A REMARF: ON GROUP ACTIONS WITE DIVISORIAL FIXED POINT SETS by

Toshiki Mabuchi

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

A REMARK ON GROUP ACTIONS WITH DIVISORIAL FIXED POINT SETS

§0. Introduction

Let X be a (possibly non-Kähler) compact complex n-dimensional connected manifold and D a 1-codimensional irreducible reduced analytic subset of X. We then put
$\theta_{X} \quad:=$ sheaf of germs of holomorphic vector fields on X, Aut ${ }^{0}(X):=$ identity component of the group of holomorphic automorphisms of X ,
$V_{k} \quad:=H^{0}\left(X, \theta_{X}(-k D)\right) \quad\left(\subset H^{0}\left(X, \theta_{X}\right)\right), k=1,2, \ldots$.

Assume that $V_{1} \neq \phi$, i.e., X admits a holomorphic vector field on X which vanishes on D. We then fix an arbitrary nonzero element v of V_{1}, and consider the 1-dimensional complex Lie subgroup $G(=\exp (\mathbb{C V}))$ of $\operatorname{Aut}^{0}(X)$ corresponding to the complex Lie subalgebra $\mathbb{C v}$ of $H^{0}\left(X, \theta_{X}\right)$. Let $\left\{O_{\mu} \mid \mu \in M\right\}$ be the set of all G-orbits O_{μ} in X satisfying the following conditions:
(a) $0_{\mu} \cong \mathbb{T}$ as complex manifolds.
(b) The closure \bar{o}_{μ} of O_{μ} in X (in terms of the Euclidean topology) is an analytic subset of X such that $\bar{o}_{\mu}-O_{\mu}$ is a single point (denoted by p_{μ}). In particular, \bar{o}_{μ} is a rational curve (possibly with singularity at p_{μ}.
(c) $O_{\mu} \subset X-D$ and $p_{\mu} \in D$.

The theorem we shall prove in this note is now stated as follows:

Theorem A. Assume that $M \neq \phi$. Then
(0.1) $\bar{o}_{\mu} \cong P^{1}(\mathbb{C})$ (i.e., \bar{o}_{μ} is nonsingular) for every $\mu \in M$. (0.2) $\left(\bar{O}_{\mu} \circ D\right)=1$ or 2 for each $\mu \in M$, where $\left(\bar{o}_{\mu}^{\circ} D\right)$ denotes the intersection number of \bar{O}_{μ} and D in X.
(0.3) Let. $N:=\left\{\nu \in M \mid\left(\bar{O}_{\nu} \circ D\right)=2\right\}$. Then the mapping
$N \ni \nu \longmapsto p_{\nu} \in D$ is injective.
(0.4) $\mathrm{v} \ddagger \mathrm{V}_{3}$.
(0.5) Suppose $v \in V_{2}$. Then $\left(\bar{O}_{\mu} \circ D\right)=1$ for all $\mu \in M$, and the mapping $M \ni \mu \longmapsto p_{\mu} \in D$ is injective.

For the sake of completeness, we here add a theorem treating a typical case of $M=\phi$. Note that this added one is no more than a reformulation of the generalized Bialynicki-Birula's decomposition of Fujiki [2], Carrell and Sommese [1].

Theorem B. Suppose that G is, as a complex Lie group, isomorphic to \mathbb{I}^{*}. (Then it is well-known that D is nonsingular.) Fix a natural inclusion $\mathbb{C}^{*}\left(=\mathbf{P}^{1}(\mathbb{C})-\{(0: 1),(1: 0)\}\right)$ $\subset P^{1}(\mathbb{C})$. We furthermore assume that our G-action

$$
\begin{aligned}
\mathbb{C}^{*}(=G) \times X \longrightarrow & x \\
(g, x) & g \cdot x
\end{aligned}
$$

extends to a meromorphic map: $\mathbb{P}^{1}(\mathbb{L}) \times X \rightarrow X$ (and this is always the case if X is Kähler (cf. Sommese [4; Corollary II-A])). Then the zero section: $D \rightarrow N_{D / X}$ of the normal bundle $N_{D / X}$ of D in X naturally extends to a G-equivariant biholomorphic map of an open neighbourhood X_{0} of D in X onto $N_{D / X}$. Furthermore if X is Kähler, then X_{0} is Zariski open in X.

