijk;b = -Rbikb;j - Rbibj;i = Pik;j - Pijjk = O. But we also have

Thus

~ab;b = ±lIRII~a'

On the other hand, (2.1) iIUplies

So if n :f:. 4, 11RI1 2 is eonstant and henee It2 is constant. (See also [5, p. 165] for auother
proof.) 0

Corollary 2.5. Suppose]"1 is pointwise Ossennan. If Rx lla..,> at lnost two eigenvalues,
tllell these eigenva,lues do not depelld Oll p allel M is globa11y Ossenna,n.

Theorem 2.6. For a four-dünellsionallnanifold M tlle following are equivalent:

(1) M is pointwise Ossernuul;
(2) M is 2-steill;
(3) 10ca11y tllere is a choice of orientation of M for whic11 t]le Inetric is self-dual and

Einstein.

Proof. We have already seen that (1) ilupEes (2) in general. The equivalenee of (2) aud (3)
is proved in [33, §3]. This uses a result of [25] which states that M is 2-stein if aud only if at
eaeh point p E M there are loeal ahuost eomplex structures !, J and 1( with the following
three properties: firstly, t,hey sat.isfy the quaternion iclentities [2 = J2 = 1(2 = -1 and
I J = !( = -J Ij seeondly, the luetric 9 is Henuitian with respect to each of !, J anel !{; and
thirdly, for any XESpM, the curvatnre t.ensor R regarded as a sYlumetric encloluorphism
of A2T* M is diagonal wit.h respect. to t.he basis dual to

and

X 1\ ] X + .JX 1\ ](X,

X 1\ ] X - .J..)( 1\ ](X,

.)( 1\ J X + !(..)( 1\ ! X,

.)( 1\ J.)( - ] (.)( 1\ ! ..)(,

X 1\ !(X + ]X 1\ J X,

X 1\ !(X - ! X 1\ J X,

R. = cliag(a - 8, b - .s,e - 8,S,8,s),

where s = (a +b+e) / Ganel (L, b a.nel e only depend on p. Using this one 111ay check directly
that Rx has eigenvalues (1., hand c anel so M is point.wise üssennan. 0

Note that the fact that. (1) iHlplies (3) is equivalent to the equatiol1 (3.5) in [12]. Also
the decluction of (3) frolll (2) nlay be faund in [31].
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Corollary 2.7. There exist pointwise Ossennall four-mculifolds Wllich are not globally
Ossennan and llence are not 10ca1ly iS0111etric to rank-one symllletric spaces. Also tllere
are excunples wllere tbe fUllctioll IIR,11 2 is not constant.

Proof und DiJcu.'1~'fion. Since the üsserman conjecture is true in four-diluensions, for the
first part it suffices to give an exan1ple of a self-dual Einstein four-manifold which is not
locally sYlumetrie. A cOlupact example may be obtained by taking M to be a K3-sulface.
By Yau's proof of the Calabi conjecture, this carries a hyperI(ähler metrie so in partieular
it is self-dual anel Ried-flat (see for eXaIuple [6]). Loca! examples with non-zero scalar
curvature may be obtained by taking a sluooth open set in say one of the quaternionic
I(ähler orbifolds constructed in [18] 01' [19] and further hyperI(ähler exaluples with 111any
possibilities for the eigenfunctions luay be found in [26].

An example where IIRI1 2 is clearly non-eonstant is given by the Calabi metric on
T* CP(l), see [8,9,20]. This is a complete hyperI(ähler metric which has an action of
U(2) such that the central U(l) fixes a cOluplex structure land rot.ates J and 1(. Thus
at. any given point two of t.he eigenvalues of the Jacobi operator are equal and JLl and Jl2

generate all the synunetl'ic functions of the eigenvalues of the .T acobi operator. Now Jtl is
constant as M is Einstein (in fact Ricci-fiat). However, Il2 ean not be constant otherwise
M would be globally üssenllan and hence locally sYluluetric. Thus /1,2 anel hence IIR.11 2 are
non-constant functions for this luetric. A second exaluple with 11RI12 non-constant which
arises fro1l1 the work of ülszak [28] will be discussecl at the end of section 5.

[Since the hyperKähler luetrics on ](3-surfaces fonu a 57-diluensional fau1ily it would
seen1 reasonable to suppose that conlpact exaluples with lIR.1I 2 non-constaut may be found
atuongst thenl. However, this seell1S harcl to verify, partly becanse 110 explicit expressions
für these luetrics are known.] 0

3. ISOPARAMETRIC GEODESIC SPIIERES

If we fix a point p of our Rieillannian lnanifold M then we nlay look at sIllall geodesic
spheres Gp(r) centrecl on p. For:c E G1,(1') one can cOl1sider the second fundaIuental
form II(x,p,1') of Gp(r) C M. The following is due to Tl'icerri & Vanhecke [38].

Isoparalnetric Conjecture. Suppose tlle eigenvalues of ll(x, p, r) depend only on p

and T, then eitller M is locally a rank one-sYlllllletric space 01' M is flat.

This conjecture is alreacly known to hold in diIuensions 2, 4 allel 1 (luod 2) [38]. The
following proposition shows that the Isopara1l1etric Conjecture is also valid in dilnensions
2 (1110d 4) by [12] (alld also nudel' the other hypotheses shown by Chi [13,14] to illlply the
üSSenUaI1 conjecture).

Proposition 3.1. Jf A1 is H lllrulifold for wlJic11 tlle eigenvalues 01 ll(x,]J,1') depend only
on p aJld 1', t1Ien 1\1 is globally Ossenllan.

