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Abstract. In this note, we reconcile two approaches that have been used
to construct stringy multiplications. The pushing forward after pulling
back that has been used to give a global stringy extension of the functors
K0, K

top, A∗, H∗[CR, FG, AGV, JKK2], and the pulling back after hav-
ing pushed forward, which we have previously used in our (re)-construction
program for G–Frobenius algebras, notably in considerations of singularities
with symmetries and for symmetric products. A similar approach was also
used by [CH] in their considerations of the Chen–Ruan product in a deRham
setting for Abelian orbifolds.

We show that the pull–push formalism has a solution by the push–pull
equations in two situations. The first is a deRham formalism with Thom
push–forward maps and the second is the setting of cyclic twisted sectors,
which was at the heart of the (re)-construction program.

We go on to do formal calculations using fractional Euler classes which
allows us to formally treat all the stringy multiplications mentioned above in
the general setting. The upshot is the formal trivialization of the co–cycles of
the reconstruction program using the presentation of the obstruction bundle
of [JKK2]. This trivialization can be interpreted in terms of formal twist
fields.

Introduction

For global quotients there is a by now standard approach to constructing
stringy products via first pulling back and then pushing forward [CR, FG, AGV,
JKK2]. We will call this construction the pull–push, which stands for pull after
pushing. However, going back to [Ka1, Ka2] we have used a mechanism that
first pushes forward and then pulls back to construct and classify G–Frobenius
algebra structures. In the same spirit we call this the push–pull — read push
after pulling. This approach has been very successful for singularities [Ka2,
Ka6] and for special cases of the group, for instance G = Sn, see [Ka4]. The
advantage of this approach is that one is left with solving an algebraic co-cycle
equation. In many cases this cocycle is unique up to normalized discrete torsion
[Ka2, Ka3, Ka4, Ka5, Ka6]. In fact as we argued in [Ka2, Ka4] this mechanism
must work if the twisted sectors are cyclic modules over the untwisted sector.
Surprisingly a similar technique to ours was used in [CH] where the authors
passed to the deRham chains and used formal fractional Thom forms to study
the product. Another motivation for this approach is to find the mathematical
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definition of the notion of twist fields that is prevalent in the physics literature
on orbifold conformal field theory.

The goal that is achieved by this paper is the consolidation of these various
results and approaches into one big picture:

After reviewing the general setup in §1, we show our first results in §2.
Namely, that in the case of cyclic twisted sectors both approaches exist for all
the geometric functors considered in [JKK2]. This means that our reconstruc-
tion program of [Ka1, Ka2] (see also [Ka3] for a short detailed version) has a
solution. It actually then has at least discrete torsion many [Ka5]. The key in
this situation is the existence of sections of the pull–back maps which allow us
to prove the relevant theorems using only the projection formula.

Next, in §3, we show that in the deRham setting, all the elements of the
previous study hold up to homotopy, that is up to exact forms. Hence we can
provide a rigorous setting using Thom push–forwards and pull–backs for general
global quotients.

In the general setting, see §4, there are some obstacles towards a rigorous
calculus of pushing forward and then pulling back. We can make a lot of
headway using the excess intersection formula. But then we have to deal with
formal fractional Euler classes. There are two types of these classes. The first
are formal Euler classes of negative bundles, to be precise the −1 multiples
of the normal bundles of the fixed point sets considered to live in K–theory.
We can make sense of these as formally defining sections and in the situations
above these sections coincide with the ones we constructed. The second type
of formal class is that of the fractional Euler class of positive, but fractional
classes in rational K–theory. This type of class poses less of a problem and can
be treated by adjoining roots to the various rings.

One main result of the formal and rigorous calculations is that in the different
situations the classes Sm appearing in the definition of the obstruction bundle
produce a co–cycle in the sense of [Ka1, Ka2] that is trivialized by them. Hence
one can say that in this setting we have formally identified the twist fields.
We close this section with a discussion about possible applications to orbifold
Landau–Ginzburg theories that is singularities with symmetries.
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Conventions

Will use at least coefficients in Q if nothing else is stated. For some applica-
tions such as deRham forms we will use R coefficients. All statements remain
valid when passing to C.

1. General setup

We will work in the same setup as in the global part of [JKK2]. That is we
simultaneously treat two flavors of geometry, algebraic and differential. For the
latter, we consider a stably almost complex manifold X with the action of a
finite group G such that the stably almost complex bundle is G equivariant.
While for the former X is taken to be a smooth projective variety.

