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Abstract

The Ramanujan relations between Eisenstein series can be interpreted as an ordi-
nary diferential equation in a parameter space of a family of elliptic curves which is
inverse to the Gauss-Manin connection of the corresponding period map constructed
by elliptic integrals of first and second kind. In this article we consider a slight modifi-
cation of elliptic integrals by allowing non-algebraic integrants and we get in a natural
way generalizations of Ramanujan relations between Eisenstein series.

1 Introduction

In the inverse of period map of the classical two parameter Weierstrass family of elliptic
curves there appaers Eisenstein series of weight 4 and 6, and the Schwarz triangle function
with triangular parameters 1

p , 1
q , 1

r , where p, q, r ∈ N, is the inverse of an automorphic func-
tion for the triangle group with signature 〈p, q, r〉. In all these examples the period maps
of differential forms of the first kind are considered and considering periods of differential
forms of the second kind, one gets differential automorphic functions which are solutions
to certain ordinary differential equations (see [11]). Looking in this way, it is not necessary
to define (differential) automorphic functions by funcational equations which they satify
with respect to a Kleinian group, but as functions which are solutions to certain ordinary
differential equations. To explain better this idea, let us state the main results of this
paper for an example:

Theorem 1. Consider the multi-valued function

(1) pm : C3\{(t1, t2, t3) ∈ C3 | 27t23 − 4t32 = 0} → SL(2, C)

t 7→

(∫
δ1

dx
y

∫
δ1

xdx
y∫

δ2
dx
y

∫
δ2

xdx
y

)
,

where

(2) y = γ
1
2 (27t23 − 4t32)

1
2
( 1
2
−a)((x− t1)3 − t2(x− t1)− t3)a

and δ1 and −δ2 are two straight paths in the x-plane connecting one root of y to the other
two roots. Here γ is a complex number depending only on a, b and c, and it is taken so
that the image of pm is in SL(2, C).

1. For a 6= 2
3 , pm is a local biholomorphism and its local inverse restricted to

(
z −1
1 0

)
,

namely (g1,a(z), g2,a(z), g3,a(z)), where z is in some small open set U in C, satisfies
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the system of ordinary differential equations:

(3)


ṫ1 = t21 + 3a−1

9a−6 t2
ṫ2 = 4t1t2 + 3

3a−2 t3
ṫ3 = 6t1t3 + 2

9a−6 t22

,

where dot is the derivation with respect to z.

2. The integrals
∫
δ

xdx
y , where δ is a path connecting two roots of y, are constant along

the solutions of (3).

3. gk,a’s with repsect to the group

(4) Γ := 〈M1,M2〉 ⊂ SL(2, C),

M1 :=
i

eπia

(
−e2πia 0

1 1

)
,M2 :=

i

eπia

(
1 e2πia

0 −e2πia

)
,

have the following automorphic properties: for every A =
(
∗ ∗
c d

)
∈ Γ and z ∈ U

such that cz + d 6= 0 there exists an analytic continuation of gk,a, k = 1, 2, 3 along a
path which connects z to Az such that

(5) (cz + d)−2kgk,a(Az) = gk,a(z), k = 2, 3,

(6) (cz + d)−2g1,a(Az) = g1,a(z) + c(cz + d)−1.

One can show that

(7) gk, 1
2

= ak

(
1 + (−1)k 4k

Bk

∑
n≥1

σ2k−1(n)e2πizn
)
, k = 1, 2, 3, z ∈ H,

is the Eisenstein series of weight 2k, where H is the upper half plane, Bk is the k-th
Bernoulli number (B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , . . .), σi(n) :=
∑

d|n di and

(8) (a1, a2, a3) = (
2πi

12
, 3(

2πi

12
)2, 2(

2πi

12
)3)

(see [11]). In the case a = 1
2 the system of ordinary differential equations (3) is known

as the Ramanujan relations between gk,a, k = 1, 2, 3 because he had observed that in
this case the series (7) satisfy the differential equation (3) (see for instance [8]). I do not
know any explicit expressions like (7) for an arbitrary a ∈ C. Throughout the text we will
consider the family (9) which is a generalization of (2) and it has the advantage that it
contains full Gauss hypergeometric functions.