Acknowledgement: This work was completed when the author stayed at the Max-Planck-Institut für Mathematik in Bonn, to which he expresses his hearty thanks for the hospitality and assistance.
\$1. Comments on Theorem B.

Before getting into the proof of Theorem A, we shall explain how results of Fujiki [2], for instance, imply Theorem B. In this section, we identify G with \mathbb{C}^{*}. First, by virtue of [2;(2.1)], there exist i) a locally closed \mathbb{C} *-invariant submanifold X_{0} of X and ii) a \mathbb{T}^{*}-invariant retraction $\pi: X_{0} \longrightarrow D$ such that, with respect to π, X_{0} is a fibre bundle over D with typical fibre \mathbb{C} on which \mathbb{E}^{*} linearly acts. Since $\operatorname{dim} X=\operatorname{dim} X_{0}$, one immediately sees that X_{0} is open in X. On the other hand, in view of ii) above, D is written as a union $U_{\alpha \in A} U_{\alpha}$ of open subsets such that, for each α, there is a \mathbb{L}^{*}-equivariant biholomorphic map

$$
\begin{aligned}
j_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) & \cong U_{\alpha} x \mathbb{C} \\
x & \longmapsto j_{\alpha}(x)=\left(\pi(x), x_{\alpha}\right),
\end{aligned}
$$

where \mathbb{C}^{*} acts on the second factor \mathbb{C} by

$$
\begin{array}{ll}
\mathbb{C}^{*} \times \mathbb{L} \longrightarrow \mathbb{C} \\
\left(t, \quad x_{\alpha}\right) \longmapsto & t^{m} x_{\alpha} .
\end{array}
$$

Note that m is an integer independent of α. (Since \mathbb{d}^{*} acts effetively on X, we have $m=1$ or -1 .) If $U_{\alpha} \cap U_{\beta} \neq \phi$, then x_{α} / x_{β} is a \mathbb{C}^{*}-invariant function on $\pi^{-1}\left(U_{\alpha} \cap U_{\alpha}\right)-D$, i.e., $\quad x_{\alpha}=f_{\alpha \beta} x_{\beta}$ on $\pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right)$ for some non-vanishing holomorphic function $f_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$. Since $\left\{x_{\alpha}=0\right\}$ locally defines D in $\pi^{-1}\left(U_{\alpha}\right)$, the line bundle $\left(f_{\alpha, \beta}\right) \in H^{1}(D, O *)$ is nothing but the normal bundle $N_{D / X}$. Hence there exists a G-equivariant biholomorphic map of X_{0} onto $N_{D / X}$ which is a natural extension of the zero section: $D \longrightarrow N_{D / X}$. If X is Kähler, then by [2; (2.2)], X_{0} is Zariski open in X.

Remark (1.1). If X is of class C (i.e., X is bimeromorphic to a compact Kähler manifold), we always have a meromorphic extension: $\mathbb{P}^{1}(\mathbb{C}) \cdot x \mathrm{X} \longrightarrow \mathrm{X}$ of the G-action: $G \times X \longrightarrow X$ by a result of Fujiki [3;(6.10)] combined with Step 1 of $\S 3$.

§2. Proof of Theorem A.

In this section, we often use the identification

$$
\begin{aligned}
& \boldsymbol{P}^{1}(\mathbb{C}) \cong \mathbb{C} \cup\{\infty\} \\
& (1: z) \longrightarrow z .
\end{aligned}
$$

Fix an arbitrary $\mu \in M$. We then choose a normalization

$$
\sigma: \mathbb{P}^{1}(\mathbb{C}) \quad(=\mathbb{C} \cup\{\infty\}) \longrightarrow \bar{o}_{\mu}
$$

of \bar{o}_{μ} such that $\sigma(0)=p_{\mu}$. Let U be an open neighbourhood of p_{μ} in X with holomorphic local coordinates $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ centered at p_{μ}. Then for a sufficiently small disc $\Delta:=\{|z|<\varepsilon\}\left(\subset \mathbf{P}^{1}(\mathbb{I})\right)$, we have $\sigma(\Delta) \subset U$, and each $w_{i}(z) \quad\left(:=w_{j^{\prime}} \circ \sigma(z)\right)$ is written as.