In both situations for m ∈ G we denote the fixed point set of m by Xm and
let

I(X) = qm∈GXm (1.1)

be the inertia variety.
We let F be any of the functors H∗,K0, A

∗,Ktop, that is cohomology, Grothendieck
K0, Chow ring or topological K–theory with Q coefficients, and define

Fstringy(X,G) := F(I(X)) =
⊕

m∈G

F(Xm) (1.2)

additively.
We furthermore set

EuF (E) =

{

ctop(E) if F = H∗ or A∗ and E is a bundle

λ−1(E
∗) if F = K or K top

(1.3)

Notice that on bundles Eu is multiplicative. For general K–theory elements
we set

EuF ,t(E) =

{

ct(E) if F = H∗ or A∗

λt(E
∗) if F = K or K top

(1.4)

Remark 1.1. Notice EuF ,t is always multiplicative and it is a power series that
starts with 1 and hence is invertible in F(X)[[t]].

Definition 1.2. For a positive element E, i.e. E can be represented by a bundle
with rank r = rk(E), we have that EuF (E) = EuF ,t(E)|t=−1 for F either K0

or Ktop and EuF (e) = Coeff of tr in [EuF ,t(E)] if F is A∗ or H∗. To be able to
deal with both situations, for E, r as above, we define

evalF|r(EuF ,t(E)) =

{

EuF ,t(E)|t=−1 if F is K0 or Ktop

Coeff of tr in [EuF ,t(E)] if F is A∗ or H∗
(1.5)

we then have evalF|r(EuF ,t(E)) = EuF (E)

Remark 1.3. Notice that for F as above and each subgroup H ⊂ G, F(XH)
is an algebra. We will call the internal product F(Xm) ⊗ F(XH) → F(XH)
the näıve product. There is however a “stringy–product” which preserves the
G–grading. To define it, we recall some definitions from [JKK2].
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1.1. The stringy product via pull–push. For m ∈ G we let Xm be the
fixed point set of m and for a triple m = (m1,m2,m3) such that

∏

mi = 1

(where 1 is the identity of G) we let Xm be the common fixed point set, that
is the set fixed under the subgroup generated by them.

In this situation, recall the following definitions. Fix m ∈ G let r = ord(m)
be its order. Furthermore let Wm,k be the sub–bundle of TX|Xm on which m

acts with character exp(2πi k
r ), then

Sm =
⊕

k

k

r
Wm,k (1.6)

Notice this formula is invariant under stabilization.
We also wish to point out that using the identification Xm = Xm−1

Sm ⊕ (Sm−1) = NXm/X (1.7)

where for an embedding X → Y we will use the notation NX/Y for the normal
bundle.

Recall from [JKK2] that in such a situation there is a product on F(X,G)
which is given by

vm1
∗ vm2

:= ěm3∗(e
∗
1(vm1

)e∗2(vm2
)Eu(R(m))) (1.8)

where the obstruction bundle R(m) can be defined by

R(m) = Sm1
⊕ Sm2

⊕ Sm3
	 NXm/X (1.9)

and the ei : Xmi → X and ě3 : Xm−1

3 → X are the inclusions. Notice, that as it
is written R(m) only has to be an element of K-theory with rational coefficients,
but is actually indeed represented by a bundle [JKK2].

Remark 1.4. The first appearance of a push–pull formula was given in [CR]
in terms of a moduli space of maps. The product was for the G invariants, that
is for the H∗ of the inertia orbifold and is known as Chen–Ruan cohomology.
In [FG] the obstruction bundle was given using Galois covers establishing a
product for H∗ on the inertia variety level, i.e. a G–Frobenius algebra as defined
in [Ka1, Ka2], which is commonly referred to as the Fantechi–Göttsche ring.
In [JKK1], we put this global structure back into a moduli space setting and
proved the trace axiom. The multiplication on the Chow ring A∗ for the inertia
stack was defined in [AGV]. The representation of the obstruction bundle in
terms of the Sm and hence the passing to the differentiable setting as well as
the two flavors of K–theory stem from [JKK2].

The following is the key diagram:

X
i1 ↗ ↑ i2 ↖ ı̌3
Xm1 Xm2 Xm−1

3

e1 ↖ ↑ e2 ↗ ě3

Xm

(1.10)
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Here we used the notation of [JKK2], where e3 : Xm → Xm3 and i3 :
Xm3 → X are the inclusion, ∨ : I(X) → I(X) is the involution which sends the

component Xm to Xm−1

using the identity map and ı̌3 = i3 ◦ ∨, ě3 = ∨ ◦ e3.
This is short hand notation for the general notation of the inclusion maps
im : Xm → X, ı̌m := im ◦ ∨ = im−1 .

1.2. The F(X) module structure. Notice that each F(Xm) is an F(X)
module in two ways which coincide. First via the näıve product and pull back,
i.e. a · vm := i∗m(a)vm and secondly via the stringy multiplication (a, vm) 7→
a ∗ vm. Now using (1.7) it is straightforward to check that

a · vm = i∗m(a)vm = a ∗ vm (1.11)

2. Pull–push: the cyclic case

The way the product is defined in (1.8) is via first pulling back and then
pushing forward using the maps ek. The aim of this section is to establish
rigorous arguments, that one can also first push–forward and then pull back
while using the maps ik. This can be done rigorously using sections and the
projection formula. We apply this technique in the current paragraph which
treats the cyclic case and in §3 which is devoted to the deRham setting.