The text is organized in the following way: In §2 we consider a more general family
of transcendent curves. In §3 and §4 we fix up the paths of integration and calculate
the monodromies. In §5 we calculate the derivation of the period map. The calculation
is similar to the calculation of Gauss-Manin connections in the algebraic context. In §6
we calculate the determinant of the period map and according to this calculation in §7
we redefine the period map. In §8 we take the inverse of the period map and obtain
Ramanujan type relations. §9 is devoted the action of an algebraic group. Finally in §10
we discuss the automorphic properties of the functions which appear in the inverse of the
period map.

I would like to thank IMPA in Rio de Janeiro and MPIM in Bonn for their lovely
research ambient.
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2 Families of transcendent curves

For a, b, c ∈ C fixed, we consider the following family of transcendent curves:

(9) Et,a,b,c = Et : y = f(x),

f(x) := t
1
2
0 (x− t1)a(x− t2)b(x− t3)c.

Here t = (t0, t1, t2, t3) ∈ C4 is a parameter. The discriminant of Et is defined to be

∆ = ∆(t) := t0(t1 − t2)2(t2 − t3)2(t3 − t1)2

and we will work with regular parameters, i.e.

t ∈ T := {t ∈ C4 | ∆(t) 6= 0}.

The parameter t0 is just for simplifying the calculations related to the Gauss-Manin con-
nection of the family (see §5). If a, b and c are rational numbers then Et’s are algebraic
curves. In this case one can use algebro-geometric methods in order to study the peri-
ods of Et, see for instance [14]. In general, Et is a solution of the following logarithmic
differential equation

dy

y
=

adx

x− t1
+

bdx

x− t2
+

cdx

x− t3
.

In order to prove Theorem 1 we also consider the family

(10) Ẽt : y = f(x), f(x) = t̃
1
2
0 ((x− t̃1)3 − t̃2(x− t̃1)− t̃3)a.

In the case a = b = c there is a canonical map from the parameter space of the first curve
to the parameter space of the second curve:

t̃0 = t0, t̃1 =
t1 + t2 + t3

3
, t̃2 = (t̃1 − t1)(t̃1 − t2) + (t̃1 − t2)(t̃1 − t3) + (t̃1 − t1)(t̃1 − t3),

t̃3 = (t̃1 − t1)(t̃1 − t2)(t̃1 − t3).

For simplicity we will also use t instead of t̃; being clear parameters of which family we
are talking about.

3 Paths of integration and Pochhammer cycles

We distinguish three, not necessarily closed, paths in Et. In the x-plane let δ̃i, i = 1, 2, 3
be the straight path connecting ti+1 to ti−1, i = 1, 2, 3 (by definition t4 := t1 and t0 = t3).
There are many paths in Et which are mapped to δ̃i under the projection on x. We choose
one of them and call it δi. For the case in which Re(a),Re(b),Re(c) < 0 the paths δi’s and
δ̃i’s are depicted in Figure 1. We can make our choices so that δ1 + δ2 + δ3 is a limit of a
closed and homotopic-to-zero path in Et. For instance, we can take the path δ̃i’s in such
a way that the triangle formed by them has almost zero area. Now, we have the integral

(11)
∫

δ

p(x)dx

y
=
∫

δ̃

p(x)dx

f(x)
, p ∈ C[x],

where δ is one of the paths explained above. By a linear change in the variable x such
integrals can be written in terms of the Gauss hypergeometric function (see [7]).
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Figure 1: Paths of integration

Another way to study the integrals (11) is by using Pochhammer cycles. For simplicity
we explain it for the pairs (t1, t2). The Pochhammer cycle associated to the points t1, t2 ∈ C
and the path δ̃3 is the commutator

α̃3 = [γ1, γ2] = γ−1
1 · γ−1

2 · γ1 · γ2,

where γ1 is a loop along δ̃3 starting and ending at some point in the midle of δ̃1 which
encircles t1 once anticlockwise, and γ2 is a similar loop with respect to t2. It is easy to see
that the cycle α̃3 lifts up to a closed path α3 in Et and if a, b 6∈ Z then∫

α3

p(x)dx

y
= (1− e−2πia)(1− e−2πib)

∫
α̃3

p(x)dx

f(x)
dx.