$$
\begin{equation*}
w_{i}(z)=z^{\alpha} h_{i}(z) \quad(z \in \Delta) \tag{2.1}
\end{equation*}
$$

for some positive integer α_{i} and some holomorphic fundtion h_{i} on Δ such that $h_{i}(0) \neq 0$. Put
$\alpha:=\operatorname{Min}\left\{\alpha_{1}, \alpha_{2}, \cdots \alpha_{n}\right\}$ and $J:=\left\{i \mid \alpha_{i}=\alpha\right\}$. Since the holomorphic G-action on \bar{o}_{μ} can naturally be lifted to the one on $\mathbf{P}^{1}(\mathbb{C})$, the restriction v / O_{μ} of v to O_{μ} naturally extends to a holomorphic vector field on $\boldsymbol{P}^{1}(\mathbb{C})$ via the identification

$$
\begin{gathered}
P^{1}(\mathbb{C})-\{0\} \underset{\mu}{ } \cong o_{\mu}\left(=\bar{o}_{\mu}-\left\{p_{\mu}\right\}\right) \\
z \underset{ }{\longrightarrow}(z) .
\end{gathered}
$$

Note that this vector field on $\mathbb{P}^{1}(\mathbb{C})$ has the only zero at $z=0$. Hence, multiplying v by some nonzero constant, we may assume without loss of generality that

$$
\left.v\right|_{-\mu} ^{0}=z^{2} \partial / \partial z
$$

Regard this (resp. z) as an element of $H^{0}\left(\bar{O}_{\mu}, \theta_{X} \mid \bar{O}_{\mu}\right)$ (resp. a meromorphic function on \bar{O}_{μ}). Then, in a neighbourhood of p_{μ},
(2.2)

$$
\begin{aligned}
\left.v\right|_{O_{\mu}} & =z^{2} \sum_{i=1}^{n}\left(\partial w_{i}(z) / \partial z\right) \partial / \partial w_{i} \\
& =\alpha z^{\alpha+1} \sum_{j \in J} h_{j}(0) \partial / \partial w_{j}+\text { higher order term of } z: .
\end{aligned}
$$

On the other hand, by setting $m:=\operatorname{Max}\left\{k \mid v \in v_{k}\right\}(\geqq 1)$, one can express V on U as

$$
\begin{equation*}
v=\varphi(w)^{m} \sum_{i=1}^{n} f_{i}(w) \partial / \partial w_{i} \tag{2.3}
\end{equation*}
$$

with $\varphi, f_{i} \in H^{0}(U, 0)$, where $" \varphi=0 "$ is the local defiming equation of D on U. Recall that $p_{\mu} \in D$. Hence $\varphi(0)=0$. We next put $a_{i j}:=\left(\partial f_{i} / \partial w_{j}\right)(0)$. Now, in a neighbourhood of P_{μ},
(2.4) $\left\{\begin{array}{l}\varphi(w)=\varphi_{d}(w)+\text { higher order term of } w_{1}, \ldots, w_{n}, \\ f_{i}(w)=f_{i}(0)+\sum_{j=1}^{n} a_{i j} w_{j}+\text { higer order term of } w_{1}, \ldots, w_{n},\end{array}\right.$
with some nonzero homogeneous polynomial $\varphi_{d}(w)$ of $w_{1}, w_{2}, \ldots, w_{n}$ of degree $d \geq 1$. In view of (2.1), the order β of the zero of $\varphi(w(z))(:=\varphi(w \circ \sigma(z)))$ at $z=0$ satisfies $\beta \geqq \alpha d$. Moreover, restricting (2.3) to \bar{o}_{μ}, we can write it in a neighbourhood of p_{μ} as follows (cf.(2.1),(2.4)):
(2.5) $\left.\quad v\right|_{\bar{O}_{\mu}}=\dot{\varphi}(w(z))^{m} \sum_{i=1}^{n}\left(f_{i}(0)+\sum_{j \in J} a_{i j} z^{\alpha_{h}}(0)\right) \partial / \partial w_{i}$

+ term whose order in z, exceeds $\alpha+m \beta$.

