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--Abstract. We consider global Fourier and Mellin pseudo-differential operators with operator-

‘;‘:va.lued symbols and extend the Calderén-Vaillancourt theorem to these classes. The composi-
‘tion of each such two operators remains in the class. Moreover, we describe the composition
-of Mellin pseudo-differential operators, which have symbols that, in addition, extend smoothly
up to the origin.
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Introduction

The present paper is concerned with pseudo-differential operators on manifolds with singular
geometries in the sense of non-compactness or piecewise smooth Riemannian metrics. An
approach to the analysis on manifolds with singularities was developed by ScHULZE [13], [14].
‘One idea in that calculus is to build up ‘higher’ singularities by iteration from ‘lower’ ones.
For example, an edge can be written as a product of a Euclidean space and a cone, while a
corner is a cone over a base itself having conical singularities. This is reflected in the structure
of the corresponding pseudo-differential symbols, which are functions taking values in operator
algebras on the ‘lower’ singular object. In other words, the pseudo-differential calculus is
realized by iterating established calculi.

The specific symbolic structure can be interpreted in the framework of pseudo-differential
symbols whose values are linear operators between certain Hilbert spaces; these spaces are
equipped with strongly continuous groups of isomorphisms that enter in the symbol estimates.
This is a non-trivial generalization of the scalar calculus to the operator-valued case. For the
(local) calculus see SCHULZE [11], and HIRSCHMANN [4].

An important question in this context is an extension of the Calderdn-Vaillancourt theorem
m the operator-valued set-up. A first result in this direction was obtained in DORSCHFELDT,
'GRIEME, SCHULZE [2] under the assumption of the existence of order-reducing operators which
reduced the proof to the situation of groups of unitary operators. It turns out that this
approach is not convenient for many purposes, e.g., the operator algebra in SEILER [15], where
the asymptotic data do not allow reductions to the case of unitary group actions.

The analysis of pseudo-differential operators on non-compact manifolds was studied in the
scalar case by PARENTI {7], CORDES (1], SCHROHE [9], and others. The operator-valued ana-
logue appears, in particular, in boundary-value problems on non-compact configurations. Also
applications to non-linear problems in connection with travelling waves in infinite cylinders (as
recently suggested by VISIK) require such tools for the Laplacian with Dirichlet or Neumann
conditions. For cylinders with singular cross section, the corresponding local problems were
treated by SCHMUTZLER [8], whereas the infinite cylinder is just a case of non-compactness in
the present case.

The main purpose of this paper is to give a proof of the Calder6n-Vaillancourt theorem in
the operator-valued case, admitting arbitrary group actions. To this end we generalize tech-
niques introduced in HWANG [5]. The norm estimates we obtain for pseudo-differential op-
erators show, in particular, the continuity of the operator quantization, i.e., the mapping of
the symbols to the associated operators. This becomes important, for example, in parameter-
dependent variants of the calculus. Further we obtain natural conditions on the symbols which
ensure the compactness of the corresponding pseudo-differential operators. We also perform an
analogue for Mellin pseudo-differential operators, for which the Fourier transform on the real
axis is replaced by the Mellin transform on the half-line; these operators arise, for instance,
in the calculus of corner pseudo-differential operators, ¢f. SCRULZE [12], and DORSCHFELDT,
ScHuLzE [3].

In a final Section we apply the results achieved to the global edge algebra of smoothing Mellin
and Green operators of SEILER [15] in spaces with asymptotics.



Notation .

The real numbers are denoted by R, the complex numbers by C. Furthermore, R, are the
positive reals, R, the non-negative reals, and I'g = {z € C; Rez = } for § € R N are the
positive integers, Ny the non-negative ones.

In the sequel E and Ej, j € Ny, are always Hilbert spaces. L{Eg, E;) is the space of all linear
continuous operators A : Eg = E;. The norm of A is denoted by ||A|| gy, 5 -

For a Fréchet space F, the smooth functions on an open set Q with values in F are de-
noted by C®(Q, F), the compactly supported ones by C°(Q, F). Moreover, C*(R,, F) =
C2(R, F)|§+ = {u € C®(Ry); lim;o 0% u(t) exists Vk € Ny}. A(C, F) are the entire func-
tions with values in F. The Schwartz space of F-valued rapidly decreasing functions on R? is
denoted by S(RY, F'). If F equals C, it is omitted in the notation.