(see [7], Proposition 3.3.7). Note that in order to have∫
δ̃i

d(
p(x)
f(x)

) = 0, ∀p ∈ C[x], i = 1, 2, 3

we have to assume that Re(a),Re(b),Re(c) < 0. But this is not necessary if we work with
Pochhammer cycles.

4 The period map and the monodromy group

For a fixed a ∈ T , the period map is given by:

(12) pm : (T, a) → GL(2, C), t 7→

(∫
δ1

dx
y

∫
δ1

xdx
y∫

δ2
dx
y

∫
δ2

xdx
y

)
,

where (T, a) means a small neighborhood of a in T . The map pm can be extended along any
path in T with the starting point aa. We denote by P the union of images of the extensions
of pm and call it the period domain. In order to study the analytic extensions of pm we
have to calculate the monodromy group. In what follows we use the following convention:
Two paths in Et are equal if the integration of any differential form p(x)dx

y , p ∈ C[x] over
them is equal. For instance, using this convention we have

(13) δ1 + δ2 + δ3 = 0.
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Let
A = e2πia, B = e2πib, C = e2πic.

We fix t2 and t3 and let t1 turn around t2 anti clockwise. We obtain three new paths
h3(δ1), h3(δ2) and h3(δ3) in Et such that h3(δ1) + h3(δ2) + h3(δ3) = 0 (this follows from
(13)). Note that in the x-plane (resp. in Et) the triangle formed by h3(δ̃i)’s (resp. h3(δi)’s)
does not intersect itself. We have

h3(δ2) = δ2 + (A−AB)δ3, h3(δ1) = −δ2 −Aδ3 = δ1 + (1−A)δ3, h3(δ3) = ABδ3

(see Figure 2, A). We call h3 the monodromy around the hyperplane t1 = t2. These
formulas are compatible with the Picard-Lefschetz formula in the case a = b = c = 1

2 . In
a similar way

h1(δ3) = δ3 + Bδ1 −BCδ1, h1(δ2) = −δ3 −Bδ1, h1(δ1) = BCδ1

and
h2(δ1) = δ1 + Cδ2 − CAδ2, h2(δ3) = −δ1 − Cδ2, h2(δ2) = CAδ2.

Therefore, the monodromies with respect to the basis (δ1, δ2) are represented as

M3 =
(

A A− 1
A(B − 1) A(B − 1) + 1

)
, M1 =

(
BC 0

1−B 1

)
,M2 =

(
1 C − CA
0 CA

)
.

Note that

M1M2M3 =
(

ABC 0
0 ABC

)
,

and that for n ∈ N

hn
3 (δ2) = δ2+(A−AB)

(AB)n − 1
AB − 1

δ3, h
n
3 (δ1) = δ1+(1−A)

(AB)n − 1
AB − 1

δ3, hn
3 (δ3) = (AB)nδ3.

The monodromy group Γ is defined to be the subgroup of GL(2, C) generated by Mi, i =
1, 2, 3. For a = b = c = 1

2 we have

M3 =
(
−1 −2
2 3

)
, M1 =

(
1 0
2 1

)
,M2 =

(
1 −2
0 1

)
and it is easy to see that Γ = Γ(2) := {A ∈ SL(2, Z) | A ≡2 Id}.

We discuss the monodromies for the family (10). In this family the monodromies
change the place of the roots of f . Therefore, the monodromy h3 corresponding to the
replacement of t1 and t2 is given by

h3(δ1) = −δ2 = δ1 + δ2, h3(δ2) = δ2 + Aδ3, h3(δ3) = −Aδ3.