Put $\gamma:=\left(\bar{O}_{\mu}{ }^{\circ} \mathrm{D}\right)$ for simplicity. Now the following cases are possible:
(Case 1) $f_{i}(0) \neq 0$ for some $i \in\{1,2, \ldots, n\}$: In this case, taking U and Δ smaller if necessary, we may assume that $\tilde{v}:=\sum_{i=1}^{n} f_{i}(w) \partial / \partial w_{i}$ is nonvanishing on U. Let $C_{\mu}(\subset U)$ be the holomorphic integral curve of \tilde{v}. through p_{μ}. Since on U-D, holomorphic vector fields v and \tilde{v} generate the same holomorphic integral curves, one has

$$
\begin{equation*}
\bar{o}_{\mu \mid U}=c_{\mu} . \tag{2.6}
\end{equation*}
$$

Note that C_{μ} is nonsingular. In particular, p_{μ} is a simple point of $\overrightarrow{\mathrm{O}}_{\mu}$, i.e., $\alpha=1$. By comparing (2.2) with (2.5), we now obtain

$$
m d=\operatorname{m\alpha d} \leq m \beta=\alpha+1=2
$$

Since $\alpha=1$, the identity $\gamma=\beta$ holds. Hence

$$
(m, d, \alpha, \gamma)=(1,1,1,2),(2,1,1,1) \text { or }(1,2,1,2) .
$$

(Case 2) $f_{i}(0)=0$ for all $i \in\{1,2, \ldots, n\}$: Then again by comparing (2.2) with (2.5), we obtain

$1 \leq m \alpha d \leq m \beta \leq 1$.

Hence $m=\alpha=d=1$. From $\alpha=1$, it follows that $\gamma=\beta$. Thus,

$$
(m, \alpha, \alpha, \gamma)=(1,1,1,1) .
$$

In view of these possible cases, we can now conclude by the following observations:
(0.1) follows from $\alpha=1$; (0.2) holds by $\gamma=1$ or 2; (0.3) is an easy consequence of (2.6), because $\gamma=2$ occurs only in Case 1; (0.4) is true by $m \leq 2$; the former half of (0.5) is obtained from the fact that $m=2$ implies $\gamma=1$; the latter half of (0.5) follows from (2.6), because $m=2$ occurs only in Case 1.

Remark (2.7). In Theorem A, replace ($\bar{O}_{\mu} \circ D$) (resp. ($\bar{O}_{\nu} \circ D$)) by the intersection multiplicity $i\left(\bar{O}_{\mu} \circ D ; p_{\mu}\right)\left(\operatorname{resp} . i\left(\bar{O}_{\nu} \circ D ; p_{\nu}\right)\right)$ of $\bar{o}_{\mu}\left(\right.$ resp. \bar{o}_{ν}) and D at the point $p_{\mu}\left(\right.$ resp. p_{ν}). Then even if X is noncompact, Theorem A is valid as long as the holomorphic local 1-parameter group

```
{\operatorname{exp}(tv) |t\in\mathbb{C}}
```

(of local transformations of X) generated by v defines a complex 1-parameter subgroup of Aut ${ }^{0}(x)$.

§3. Some application.