The Fourier transform of u € S(R?, F) is

¢

a(n) = Fu(n) = [ e~ Vu(y) dy.

The Fourier transform is extended to $'(R?, F') = L(S(R?), F) in the standard way.

;i;Fina.lly, set () =(1+ |77[2)1/2 for 7 € RY.

i*,

b

1 Global pseudo-differential operators and Sobolev spaces

Sections 1.1 and 1.2 include basic material concerning global pseudo-differential operators and
weighted edge Sobolev spaces. For a detailed exposition of the pseudo-differential calculus we
refer to [2]. A more general approach to edge Sobolev spaces can be found in [4].

1.1 Global operator-valued symbols

1.1 Definition. A set k = {xx; A > 0} C L(E, FE) of isomorphisms is called a (strongly
continuous) group action on E if

1) Kakp =Kxr VYA, 0>0 (in particular k; = 1g),
ii) For each e € E the function A — kye : Ry — E is continuous.

Since E is a Hilbert space, also the adjoint group x* = {x}; A > 0} is a group action on E.
For a group action & on F one can find non-negative constants ¢ and M such that

lkalle,e < cmax{\, A~} vA>0. (1.1)

For abbreviation we set x(n) = x(;. For later reference we observe an easy consequence of
Peetre’s inequality, namely that there exists a constant ¢ such that

s~ OrMEE SclE =™ VéEneR, (1.2)

where M is the constant from (1.1).
In following we assume that each E; is equipped with a fixed group action «;.
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1.2 Definition. For y,m € R let S#™(R? x RY; Ey, E1) denote the space of all functions
a € C®(R? x RY, L(Ey, E1)) satisfying

e {”"1_1(77){‘9:3"<95f1(:i/,n)}mo(n)”ED,E1 (a1 ()" < oo
y.meER? )

for all multiindices o, 8 € N]. These semi-norms induce a Fréchet topology on S*™(R? x
]RQ; EO) El)

Elementary calculations show that
8308 S+ ™ (R x RY; By, Ey) C S#lelm=IBl(Re x RY; By, Ey),

SH™(RE x RY; By, By) - 8% (RY x RY; By, Ey) C §A+HH ™+ (RY « RY; By, By).

In case both Ey — Eg with kg, = x5 on Ey and E; — Ej3 with k3, = k3 on Ey, the
embeddings

ST RE x Rq;EO,EQ) — Sp.m(]Rq X Rq;El,Ez) — Su’m(]Rq x R?; E,, E3)
hold. If My, M; are the constants corresponding respectively to &g, &1 via (1.1), then
R
:} S“’m(Rq X Rq;Eo,El) — S#+MD+M1.’W(R‘J X Rq;Eg,El)(l),

:vghere the subscript (1) means that both Ey and E; are equipped with the trivial group action
k=1
To a given symbol a € S#™(R? x RY; Ey, E1) we associate a continuous operator

0p(a) : S(RY, Bo) = S(RY, ) s u = [opa)ul) = [ €aly,m)in) dn
Here, dn = (27)~%dy.

1.3 Theorem. Ifa € S#™(R? x RY; E), Ey) and b € S¥'™ (RI x RY; Ey, Ey) then op{a)op(b) =
op{a#b), where the so-called Leibniz product of a#b is defined by

(a#b)(y, 1) = f/ e~ aly,n + £)b(y + z,7) dzd¢

(understood as oscillatory integrals). For each N € N then the expansion
1
(a#b) = ) —(07a)(D5b) + v
a<N

holds, with a remainder ry in the space SPtH# —Nm+m'~N(Ra « Re: By, Ey), which is given
explicitely by the formula

1 N-1
1-6 .
rn(y,m) =N Z f (—~—a')—_/_/ e""fc'),‘?'a(y,n + 68)Dyb(y + z,n) dzdéds.
lol=n 70 '
The Leibniz product induces a continuous mapping

SH™(RE x RY; By, By) x S5 ™ (RY x RY; By, Ey) — SHH 7 (RY « RY; By, Ey).