(see Figure 2 B). The other monodromies are

h1(δ2) = −δ3, h1(δ3) = δ3 + Aδ1, h(δ1) = −Aδ1.

h2(δ3) = −δ1, h2(δ1) = δ1 + Aδ2, h(δ2) = −Aδ2.

Therefore, in the basis (δ1, δ2), the monodromies has the form

M3 =
(

0 −1
−A 1−A

)
, M1 =

(
−A 0
1 1

)
,M2 =

(
1 A
0 −A

)
.
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Figure 2: Monodromy

Note that
M−1

3 M1M3 = M2

For a = 1
2 we have

M3 =
(

0 −1
1 2

)
, M1 =

(
1 0
1 1

)
,M2 =

(
1 −1
0 1

)
.

and so Γ = SL(2, Z).

Remark 1. In general it is hard to decide for which parameters a, b, c the group Γ is
Kleinian , i.e it acts discontinuously in some open subset of C∪{∞}. There is a necessary
condition for such groups called Jorgensen’s inequality (see [2]) but it is not sufficient1.
For ν0 := 1 − a − c = 1

p , ν1 := 1 − b − c = 1
q , ν∞ := 1 − a − b = 1

r , where p, q, r are
positive integers, the group Γ is the triangular group of type 〈p, q, r〉 and it is Kleinian (see
[2, 9, 14]). Despite the fact that Γ\P may not have any reasonable structure, the global
period map pm : T → Γ\P is well-defined.

5 A kind of Gauss-Manin connection

The Gauss-Manin connection is the art of derivation of differential forms on families of
algebraic varieties and then simplifying the result. Despite the fact that the varieties
considered in this article are not algebraic, the process of derivation and simplification
is similar to the algebraic case (see for instance [10]). In what follows, derivation with
respect to x is denoted by ′.

First of all we have to simplify the integral (11). More precisely we want to reduce it
to the integrals with p = 1, x. Let R = C(t) and

g = (x− t1)(x− t2)(x− t3).

Proposition 1. For all p ∈ R[x], there is p̃ ∈ R[x], deg(p̃) ≤ 1 such that∫
δ

pdx

y
=
∫

δ

p̃dx

y
,

where δ is a path which connects two points of {t1, t2, t3} and does not cross it elsewhere.
1I would like to thank Katsuhiko Matsuzaki who informed me about the mentioned fact.
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Proof. For n > 1 modulo exact forms we have

0 = d(
xn−2g

f
) = (−xn−2g

f ′

f
+ (xn−2g)′)

dx

f
.

Note that g f ′

f is a polynomial in x. We set pn = anxn + rn(x), an ∈ C, deg(rn) ≤ n− 1
the polynomial in the parenthesis. We have an 6= 0 and so modulo exact forms we have:

xn dx

f
=
−1
an

rn−1
dx

f
.

By various applications of the above equality in
∫
δ

pdx
y we finally get the desired equality.

Let us now differentiate the integrals:

Proposition 2. Let t be one of the parameters ti, i = 0, 1, 2, 3. We have

∂

∂t

∫
δ̃

pdx

f
=
∫

δ̃
∇ ∂

∂t

pdx

f
, p ∈ C[x],

where

∇ ∂
∂t

pdx

f
:=

1
∆

((a1
−∂f

∂t g

f
p)′ + a2

−∂f
∂t g

f
p + ∆

∂p

∂t
)
dx

f
.

Proof. We can find two polynomials a1, a2 ∈ R[x] such that

g
f ′

f
a1 + ga2 = ∆.