A combination of Theorems A and B gives

Theorem C. Let Y be a compact complex connected manifold of class C, and D a 1-codimensional irreducible reduced analytic subset of Y such that $H^{0}\left(Y, \Theta_{Y}(-2 D)\right) \neq\{0\}$. Take an arbitrary nonzero element V of $\mathrm{H}^{0}\left(\mathrm{Y}, \theta_{\mathrm{Y}}(-2 \mathrm{D})\right)$. Then the group $G:=\exp (\mathbb{C} v)\left(\subset A u t^{0}(Y)\right)$ is isomorphic to \mathbb{C}, and for every $p \in Y-D$, the closure $C_{p, v}:=\overline{G \cdot p}$ of its orbit is either a point or a (possibly singular) rational curve with $\left(C_{p, v} \circ D\right) \leq 1$. If in addition $v \in H^{0}\left(Y, \theta_{Y}(-3 D)\right)$, then $C_{p, v} \cap D=\phi \quad$ for every $p \in X-D$.

Proof: Let I be the ideal sheaf of D in O_{Y}. We then put

$$
\begin{aligned}
& H:=\left\{g \in \operatorname{Aut}^{0}(Y)|g| D=i d_{D}\right\} \\
& N:=\left\{h \in H \mid h \text { acts identically on } I / I^{2}\right\} .
\end{aligned}
$$

The proof is now divided into two steps.

Step 1. Recall that the Albanese map $\alpha: Y \longrightarrow$ Alb(Y) naturally induces the homomorphism

$$
\tilde{\alpha}: \operatorname{Aut}^{0}(Y) \longrightarrow \operatorname{Aut}^{0}(A 1 b(Y))(\cong A \perp b(Y))
$$

Then by a theorem of Fujiki [3;(5.8)], Ker $\tilde{\alpha}$ has the natural
structure of a linear algebraic group. We now have $H \subset K e r \widetilde{\alpha}$ because for any $h \in H$, the corresponding $\tilde{\alpha}(h)$ fixes all points of $\alpha(D)$ and hence $\tilde{\alpha}(h)=i d_{A l b}(Y)$. Consider the homomorphism

$$
\begin{aligned}
\varphi: \operatorname{Ker} \tilde{\alpha} & \longrightarrow \operatorname{Aut}^{0}(D) \\
g & g_{\mid D}
\end{aligned}
$$

By virtue of a result of Fujiki [3; Proposition 2.3], one easily sees that $H(=\operatorname{Ker} \varphi)$ is an algebraic subgroup of Ker $\tilde{\alpha}$.

Step 2: For each $p \in D$, we put $E_{p}:=\left(I / I^{2}\right) \otimes_{O_{D, P}} \mathbb{C}$, and have the isotropy representation

$$
\psi_{p}: H \longrightarrow G L\left(E_{p}\right)
$$

Then $N\left(=\cap_{p \in D} \operatorname{Ker} \psi_{p}\right)$ is an algebraic subgroup of H (and hence of $\operatorname{Ker} \tilde{\alpha}$) with the corresponding Lie algebra $H^{0}\left(Y, \theta_{Y}(-2 D)\right)$. Let $0 \neq v \in H^{0}\left(Y, \theta_{Y}(-2 D)\right)$. Then $G:=\exp (\mathbb{C} V)$ can not be an algebraic subgroup of N isomorphic to $\mathbb{G}_{\mathrm{m}}\left(=\mathbb{C}^{*}\right.$ as a complex Lie group), because otherwise, Theorem B combined with the linearity of the G-action on the fibres of N_{D} / X would imply $V \notin H^{0}\left(Y, \theta_{Y}(-2 D)\right)$ in contradiction. Hence the identity component of N is a unipotent algebraic group, and in particular for V and G as above, it automatically follows that G is an algebraic subgroup of N isomorphic to $\mathbb{G}_{a}(=\mathbb{C}$ as a complex Lie group). The rest of the proof is straightforward from Theorem A.

REFERENCES
[1] J.B. Carrell and A.J. Sommese: \mathbb{L}^{*} actions, Math. Scand. 43 (1978), 49-59.
[2] A.Fujiki: Fixed points of the actions on compact Kähler manifolds, Publ. RIMS, Kyoto Univ. 15 (1979), 797-826.
[3] A. Fujiki: On automorphism groups of compact Kähler manifolds, Inventiones Math. 44 (1978), 225-258.
[4] A.J. Sommese: Extension theorems for reductive group actions on compact Kähler manifolds, Math. Ann. $\underline{218}$ (1975), 107-116.