2.1. Sections. We can realize the (re)–construction program of [Ka1, Ka2,
Ka3] in two different situations. First, for any functor F as above provided
there are sections to the pull–back maps i∗k and secondly in a deRham setting,
where these sections exist on the level of forms.

Definition 2.1. We say that F admits sections for (X,G) if for every map
im : Xm → X there are sections ims : F(Xm) → F(X) of the pull–back maps

i∗m : F(X) → F(X), that is i∗m ◦ ims = id : F(Xm) → F (Xm)

Examples are for instance given by symmetric products (X×n, Sn), see [Ka2,
Ka3] or manifolds whose fixed loci are empty or points.

Lemma 2.2. If F admits sections for (X,G), then F(Xm) is a cyclic F(X)
module, where the module structure is given by a · vm := i∗(a)vm. A cyclic
generator is 1m which is the identity element of the algebra F(Xm) endowed
with the näıve product.

Proof. vm = i∗m(ims(vm)) = ims(vm) · 1m �

Remark 2.3. We have

i∗m(ims(a)ims(b)) = i∗m(ims(a))i∗m(ims(b)) = ab = i∗m(ims(ab)) (2.1)



6 RALPH M. KAUFMANN

2.2. A rigorous calculation using sections.

Proposition 2.4. If there are sections ijs of i∗j then the following equation
holds

Coeff of tr in {ı̌∗3[i1s(vm1
)i2s(vm2

)γm1,m2
(t)]}

= Coeff of tr in
{

ı̌∗3[i1s(vm1
Eut(Sm1

))i2s(vm2
Eut(Sm2

))i3s(Eut(Sm3
)e3∗(Eut(	NXm/X)))]

}

= vm1
∗ vm2

(2.2)

where the product ∗ is the product defined in (1.8) and r = rk(R(m)) and

γm1,m2
(t) = i1s(Eut(Sm1

))i2s(Eut(Sm2
))i3s(Eut(Sm3

)e3∗(Eut(	NXm/X)))

= i1s(Eut(Sm1
))i2s(Eut(Sm2

))̌ı3s(Eut(	Sm−1

3

)ě3∗(Eut(	NXm/Xm3 )))

(2.3)

Proof. Using the projection formula, the defining equation for the sections i∗j ◦
ijs = id, and the fact that ek ◦ ik = j = ěk ◦ ı̌k

ě3∗[e
∗
1(vm1

)e∗2(vm2
)Eut(Sm1

|Xm ⊕ Sm2
|Xm ⊕ Sm3

|Xm 	 NXm/X)]

= ě3∗[e
∗
1(i
∗
1(i1s(vm1

Eut(Sm1
))))e∗2(i

∗
2(i2s(vm2

Eut(Sm2
))))e∗3(i

∗
3(i3s(Eut(Sm3

))))Eut(	NXm/X)]

= ě3∗[ě
∗
3(̌ı
∗
3(i1s(vm1

Eut(Sm1
))))ě∗3 (̌ı

∗
3(i2s(vm2

Eut(Sm2
))))ě∗3 (̌ı

∗
3(i3s(Eut(Sm3

))))Eut(	NXm/X)]

= ı̌∗3[i1s(vm1
Eut(Sm1

))i2s(vm2
Eut(Sm2

))i3s(Eut(Sm3
))̌ı3s(ě3∗(Eut(	NXm/X)))]

= ı̌∗3[i1s(vm1
Eut(Sm1

))i2s(vm2
Eut(Sm2

))i3s((Eut(Sm3
))e3∗(Eut(	NXm/X)))]

(2.4)

So that taking the coefficient of tr with r = rk(R(m)) we obtain the second
claimed equality. For the first equality we can use the fact (2.1)

ě3∗[e
∗
1(vm1

)e∗2(vm2
)Eut(Sm1

|Xm ⊕ Sm2
|Xm ⊕ Sm3

|Xm 	 NXm/X)]

= ě3∗[e
∗
1(i
∗
1(i1s(vm1

Eut(Sm1
))))e∗2(i

∗
2(i2s(vm2

Eut(Sm2
))))e∗3(i

∗
3(i3s(Eut(Sm3

))))Eut(	NXm/X)]

= ě3∗[e
∗
1(i
∗
1(i1s(vm1

)i1s(Eut(Sm1
))))e∗2(i

∗
2(i2s(vm2

)i2s(Eut(Sm2
))))

e∗3(i
∗
3(i3s(Eut(Sm3

))))Eut(	NXm/X)]

(2.5)

and proceed as above. Finally, for (2.3), we notice that NXm/X = NXm/Xm3 ⊕
NXm3/X |Xm and use (1.7). �

Theorem 2.5. Let F ∈ {A∗,H∗,K0,K
∗
top} and (X,G) in the appropriate

category which admits sections for F then the equation (2.2) solves the re–
construction program of [Ka2] with the co–cycles γm1,m2

:= Coeff of tr in (γm1 ,m2
(t)).