We have

∂

∂t

∫
δ̃

pdx

f
=

∫
δ̃
(
−∂f

∂t p

f
+

∂p

∂t
)
dx

f

=
∫

δ̃
(
− ∂f

∂t
gp

f

g
+

∂p

∂t
)
dx

f

=
∫

δ̃
(
p̃

g
+

∂p

∂t
)
dx

f
, p̃ =

−∂f
∂t g

f
p

=
1
∆

∫
δ̃
(
(g f ′

f a1 + ga2)p̃

g
+ ∆

∂p

∂t
)
dx

f

=
1
∆

∫
δ̃
(
df

f2
a1p̃ + a2p̃

dx

f
+ ∆

∂p

∂t

dx

f
)

=
1
∆

∫
δ̃
(
1
f

d(a1p̃) + a2p̃
dx

f
+ ∆

∂p

∂t

dx

f
)

=
1
∆

∫
δ̃
((a1p̃)′ + a2p̃ + ∆

∂p

∂t
)
dx

f
.
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For the implementation of the algorithms of this section in Singular [3] see the
author’s web page. For the family (9) we have used these algorithms and we have obtained:
(14)

∇ ∂
∂t1

ω =
1

(t1 − t2)(t1 − t3)

(
−at1 + (a + c− 1)t2 + (a + b− 1)t3 −a− b− c + 2

at2t3 + (b− 1)t1t3 + (c− 1)t1t2 (−a− b− c + 2)t1

)
ω

where

ω =

(
dx
y

xdx
y

)
.

The derivations with respect to t2 (resp t3) is obtained by permutation of t1 with t2 and
a with b (resp. t1 with t3 and a with c). It is also easy to check by hand that

∇ ∂
∂t0

ω =
1
t0

(
−1

2 0
0 −1

2

)
ω

We will simply denote by ∇ ∂
∂ti

, i = 0, 1, 2, 3 the matrix A in ∇ ∂
∂ti

ω = Aω.

For the family (10) we use g = (x− t1)3 − t2(x− t1)− t3 and ∆ = t0(4t32 − 27t23) and
we have

∇ ∂
∂t0

=
1
t0

(
−1

2 0
0 −1

2

)
, ∇ ∂

∂t1

=
(

0 0
1 0

)
,

∇ ∂
∂t2

=
1

(4t32 − 27t23)

(
−27at1t3 − 6at22 + 18t1t3 + 2t22 27at3 − 18t3

−27at21t3 + 9at2t3 + 18t21t3 − 2t1t
2
2 − 3t2t3) 27at1t3 − 6at22 − 18t1t3 + 4t22

)
,

∇ ∂
∂t3

=
1

(4t32 − 27t23)

(
18at1t2 + 27at3 − 12t1t2 − 9t3 −18at2 + 12t2

18at21t2 − 6at22 − 12t21t2 + 9t1t3 + 2t22 −18at1t2 + 27at3 + 12t1t2 − 18t3

)
.

6 Determinant of the period matrix

¿From Proposition 2 it follows that the period map satisfies the differential equation

d(pm) = pmAtr, where A =
3∑

i=0

(∇ ∂
∂ti

)dti.

This and (14) imply that det := det(pm) satisfies

∂ det
∂t1

=
1

(t1 − t2)(t1 − t3)
((a + c− 1)t2 + (a + b− 1)t3 + (−2a− b− c + 2)t1) det .

Solving this differential equation one concludes that det is of the form C(t1− t3)1−a−c(t1−
t2)1−a−b, where C does not depend on t1. Repeating the same argument for t0, t2, t3 we
conclude that

(15) det(pm) = γ · t−1
0 (t1 − t3)1−a−c(t1 − t2)1−a−b(t2 − t3)1−b−c,

where γ is a constant depending only on a, b and c. For the family (10) in a similar way
we get

det(pm) = γ · t−1
0 (27t23 − 4t32)

1
2
−a.
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7 Redefining the period map and the monodromy group

We have calculated the determinant of the period map in (15). It depends on t1, t2, t3
except for the case a = b = c = 1

2 . In order that the determinant of the period map to be
equal to t−1

0 and the monodromy group to be a subgroup of SL(2, C), we have to multiply
(12) by

p := γ−
1
2 (t1 − t3)−

1
2
(1−a−c)(t1 − t2)−

1
2
(1−a−b)(t2 − t3)−

1
2
(1−b−c).