1.2 Weighted abstract edge Sobolev spaces

Let us fix group actions k and k; on the spaces E and Ej;, respectively.

1.4 Definition. For s € R let W¥(R?, Ey) denote the space of all distributions u € S’(]R" E)
such that 4 is a measurable function and

1/2
lulbwney = ([ 0 17 )i dn) < oo

For § € R we have weighted variants of those spaces, namely
WS (R, E) = {u € S'(R', B); () u e W(R, B)},

with obvious definition of the corresponding norm. In case of a trivial group action, i.e., kK = 1,
we use notations H*(R?, E) and H*(R9, E).

The spaces W**(RY, E) are Hilbert spaces, having C{°(R4, E) as a dense subset. If M corre-
sponds to x via (1.1), obviously

15 WH(RY, E) — H MR E).
~_If E; — Ey and K1\ = ko5 on Ey for all A > 0, we immediately obtain that
WH(RY, By) = WS (RY, By).
If Ey @ E) is the direct sum equipped with the group action {xg ) ® 1,1}, then
W(RY, By @ E) = WH (IR, Bo) @ WH(RY, Ey).
As a consequence of Corollary 1.11 we obtain that
WS (RY, E) = W (R, E),

whenever s > s’ and § > §'. A motivation for introducing spaces of this kind is the following
example.

1.5 Example. For each A > 0 define mappings «, : D'(R*) = D'(R*) by

(Faw, @) = (u, A2\ 1z)),  H(z) € CP(RY).

(For u € L}, (R") we then have (kyu)(z) = A*2y()z)). These mappings induce continuous
group actions on each of the spaces H*(R"), the standard Sobolev spaces on R*. Now it is
known (see, e.g. [13], p. 268) that

HY(R x R*) = W*(RY, H*(R")).



1.3 Continuity of global pseudo-differential operators

1.6 Remark. (Plancherel’s formula) Let E be a Hilbert space. Then F : L*(RY,E) —
L?(R?, E) is an isomorphism, and for each u € L*(R?, E) we have

I Fullzare,z) = (27) 2|l 2o, -

This is true if and only if E is a Hilbert space.

1.7 Definition. For a multi-index a € N} and y € RY we write

G+ =G+y)™ - +y)™,  (+y) =+
Further, we define the following differential operator
, (14 Dy)* = (14 Dy )™ -...- (i + Dy,)™
Here, Dy, = —id,,. Then we obtain the relation
(i + Dy) 6™ = (i 4 26, (L3)

1.8 Lemma. Let E;, E; be Hilbert spaces and k a group action on E,. Further let a €
C°°(R" x R?, L(Ey, E1)) be such that for some L € N the estimate

1TL( ) = SUP{(ﬂ)_L ”af?afa(y:ﬂ)”Eo,Eu 7RIS Rqa a< o, ﬁ < BM} <o

holds, where aq = (1,...,1), By = (M,..., M), and M corresponds to & via (1.1) (here we
assume that M € Ny). Futhermore, let ¢ € C*(R??) with ¢ = 1 near 0 and set

a'E(ya ’7) = ¢(€y,577)0(y, 7?): 0<e<l.
Finally, let u € S(RY, Ey). Then the following statements hold:

a) op(a)u € WO(RY, E),

b) {op(ag)u,v) = (op{a)u,v) for e = 0 and each v € S(R?, E;). Here, {,) is the
scalar-product in WO(R9, E, ).

PROOF: a) Write A = op(a). With notation as in Definition 1.7 integration by parts gives
Auy) = i+ [ (i = D) lafy, mysn)] an 1)
The first factor on the right-hand side is square integrable. Since 4 € S(R?, Ep) and because of

the assumptions on a, the integral, together with its derivatives with respect to y up to order
B, is bounded. So we obtain that (i — Dy,)?™ Au € L*(R?, E;). Hence we can estimate

Aoy = [ 167 ) A, dn < [ 1+ Fato)l, do
= ] 171G = Dy} Au(m)|%, dn

¢ f 16+ Dy Au(y) |, dy < oo.
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b) Set b, = a, — a, B, = op(b:). We show that (Bgu,v)WO(Rq,El) — 0 for £ = 0. From the
relation

