A REMARK ON GROUP ACTIONS WITH DIVISORIAL FIXED POINT SETS

by

Toshiki Mabuchi

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

A REMARK ON GROUP ACTIONS WITH

DIVISORIAL FIXED POINT SETS

§0. Introduction

Let X be a (possibly non-Kähler) compact complex n-dimensional connected manifold and D a 1-codimensional irreducible reduced analytic subset of X. We then put

 Θ_X := sheaf of germs of holomorphic vector fields on X, Aut⁰(X) := identity component of the group of holomorphic automorphisms of X,

$$V_k := H^0(X, \Theta_X(-kD)) (\subset H^0(X, \Theta_X)), k = 1, 2, ...$$

Assume that $V_1 \neq \phi$, i.e., X admits a holomorphic vector field on X which vanishes on D. We then fix an arbitrary nonzero element v of V_1 , and consider the 1-dimensional complex Lie subgroup $G(=\exp(\mathfrak{C}v))$ of $\operatorname{Aut}^0(X)$ corresponding to the complex Lie subalgebra $\mathfrak{C}v$ of $\operatorname{H}^0(X, \Theta_X)$. Let $\{O_{\mu} | \mu \in M\}$ be the set of all G-orbits O_{μ} in X satisfying the following conditions:

- (a) $O_{11} \cong \mathbb{C}$ as complex manifolds.
- (b) The closure \bar{O}_{μ} of O_{μ} in X (in terms of the Euclidean topology) is an analytic subset of X such that $\bar{O}_{\mu} - O_{\mu}$ is a single point (denoted by p_{μ}). In particular, \bar{O}_{μ} is a rational curve (possibly with singularity at p_{μ}).

(c)
$$O_{ij} \subset X - D$$
 and $p_{ij} \in D$.

The theorem we shall prove in this note is now stated as follows:

Theorem A. Assume that $M \neq \phi$. Then

(0.1) $\overline{O}_{\mu} \cong \mathbf{P}^{1}(\mathbf{f})$ (i.e., \overline{O}_{μ} <u>is nonsingular</u>) for every $\mu \in \mathbf{M}$. (0.2) $(\overline{O}_{\mu} \circ \mathbf{D}) = 1$ or 2 for each $\mu \in \mathbf{M}$, where $(\overline{O}_{\mu} \circ \mathbf{D})$ <u>deno-</u> <u>tes the intersection number of</u> \overline{O}_{μ} <u>and</u> \mathbf{D} <u>in</u> X. (0.3) Let $\mathbf{N} := \{\nu \in \mathbf{M} | (\overline{O}_{\nu} \circ \mathbf{D}) = 2\}$. <u>Then the mapping</u>

 $N \ni v \longmapsto p_v \in D$ is injective.

- $(0.4) \ v \notin V_3$.
- (0.5) <u>Suppose</u> $v \in V_2$. <u>Then</u> $(\overline{O}_{\mu} \circ D) = 1$ for all $\mu \in M$, and the mapping $M \ni \mu \longmapsto p_{\mu} \in D$ is injective.

For the sake of completeness, we here add a theorem treating a typical case of $M = \phi$. Note that this added one is no more than a reformulation of the generalized Bialynicki-Birula's decomposition of Fujiki [2], Carrell and Sommese [1].

Theorem B. Suppose that G is, as a complex Lie group, isomorphic to \mathbb{C}^* . (Then it is well-known that D is nonsingular.) Fix a natural inclusion $\mathbb{C}^* (= \mathbb{P}^1(\mathbb{C}) - \{(0:1), (1:0)\})$ $\subset \mathbb{P}^1(\mathbb{C})$. We furthermore assume that our G-action

extends to a meromorphic map: $\mathbb{P}^{1}(\mathbb{C}) \times X \longrightarrow X$ (and this is always the case if X is Kähler (cf. Sommese [4; Corollary II-A])). Then the zero section: D $\longrightarrow N_{D/X}$ of the normal bundle $N_{D/X}$ of D in X naturally extends to a G-equivariant biholomorphic map of an open neighbourhood X_{0} of D in X onto $N_{D/X}$. Furthermore if X is Kähler, then X_{0} is Zariski open in X.

Acknowledgement: This work was completed when the author stayed at the Max-Planck-Institut für Mathematik in Bonn, to which he expresses his hearty thanks for the hospitality and assistance.

§1. Comments on Theorem B.