Proof. In this setting the calculation of the Proposition 2.4 applies, which also
shows, a forteriori that the formulas are independent of the choice of lift and
that the γm1,m2

:= Coeff of tr in (γm1 ,m2
(t)) are indeed co–cycles and section

independent co–cycles in the sense of [Ka2]. �

Remark 2.6. As we show in §4 below, these co–cycles are formally trivial.
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2.3. Symmetric Product. In particular the theorem above applies to sym-
metric products and gives a new way to show the existence of the unique co–
cycles in this situation constructed in [Ka4].

3. The Chain level: a rigorous calculation using deRham Chains

Although it is not true in general that the pull back e∗i is surjective on
cohomology or by the usual Chern isomorphism on K–theory, on the level of
deRham chains this is true. Notice that in the proof of Proposition 2.4, we only
used the projection formula, the defining equation for the sections and the fact
that the pull–back is an algebra homomorphism.

Notation 3.1. In this section, we fix coefficients to be R and we denote by
Ωn(X) the n–forms on X. Likewise for a bundle E → B with compact base we
denote Ωn

cv(E) the n forms on E with compact vertical support and let H ∗cv(E)
the corresponding cohomology with compact vertical support.

3.1. DeRham chains and Thom push–forwards. In this section, we will
use deRham chains and the Thom construction [BT]. The advantage is that
every form on every Xm is a “pull–back” from a tubular neighborhood.

We recall the salient features adapted to our situation from [BT]. Let i :
X → Y be an embedding, then there is a tubular neighborhood Tub(NX/Y ) of
the zero section of the normal bundle NX/Y which is contained in Y . We let
j : Tub(NX/Y ) → X be the inclusion.

Now the Thom isomorphism T : H∗(X) → H
∗+codim(X/Y )
cv (NX/Y ) can be

realized on the level of forms via capping with a Thom form Θ: T (ω) = π∗(ω)∧
Θ. The Thom map is inverse to the integration along the fiber π∗ and hence
π∗(Θ) = 1. In fact, the class of this form is the unique class whose vertical
restriction is a generator and whose integral along the fiber is 1. For any given
tubular neighborhood Tub(NX/Y ) of the zero section of the normal bundle one
can find a form representative Θ such that the supp(Θ) ⊂ Tub(NX/Y ).

3.2. Push–forward. In this situation the Thom push-forward i∗ : H∗(X) →
H∗(Y ) is given by T followed by the extension by zero j∗. These maps are
actually defined on the form level. That is we choose Θ to have support strictly
inside the tube, and hence the extension by zero outside the tube is well defined
for the forms in the image of the Thom map.

i∗(ω) := j∗(T (ω)) = j∗(π
∗(ω) ∧ Θ) (3.1)

Notice that for two consecutive embeddings X
e
→ Y

i
→ Z, on cohomology we

have e∗ ◦ i∗ = (e ◦ i)∗ : H∗(X) → H∗(Z). On the level of forms depending on
the choice of representatives of the Thom form either the identity holds on the
nose, since the Thom classes are multiplicative [BT] or they differ by an exact
form e∗ ◦ i∗(ω) = (e ◦ i)∗ + dτ .



8 RALPH M. KAUFMANN

3.3. The projection formula on the level of forms. The following propo-
sition follows from standard facts [BT]

Proposition 3.2 (Projection formula for forms). With i : X → Y and em-
bedding and i∗ defined as above, for any form ω ∈ Ω∗(X) and any closed form
φ ∈ Ω∗(Y ) there is an exact form dτ ∈ Ω∗(Y ) such that

i∗(i
∗(ω) ∧ φ) = ω ∧ i∗(φ) + dτ (3.2)

Proof. Denote the zero section by z : X → NX/Y and projection map of the
normal bundle by π : NX/Y → X, then i = j ◦ z.

X
π|Tub
←
z
→

Tub(NX/Y )
j
→ Y (3.3)

Since π is a deformation retraction, π∗ and z∗ are chain homotopic [BT], hence
π∗ ◦ z∗(ω) = ω + dτ . We can now calculate

i∗(i
∗(ω) ∧ φ) = j∗(π

∗(i∗(ω) ∧ φ) ∧ Θ)

= j∗(π
∗(z∗(j∗(ω)) ∧ π∗(φ) ∧ Θ))

= j∗((j
∗(ω) + dτ) ∧ π∗(φ) ∧ Θ)

= ω ∧ j∗(π
∗(φ) ∧ Θ) + j∗(dτ ∧ π∗(φ) ∧ Θ)

= ω ∧ i∗(φ) + dj∗(τ ∧ π∗(φ) ∧ Θ) (3.4)

where the penultimate question holds true, since Θ has support inside Tub(NX/Y )
and the last equation holds true since d commutes with the extension by zero
and pull–back. �

3.4. Sections. To construct a section on the level of forms, we first notice that
the Thom class can be represented by using a bump function f so that if Xmi

is given locally on U by the equations xk = · · · = xN = 0

T (1)|U = fdxk ∧ · · · ∧ dxN (3.5)

where f is a bump function along the fiber that can be chosen such that supp(f),
the support of f , lies strictly inside the tubular neighborhood and moreover
supp(f) lies strictly inside this neighborhood. We consider a “characteristic
function” g of an open subset U with supp(f) ⊂ U ⊂ Tub(N) inside the tubular
neighborhood, see Figure 1. Notice that fg(x) = f(x). We let g be a 0–form
with compact vertical support whose restriction to the fiber is given by g.