(Bet,vhwogue 1y = [ (Bt ()" 5~ o)) s,

and Plancherel’s formula, it is sufficient to show that Bou — 0 in L*(R?, E;) for € — 0. An
easy computation, using Leibniz’ rule, shows that m(b.) is uniformly bounded in 0 <€ < 1.
Hence, inserting b, instead of a in formula (1), we see that

1B, < el +3)72"| € L'(RY),

with a constant ¢ independent of ¢. In view of Lebesgue’s dominated convergence theorem, it
remains to show that

Beu(y) = / €, (y, 7)a(n) di

tends to 0 with ¢ for all ¥ € R?. But this is again an easy consequence of Lebesgue’s dominated
convergence theorem. "

1.9 Theorem. Let Ey, Ey be Hilbert spaces with respective group actions ko and k,. Further
assume that a € C°(R? x RY, L(Ey, E))) satisfies

1‘

;ﬂ; 71'((].) = SUP{”K'I_ ( ){Bﬂaﬂa y1 7 }KU I|ED,E17 y,m € ]Rq a < a, ﬁ < ,BM} < 00,

;where oy =(1,...,1), By =(M+1,...,M + 1), and M(€ Ny) corresponds to ky via (1.1).
*Then a induces a continuous operator

A = op(a) : W(R?, By) » WO(RT, ),
whose norm can be estimated by

1 &llwo s, £0) worwe, 21y < e7(a)

with a constant c independent of a.

PrOOF: First, assume that a is compactly supported in (y,7n). Further, let u € C§°(R?, Ep)
and v € S(R?, E1). Then

——

(Ao V) ngue ) = [ (o7 (0) Ful) ~;‘(n)a(n)>& d

= [[[[ e (s oty vuta), w7 ()60) ), ot

Now relation (1.1) yields that the latter expression equals, after a twofold integration by parts,

/]/f W=my=iCe(; 4y — 3)~ @1 (j — D)™

{G+&-n)P (w7 (n) (= D)™ aly, Oule), w7 ()(n)) p, } dydodgan,

and from this we get that (Au,v)ywo(re,z,) equals

) /f W (Is (©)D7 i — D) aly, o €))f (1,€), 9y (v, 6))

y<m



with functions
[0 =) [ e 4y - 2)ule) ds,
r0:6) = (“)7 [ ) (€))7 = D + € = )P )l .
Hence we obtain the estimate

(A, Vol € em(a) D I Fllza@ee, mo) g7l r2grac,Ey)-
y<ar

Using Plancherel’s formula, we get

lonls = @) [ 16 )*(i = D)™ (i + € ~ 1)~ k=1 (m)o ), dndé.
In view of (1.2) we can estimate

s (=T (M)1(€))* (3 = D)™ 776 + € — 1) ™M |Ip, 5, < c{€ =M (i + € = m)PM|
! < cll—m)M e G I+ €= )M = (i + € - )7,

and this implies
lonlizs < e{ [ 16+ 6% de} IolEyoqae,
For abbreviation now set h(z) = (i — z)~®, and hy(2) = h(z — y). Then note that

hy(€) = e VR(E), (O h(€) = FI(1 - A)RIE). (1)
Because of F(¢ap) = (2m) ¢ % 9 and the identities from (1), we obtain

[0 = mg'©En™ [y - i@
= (2m)7¢ _'Ey/e““yﬂ(%(_—gl)ggf—)F[(l — AYMB)(€ - 285 (z)i(z) dz.

Now Plancherel’s formula and (1.2) yield

12 = / [fen [ "-‘v'“o )';0( o 1) 7101~ AYMhl(E - )55 (2)ile) da| dude
en [[ U"“ - D)MH(E - e )a(o)], dodg

IA

e [[1710 -2 Mh] (€ - 2)n5 (2)i(o)lfy, dedo
= o [IFla -2 HEPE [ @), ds
= o [10- 8)Mh©Pde}Hlulyoqee,
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Altogether, we now have verified that

A, vIwo e,z < em(a)lullwome, gy lolhwo s, 2,y (2)
with a certain constant ¢ independent of a, u, and v.