Before getting into the proof of Theorem A, we shall explain how results of Fujiki [2], for instance, imply Theorem B. In this section, we identify G with C*. First, by virtue of [2;(2.1)], there exist i) a locally closed C*-invariant submanifold X_0 of X and ii) a C*-invariant retraction $\pi : X_0 \longrightarrow D$ such that, with respect to π, X_0 is a fibre bundle over D with typical fibre C on which C* linearly acts. Since dim X = dim X_0 , one immediately sees that X_0 is open in X. On the other hand, in view of ii) above, D is written as a union $U_{\alpha \in A} U_{\alpha}$ of open subsets such that, for each α , there is a C*-equivariant biholomorphic map

$$\begin{aligned} \mathbf{j}_{\alpha} : \pi^{-1}(\mathbf{U}_{\alpha}) &\cong & \mathbf{U}_{\alpha} \times \mathbf{C} \\ & \mathbf{x} &\longmapsto & \mathbf{j}_{\alpha}(\mathbf{x}) = (\pi(\mathbf{x}), \mathbf{x}_{\alpha}), \end{aligned}$$

where \mathbb{C}^* acts on the second factor \mathbb{C} by

$$\mathfrak{C}^* \times \mathfrak{C} \longrightarrow \mathfrak{C}$$
 $(t, x_{\alpha}) \longmapsto t^m x_{\alpha}$.

Note that m is an integer independent of α . (Since C* acts effetively on X, we have m = 1 or -1.) If $U_{\alpha} \cap U_{\beta} \neq \phi$, then x_{α}/x_{β} is a C*-invariant function on $\pi^{-1}(U_{\alpha} \cap U_{\alpha}) - D$, i.e., $x_{\alpha} = f_{\alpha\beta}x_{\beta}$ on $\pi^{-1}(U_{\alpha} \cap U_{\beta})$ for some non-vanishing holomorphic function $f_{\alpha\beta}$ on $U_{\alpha} \cap U_{\beta}$. Since $\{x_{\alpha} = 0\}$ locally defines D in $\pi^{-1}(U_{\alpha})$, the line bundle $(f_{\alpha\beta}) \in H^{1}(D, 0^{*})$ is nothing but the normal bundle $N_{D/X}$. Hence there exists a G-equivariant biholomorphic map of X_{0} onto $N_{D/X}$ which is a natural extension of the zero section: $D \longrightarrow N_{D/X}$. If X is Kähler, then by [2; (2.2)], X_{0} is Zariski open in X.

<u>Remark (1.1).</u> If X is of class C (i.e., X is bimeromorphic to a compact Kähler manifold), we always have a meromorphic extension: $\mathbb{P}^{1}(\mathbb{C}) \times X \longrightarrow X$ of the G-action: $G \times X \longrightarrow X$ by a result of Fujiki [3; (6.10)] combined with Step 1 of §3.

§2. Proof of Theorem A.

In this section, we often use the identification

Fix an arbitrary $\ \mu \in M$. We then choose a normalization

$$\sigma : \mathbb{P}^{1}(\mathfrak{C}) \quad (= \mathfrak{C} \cup \{\infty\}) \longrightarrow \overline{O}_{\mu}$$

of \bar{O}_{μ} such that $\sigma(0) = p_{\mu}$. Let U be an open neighbourhood of p_{μ} in X with holomorphic local coordinates $w = (w_1, w_2, \dots, w_n)$ centered at p_{μ} . Then for a sufficiently small disc $\Delta := \{|z| < \varepsilon\}$ ($\subset \mathbf{P}^1(\mathbf{C})$), we have $\sigma(\Delta) \subset U$, and each $w_i(z)$ (:= $w_i \circ \sigma(z)$) is written as

(2.1)
$$w_{i}(z) = z^{\alpha} h_{i}(z)$$
 $(z \in \Delta)$

for some positive integer α_{i} and some holomorphic function h_{i} on Δ such that $h_{i}(0) \neq 0$. Put $\alpha := Min\{\alpha_{1}, \alpha_{2}, \dots \alpha_{n}\}$ and $J := \{i \mid \alpha_{i} = \alpha\}$. Since the holomorphic G-action on \overline{O}_{μ} can naturally be lifted to the one on $\mathbf{P}^{1}(\mathbf{E})$, the restriction $v_{\mid O_{\mu}}$ of v to O_{μ} naturally extends to a holomorphic vector field on $\mathbf{P}^{1}(\mathbf{E})$ via the identification

$$\mathbf{P}^{\mathsf{T}}(\mathbf{\mathfrak{C}}) - \{\mathbf{0}\} \stackrel{\simeq}{=} O_{\mu} (= \vec{O}_{\mu} - \{\mathbf{p}_{\mu}\})$$
$$z \iff \sigma(z).$$

Note that this vector field on $\mathbb{P}^1(\mathbb{C})$ has the only zero at z = 0. Hence, multiplying v by some nonzero constant, we may assume without loss of generality that

$$v \Big|_{\substack{0\\ \mu}} = z^2 \partial/\partial z$$
.