Proof. Fix a point ]J anel a tangent vector ~ E SpM anel let x = expp(1'~)' From [11] we
have the following series expansion relating thc second fundalllental fonn anel the Jacobi
operator
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where \7 is the Levi-Civita connection and all tenns on the fight are evaluated at p. Under
our hypotheses , n(x , p, 1") has eigenvalnes independent of ~ so this also holds for

anel any power of f. In particular,

is independent of C which ilnplies that Tr( R,e k) and Tr(Re k-l V7eRe) are also. The first
of these iluplies that M is pointwise Osserman. Defining flk as in the previons section, we
have that

Cilk == ~ Tr(Re
k

)

is independent of C so replacing ~ by -~ shows that. ~/lk == O. Hence the eigenvalues are
constant and the ulallifold is globally OSSenl1all. 0

Note that althOllgh nadel' the hypothesis of Proposition 3.1, M is necessarily hannonic,
the recent exall1ples of Daluek & Ricci [15] of hannonic nUlnifolds which are not synuuetric
do not provide counterexalllpies to t.he Isoparanletric Conjectllre [38, Prop. 6.1].

The Isopanunetric Conjecture considers geodesie spheres centred on a point p. Alterna
tively one may considel' geoelesic spheres passing thl'ough p. In [40] it is shown that if s is
the geodesic symrnetry about p, then II(p, x, 'r) == ll(p, s(x), 1") as endolnorphisms of TpM
fol' a11 x, p sufficiently elose if and only if M is locally syuuuetric.

Proposition 3.2. Jf IvI is a HlfuliEold for wl1icll tllc eigenvalues oE II(p, :1:, T) depelld only
011 ]J and T then M is globa11y Ossenllan.

Proof. Write x = eXPJl(7'~), then [39] (see also [4]) shows that

II(p, :1:,1') = ~ lel -fRe - ;~ \7eR'e + 0(,.3).

The result now follows exactly as in the previous proposition. 0

Thus non-flat l11a.nifolels with t.he eigenV"dlues of II(p, x, 1') depending only on panel rare
rank-one sYlnnletric if their elilllension is 4, 1 (nloel 2) or 2 (ruoel 4) (anel other cases as

in [13,14]). Also, these lnanifolds are necessarily hanllonic (see [4, Prop. 1] where these
spaces arise as particular exaluples of ~l!-spaces).

An intrinsic version of the Isoparmlletric Coujecture lllay be obt.ained by considering
the Ricci enelomorphislll Q(:l;,p, r) at :r. of t.he induccel counect.ion on t.he geoelesic sphere
of radius l' centrecl on p.

Proposition 3.3. IE M is a 111ilniEold of dünension n > 2 for wllic11 tl1e eigenvalues

oE Q(x,p, 'r) depend only on p l'lJld T, then M is globally Ossennan.

Proof. For x == expp(r~), frolll [16] we have

Q(x,p, r) == U;;2 Id + {Q - p(C .)~ - ~p(~,~) Iel -!fR'e}

+ l' {\7eQ - (\7eP)(C')~ - ~(\7eP)(~,~) Iel - ut1 \7eRe} + O(r2
),
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where Q is the Ricci enelolllOl1Jhisln of M. Hence, thc first two t.erms of Tr(Q) are

7

where s is the scalar curvature of M. By the hypothesis , these tenns are independent of e,
so M is Einsteill. The second term in the expansion of Q is now a linear combinatioll of
Id anel Rf. and the third is -r(n+ 1)\7f.Re/4. Thus we may apply the same argulnents as
in the previous two propositions to show A1 is globally Osserman. 0

Since lnanifolds satisfying the hypotheses of Proposition 3.1 01' Proposition 3.3 are har
lnonic [11], we have:

Corollary 3.4. Ullder tlle hypotlleses of Proposition 3.1 or Proposition 3.4 the spaces
are 10ca11y iSOlnetric to two-point llolllogelleous spaces in a11 cases wllere tlle Ossennan
conjecture 01' tlle Licllnerowicz conjecture Oll hannonic spaces are proved to be true.

For discussion of the Lichllerowicz conjecture see [35].

4. CLlFFORD STRUCTURES

We recall the eliscussion of [21]. If we aSStulle M is poilltwise Osscrman thell in each
fibre TpM the eigenspaces of R.x defille distributions in Tsn-l. There are topological
restrietions to the existellce of such distributions anel these are lillkeel to the existencc of
Cliff"ord structures on T NI.

TheorelTI 4.1. [3, Prop. 15.14; 1, Tlull. 1.1; 34, Tlul1. 27.16, p.144] Let n = 2Tno Witll
2 t no and define v(r) by v(i) = 2i

- 1, for i = 0,1,2,3, and v(i + 4) = l/(i) + 8. Then

(1) }Rn adlllits a Cliff(lI)-lllodule structure if and only iE,/ ~ v(r);
(2) Tsn-l a(lJllits a lj-dilllensiollal distribution fol' 2q ~ n - 1 iE and only if q :s; V(7').

Note that the curvature t.ensor R.c of a lnetric of constant. curvature is given up to scale
by

R.C(X, yP, Z) = g(X, Z)Y - g(Y, Z)X

and that, if I is an ahnost c0111plex st.ruct.ure 111aking 9 Hennit.ian, then the curvature
tensor of (a multiple of) the Fubini-Stuely 111etric on CP(n/2) is R.c + R.I , where

R I (~\'", Y, Z) = g(Y, IZ)IX - g(X, IZ)IY - 2g(X, IY)IZ.

The J acobi opera.tor of RC has the single eigenvalue 1 allel R.~ has eigenvalues 3 anel 0 with
111ultiplicities 1 anel n. - 2, and nloreover the eigenvector corresponcling to the eigellvalue 3
is IX.

Theorelll 4.2. [21 J Suppose tllere is a Cliff( 1/ )-structure Oll !Ru aJ](J cOl1sider a set oE
generators {lI"'" Iv} SUdl tlut.t Iilj + Ijli = -28ij . Let Ao, ... , Av !Je any rea1numbers.
Tben

R. = AoR,c + 2: t(Aj - Ao)R.I ;

i=l
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is an algebraic curvature tensor sudl tllat

R·x(IiX) = >'jljX aIld Rx Y = >'oY, (4.1)

where X, Y E SuRu clJld Y is ortllogo11al to X, IIX, ... ,IvX.

The theory of nonllal coordinat.es shows that such algebraic curvature tensors 11lay be
realisecl at a point as the curvature tensor of a Rlemannian metric defined in a neighbour
hood of that point (see for exalllpie [6]).