For any form ω ∈ Ω∗(X), we define

ims(ω) := j∗(gπ∗m(ω)) (3.6)

Then

i∗m(j∗(gπ∗m(ω))) = z∗m(j∗(j∗(gπ∗m(ω)))) = z∗m(g)z∗m(π∗m(ω)) = ω + dτ (3.7)
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g

0

f

1

Figure 1. A bump function f of the Thom class representative
and a characteristic function g

Remark 3.3. Actually i∗(ω) := j∗(T (w)) is divisible by j∗(T (1)): locally on a
coordinate neighborhood U .

im∗(ω) = j∗(T (w)) = j∗(π
∗
m(ω) ∧ Θ)|U

= fπ∗(ω)|U ∧ dxk ∧ · · · ∧ dxN

= fgπ∗(ω)|U ∧ dxk ∧ · · · ∧ dxN

= ims(ω)|U ∧ Θ|U (3.8)

Theorem 3.4. With ims and im∗ as defined above the following equation holds
on the level of forms.

ωm1
∗ ωm2

:= ěm3∗(e
∗
1(ωm1

)e∗2(ωm2
)Υ(Eu(R(m))))

= Coeff of tr in { ı̌∗3[is1(ωm1
)is2(ωm2

)is1(Υ(Eut(Sm1
)))is2(Υ(Eut(Sm1

)))

is3(Υ(Eut(Sm3
))Υ(Eut(	NXm/X))Υ(Eu(NXm/Xm3 )))]

}

+ dτ (3.9)

for some exact form dτ , where Υ(v) is a closed form representative of the class
v.

Proof. Completely parallel to the proof of Proposition 2.4, since we have estab-
lished all equalities up to homotopy, that is up to exact forms. �

Corollary 3.5. The three point functions coincide with the ones induced by
(1.8). That is if Υ denotes the lift of a class to a form and Υ(vmi) = ωmi then

〈ωm1
∗ ωm2

, ωm3
〉 :=

∫

X
ωm1

∗ ωm2
∧ ωm3

=

∫

X
Υ(vm1

∗ vm2
) ∧ ωm3

= (vm1
∗ vm2

∪ vm3
) ∩ [X] (3.10)

= 〈vm1
∗ vm2

, vm3
〉 (3.11)

where [X] is the fundamental class of X and hence the three point functions are
independent of the lift.

Proof. Straightforward by Stokes. �
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4. Formal and non–formal calculations

In this section, we present some formal and non–formal calculations. This
will allow us to make contact with the formal argument of Chen-Hu [CH] who
used fractional Thom forms in their arguments in establishing a deRham model
for the Chen–Ruan cohomology of Abelian quotients. We have been informed
by H.H. Tseng [Ts] that he is working on making the formal part of arguments
rigorous in a C∗ equivariant setting, a result which would be great to have.

The ultimate aim would be to rigorously establish the following presentation
of the product for the various functors F without recourse to the deRham
theory or sections.

ı̌3∗(i1∗(vm1
σ1)i2∗(vm2

σ2)̌ı3∗(σ̃3)) = ě3∗(e
∗
1(vm1

)e∗2(vm2
)Eu(R(m))) (4.1)

This is: can one answer the following questions?

Question 4.1. Can one find elements σi, σ̃i such that the equation (4.1) holds?

Question 4.2. Is there a setting in which the σ1, σ2, σ̃3 form a co–cycle or
better even a trivial co–cycle?

In a formal sense this can be done as we show below, but we are still lacking
a rigorous setting. Of course the preceding paragraphs do give rigorous results
using the existence of sections for the deRham and the cyclic setting.

The motivation for this comes among other things from physics, where the
σi or better the σg are the twist fields of orbifold conformal field theory.

