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1 Introduction

The goal of my talk was to survey some of the recent developments concerning
moduli spaces of curves. For a pair (g, n) of nonnegative integers with 2g −
2 + n > 0, we have the moduli space Mg,n of objects (C, x1, . . . , xn), where C
is a smooth and irreducible curve of genus g and the xi are n distinct marked
points, and the moduli space M g,n of stable n-pointed curves of genus g, where
the curves are still connected and reduced and may have ordinary nodes, the
xi are distinct marked nonsingular points, and the objects must have finite
automorphism groups. It is known that M g,n, the Knudsen-Deligne-Mumford
compactification of Mg,n, is a projective variety of dimension 3g − 3 + n.

Mg,n has a stratification by topological type. To each stable n-pointed
curve, one associates its dual graph: the vertices correspond to the irreducible
components of the normalization, whose genera are remembered; for every two
points identified in a node, there is an edge; there are n numbered legs for the
marked points. The curves with a given graph form a stratum. The stratum
belonging to a graph Γ is isomorphic to (

∏
v Mgv ,nv

)/Aut(Γ). Note that g =
h1(Γ) +

∑
v gv. The codimension of the stratum equals the number of edges of

the graph (i.e., the number of nodes of the curves).

In codimension one, there is (for g > 0) one graph with a single vertex; the
closure of the stratum is denoted ∆irr (or ∆0 when n = 0). The other graphs
have two vertices, say of genus i with a set I of legs and of genus g− i with I c.
The closure of the stratum is denoted ∆i,I = ∆g−i,Ic. If i = 0 then |I| ≥ 2 and
if i = g then |Ic| ≥ 2. On M g (i.e., n = 0) the empty sets of legs are omitted
in the notation.



In dimension one, exactly one factor in the product of moduli spaces is M0,4

or M1,1; the other factors are M0,3. Let us call the closures of these strata the
1-curves.

Besides the boundary divisors, we have the divisor classes ψi = c1(Li),
where Li is the line bundle with fiber the cotangent space to C at xi, and λ,
the first Chern class of the Hodge bundle E of rank g. Put

δ... = [∆...]/|Aut(Cη)|,

where Cη stands for the generic curve parametrized by the boundary divisor. It
is well-known that λ, ψ1, . . . , ψn, δirr, and the δi,I generate the Picard group of
the moduli functor. In fact, they generate freely for g ≥ 3, while the relations
occurring for g ≤ 2 are well-understood. It is known that κ1 = 12λ − δ + ψ is
ample. Here δ stands for the sum of all the δ... and ψ for the sum of the ψi.

2 Nef divisors on M g

Cornalba and Harris have shown that aλ − δ is ample exactly when a > 11.
But it is not known when a general divisor class

aλ−

[g/2]∑

i=0

biδi

is ample. On any projective variety, the ample cone is the interior of the
nef cone, where a divisor is said to be nef if it intersects all effective curves
nonnegatively. At first sight, it seems quite difficult to describe the effective
curves inside M g. A very special class of curves is given naturally: the 1-curves
mentioned in the introduction. Call a divisor a 1-divisor if it intersects the
1-curves nonnegatively. Note that it is rather easy to write down explicitly the
inequalities in a and the bi that characterize a 1-divisor: in the corresponding
family of curves with 3g − 4 nodes, all nodes outside the component arising
from M0,4 or M1,1 may be smoothed, which leaves only a few possibilities.

Theorem 1 On M g for g ≤ 24 the 1-divisors are exactly the nef divisors.

This is largely due to Gibney; see [G], [FG], [GKM], [KM], [Fb]. So in
these cases we have the remarkable result that the Mori cone of effective curves
has finitely many extremal rays, spanned by smooth rational curves, only one
of which is KMg

-negative. As will be recalled below, M 24 is of general type;
since the cone of curves is very much related to the birational geometry of a
projective variety, the result seems especially remarkable in this case.

3 Effective divisors on M g

Farkas talked about this subject at the Arbeitstagung in 2003 and I will try to
review what happened since then.



For an effective divisor D, write [D] = aλ −
∑[g/2]

i=0 biδi and assume a > 0
and bi ≥ 0. The slope s(D) of such a divisor is defined as a/(mini bi). It is well-
known that s(KM g

) = 13/2. For r and d with ρ := g− (r+ 1)(g − d+ r) = −1

the Brill-Noether divisor of curves with a gr
d has slope 6 + 12/(g + 1). A single

effective divisor with slope < 13/2 causes M g to be of general type. Thanks
to Eisenbud, Harris, and Mumford, we know that M g is of general type for
g ≥ 24. The slope conjecture of Harris and Morrison states in particular that
s(D) ≥ 6 + 12/(g + 1) for all effective D. Two years ago, Farkas discussed the
counterexample Popa and he found: the divisor in M 10 of curves lying on a K3
surface. They characterized this divisor in four distinct ways, which enabled
them to calculate all the coefficients bi and complete work of Cukierman. It
turns out that some of these characterizations generalize and lead to additional
counterexamples.