In other words, we have to redefine

f(x) := γ
1
2 t

1
2
0 (t1 − t3)

1
2
(1−a−c)(t1 − t2)

1
2
(1−a−b)(t2 − t3)

1
2
(1−b−c)(x− t1)a(x− t2)b(x− t3)c

for the family (9). We have to recalculate the Gauss-Manin connection. By Leibniz rule
we have

∇(pω) = (dp) · ω + p ·A⊗ ω = (
dp

p
I2×2 + A)⊗ (pω)

and

dp

p
=

1
2
(a + b− 1)

dt1 − dt2
t1 − t2

+ · · · = (
1
2
(a + b− 1)

1
t1 − t2

+
1
2
(a + c− 1)

1
t1 − t3

)dt1 + · · ·

After redefining the period map the monodromy matrices are changed as follows:

M3 =
−1√
AB

(
A A− 1

A(B − 1) A(B − 1) + 1

)
, M1 =

−1√
BC

(
BC 0

1−B 1

)
,M2 =

−1√
CA

(
1 C − CA
0 CA

)
Note that

√
A = eπia, · · · are well-defined and Γ := 〈M1,M2,M3〉 = 〈M1,M2〉 ⊂ SL(2, C).

For the family (10) we redefine

f(x) = γ
1
2 t

1
2
0 (27t23 − 4t32)

1
2
( 1
2
−a)((x− t1)3 − t2(x− t1)− t3)a, t = (t0, t1, t2, t3) ∈ C4

which is the one in (1) with t0 = 1. For p = (27t23 − 4t32)
− 1

2
( 1
2
−a) we have

dp

p
=

1
2
(a− 1

2
)
54t3dt3 − 12t22dt2

27t23 − 4t32

The new monodromy group is (4). For both families we conclude that det(pm) = t−1
0 .

Remark 2. A subgroup A of SL(2, R) is called arithmetic if A is commensurable with
SL(2, Z), i.e. A∩SL(2, Z) has a finite index in both SL(2, Z) and A. It is a natural question
to classify all the cases such that the monodromy group is conjugated with an arithmetic
group. For the case a = b = 1− c = 1

6 the monodromy group is conjugated with SL(2, Z)
(see [12]).

8 The inverse of the period map

First we note that the period map is a local biholomorphism. We consider pm as a map
sending the point (t0, t1, t2, t3) to (x1, x2, x3, x4). Its derivative at t is a 4×4 matrix whose
i-th column constitutes of the first and second row of x(∇ ∂

∂ti

)tr. For s := a+ b+ c−2 6= 0,

this is an invertible matrix. More precisely, we have

(dF )x = (dpm)
−1
t =

1

det(x)
·
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0BB@
−t0x4 t0x3

(at1t2x3 + at1t3x3 − at1x4 − at2t3x3 + bt21x3 − bt1x4 + ct21x3 − ct1x4 − t21x3 − t1t2x3 − t1t3x3 + 2t1x4 + t2t3x3)/s (−t1x3 + x4)

(at22x3 − at2x4 + bt1t2x3 − bt1t3x3 + bt2t3x3 − bt2x4 + ct22x3 − ct2x4 − t1t2x3 + t1t3x3 − t22x3 − t2t3x3 + 2t2x4)/s (−t2x3 + x4)

(at23x3 − at3x4 + bt23x3 − bt3x4 − ct1t2x3 + ct1t3x3 + ct2t3x3 − ct3x4 + t1t2x3 − t1t3x3 − t2t3x3 − t23x3 + 2t3x4)/s (−t3x3 + x4)

t0x2 −t0x1
(−at1t2x1 − at1t3x1 + at1x2 + at2t3x1 − bt21x1 + bt1x2 − ct21x1 + ct1x2 + t21x1 + t1t2x1 + t1t3x1 − 2t1x2 − t2t3x1)/s (t1x1 − x2)

(−at22x1 + at2x2 − bt1t2x1 + bt1t3x1 − bt2t3x1 + bt2x2 − ct22x1 + ct2x2 + t1t2x1 − t1t3x1 + t22x1 + t2t3x1 − 2t2x2)/s (t2x1 − x2)