We first notice that for r = rk(R(m)) the r.h.s. of (4.1) is

evalF|r[e3∗(e
∗
1(v1)e

∗
2(v2)Eut(R(m)))] (4.2)

4.1. A rigorous excess intersection calculation. We calculate in F(X,G)[[t]].
Using the excess intersection formula [FL, Qu] on

Xm
ě3−→ Xm−1

3

(e1, e2, ě3) ◦ (∆, id) ◦ ∆ ↓ ↓ (̌ı3, ı̌3, ı̌3) ◦ (∆, id) ◦ ∆

Xm1 × Xm2 × Xm−1

3

(i1,i2 ,̌ı3)
−→ X × X × X

(4.3)

which has excess bundle NXm1/X ⊕ NXm2/X ⊕ N
Xm−1

3 /X
|Xm 	 N

Xm/Xm−1

3

we

can transform the l.h.s. of equation (4.1) as follows:

l.h.s.(4.1) = ı̌∗3[i1∗(vm1
σ1)i2∗(vm2

σ2)̌ı3∗(σ̃3)]

= e3∗[e
∗
1(vm1

σ1Eu(NXm1/X))e∗2(vm2
σ2Eu(NXm2/X))

e∗3(σ̃3Eu(N
Xm−1

3
/X ))Eu(	N

Xm/Xm−1

3

)]

= evalF|k
{

ě3∗[e
∗
1(vm1

σ1Eut(NXm1/X))e∗2(vm2
σ2Eut(NXm2/X))

ě∗3(σ̃3Eut(N
Xm−1

3 /X
))Eut(	N

XXm/m−1

3

)]

}

(4.4)
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k = rk(NXm1/X ⊕ NXm2/X ⊕ NXm3/X |Xm 	 N
Xm/Xm−1

3

).

While the r.h.s. can be transformed to

r.h.s.(4.1) = evalF|r {ě3∗[e
∗
1(vm1

Eut(Sm1
))e∗2(vm2

Eut(Sm2
))

e∗3(vm3
Eut(Sm3

))Eut(	NXm/X)]
}

= evalF|r
{

ě3∗[e
∗
1(vm1

Eut(Sm1
)Eut(NXm1/X)Eut(	NXm1/X))

e∗2(vm2
Eut(Sm2

)Eut(NXm2/X)Eut(	NXm2/X))

e∗3(Eut(Sm3
))e∗3(Eut(	NXm3/X))Eut(	N

Xm/Xm−1

3

)]

}

= evalF|r

{

ě3∗[e
∗
1(vm1

Eut(	Sm−1

1

)Eut(NXm1/X))

e∗2(vm2
Eut(	Sm2

)Eut(NXm2/X))ě∗3(Eut(	Sm−1

3

))Eut(	N
Xm/Xm−1

3

)]

}

(4.5)

r = rk(R(m)).

4.2. A formal solution using fractional Euler classes. Comparing the two
sides that is equations (4.4) and (4.5) one is tempted to set:

σ1,t = Eut(	Sm−1

1

) = Eut(Sm1
)Eut(	NXm1/X)

σ2,t = Eut(	Sm−1

2

) = Eut(Sm2
)Eut(	NXm2/X)

σ̃3,t = Eut(	Sm−1

3

	 N
Xm−1

3 /X
) = ∨∗(Eut(Sm3

)Eut(	NXm3/X)2) (4.6)

and then use a kind of evaluation map that is set σi = evalF|vr(σi)(σi,t) and
σ̃3 := evalF|vr(σ̃3)(σ3,t) where vr denotes the virtual rank. This is, however, not
possible, since it is not clear that the respective power series converges for −1
nor is it clear what the coefficient at a rational power or a negative virtual rank
means.

4.3. Adjoining formal symbols. Let S be a collection of elements of rational
K–theory KQ(Y ).

We will think of the formulas first in F(Y )[S] and write elements S by using
the formal symbols Eu(x) (one should think “Eu(x) = evalF|vr(x)(x)”)

We can see that we can “solve” the equation (4.1) if we formally set

σi = Eu(Smi)Eu(	NXmi/X)

σ̃3 = ∨∗(Eu(Sm3
)Eu(	NXm3/X)2) (4.7)

(4.8)

as we explain in the following.
One would like to add certain relations of the form

(1) Enlarging S to the semi–group it generates

Eu(x)Eu(y) − Eu(x ⊕ y) (4.9)
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(2) If x + y = E with E a bundle

Eu(x)Eu(y) − Eu(E) (4.10)

We denote by FS(Y ) the ring obtained by modding out by the relations above.
But one has to be careful with negative bundles, i.e. Eu(	E), since these will

be morally the inverses to nilpotent elements and hence if we were to localize,
we would obtain the zero ring.

Looking at our equations, we would like to have Y = I(X) with the maps i∗m
S = {Sm,	NXm/X |m ∈ G} but then using the relations above, we would get
into trouble with Eu(Sm)Eu(Sm−1)Eu(	NXm/X).

What we will formally do is to view Eu(	NXm/X) as division, when it is
possible, as we demonstrate below.