The theorem suggests the following two-step approach to solving the Osserman conjec
ture. First, show that the pointwise Osserman condition implies the existence of a Clifford
structure so tha t. the eigenspaces of the Jacobi operator are as in (4.1). One then has the
following fact which was also observed by Neda Bokan and Novica BlaZic:

Proposition 4.3. For a given Clifford structure witll generators {lI ,' .. , Iv} and givell
>'u , ... , >. v there is precisely Olle algebraic curvature tensor satisfying (4.1).

Proo/. If there are two such curvature tensors, then their difference is an algebraic curva
ture tensor all of whose Jacobi operators are identically zero. 0

The second step is then to decide which of these algebraic curvature tensors nlay be
realisecl as curvat.ure t.ensors of a Rielnannian lnanifold.

The first case to consider is when lvI is pointwise Ossennan and diln M = n = 2m + 1.
TheorCln 4.1 says that R.x can only have one eigenvalue, so M is globally Ossermall aud
has constant curvature. This is exactly the argunlent given by Chi [12]. He also deals with
the case when dirn M ;:;:: 2 (luod 4). In t.he next section we rework his arguillents to lllake
explicit the relationship with ahnost conlplex structures.

5. THE POINT\VISE ÜSSERMAN CONJECTURE FOR diln M == 2 (IUOel 4)

If M is pointwise Ossennan and diln M = n = 4'In + 2 > 0, then Theoreln 4.1 ilnplies
that R x has at most two eigenvalues band c, with bof lnultiplicit.y n-2 and C of lnultiplicity
one. First note that if >. is eithe1' b 01' c, then

R.x },~ = >.Y if anel only if (R(X, Y)X, Y) = ,,\
if and only if R.y X = >'X.

Let L be the Ene buncUe over SA1 corresponding t.o the eigenvalue c ancl without loss of
generality assuille that A1 is contractible. As any line bUl1dle over su-l ~ SpM is trivial
(see for exaulple [34]), we can finel a (Slllooth) global unit section I X = I(X).

Lelnlna 5.1. 12(.Jl) = -X allel I( -X) = -I(X).

Proo/. Let Vx be the span of .Jl and I.Jl and note that Y 1..Vx if and only if X 1..Vy. If
U is an elell1ent. of Vx of ullit length, then U = cos(B)X + sin( B)IX anel we lnay define
Z(U) to be - sin(B)X + cos(B)IX. Thc sectional curvature of Vx is

(R.(U, Z(U))U, Z(U)) = (R.(.Jl, IX)X, IX) = c,

so RuZ(U) = cZ(U) and Z(U) = ±IU. By continuity the sigl1 is independent of B. Thus
12(X) = Z2(X) = -X auel I( -X) = ±Z(-X) = =r=Z(X) = -I(X). D

We now have a well-defined extension of I to the whole of TAl via the fonnula I(rX) =

11(X), for l' E R.



ISOPARAMI~TR.IC SPHERES AND THE JACOBI OPERATOR 9

Theorem 5.2. The extension oE I to TM is linear.

Proof. It is sufficient. to show I(X + Y) = I X + IY for Y .1Vx , because if we consider
I(A +B), we may rescale so that A has unit length anel write B = A' + B', where A' E VA
anel B' .1VA, anel then obtain

I(A+B) = I(A+A'+B' ) = I(A+A')+IB' = IA+IA'+IB' = IA+I(A'+B') = IA+IB.

By rescaling we neeel only show

I(cos(B)X + sin(B)Y) = cos(B)IX + sin(B)IY, (5.1)

for IIXII = IIYII = 1 anel Y .1Vx. Fix such a pair X, Y, let Q' = cos(B), ß = sin(8) anel for
convenience define l' = EI for SOllle € = ± 1. Let

Ae = aX + ßY, Be = O'IX + ßI'Y.

Suppose we can show that for SOlne choice of €

A(j:= (R(A(j,B(j)A(j,B(j) = c (5.2)

(5.4)

for all 8. Then Be = ±I(..4o) anel by cont.inuity the sign is constant.. Calculating at B = 0
shows B(} = I(AD), whereas taking B = 7r/2 shows I'Y = IY, E = 1, proving (5.1).

To prove (5.2) first note that. the curvature ielent.ities anel tohe eigenvalue property ilnply
that Re, "".) = 0 when three of the argtuuents lie in {X, I X} anel one lies in {Y, I'Y},
01' vice versa. Thns, whell we expanel A(} in tenns of X, I X, Y and I'Y, the coefficient.s of
0'3 ß anel O'ß3 vanish. Also R.(X, I'Y,.Y:, I'Y) = R(Y, IX, Y,I){) = ", so

)..e = (a4 + ß4)c + 2a2ß2 {R,(X, IX, Y, I'Y) + b+R(..Y:, I'Y, Y, I X)} (5.3)

anel to prove (5.2) it snffices to show that t.he la.':lt bracket equals c, that. is

R.(X, IX, y~, I'Y) + R.(X, I'Y, Y, I){) = c - b.

Lenuua 5.3. (1) R.(S, U)T = -R(T, U)S wllell Sl..T alld S, T E VJ;
(2) R(S, T)U = 0 w}lell Sl..Vr alld S, TE Vcf;
(3) 2R(X, Y, 1)(, 1'Y) = R(X, IX, Y, I'Y);
(4) 2R(X,I'Y,IX,Y) = -R(~Y,IX,Y,I'Y).

Proof. Let W = cos(1J)S + sin(</»T. Then U is ort.hogonal to Vw, so R.(W, U)W = bU.
Expanding this ielentity gives

(cos2 4> + sin2 4> )bU + cos 4> sin cP( R.(S, U)T + R.(T, U)5) = bU,

proving (1). For (2) we see that the roles of S, T, U are sYlunletric, so we m ay use (1) and
the Bianchi identities t.o get

R.(S, T)U = -R,(T, U)S - R,(U, S)T = R(U, T)S + R(T, S)U = -2R,(S, T)U,

as required. Für (3), using (1) we ha.ve

R(X, Y, I){, I'Y) = -R.(X, IX, I'Y, Y) - R(X, I'Y, Y, IX)

= R.(.J;, IX, Y, I'Y) - R(IX, I'Y, X, Y)

allel (4) follows frolll

R(X, I'Y, IX, Y) = -R.(IX, I'Y, ~\, Y) = -R(~Y, Y, IX, I'Y) = -tR.(X, IX, Y, I'Y). 0
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LenUlla 5.4. R(X, IX, Y, J"Y) = ±2(b - c)/3.