Regard this (resp. z) as an element of $H^0(\bar{O}_{\mu}, \Theta_X | \bar{O}_{\mu})$ (resp. a meromorphic function on \bar{O}_{μ}). Then, in a neighbourhood of p_{μ} ,

(2.2)
$$v |_{\bar{O}_{\mu}} = z^2 \sum_{i=1}^{n} (\partial w_i(z) / \partial z) \partial w_i$$

= $\alpha z^{\alpha+1} \sum_{j \in J} h_j(0) \partial / \partial w_j$ + higher order term of z.

On the other hand, by setting $m:= Max\{k \, | \, v \in V_k\} \ (\geqq 1)$, one can express v on U as

(2.3)
$$\mathbf{v} = \boldsymbol{\varphi}(\mathbf{w})^m \sum_{i=1}^n \mathbf{f}_i(\mathbf{w}) \partial/\partial \mathbf{w}_i$$

with φ , $f_i \in H^0(U, 0)$, where " $\varphi = 0$ " is the local defining equation of D on U. Recall that $p_\mu \in D$. Hence $\varphi(0) = 0$. We next put $a_{ij} := (\partial f_i / \partial w_j)(0)$. Now, in a neighbourhood of p_μ ,

(2.4)
$$\begin{cases} \varphi(w) = \varphi_{d}(w) + \text{higher order term of } w_{1}, \dots, w_{n}, \\ f_{i}(w) = f_{i}(0) + \sum_{j=1}^{n} a_{ij}w_{j} + \text{higer order term of } w_{1}, \dots, w_{n}, \end{cases}$$

with some nonzero homogeneous polynomial $\varphi_d(w)$ of w_1, w_2, \dots, w_n of degree $d \ge 1$. In view of (2.1), the order β of the zero of $\varphi(w(z))$ (:= $\varphi(w \circ \sigma(z))$) at z = 0 satisfies $\beta \ge \alpha d$. Moreover, restricting (2.3) to \overline{O}_{μ} , we can write it in a neighbourhood of p_{μ} as follows (cf.(2.1),(2.4)):

(2.5)
$$v|_{\overline{O}_{\mu}} = \phi(w(z))^{m} \sum_{i=1}^{n} (f_{i}(0) + \sum_{j \in J} a_{ij} z^{\alpha} h_{j}(0)) \partial/\partial w_{i}$$

+ term whose order in z exceeds $\alpha + m\beta$.

Put γ := $(\bar{o}_{\mu}\circ D)$ for simplicity. Now the following cases are possible:

(Case 1) $f_i(0) \neq 0$ for some $i \in \{1, 2, ..., n\}$: In this case, taking U and Δ smaller if necessary, we may assume that $\widetilde{v} := \sum_{i=1}^{n} f_i(w) \partial/\partial w_i$ is nonvanishing on U. Let $C_{\mu}(\subset U)$ be the holomorphic integral curve of \widetilde{v} through p_{μ} . Since on U-D, holomorphic vector fields v and \widetilde{v} generate the same holomorphic integral curves, one has

(2.6)
$$\bar{O}_{\mu|U} = C_{\mu}$$
.

Note that C_{μ} is nonsingular. In particular, p_{μ} is a simple point of \bar{O}_{μ} , i.e., $\alpha = 1$. By comparing (2.2) with (2.5), we now obtain

$$md = m\alpha d \leq m\beta = \alpha + 1 = 2$$

Since $\alpha = 1$, the identity $\gamma = \beta$ holds. Hence

$$(m,d,\alpha,\gamma) = (1,1,1,2), (2,1,1,1) \text{ or } (1,2,1,2).$$

(Case 2) $f_i(0) = 0$ for all $i \in \{1, 2, ..., n\}$: Then again by comparing (2.2) with (2.5), we obtain

 $1 \leq m\alpha d \leq m\beta \leq 1$.

Hence $m = \alpha = d = 1$. From $\alpha = 1$, it follows that $\gamma = \beta$. Thus,

$$(m,d,\alpha,\gamma) = (1,1,1,1)$$
.

In view of these possible cases, we can now conclude by the following observations:

(0.1) follows from $\alpha = 1$; (0.2) holds by $\gamma = 1$ or 2; (0.3) is an easy consequence of (2.6), because $\gamma = 2$ occurs only in Case 1; (0.4) is true by $m \leq 2$; the former half of (0.5) is obtained from the fact that m = 2 implies $\gamma = 1$; the latter half of (0.5) follows from (2.6), because m = 2 occurs only in Case 1.