Finally, consider the general case. Choose ¢ € C$P(R??) with ¢ = 1 near 0. For 0 < e < 1
define a.(y,n) = é(ey,en)a(y,n). Using Leibniz’ rule it is easy to verify that w(a.) < cn(a)
with a constant ¢ independent of €. Then, according to Lemma 1.8.b) and estimate (2),

0
[{(Au, v)wome, my)| = Hop(ae)u, vhwome gy < em(a@)l|ullwome,s0) [vlwore,2,)-
In view of the density of S{(R?, E;) in WY (R?, E) we get
1 Aulhvorre, gy < em(a)lluiiwo(re, i)
This implies the assertion. "
1.10 Remark. Let Ey, E; be Hilbert spaces with arbitrary group actions.

a) Each symbol a € S*#(R%; Eo, Eh), i.e., a is a symbol independent of the variable y, induces
for each s € R continuous operators

op(a) : W (R, Ep) - W H(RI, Ey).

4

" a— s

-

! b) For u,d € R set
AP = op((m* # (1)), P*® = op((y)’ (n)*).
These operators obviously induce for each s € R isometric isomorphisms
APE WHS(REE;) — WPH(RY, Ey), P*0 . WH(RY, B;) — W *—5(R4, E)
with A#S P8 = p=#=GARS = |,

1.11 Corollary. Let E,, E, be Hilbert spaces with arbitrary group actions. Further let
a € SHM(RY x R?; By, Ey). Then a induces for each s, € R continuous operators

op(a) : W (R, Eg) » W™ (RY, E,),
and the mapping
a > op(a) : SR x RY; Eo, By) — LV (RY, Bp), W ™HI~™(RY, By))

is continuous.

PROOF: Let 3,6 € R be fixed. By Theorem 1.3 there is a unique element @ € S%O(RY x
RY9; Ey, F,) such that
op(a) = P*~*™%op(a)A*’,

and the mapping a = @ : S#™(RY x R?; Ey, E,) = SO%°(R? x RY; Ey, E1) is continuous. Now
from Theorem 1.9 and Remark 1.10.b) we obtain

llor(a) |l s (Re,E0), Wo-nis-m(®e,Ey) < €T(8).

This clearly implies the assertion in view of the continuity of the map a — a. n
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1.12 Proposition. Let Ey, E| be Hilbert spaces with arbitrary group actions. Further let
a € SR x RY; By, By) with p,m < 0 such that a(y,n) : Ex — E; is a compact operator
for all y,n € RI. Then

op(a) : W (R, Eg) = W(R?, Ey),

is compact for each 5,6 € R.

PROOF: Using the order reductions A*%, P#¢ from Remark 1.10.b), we can assume that
s = ¢ = 0. Now assume that a is compactly supported in (y,n). Then from [14], Theorem
1.3.54, we know that op(a) : WO(R?, Ey) — WO(R?, E) is compact. Finally, for general a, set

ae(y,n) = dley.en)aly,n), €>0,

where ¢ € C§°(R™) with ¢ = 1 near 0. Since a has negative order, a, — a in S(R? x
RY; Ey, E}) for ¢ = 0. By Corollary 1.11 then follows that

op(ae) = op(a) in LOW'(R?, Eg), WO (RY, E,)) for € — 0.

Hence op(e} is compact as a limit of compact operators. "
V

1 13 Corollary. Let Ey — E, be Hilbert spaces with arbitrary group actions such that the
embeddmg is compact and the group action on E, induces (by restriction) the group action
on Ey. Then for s > s', § > & we have compactness of the embedding

O WH(RY, Bg) o W (BRI, B).

1.14 Remark. LetS*(R? x R?; Ey, £} denote the space of all a € C®(R? x R?, L(Ey, E))
satisfying

sup {"K-I (m {023 aly, m)}ro(n) | mo,Ey (ﬂ)'“'""}<oo
ymeR?

for all o, 8 € N]. The associated pseudo-differential operators act from W*(R9, Ey) to
WeH(R?, E1). Then the obvious analogues of Theorem 1.3 and Corollary 1.11 are valid.