PTOOf. Let A = A rr / 4 = (X + Y)//2, B = B rr / 4 = (IX + I'Y)//2 and define

c = (X - Y)/V2, D = (IX - I'Y)/!2.

Then {A, B, C, D} is an orthononllal basis for Vx Ei) Vy and we now prove that B is an
eigenvector of R.;\.

If Z is orthogonal to Vx EB Vy, then

23
/

2(R(A, B)A, Z)

= R(X, IX,X, Z) + R(X, IX, Y, Z) + R.(X, I'Y,X, Z) + R(X, I'Y, Y, Z)

+ R(Y, IX,X, Z) + R,(Y, IX, Y, Z) + R(Y, I'Y, X, Z) + R(Y, I'Y, Y, Z).

As R(X,IX)X = cIX, the first tenn is zero and R(X,IX,Y,Z) = -R(Y,Z,X,IX) = 0,
so the second tenl1 is a.lso zero. The reuutining five t.ernlS may be dealt with in a sinülar
way and so (R(A, B)A, Z) = O.

Now COUlpute

4R.(A, B, A, G')

= -2R.(X + 'Y, I){ + I'Y, )[, Y)

= -2(R(X, IX, X, Y) + R(){, I'Y, X, Y) + R.(Y, IX, )(, Y) + R(Y, I'Y, X, Y»

=0

and

4R(A,B,A,D)
= R.(X, IX,X,I){) - R.(X,I){,X,I'Y) + R(X,IX, Y,IX) - R.(X,IX, Y,I'Y)

+ R(X, I'Y, X, IX) - R.( ..}[, I'Y, X, I'Y) + R.(X, I'Y, Y, IX) - R(X, I'Y, Y, I'Y)

+ R(Y, IX, X, IX) - R.(Y~, IX, X, I'Y) + R.(Y, I){, Y, I~Y) - R(Y, IX, Y, I'Y)

+ R(Y, I'Y, X, IX) - R.(Y, I'Y, X, I'Y) + R.(Y, I'Y, Y, IX) - R(Y, I'Y, Y, I'Y)

= c - 0 + 0 - R.(){, IX, y~, I'Y) + 0 - b+ R.(X, I'Y, Y, IX) - 0

+ 0 - R(Y,IX, ..}[,I'Y) + b - 0 + R.(Y,I'Y, X, I ..X) - 0 + 0 - c

= O.

Thus R.(A, B)A = A'B for SOllle A', as claiuled. As in (5.3) we now have

A' = t(c + b) + JR(X, I ..X, Y, I'Y)

and the Lenlnla follows. 0

The proof of Theorenl 5.2 is cOlllpleted by choosing J' = EI so that R(X, IX, Y, I'Y) =

- 2( b - c) / 3. This l11eans that (5.4) is sat.isfied, as required. 0
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Corollary 5.5. The curvature tensor oE M is given by

R = bRc +c' R. I ,

where c' = (c - b)/3.

11

However very few of these tensors occur as the cluvature tensor of a Riemannian lnan
ifolel, as the next result show~.

Theorenl 5.6. [37] JE M is all allnost HennitiBJl ll1aniEold of diInension strietly greater
than four with eurvature tensor of tlle form R = bRc + e' R1 , for SOlne functions b, Cf alld
c' t=- 0, tllen b = C' and M is locally isometrie to CP(n/2) or its non-conlpact dual.

Applying this to a pointwise Osserman manifold gives the following generalisation of
one of Chi's results {12].

Theorelu 5.7. Jf Al is a pointwise OSSerIJlall lJuwifold of dünension n = 4m + 2 > 2,
then M is eitller Hat or locally a rallk-one synunetrie space.

Note that Theorenl 5.6 is also valid for dilll M = 4 when b 01' c' is assul11ed to be eon
stant [37]. Olszak [28] showed that. this additional assuI11ption is necessary by constructing
eXall1pIes of fo1.1l'- dilllensional ahnoB t. Hernli tian manifolds wi th c1.1rvature tensor bR,c +c' R.1

with b anel c non-constant. Since in this situation the Jacobi operator only has two eigen
val1.1es, his construction provides 1.18 with further exalllpies for Corollary 2.7 of pointwise
Ossennan fo1.1r-Inanifolds with IIR.11 2 110n-constant..

6. TUE GLOBAL ÜSSERMAN CONDITION AND CLIFFORD STRUCTURES

In this section we disCllSS the relationship between the global Ossennan condition anel
tohe pointwise Ossennan (Jgebraic curvatnre tensors which were associat.eel to a Clifforcl al
gebra str1.1ct1.1re in 94. This is partly technical preparation for the COIllp1.1tations of the next
section where we will concentl·ut.e on t.he cascs of Cliff(2)- and certain Cliff(3)-stnlctm'es.

S1.1ppose we have a Cliff(v)-str1.1cture with generat.ors {lI"'" Iv} as in Theorenl 4.2.
We aSSlllue that thc c1.1rvature t.ensor R. is in the fonn

LI

R. = Au Rc +2: Ai R.li ,

i=I

fol' SOlne f1.1nctions Ai.