(−at23x1 + at3x2 − bt23x1 + bt3x2 + ct1t2x1 − ct1t3x1 − ct2t3x1 + ct3x2 − t1t2x1 + t1t3x1 + t2t3x1 + t23x1 − 2t3x2)/s (t3x1 − x2)

1CCA
and

F = (F0, F1, F2, F3) : (P, x0) → (T, a)

is the local inverse of pm, where x0 = pm(a). ¿From det(pm) = t−1
0 it follows that

F0(x) = det(x)−1. Let us take a in such a way that x0 is of the form
(

z0 −1
1 0

)
. Let gi(z)

be the restriction of Fi to
(

z −1
1 0

)
, where z is in a neighborhood of z0 in C. Considering

the equations related to the entries (i, 1), i = 2, 3, 4, we conclude that (g1(z), g2(z), g3(z))
satisfies the ordinary differential equation: 2

(16)


ṫ1 = a−1

a+b+c−2(t1t2 + t1t3 − t2t3) + b+c−1
a+b+c−2 t21

ṫ2 = b−1
a+b+c−2(t2t1 + t2t3 − t1t3) + a+c−1

a+b+c−2 t22
ṫ3 = c−1

a+b+c−2(t3t1 + t3t2 − t1t2) + a+b−1
a+b+c−2 t23

.

In a similar way for the family (10), we get (3) and so the first part of Theorem 1 is proved.
Let Ra be the vector field in C4 corresponding to (16) together with ṫ0 = 0. It is a mere
calculation to see that

∇Ra =
(

0 −1
0 0

)
.

This means that d(pm)(Ra) =
(
∗ 0
∗ 0

)
and so

∫
δ

xdx
y is constant along the leaves of F(Ra).

The similar argument work for the family (10) and so the second part of Theorem 1 is
proved.

9 Action of an algebraic group

The algebraic group

(17) G0 =
{(

k1 k3

0 k2

)
| k3 ∈ C, k1, k2 ∈ C∗

}
acts on the period domain P ⊂ GL(2, C) from the right by the usual multiplication of
matrices. It acts also in C4 as follows:

t • g := (t0(k1k2)−1, t1k
−1
1 k2 + k3k

−1
1 , t2k

−1
1 k2 + k3k

−1
1 , t3k

−1
1 k2 + k3k

−1
1 )

(18) t = (t0, t1, t2, t3) ∈ C4, g =
(

k1 k3

0 k2

)
∈ G0.

The relation between these two actions of G0 is given by:
2When the paper was finished, I found that such a differential equation was already discovered by G.

Halphen [6, 5, 4] in his study of hyper-geometric functions. However, the geometric interpretation and the
automorphic properties of its solutions are new in this paper .
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Proposition 3. We have

(19) pm(t • g) = pm(t) · g, t ∈ T, g ∈ (G0, I)

where (X, x) means a small neighborhood of x in X and I is the identity 2× 2 matrix.

If ts, s ∈ [0, 1] is a path in T and gs, s ∈ [0, 1] is a path in G0 which connects I to
g ∈ G0, by analytic continuation of the equality (19), it makes sense to say that (19) is
true for an arbitrary g ∈ G0.

Proof. Let
α : C2 → C2, (x, y) 7→ (k−1

2 k1x− k3k
−1
2 , k−1

2 k2
1y).

Then

k2k
−2
1 α−1(y − f(x)) = y − (8πit0)

1
2 k2k

−2
1 (t2 − t3)

1
2 (1−b−c)(k−1

2 k1x− k3k
−1
2 − t1)a · · · = y−

(8πit0)
1
2 k1−a−b−c

2 ka+b+c−2
1 (k−1

2 k1)
1
2 (3−2(a+b+c))(k2k

−1
1 t2−k2k

−1
1 t3)

1
2 (1−b−c)(x−(k2k

−1
1 t1+k3k

−1
1 ))a

· · · = y−(8πit0)
1
2 (k2k1)−

1
2 (k2k

−1
1 t2+k3k

−1
1 −(k2k

−1
1 t3+k3k

−1
1 ))

1
2 (1−b−c)(x−(k2k

−1
1 t1+k3k

−1
1 ))a · · ·

This implies that α induces an isomorphism

α : Et•g → Et.