2 Calculi for Mellin pseudo-differential operators

Again, let & and E; be Hilbert spaces with respective group actions x and ;.

2.1 The Mellin transform

For u(t) € t"*Y2[(R,., E) we define the weighted Mellin transform

*® . dt
(Mru)(2) = : t*u(t) - z€T /5.
A straightforward calculation shows that

(Myu)(1/2 — v +i1) = (FSyu)(1) (2.4)

10



if we define
(Squ)(r) = " VDy(e™™), reR

From this relation we clearly obtain that
M‘T : ’FY(]R-HE) - S(Fl,"?—'yaE)
is bijective, if we set T, (R4, E} = S.TI(S(]R, E)). The space T1/2(Ry, E) equals

{we C®Ry, E)ipw(w) = sup ||(logt)* (1) u(ls <o VN € Ry }.

EJ<N, E>0

The system of norms py(-) gives a Fréchet topology on 7;/2(Ry., E), which induces the topology
on T,(Ry, E) =7~ 1/27'1/2(]1{4_ E). For abbreviation we set T,(R;.) = T,(Ry., C).

Let T7(Ry, E) = L(T-4(Ry ), E) be the space of all continuous linear operators 7_(Ry) = E.
We regard 7,(Ry, E) as a subset of T/(R,, E) via

= ./:)oof(t)‘u(t) dt, u € T-—*{(Ri-)

4y

'.:i:'or F € T;(Ry., E) define

¢

o (MyFv) = (Ft7 (MS)(Eh),  (SyF,9) = (F,S2,%)

for v € §(T'yj3—4) and ¥ € S(R). This yields mappings
M’T : 7:/’(R+1E) - S’(PI/Z—TaE)a S‘T : ﬂ(RHE) - S,(IR’ E)

that extend M, and S, from T,(Ry, E) to 7J(Ry, E). Formula (2.4) is valid in the distribu-
tional sense.

The multiplication of a distribution F' € TJ(R,., E) with a function g of tempered growth, i.e.,
g € C*(R,.), and all derivatives |(t8;)*g| are majorized by a power of |logt|, is defined by

(gF, ‘Ll.) = (F,gu), u € T—‘Y(R-F)

2.2 Mellin symbols and Mellin edge Sobolev spaces

2.1 Definition. For s,4,7 € R let V3(R, E) denote the space of all u € TJ(R;, E) such that
M, u is a measurable function and

1/2
lullv w2y = ( [ @ s sz =y +inli df) < oo.

Further we set
VI (R, E) = {u € T;(Ry, B); (logt)’ u € Vi(R,, E)},

with obvious definition of the corresponding norm.

11



From (2.4) we see that S, induces an isomorphism
Sy : V(R4 E) - W*(R, E).

Hence the functional analytical properties of W*#(R, E) carry over to Vf;’a(]lb., E). In partic-
ular, V3*(R,, E) is a Hilbert space having C°(Ry., E) as a dense subset.

‘To a function h € C®(Ry. xT'y/_,, L(Ey, B1)) associate (formally) a Mellin pseudo-differential
operator by

op)s(R)u(t) = / t~(M2=1H (4 1/2 — y 4+ i7)(Mu)(1/2 — v + iT) dT

foru e T+{Ry, Ep). Then it is not difficult to verify that
opi,(h) = S.;l op(hy) Sy with hy(y,n) = h(e™¥,1/2 — v +in), (2.5)

where op(h.) is the usual Fourier pseudo-differential operator. Thus the question of investigat-
ing the appropriate symbol classes in the Mellin set-up is reduced to looking at the image of the
Fourier symbol classes introduced in Definition 1.2, and Remark 1.14, under the transformation
y = —logt.

2.32 Definition. The space S¥™(Ry x I';/5_,; Eo, E1) consists of all functions h € C®(Ry. x
[y /92—y, L(Ey, £1}) such that

sup {57 (r) (84 (400 *A(t, 1/2 = 3 -+ #7) o)l 2o, ()" (105 ™ } < o0
t>0,rcR

for all k,1 € Ng. These semi-norms induce a Fréchet topology on S¥™(Ry x I'yja_y; Ep, E1).
By S¥(T'y/2—y; Eo, B1) denote the closed subspace of SHO(R, x ['1/2—y; Eo, B1) of all symbols
h that are independent of ¢.