Proposition 6.1. Let n. = dilll M aJlrJ aSSUll1e the Clift'( 11 )-strueture on Iv! satisnes Olle
of tlle following six conditions:

(a) v > 9;
(b) n > 411;
(c) v = 3, n > 8 alld T!vI deconlposes as a direct SUll1 of isolnorpl1ic irreducihle

Cliff(3)-lnodules (01', e(luivlJelltly, 13 = ±III2 );

(cl) v = 5 and 'n > 16;
(e) v=6audn>16;
(f) v = 7, n. > 16 and TM decoInposes as a direct S 1.1 111 of isoll10rplüc irreducible

Cliff(7) -11] odules.
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Then we llave:
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(1) [ar a11 X E TM and an i = 1, ... , v, tlle vector neid ).,i Cvxli)X is in the linear
span oE {Ij~~ : j # -t};

(2) tlle {unctiollS ).,0, ... ,).,v a.re COllstallt.

Pronf. In this and following calculations we will Inake repeated use of the differential
Bianchi identity

where

0= (5 (\7AR)(B, G, D)
A,B,C

= AU + LA} + ).,jA; + ).,jA~,
j=l

AU = (3 A(AO) (y(B, D)C - g(G, D)B),
A,B,C

A} = (5 A(Aj) (y(C, IjD)IjB - y(B, IjD)IjG - 2g(B,IjC)IjD) ,
ABC

A; = S, y( C, (\7 Alj )D)Ij B - g(B, (\1 Alj )D)IjC - 2y(B, (\7Alj )C)IjD,
A,B,G

Aj = (3 ,y(C, I j D)(\7Alj)B - y(B, IjD)(\1 Alj)C - 2g(B, I jC)(\7 Alj)D.
A,B,C

(6.1)

"VVe first prove (1). Fix 1: and let. ~~ be any uni t. vector. Let Y be a unit vector orthogonal
to X anel IjX, j = 1, ... ,1/ anel choose a unit vector Z such that IjZ and IiljZ are
orthogonal to both )[ and Y for j = 1, ... , v. This is a total of at IllOst 4v conditions
on Z, so this 11lay certainly be satisfied under hypot.hesis (b).

For conelition (a), recall that for 1/ 1= 3 (luod 4), Cliff(v) has a. unique irreducible
representation ovel' R anel this representation is of diluension 2(v+fi)/2, where v =3+(3-<5)c:
(Iuod 8) for 0 ~ <5 ~ 2 and c: = ±l. On the other hand for v == 3 (Iuod 4), there are two
non-isoluorphic irreducible representations, each of dilllension 2(v-e)/2, where 1/ - 5 + 2c:
(nlod 8) anel c: = ±1 (see for exaluple [3]). One lIlay now directly check that condition (80)
iluplies condition (h) anel so onee again the conditions on Z may be satisfied.

The other foul' hypotheses are just the cases where the bounel n > 41/ luay be lowered.
The hypotheses (c) and (f) bot.h iluply t.hat for j =f. k anel any Y E TM, IjlkY lies in
the linear span of {Il y~ : e# j, k}. Thus in these cases we only have 2(1/ + 1) coudi tions
on Z. Dur hypotheses on n are now exactly those requirecl for the existence of such a Z.
Hypotheses (d) and (e) now follow frolu the fact t.hat Cliff(5) and Cliff(6)-structures give
rise to Cliff(7)-structures of the type describecl in (f).

Now consicler (6.1) with A = Z, B = ~~, C = IiZ and D = ~~. The assuluptions on Y
and Z inlmediately iInply

y(AU
, Y) = y(AJ, Y) = g(Aj, Y) = 0,
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for j = 1, ... ,v. Thus the Bianchi ielentity gives

v v°= L Ajy(Aj, Y) = - L 2Ajg(IiZ, I j Z)g((V7xIj)X, Y)
j=1 j=1

= - 2Aiy((\7 x Ir)~}[, Y).

13

Thus Ai(V7 XIr)X lies in the linear spa.n {X, IjX}. However, as 9 is Hennitian with respect
to I j , we have

y((V7 X I;)X ,X) = °= g((V7 XIä)X, IiX),

so Ai(V7 XIi)X E {Ij~}[ : j f. i}, as required.
For (2) we first show that Au is canstaut. Fix i > 0, let Y be an arbitrary unit vector.

Let Z = IiY anel choose X to be a unit vector with IjX and Ii1jX orthogonal to Z.
We now consider the sanle Bianchi ielentity as before hut this time take the inner product
with Z. Thus

y(AU
, Z) = -(IiZ)(Au) = Y(Au), y(A}, Z) = 0,

g(Aj, Z) = -y(~}[, (\7zIj )X)g(IjljZ, Z) = 0,

g(Aj, Z) = -2g(IiZ, I jZ)g((V7 x l j )X, Z) = °
anel sUffiIning, the Bianchi identity iIuplies Y( AO) = 0, as requireel.

To show Ai is constant, first fix a unit. vector X anel t.hen choose Z t.o be a unit vectar
with Ij Z and IiIj Z ort.hogonal to ..}[. Again consieler the saI11e Bianchi identity, hut now
take the inner proelllct with I i ..}[. This gives

g(AO,IiX) = 0, y(A},IjX) = -2X(Aj)y(IiZ, I j Z)5ij = -2X(Ar)5ij ,

g(Aj, Ii~X) = -2g(IiZ, Ij Z)g((\7 x l j ) ..:\l, IiX) =°
anel

g(A], IiX) = (y(1iZ, (\7 zIj) ..X) - 2g(..X, (\7 z1j)1iZ) - 3y(Z, (\7 IiZ1j)X)

- 2g(IjZ, (\7 x Ij)Z»)5ij

= (-y((\7 zIdljZ, X) + 2g(X, 1i(\1zI;)Z) +3g((\7li zI;)Z, X) +O)Oij

= (-3g((\7 z1dZ, X) + 3g((\7/izI;)IjZ, 1jX»)5 ij

= o.