On the other hand, there is no problem adjoining only the Sm.
Therefore we will consider adjoining two sets of variables S1 := {Sm} and

S2 := {	NXm/X}. Then we will consider the formulas to live in FS1
(Y )[S2],

where we think of S2 as formal division operators when defined and also use
the convention:

(1) Pull–back: if i∗(x) and x in KQ(Y ) for some morphism i: i∗(Eu(x)) =
Eu(i∗(x))

4.4. Formal manipulations: divisions give formal sections. For a given
inclusion i : Y → X, we sometimes can construct sections is of i∗. Notice that
i∗ is not quite a section due to the self intersection formula:

i∗(i∗(a)) = aEu(NX/Y ) (4.11)

this is why we formally set

“is(a) := i∗(aEu(	NX/Y ))” (4.12)

Indeed, then

“i∗(is(a)) := i∗(i∗(aEu(	NX/Y ))) = aEu(NX/Y )Eu(	NX/Y ) = a” (4.13)

Notice that if is is indeed a section:

i∗(ab) = i∗(i
∗(is(a))b) = is(a)i∗(b) (4.14)

and hence
i∗(a) = is(a)i∗(1) (4.15)

So that we see that if there are sections:

is(a) = i∗(a)/i∗(1) (4.16)

and hence indeed the division operation is well justified and the formal cal-
culation is valid. This was the case in §2 and §3, see in particular equation
(3.8).

In the notation above, the l.h.s. of (4.1) after substitution of (4.7) becomes

i∗3[is1(vm1
)is2(vm2

)is1(Eu(Sm1
))is2(Eu(Sm1

))is3(Eu(Sm3
)Eu(	NXm3/X))]

(4.17)
while the r.h.s. of (4.1)can be written as



A NOTE ON THE TWO APPROACHES TO STRINGY FUNCTORS FOR ORBIFOLDS 13

ě3∗(e
∗
1(vm1

)e∗2(vm2
)e∗1(Eu(Sm1

))e∗2(Eu(Sm2
))e∗3(Eu(Sm3

))Eu(	NXm/X)) (4.18)

4.4.1. Cocycles. Notice since Sm ⊕ ∨∗(Sm−1) = NXm/X we formally have
that

“ı̌3s(Eu(Sm−1

3

)i3s(Eu(Sm3
)Eu(	NXm3/X)))

= is3(Eu(NXm3/X)Eu(	NXm3/X)) = 1” (4.19)

This if we set s(m) := ims(Eu(Sm)) and let γ := ds, that is γ(m1,m2) =
s(m1)s(m2)/s(m1m2), then the l.h.s. of (4.1) becomes

i∗3[is1(vm1
)is2(vm2

)γ(m1,m2)] (4.20)

with a trivial co-cycle

“γ(m1,m2) = i1s(Eu(Sm1
))i2s(Eu(Sm2

))̌ı3s(Eu(Sm−1

3

))−1” (4.21)

This formal equation is very important, since it makes contact with the
algebraic problem posed and studied in [Ka2] called the re–construction problem
in [Ka1, Ka2, Ka3]. This program has previously been very useful for symmetric
products [Ka4] and singularities with symmetries [Ka6].

4.5. Positive fractional Euler-classes. Unlike the negative fractional Euler
classes Eu(	N), we can make the Euler classes of positive rational combinations
of bundles rigorous.

First we notice that by the splitting principle [H, FL], we can make a ring
extension in which all the constituent bundles split. Then we are left with
classes of the form Eu( k

r L ) that is fractional line bundles. Let 1 + u = Eu(L )
then we can easily adjoin r–th roots to the extension of R′ of R := F(X,G) in
which all isotypical components of the NXm/X split by passing to R′[w]/(wr−u).
After adjoining all |m|–th roots of the various Lm,k,i, where the Lm,k,i are the
bundles that split Wm,k, we can simply set

Eu(Sm) :=
∏

k 6=0,i

w
k/|m|
m,k,i (4.22)

In this large ring R is a subring and hence we can read off formulae on this
subring analogously to the procedure used in the splitting principle.

4.6. Admissible functors. Here we collect the formal properties of the func-
tors F we used in our formal calculations.

Definition 4.3. Let F be a functor together with an Euler-class Eut which has
the following properties

(1) F The Euler class Eut is defined for elements of rational K-theory and
is multiplicative and takes values in F(X)[[t]].

(2) F is contravariant, i.e. it has pullbacks and the Euler-class is natural
with respect to these.

(3) F has push-forwards i∗ for closed embeddings i : X ↪→ Y .
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(4) F has an excess intersection formula for closed embeddings. That is we
have an evaluation morphism Eu := evalF|r(EuF ,t) : F(X)[[t]] → F(X)
such that for the Cartesian squares

Z
e2→ Y2

↓ e1 ↓ i2

Y1
i1→ X

(4.23)

we have the following formula

i∗2(i1∗(a)) = e2∗(e
∗
1(a)εj) (4.24)

where ε := Eu(E) with E the excess bundle E := NY1/X |Z 	NZ/Y2
and

r is its rank.

We call such a functor admissible.

All the functors F studied above are admissible and the calculations of this
section —formal and non–formal— carry over to admissible functors. Actu-
ally deRham forms are admissible up to homotopy, see below, so that mutatis
mutandis we can use the same formal arguments on the level of forms.