An essential point is that
he MRy x Tyjg_y; Bo, B1) &= hy € SW™(R x R Ep, E1),

where h, is defined as in (2.5), and the mapping h +~ h, is an isomorphism. This basically
relies on the fact that the push-forward of 8; under t = ™ : R = R, is (~td;). Now we
obtain the following results:

2.3 Theorem. Let geE S"’m(R‘. x F1/2,,.7; EI,E;_J) and h € S“”m'(R{. x P1/2_7; E(),El). Then
ophs(g)opls(h) = op),(g#h), where the Leibniz product of g and h is defined by

w#n) = [ gtz +ionion ) Tt zeTyay,

For each N € N we obtain the expansion
1
(g#h) = Y (059)(—td)*h + v

k!
k<N
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with a remainder 7y in the space SHT# —Nm+m'-N(R  « T, /2~ Eo, Ea), which is given ex-
plicitely by the formula

ra(t,z) = f // s%aN g(t, z 4 i0€) (- ta,)Nh(st,z)$dgd9,

z € I'yj3_y. The Leibniz product mduces a continuous mapping
SHM(Ry X T jgeryi B, Ba) x S ™ (Ry. X Tyjgy; Eo, Er) = SPH™ ™ (Ry X T 55 By, Bn).

For later purpose we want to clarify the meaning of the oszillatory integrals in the previous
theorem. Let {x.; 0 < & < 1} be a family of functions with

i) xe € S(R?) for each ¢,

ii)  sup |8%xe(z)] <oo forall @€ N,
z€R3?,0<e <1

1, a=0 .

ors a 3 . 2
i) 0% xe(z) — { 0. ja] >0 for € = 0 pointwise for each z € R*.
If we set x7(s,£8) = xe(—logs,£), then g#h = lim,,o I, with

) - ds

3 <(t, 2) 8,8)g(t,z +1€)h(st, 2) ?d‘{. (2.6)
,.

We also have 888 (g#h) = limeo BfaiI,.

2.4 Theorem. Let h € S¥™(Ry x 'y
uous operators

—vi Eo, E1). Then h induces for each s,§ € R contin-

opje(h) : V3*(Ry, Bo) = Vy M0 ™ (R, Ey),
and we obtain the continuous mapping
h = op}y(h) : SP™(Ry X Tyjpyi Bo, Br) = LIVI*(Ry, Eo), Vi ™(Ry, Ey)).

2.5 Proposition. Let h € S¥™(Ry. x T'yjy_y; Ep, B1) with pp,m < 0 such that h(t, 2) : Eg —
E, is a compact operator for all (t,z) € Ry. x T'yj3_,. Then

opye(h) : Vi¥(Ry, Bo) — V3 (Ry, B),
is compact for each 38,8 € R

2.6 Corollary. Let Ey be compactly embedded in E,, and assume that the group action on
E, induces (by restriction) the group action on Ey. Then also the embedding

V;‘E(R+ y EO) — v;;"é' (]R-HEI)

is compact whenever s > s’ and § > §'.

2.7 Remark. The space S¥(Ry X I'yj2_,; Eq, B1), consisting of all functions h € C®(R,. x
Fl/z_,,,ﬁ(Eo,El)) such that

sup_ {7 (13100 h(t, 1/2 = 7 + i) hmo (7)o, ) TH < o0
t>0,7€

for all k,! € Ny, corresponds under the mapping h — h, to S*(R x R; Ey, Ey), cf. Remark
1.14. The analogues of the Theorems 2.3, 2.4, are valid for this symbol class.
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2.3 Mellin symbols with smoothness up to the origin

A crucial role in calculi for manifolds with singularities play Mellin symbols, which are smooth
not only in Ry but on Ry. These symbols are, in particular, Mellin symbols in the above
sense. We consider the behaviour of these symbols under the Leibniz product. In general,
the smoothness up to £ = 0 is preseved only modulo certain smoothing remainders, which are
described in the present section. No remainders occur if we require the symbols to extend
holomorphically in the covariable. :

Let us define _
SH(Ry x T'yjamyi Eo, B1) = C%(Ry, S#(C1j2-v; Eo, E1)).
Ifh € SH(Ry xT'yj3—y; Eo, Ey) is independent of ¢ for large £, then h € S#%(Ry. xT'y j2_; Eo, E1),

and (t0;)%h € S#~°(Ry x I')jg,; By, 1) for all k € N. The last statement holds, since (t3;)*
generates a zero in ¢ = 0, which dominates logarithmic growth.