Thus X (A;) = 0 anel the praof is cornplete. 0

If we aSSUllle that Au is const.aut, but. relax the restrictions on 1/ 1 we Iuay obtain:

Proposition 6.2. Let n = diIn M alld 8BSIUJle tbe Cliff( 1/ )-st1'ucture Oll M satisfies eitller
(a') v > 8 01' (b') n > 21/. Now suppose that Au is COllStil.llt. TlJell we ]lave:

(1) for 811 X E TM and al11: = 1, ... ,1/, tlle vector field ..\i(\7XIj)X is in tlle o1't110gona1
c0111p1e111ent of 1i){ in tlle linear span of {IjX, IjI;.}[ : j f. i};

(2) tlle functio1l8 Al, ... ,..\v are also constant.
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Proof. The proof of (1) is ahnost. exactly as before. The only change is that we take Y = Z
anel only require Z to be such that Ij Z and Ii Ij Z are orthogonal to X. This is now at IIlOst
2v conditions on Z anel analysis silnilar to before leads to the hypotheses (a') and (b').
One now uses the gaUle Bianchi iclentity to obtain the desired concIusion.

(2) is deduced using the salne lnethod as in part. (2) of the previous proposition. 0

7. Clift"(2)-STRUCTURES AND CERTAIN QUATERNIONIC STRUCTURES

In this section we consieler the special case of a pointwise Ossennan manifold which
achnits a compatible Cliff(2)-structure with generators I, J satisfying 12 = -1 = J2 and
1J = -J I. It will be helpful to elefine I{ = I J anel consicler the lnore general case arisillg
frOIIl the resulting Cliff(3)-structure. The curvature tensor may then be written as

where Ai are real funct.ions allel I, J,]( satisfy the quaternion ielentities 12 = J2 = K 2 = -1
and ] J = !( = -J I. (Note that fol' an arbitrary Cliff(3)-structure it is not possible to
choose generators in this way.) In t.he ca.se of Cl Cliff(2)-structure we have that A3 is
identically zero.

Theorenl 7.1. Let A1 he a pointwise Ossennall lllfUli!old with a quaterlliollic structure
as above. HOlle of tlle followillg two conditiollS is satisfied

(1) diln M ;:: 12, or
(2) diln M ;3 8 fUld Au is construJt,

thell M is eitller Bat 01' locally isolllorpllic to a rank-olle sYllllnetric space of real, cOlllplex
01' f]uaternionic type.

Note that in the case that Ao = Al = A2 = "\3, since the Inanifold M is Einstein,
.-\u, ... ,.-\3 are auto111a.tically constant anel the theoreln re<hlces to a l'esult of Marchi
afava [27].

Proof. First, by Propositions G.l anel G.2 we have that Au, ... ,.-\3 are constant. We lnay
now assulne that "\}.-\2 #- 0, otherwise we are reduced to the case with just one cOlllplex
structure considered in section 5. The Propositions also give that (\7X 1)X E (J X,]( X).
Calculating the coefficients of .JX and !(..){ froln the Bianchi identity gives

2A} (\7X I)X = A2 J X (29 ( (\7 X 1) }~, J Y) - 3g(Y, (\7 I Y .J)X) + 3g(1Y, (\7 y J)X) )

+ "\3](..){ (2g( (\7X !)Y, !(Y) - 3g(Y~, (\7 IV 1()..){) + 3g(1Y, (\7 V ]<)X)).
(7.1)

Lenuua 7.2. The COllstallt "\3 is llot zero.

Proof. An almost Henllitian Illanifold (N, g,.I) is said to be nefLrly Kiihle.r if (\7xI)X = °
for all X. Gray [22] shows that a nearly Kähler lllanifold of constant hololllorphic sectional
curvature and dilnension strictly bigger than 6 is either flat. or locally iSOlnetric to CP(n/2)
01' its non-colnpact dual. "VVe will prove the Lenuna by showing that "\3 = °illlplies that
IvI is nearly Kähler and of constant holo1110rphic sectional curvature.
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Consider the Bianchi identity (6.1) with A = X, B = IX, C = JX and D = Y, where
.Y. and Y have unit length and Y is orthogonal to the quaterniornc span (X}E. Taking the
inner product with X gives

-Al g( J X, ("\7X I)Y) + A2g(I.\", (\7x J)Y) + 3Al g((\7JX I)Y, X) - 3A2g(X, (\7 J xJ)Y) = O.

Since, for each X, (\7 x I)X lies in the quaternionie span of X, we have g((\7x I)JX, Y) =
-g((\7 JX I)X, V). Using this identity, the previous equation reduces to

However, A3 = 0 ilnplies g((\7xI()X, IX) = -g(I<X,(\7xI)X) = 0, by (7.1). So, if
)\} =j=. -A2, we conclude that (\7x I()X = 0 and (M, g, K) is a nearly I(ähler manifold. The
holomorphic sectional curvature is Ao, so Gray's result (22] implies R. = ~Ao(RC + RI(),
which contradicts the asslunption Al A2 =j=. O.

If Al = -A2 and A3 = 0, we will prove that (M, g, I) is nearly Kähler. By (7.1), we only
need to show that. (\7 x I)X has uo JX-colnpOnent. Consider the Bianchi idelltity (6.1)
with A = X, B = IX, C = J.Y., D = ~Y. anel take the inner procluct with IX. This gives

o= -3Al g(IX, (\7 x I)JX) - 3Al g( JX, (\7 J x I)X) - 3A29((\7J x J)X, IX)

= 0 - 3(A} - A2)g(JX, (\1lxI)X)

= 3(Al - A2 )g(J Z, (\1 z I)Z),

where Z = I X. Thus, we have (\7x I)X = O. The hololnorphic sectional curvature of
(M,9, I) is Ao + 3A1 SO, by [22], R. is a Inult.iple of Re + R.I. However, this contradicts the
assumption A} A2 =j=. O. 0

We now have Aa =j=. 0 anel }uay elefine I-fonns fll J, etc., by

(\1 x I))[ = flIJ(X)JX +flIJ((X)I{X,

( \1 x J )~Y. = fl J J ( X) I X + fl J I( (.Y. )I(X,

(\1 X I()X = fll(1()()IX + (LI( J(X)JX.

Since g((\7xI)X, JX) + g(IX, (\1xJ)~Y.) = 0, we have all = -all, etc.,

Lemma 7.3. Jf A) A2 =f:. 0 then !vI is flua.ternionic J(ä]l]er.