4.7. Forms as an admissible functor, fractional Thom classes. In this
case, we have an Euler class and all the properties of an admissible functor are
valid on the chain level - up to homotopy, that is up to closed forms.

(1) The Thom push–forward on the chain level induces the push–forward
in cohomology induced by the Poincaré pairing, since the Thom class
and the Poincaré dual can be represented by the same form [BT].

(2) The projection formula holds, since the pull–back of the Thom class is
the Euler class of the normal bundle [BT].

(3) The excess intersection formula holds up to homotopy. Since it holds in
cobordism theory and cohomology [Qu] we know that for closed ω the
two forms i∗2i1∗(ω) and e2∗e

∗
1(ωΥ(Eu(E))) differ by a closed form.

(4) In particular, we can use the Thom pushforward and then the divisibility
of the push–forward by the Thom class gives us sections.

Hence we can make the same formal calculations as above. Notice that since we
indeed have sections as explained in §3, we can avoid mention of Eu(	NXm/X)
and only have to deal with Eu(Sm). In particular equation (3.8) shows that
we can indeed divide im∗(a) by the Thom form im∗(1) = Θm, which is how we
defined ims.

Now using the formalism of §4.5 and passing to a local trivializing neighbor-
hood U , where the line bundles Lm,k have first Chern class represented by the
forms dxl, . . . dxN , then we get a form representative of Eu(Sm)

Υ(Eu(Sm))|U = fk/|m|
∏

k 6=0,i

(dx)k/|m| (4.25)

which is the expression for the fractional Thom form that was used in [CH] in
their study of Abelian quotients.



A NOTE ON THE TWO APPROACHES TO STRINGY FUNCTORS FOR ORBIFOLDS 15

What we have now is the generalization to an arbitrary group as well as
a trivialization of the co–cycles in terms of roots, thus completing that (re)–
construction program of [Ka1, Ka2] in the deRham setting of global quotients.
The surprising answer is that there is always a stringy multiplication arising
from a co–cycle that is trivializable in a ring extension obtained by adjoining
roots. In particular the formulas (4.17) and (4.18) can be made sense of and
the co–cycle that appears yields the stringy orbifold product.

4.8. Remarks about singularities with symmetries aka. orbifold Landau–

Ginzburg theories. In conclusion, we wish to make some remarks about sin-
gularities with symmetries as regarded in [Ka2, Ka6]. It is tempting to produce
a solution to the stringy multiplication problem in this setting using the for-
mula (1.8). We recall that the relevant data is a pair (f,G) of a singularity
f : Cn → C with an isolated critical point at zero and a finite group G with
embedding into Gl(n, C) such that g∗(f) = f .

To establish this we would need a theory of Chern classes. In the quasi–
homogenous case, we have a candidate for the top Chern class associated to the
singularity f which is

Eu(f) := hess(f) = det(Hess(f)) (4.26)

Using the basic principles of Chern–Weil theory we can even define a total
Chern class in this situation:

Eut(f) :=
∑

i

tr(ΛiHess(f))ti (4.27)

We furthermore need the definition of Chern classes or at least the top Chern
class of the obstruction bundle. This is more or less straightforward in the
Abelian case. For this we first notice that the role of the tangent space is
played by Cn together with its G action. Each subgroup 〈g〉, g ∈ G then defines
a representation and we can define Sg ∈ Rep(G)⊗Q by the formula by noticing
that the Eigenbundles in this case are just subrepresentations.

For any subrepresentation V of G we define

Eut(V ) =
∑

i

tr(ΛiHess(f |V ))ti (4.28)

In the Abelian case it is easy to figure out that indeed R(m) is the subrepresen-
tation V which is given as follows (cf. [CH, JKK2]). Simultaneously diagonalize
the action of G. Let g = diag(exp(2πiλj(g)), with λj(g) ∈ [0, 1) then V is
spanned by the simultaneous Eigenvectors ej whose log–Eigenvalues satisfy

λj(g) + λj(h) = λj(gh) + 1

Hence (1.8) defines a multiplication on the orbifold Milnor ring
⊕

g∈G M(f |Fix(g))

(cf.[Ka2, Ka6]) where M denotes the Minor ring. Pull–back is the restriction
of functions and push–forward is the adjoint map. There are even sections igs
which are given is given by considering a function of fewer variables to be a func-
tion of more variables (cf.[Ka2, Ka6, Ka4]). It turns out that this multiplication
does not respect the bi–grading in general.
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If we furthermore assume that Hess(f) is diagonal, we can even give the
fractional Euler classes. They are

Eu(Sg) =
∏

j

(1 + ∂2/∂z2
j (f)t)λj(g) (4.29)

It is at present not clear what geometry this describes. In the case fn =
zn
0 + . . . zn

n−1 this gives a multiplication which is part A–model and part B–
model. The untwisted sector behaving like the B–side and the twisted sectors
behaving like the A–side.

We plan to return to this problem in a subsequent paper.
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