Now

α−1ω =
(

k−1
1 0

−k3k
−1
2 k−1

1 k−1
2

)
ω =

(
k1 0
k3 k2

)−1

ω,

where ω = (dx
y , xdx

y )tr, and so
pm(t) = pm(t • g).g−1

which proves (19).

In a similar way for the family (10) we have the action

t • g := (t0k−1
1 k−1

2 , t1k
−1
1 k2 + k3k

−1
1 , t2k

−3
1 k2, t3k

−4
1 k2

2)

(20) t = (t0, t1, t2, t3) ∈ C4, g =
(

k1 k3

0 k2

)
∈ G0

with the property (19).

Remark 3. The rational map

α : C2 → C2, (x, y) 7→ (x,
y

(x− t1)[a](x− t2)[b](x− t3)[c]
)

sends Et,a,b,c biholomorphically to Et,〈a〉,〈b〉,〈c〉. We use Proposition 1 and write

α∗ωtr = ωtrC, C ∈ Mat(2, Q[t]).

The period map associated to Et,〈a〉,〈b〉,〈c〉 is the multiplication of the period map as-
sociated to Et,a,b,c with C. For this reason it is sometimes practical to assume that
0 ≤ Re(a),Re(b),Re(c) < 1.
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10 Automorphic properties of gi’s

We continue the notation introduced in §8. We denote by

F = (F0, F1, F2, F3) : (P, x0) → (T, a)

the local inverse of the period map. Taking F of (19) we conclude that

(21) F (xg) = F (x) • g, g ∈ (G0, I).

We get
F0(xg) = F0(x)k−1

1 k−1
2 ,

(22) Fi(xg) = F1(x)k−1
1 k2 + k3k

−1
1 , i = 1, 2, 3

The first equality also follows from F0(x) = det(x)−1.

For any A =
(
∗ ∗
c d

)
∈ Γ there is a path γ ∈ π1(T, a) such that if p̃m : (T, a) → P is

the analytic continuation of pm along γ then

p̃m(t) = Apm(t), ∀t ∈ (T, a).

This implies that the analytic continuation of F along the path δ = pm(γ), which connects
pm(a) to Apm(a) satisfies

(23) F (x) = F (Ax), x ∈ (P, x0).

Using the Schwarz function

D(t) =

∫
δ1

dx
f∫

δ2
dx
f

we define the path σ = D(γ). If cz0 + d 6= 0 then Az0 is well-defined and the path σ
connects z0 to Az0 in C. We claim that there is an analytic continuations of gi’s along σ
such that

(cz + d)−2gi(Az) = gi(z) + c(cz + d)−1, i = 1, 2, 3, A =
(
∗ ∗
c d

)
∈ Γ, z ∈ (C, z0).

We have

(1, g1, g2, g3) = F

(
z −1
1 0

)
(23)
= F

((
a b
c d

)(
z −1
1 0

))
= F

((
Az −1
1 0

)(
cz + d −c

0 (cz + d)−1 det(A)

))
(21)
= F

((
Az −1
1 0

))
•
(

cz + d −c
0 (cz + d)−1

)
= (1, (cz + d)−2g1(Az)− c(cz + d)−1, · · · )

12



The fourth equality makes sense in the following way: Let

xs :=
(

D(γs) −1
1 0

)
∈ P, τs := x−1

s pm(γs) ∈ G0, s ∈ [0, 1].

τ is a path in G0 which connects I to
(

cz + d −c
0 (cz + d)−1

)
. For s near enough to 0 we

have F (xsτs) = F (xs) • τs and so by analytic continuation we have it for s = 1.
In a similar way we prove the third part of Theorem 1. Note that for the family (10),

F2 and F3 satisfy:

F2(xg) = F2(x)k−3
1 k2, F3(xg) = F3(x)k−4

1 k2
2, ∀x ∈ L, g ∈ G0.
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