Proof. We need to show that

Now

(\lxI)IX = -I(\7xI)X = -aIJ(X)](X + UII((X)JX

= ((LI J(.Y)J + (LI J((.Y)]()IX
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(\1x I)J ..Y = (\1x I()X - I("x J)X

= (LI<I(X)IX + aKJ(X)JX + aJI(X)X + aJK(X)JX

= (ll\I(X)IX + aJK(X)X

= (aIJ(X)J + (lIK(X)K)JX.

The coulputation for (\1 X I)I(X is similar.
Let Y be a unit vector orthogonal to the quaternionie span of X. Then expanding

(\1x + y I)(X + Y) anel using the expressions for ("x I)X and ("y I)Y gives

(\1 xI)Y + (\1 y I)X = (LIJ(X)JY + aIJ(Y)JX + aIK(X)I(Y + aIJ(K)I(X. (7.2)

Consielering the differential Bianchi ielentity (6.1) with A = Y, B = X, C = IX anel
D = X gives

Al (3(\1 Y' I)X - (\1 X I)Y) E (JX, I(X, JY, J(Y).

Together with (7.2) t.his iluplies t.hat (\7x1)Y~ E (.JX,J(X, JY,I(Y). However,

g«\1 X I)Y, J )() = -g(Y~, (\1 X I)J .X) = -g(Y, (\7X J()X) + g(Y, 1(\1x J)X) = 0,

so (\7X I)Y E (JY, J(Y') anel the result. follows frolll (7.2). D

Since M is quaterllionic I(ähler we have R. = AR.lHIP + RO, where RIEIP is the curvature
of quaternionie projective space !HIP (11) anel RO has the syuulletries of a curvature tensor
of a hyperl(ähler lnanifolel [32,2,36}. In particular, RU(A,B,IC) = JRU(A,B,C) allel
RO(A,B,JC) = JR,u(A,B,C). Now

R,lliIP = c(R.c + R I + R J + R.K
),

so RU = R. - ).R nITP = au Re + 0' 1R I + 0'2 R.J + cy3 R.I{ for sonle constants CY i. This gives

RU(A, B, JC) = O'u (g(A, 1C)B - g(B, 1C)A)

+ 0'1 (-g(B, C)IA + g(A, C)IB + 2g(A, IB)C)

+ 0'2 (-g(B, ](C)J A + g(A, I(C)JB + 2g(A, JB)l(C)

+ 0'3 (g(B, Je)!(A - g(A, JC)](B - 2g(A,!{B)JC)

anel

IRO(A, B, C) = ao (g(A, C)IB - g(B, C)1A)

+ 0'1 (-g(B, IC)A + g(A, IC)B + 2g(A, IB)C)

+ 0'2 (g(B, JC)I(A - g(A, JC)I(B - 2g(A, JB)](C)

+ a3 (-g(B, ](C)J A + g(A, ](C)JB + 2g(A,](B)JC).

Now take A ort.hogonal t.o t.he quat.ernionic span of C. Frolll the coefficient of A we have
0'0 = a1· The coefficient of ](A gives 0'2 = Q'3, whereas that of ](C gives 0'2 = -0'3.

Therefore 0'2 = 0 = O':~ ancll'epeating the conlputation with ] replaceel by J shows RU - o.
This completes the proof of tohe theoren1. D



ISOPARAMETRIC SPHERES AND THE JACOBI OPERATOR

REFERENCES

17

1. J. F. Adams, Vector field.~ on ~pheres, Ann. Math. 75 (1962), 603-632.
2. D. V. Alekseevskil, Riemannian mani/olrL" with ezeeptional holonomy groups, Funkts. Anal. Prilozh.

2(2) (1968), 1-10; English t.ranslat.ion, Funet. Anal. Appl. 2 (1968), 97-105.
3. M. F. Atiyah, R. Bott. and A. Shapiro, Glif!ord modules, Topology 3 (1964L supp!. I, 3-38.
4. J. Berndt and L. Vallhecke, Geode.~ic spheres and generalizatiofU 0/ "ymmetrie "paees, Boll. Uno Mat.

Ital. (to appear).
5. A. L. Hesse, Ma7Lifold.~ all 0/ 11Iho,~e geodesies are closed, Ergebnisse der Mathematik und ihrer Gren

zgebiete, 93, Springer, Bel'lin, 1978.
6. , Einstein manifolcls, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 10, Springer,

Berlin, Heidelberg and New York, 1987.
7. K. Burns and A. Katok, Mani/olrL~ llIith non-positive eurvature, Ergodie Theory Dynamical Systems

5 (1985),307-317.
8. E. Calabi, Metriques kähleriennes et /ibres holomorphes, Ann. Scient. Ee. Norm. Sup., 4e seI' 12

(1979), 269-294.
9. E. Calabi, bometrie Familic.~ 0/ K ähler Structurc.'l, The ehern Symposium, 1979 (W.-Y. Hsiang j S.

Kobayashi, I. M. Singer, A. \Vei nst.ei n, J. \Vol f ano H.-H. \Vu, eds.), S pri ngcr-Ver lag, 1980, pp. 23-39 ..
10. P. Carpenter, A. Gray and T. J. Willmorc, The eun}(Lture 0/ Einstein symmetrie spaees, Quart.. J.

Math. Oxforo 33 (1982L 45-G4.
11. B.-Y. ehen and L. Vanheckc, Differential geom.etry 0/ geode.'lie sphere,'l, J. Reine Angew. Matlt. 325

(1981), 29-67.
12. Q.-S. Chi, A eun}(J.ture charaeterization of eertain loeally rank-one symmetrie spaees, J. Differ. Geom.

28 (1988), 187-202.
13. , Quaternionie K ählt:r mani/o ld... (md a eharac terization 0/ tlllo-point homog eneotLS spaces,

IHinois J. Math. 35 (1!)91), 408-418.
14. , CUnJature clwrueterization and cla...sifieation 01 rank.one .'lytfUnetric spaces, Pacific J. Math.

150 (1991), 31-42.
15. E. Damek and F. Rieei, A dass 0/ non.'lymtn.etric harmonie Riematmian .'lpaces, Bull. Amer. Math.