Recall the properties (Np) introduced by Green and Lazarsfeld: for a pro-
jective variety X embedded in Pr by the complete linear system of a very ample
line bundle L, let I be its ideal in the homogeneous coordinate ring S of Pr

and let

0 → Er+1 → · · · → E1 → I → 0

be a minimal graded free resolution of S-modules. For p ≥ 1, property (Np) is
that Ei is a sum of copies of S(−i− 1) for 1 ≤ i ≤ p, while (N0) is the property
that the map Sym2H0(X,L) → H0(X,L⊗2) is surjective.

Let me now discuss some of the results in [Fr]. For g = 2k − 2 even, Farkas
defines Zg,i as the locus of curves C having a pencil A of minimal degree k
such that |KC ⊗ A∨| fails property (Ni). He shows that for all i ≥ 0 the locus
Z6i+10,i is the push-forward from a finite cover of the degeneracy locus of a map
between vector bundles of equal rank. Thus Z6i+10,i is expected to be a divisor.
If it is indeed a divisor, its closure has the property that a/b0 < 6 + 12/(g+ 1).
Almost always, b0 is the smallest of the bi, so potentially this provides infinitely
many counterexamples to the slope conjecture. But it is difficult to show that
these loci are divisors. For i = 0 (thus g = 10), the earlier counterexample is
recovered. Both for i = 1 and i = 2, Farkas shows that Z6i+10,i is a divisor
and that b0 is the smallest of the bi, establishing two new counterexamples. As
corollaries, he shows that the following moduli spaces are of general type: M 22,n

for n ≥ 2, M 21,n for n ≥ 5, and M 16,n for n ≥ 9. Another counterexample to
the slope conjecture (on M 21) was provided by Khosla [K]. Finally, Farkas has
announced that he expects to prove soon that M 22 and M23 are of general type.
Perhaps an appropriate topic for the Arbeitstagung in 2007?

4 Rationality

Farkas’s general-type results mentioned above improve upon earlier results of
Logan [L]. Logan also has a table of unirational moduli spaces, for 2 ≤ g ≤ 9
and g = 11, and n at most equal to f(g). For 2 ≤ g ≤ 6 and 1 ≤ n ≤ f(g),
Casnati and Fontanari [CFn] have shown that Mg,n is in fact rational. This
was known for n = 0 in the same range, by the work of Igusa, Shepherd-
Barron and Katsylo. The proofs in the presence of marked points turn out to



be considerably simpler. For g = 1, Belorousski had earlier shown that M1,n is
rational for n ≤ 10. It is well-known that M 1,11 is not unirational (see below).
Bini and Fontanari [BF] proved that it has Kodaira dimension 0, while M 1,n

has Kodaira dimension 1 for n ≥ 12. Verra [V] recently proved that M14 is
unirational.

5 Cohomology of Mg,n and M g,n

Harer and Zagier, and Penner, obtained the beautiful result that the orbifold
Euler characteristic χ(Mg,1) equals ζ(1 − 2g). Harer and Zagier also deter-
mined e(Mg) and e(Mg,1). It has long been known that Mg,n is the quotient of
a smooth variety X by a finite group G; then χ = e(X)/|G|. The correspond-
ing result for M g,n is much more recent and was obtained by Looijenga, De
Jong, Pikaart, and Boggi. Of course χ(Mg,n) can be determined immediately
from χ(Mg,1). But the other Euler characteristics were not determined. Very
recently, Bini and Harer [BH] completed this work by giving recursive formulas
for e(Mg,n) (for n ≥ 2), χ(M g,n), and e(M g,n).

Recall some of the fundamental results obtained by Harer: the cohomology
Hi(Mg,n) stabilizes as g → ∞; the determination of the virtual cohomological
dimension of Mg,n; and the calculations of H i(M∞) for small i. Recently,
Madsen and Weiss [MW], building on work of Tillmann, determined the stable
cohomology:

H∗(M∞) = Q[κ1, κ2, . . . ].

The class κi is defined as π∗ψ
i+1, where π : Mg,1 → Mg is the forgetful map.

The κ-classes are called the tautological or Mumford-Morita-Miller classes.