<u>Remark (2.7).</u> In Theorem A, replace $(\bar{O}_{\mu} \circ D)$ (resp. $(\bar{O}_{\nu} \circ D)$) by the intersection multiplicity $i(\bar{O}_{\mu} \circ D; p_{\mu})$ (resp. $i(\bar{O}_{\nu} \circ D; p_{\nu})$) of \bar{O}_{μ} (resp. \bar{O}_{ν}) and D at the point p_{μ} (resp. p_{ν}). Then even if X is noncompact, Theorem A is valid as long as the holomorphic local 1-parameter group

 $\{ \exp(tv) \mid t \in \mathbb{C} \}$

(of local transformations of X) generated by v defines a complex 1-parameter subgroup of $Aut^{0}(X)$.

§3. Some application.

A combination of Theorems A and B gives

Theorem C. Let Y be a compact complex connected manifold of class C, and D a 1-codimensional irreducible reduced analytic subset of Y such that $H^{0}(Y, \Theta_{Y}(-2D)) \neq \{0\}$. Take an arbitrary nonzero element v of $H^{0}(Y, \Theta_{Y}(-2D))$. Then the group G := $\exp(\mathbb{C}v) (\subset \operatorname{Aut}^{0}(Y))$ is isomorphic to \mathbb{C} , and for every $p \in Y - D$, the closure $C_{p,v} := \overline{G \cdot p}$ of its orbit is either a point or a (possibly singular) rational curve with $(C_{p,v} \circ D) \leq 1$. If in addition $v \in H^{0}(Y, \Theta_{Y}(-3D))$, then $C_{p,v} \cap D = \phi$ for every $p \in X - D$.

<u>Proof:</u> Let I be the ideal sheaf of D in ∂_{Y} . We then put

 $H := \{g \in Aut^{0}(Y) \mid g_{\mid D} = id_{D}\}$ N := {h \in H | h acts identically on $1/I^{2}$ }.

The proof is now divided into two steps.

Step 1. Recall that the Albanese map α : Y ----> Alb(Y) naturally induces the homomorphism

$$\widetilde{\alpha}$$
: Aut⁰(Y) \longrightarrow Aut⁰(Alb(Y)) (\cong Alb(Y))

Then by a theorem of Fujiki [3;(5.8)], Ker $\widetilde{\alpha}$ has the natural

structure of a linear algebraic group. We now have $H \subset \operatorname{Ker} \widetilde{\alpha}$ because for any $h \in H$, the corresponding $\widetilde{\alpha}(h)$ fixes all points of $\alpha(D)$ and hence $\widetilde{\alpha}(h) = \operatorname{id}_{\operatorname{Alb}(Y)}$. Consider the homomorphism

$$\varphi : \operatorname{Ker}\widetilde{\alpha} \longrightarrow \operatorname{Aut}^{0}(D)$$

$$g \longmapsto g_{|D} \cdot$$

By virtue of a result of Fujiki [3; Proposition 2.3], one easily sees that H(= Ker ϕ) is an algebraic subgroup of Ker $\widetilde{\alpha}$.

<u>Step</u> 2: For each $p \in D$, we put $E_p := (1/1^2) \otimes_{0} C$, and have the isotropy representation

 ψ_p : H \longrightarrow GL(E_p) .

Then $N(= \bigcap_{p \in D} \operatorname{Ker} \psi_p)$ is an algebraic subgroup of H (and hence of $\operatorname{Ker} \widetilde{\alpha}$) with the corresponding Lie algebra $\operatorname{H}^0(Y, \Theta_Y(-2D))$. Let $0 \neq v \in \operatorname{H}^0(Y, \Theta_Y(-2D))$. Then $G := \exp(\mathbb{C}v)$ can not be an algebraic subgroup of N isomorphic to \mathfrak{G}_m (= \mathbb{C}^* as a complex Lie group), because otherwise, Theorem B combined with the linearity of the G-action on the fibres of $\operatorname{N}_{D/X}$ would imply $v \notin \operatorname{H}^0(Y, \Theta_Y(-2D))$ in contradiction. Hence the identity component of N is a unipotent algebraic group, and in particular for v and G as above, it automatically follows that G is an algebraic subgroup of N isomorphic to \mathfrak{G}_a (= \mathbb{C} as a complex Lie group). The rest of the proof is straightforward from Theorem A.

REFERENCES

- [1] J.B. Carrell and A.J. Sommese: C* actions, Math. Scand. 43 (1978), 49-59.
- [2] A.Fujiki: Fixed points of the actions on compact Kähler manifolds, Publ. RIMS, Kyoto Univ. <u>15</u> (1979), 797-826.
- [3] A. Fujiki: On automorphism groups of compact Kähler manifolds, Inventiones Math. 44 (1978), 225-258.
- [4] A.J. Sommese: Extension theorems for reductive group actions on compact Kähler manifolds, Math. Ann. <u>218</u> (1975), 107-116.