Soe. 27 (1992), I:HI-142.
16. M. 0 joric aod L. Van hecke, A Im 0.'1 t Hermitian !/eom.e try, geode.'lie .'lp here.'l and .'lymmetries , M at.h. J.

Okayama Univ. 32 (HI90), 187-20G.
17. J.-H. Esehenberg, A note on ...ymmetrie (md harmonie spaces, J. Land. Mat.h. Soc. 21 (1980),541-543.
18. 1<. Galicki and H. B. LawsolI, Quaternionie reduction (md '1unternionie orbi/olds, Math. Ann. 282

(1988), 1-21.
19. K. Galicki and T. Nitt.a, Non-zero ...ealar eurvature generalizations 0/ the ALE hyperkähler metries,

J. Math. Phys. 33 (1!H)2), 17G5-1771.
20. G. \V. Gibbons and C. N. Pope, The positive ac tion eo njec ture and asymp to tieally Euclidean metries

in quantum grallity, COlllmull. Mat.h. Phys. 66 (1979), 2fi7-290.
21. P. B. Gilkey, M ani/old.'l who... e cU1"1.)(Lture 01Jerator 'ws eonstant eigemJalues at the basepoint, J. Geom.

Anal. (to appear).
22. A. Gray, Cla.."sification des lmrietb (JJJproximatillcment kiihLerienne.'l de courbure .'/eetionelle holomor

phe eonstante, C. R. Aead. Sei. Paris 279 (1974), 797-800.
23. A. Gray and T. J. Willmorc, Mean-value theorem.'l for Riematmian tlwni/oltl..'l, Proe. Roy. Soc. Edin

burgh 92A (1982), :H:{-364.
24. S. Helgason, Dif{erential geometnJ, Lie !/roups and symmetrie .'lpaee.'l, Academie Press, New Vork,

1978.
25. O. Kowalski and L. Vanhecke, Ball-homogeneo1L..'l and di.'lk-homo!/eneous Riemulmian mani/olds, Math.

Z. 180 (1982), 42!)-444.
:W. P. B. I<ronheilller, TJLf: eott.... truetion 0/ ALE .'lp(lee.'l a.,.. hyper-Kähler quotients, J. Differ. Geom. 29

(1989), 665-683.
27. S. Marehiafava, V(lrietes riemalmi,:1L1H:.'l dont le telt..'leUr de courbure est eelui d 'un espaee symetrique

de rang un, C. R. Aead. Sei. Paris 295 (W82), 4G3-46G.

28. Z. Olszak, On the exi.'ltenee of f/etLf:ralize(L compleT. spaCf: /onlt..'l, Israel J. Math. 65 (1989), 214-218.



18 PETER GILKEY, ANDREW S\VANN AND LIEVEN VANHECKE

29. R. Osserman, CunJat1lre in the eightie.'I, Amer. Math. Monthly 97 (1990), 7:31-756.
30. R. Osserm3on and P. Sarnak l A nelll curvuture intJari(L1~t and eutropy of yeode.'Iie jlow.'I, Invent. Math.

77 (1984), 455-4fi2.
31. S. M. S3ol3omoll l Harmonie 4- ....lmee.'l, Math. An n. 269 (1984), H19-1 78.
32. S. M. Salarnon l Quaternionie K ähler manifo ld~, Inyen t. M 30th. 67 (1982), 143-171.
33. K. Sckig3ow3o and L. Vanheekc, Volume preserving geode~ie symmetrie~ on four-dimensional Kühler

manifolM, Differential Geometry Peiliscola, 1985, Proceedings (A. M. Naveir3o, A. Fernindez and F.
Mascaro, eds.), Leet.l1rc Notes in Math., 1209, Springer, pp. 275-290.

34. N. Steenrod , Topo logy 0 f Fibre Bund le~, Pri neeton, 1965.
35. Z. I. Sz3ooo, Liehnerowicz conjecture on harmonie manifolM, J. Differ. Geom. 31 (1990), 1-28.
3G. F. Trieerri and L. Vanhecke, Deeompo."ition of a ~paee of curvature ten~or~ an a quatemionic Kähler

mani/olds and -"pectral theory, Simon Stevin 53 (1979), 163-173.
37. I Gurvature ten.... or" on almost Hermitian manifold.'l, Trans. Amer. Math. Soe. 267 (1981),

365-398.
:J8. , Geometry 0/ a cla.....'1 0/ n01h~ymmetrie harmonie mani/oIM, Proe. ConL Differential Gcometry

and its Applications, Opava 1992 (to appear).
39. L. Vanhecke, GeometnJ in 7wn/wl find tubulrlr nei[lhbourhood.'I, Proc. Workshop on Differential Ge

ometry and Topology, Cala Gononc (Sardinia), Reul!. Sem. Fae. Sei. Univ. Cagliari, Sl1pp. 301 val. 58,
1988, pp. 73-17{j.

40. L. Vanhecke allel T . .J. \Villmorc, InterrLetion 0/ tube.'I and .'Ipheres, Mat.h. Ann. 263 (1983), 31-42.

(Gilkey) MATHEMATICS DEPAIlTMENT, UNIVERSITY Of OREGON, EUGENE, OR 97403 USA
E-mail addres.... :gilkey@mat.h.\lOregon.cd \I

(Swann) MAX-PLANCK-INSTITUT FÜR MATHEMATIK, GOTTFRIED-CLAREN-STRASSE 26, 5300 BONN

3, GERMANY and INSTITUT FOR MATEMATIK OG DATALOGI, OOENSE UNIVERSITET, CAMPUSVEJ 55,
5230 ODENSE M, DENMAH.K

E-mail address: swann@mpilll-honn.lnpg.de, swann@imada.ou.dk

(Vanhceke) DEPARTEMENT WISKUNDE, KATHOLIEKE UNIVEH.SITElT LEUVEN, CELESTIJNENLAAN 200
B, 3001 LEUVEN, BELGIUM

E-mail address: FGAGAO:1@BLEKUL 11.BITNET