The tautological ring of M g,n is by definition generated by decorated strata
classes, where each factor in the product of compactified moduli spaces may
carry a monomial in κ- and ψ-classes. Denote by R∗(M g,n) the subalgebra
of the rational Chow ring thus obtained and by RH ∗ its image in rational
cohomology. It is known that ci(E) ∈ R∗ (Mumford). Recently, Pandharipande
and the author showed that (e.g.) [H g] ∈ R∗, the class of the closure of the
hyperelliptic locus [FP]. We also showed that ψg

1 , which is known to vanish
on Mg,1, is tautological boundary. For g = 3, this result was used by Kimura
and Liu [KL] to give an explicit formula for ψ3

1 ; such a so-called topological
recursion relation has strong implications in Gromov-Witten theory (some of
which were used in [KL] to determine the unknown coefficients).

It is speculated that R∗(Mg,n) satisfies Poincaré duality (so that R∗ would
equal RH∗), but the evidence is perhaps not so strong, although R0(M g,n) is
known to be one-dimensional. Maybe the main inspiration for the speculation
comes from the author’s conjecture for R∗(Mg), which in particular says that it
satisfies a form of Poincaré duality with socle in algebraic degree g−2. There is
a number of general results on R∗(Mg), obtained by Looijenga, Morita, Ionel,
Givental, and the author, and in addition the full conjecture is known to be
true for g ≤ 21.

Graber and Pandharipande [GP] have shown that not all algebraic classes
are tautological.



For low g and n, H∗(Mg,n) tends to be all tautological. There are general
results due to Arbarello and Cornalba, and Polito: H 1 = H3 = H5 = 0 and
H2 and H4 are tautological. Once one knows H∗(Mg,n), one may try to show
that everything is tautological by intersecting sufficiently many tautological
classes; these intersection numbers are determined by the work of Witten and
Kontsevich (see [GP]).

But how to determine H∗(Mg,n)? A possible strategy is the following: use
the stratification by topological type, and compute the Euler characteristic of
all strata in a category where the weights of cohomology are remembered. Do
this equivariantly for the symmetric groups permuting the marked points; then
the theory of modular operads of Getzler and Kapranov allows one to determine
the Euler characteristic of M g,n. Since H i(Mg,n) is pure of weight i, one knows
the cohomology. This was carried out by Getzler for genus 0 and 1, and also
for g = 2 and n ≤ 3, in the category of mixed Hodge structures.

One may also work in the category of `-adic Galois representations. Then
the trace of the Frobenius F of a finite field Fq equals the number of points of the
moduli space (and the trace of Fσ with σ ∈ Σn has an analogous interpretation).
The number of points can be counted for small q, or sometimes for almost all q.
If the answer is polynomial in q, one is convinced that the Euler characteristic
is a polynomial in the class L = Q`(−1). But can it be proved? By the
recent result of Van den Bogaart and Edixhoven [BE], the answer is yes for a
smooth proper stack over Z. If the coarse moduli space is the quotient of a
smooth projective variety by a finite group, as is the case for M g,n, then the
corresponding conclusion also holds in the category of mixed Hodge structures.

A variant of this strategy has been used by Bergström and Tommasi [BT]
to determine H∗(M4). Tommasi had earlier computed H∗(M4) in the category
of mixed Hodge structures; Bergström has counted |Hg,n(Fq)| for g ≥ 2, n ≤ 5,
and odd q, and |Qn(Fq)| for n ≤ 6 and all q. Here Hg,n is the moduli space of
hyperelliptic curves with marked points, and Qn is the moduli space of smooth
plane quartic curves with marked points.

But it is well-known that |M g,n(Fq)| is not always polynomial. The stan-
dard example is M 1,11, with H11(M 1,11) = S[12], the motive of cusp forms for
SL(2,Z) of weight 12 (the work of Eichler and Shimura, Deligne, Scholl, and
Getzler). When S[12], or more generally S[k], is viewed as Hodge structure, one
knows that F k−1S[k] = Sk, the space of holomorphic cusp forms of weight k,
and S[k] = Sk ⊕ Sk. Consani and the author recently showed that

S[n+ 1] = Alt(H∗(M1,n)) = Alt(Hn(M 1,n)),

the part of the cohomology where Σn acts via the alternating representation;
this provides an alternative construction of these motives [CFb].

What happens for g ≥ 2? At the Arbeitstagung in 2003, Van der Geer dis-
cussed joint work with the author in which an explicit conjecture for the answer
for g = 2 was obtained. But what happens for higher g remains mysterious.
For example, some years ago M.S. Narasimhan asked the following question:
What is the smallest g for which Mg, or M g, contains cohomology not of Tate
type?
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