2.8 Proposition. Let g € S#(R,. x Tij2—yi E1,E2) and h € S# (R, x 'y /2—yi Eo, E1), both
independent of t for large t. Then there exists a symbol f € §7*~%°(Ry. x Iy/5_,; Eo, E)
such that

g#th — f € SPH (R, x T'1/2—v; Eo, E2).
‘P_ROOF: For abbreviation write S*™(Ry. x I') = §#™(Ry. x I'1/2_4; Eo, E1), and analogously
for the classes on R.. For k € N define

ck = %(359)(——1&6;)"}1 € S#HHE([Ry x T) N SFH-R"(R, x I).

Then, by Theorem 2.3, g#h = gh + S0, ¢ + ry with ry € Sot#'~(N+1)—co(R. x T). Let
¢ € C*(R) such that ¢ = 0 near 7 = 0, and ¢ = 1 for large 7. Then one can choose a sequence
(dx) C R, tending to infinity with &, such that

o0
AG1/2=y+ir) =Y ¢(dg Tkt 1/2 = 7 +i7)
k=1
converges in S#¥T# 1R, x ') N §#H#'-1~(R. % T') and

N
L= o e et m(NEDmooR, X T).
k=1

In particular, (gh + f1) € S#¥*# (R, x T), and for each N € N

N
fi=g#h—(gh+fi)=fi— e —ry € SHtH-(N+h-oR, »T).
k=1
a

2.9 Remark. Let h € §7%7®(R; x I'y/2_,; Fo, E1). Then opj;(h) can be written as an
integral operator (with respect to the measure %) with a kernel k € C®(Ry. x Ry, L(Eo, Ey))
satisfying

VN (et o) € S(R, x Ry, L(Eo, B1)).
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Vice versa, each kernel having this property corresponds to a symbo! A of infinitely negative
order. These results hold in view of (2.5} and the known facts for Fourier symbols from
5§77 (R x R; Ep, E1).

2.10 Definition. A function h € C®°(R;., A(C; L(Ey, E1))) is, by definition, an element of

S#'m(RF X C1E01E1) if

sup p((t,i'r) — h{t, [+ i'r)) )
e<p<e

for each semi-norm p(-) of §¥™(Ry x I'g; By, E1) and all reals ¢ < ¢. Further let S¥(R, X
G Eo, Ey) = C= (R4, S#(C; Eo, Ev)).

Then the analogue of Theorem 2.3 is valid for the class S#"™ (R, xC; Eg, E;) (where the Leibniz
product corresponds to a fixed weight 7).

To a symbol h € §#(R, x C; Ey, E;) we associate its conormal symbol of order u — k, given by
1
oHH()(z) = 7 (0R)(0,2).

2.11 Theorem. Let g € S¥(Ry x C; By, Ep) and h € S¥ (R, x C; Ey, E1), both independent
"’.;bf t for large t. Then

g#th € SMH (Ry x C; By, By),

‘and the conormal symbols of the Leibniz product equal

IR ghh) = 3 (T7IH(g)) o ).

l4+m=k

Here, (T?f)(z) = f(z + p) for a function f defined on C.

ProOF: Clearly, the z-derivatives of g#h can be pulled under the oscillatory integral. Hence,
by induction, it suffices to show that

B(g#h) = (T 9)#(8:h) + (Bug)#h (1)

and that this derivative extends continuously to R;. For convenience we assume that g is
independent of t. The general case is proved in completely the same manner, but is awkward
to write down in view of the Leibniz rule. Now let x; be holomorphic in {-2 < Rez < 2})
such that x1(0) =1 and 8 — x1(8 + 1) :] — 2,2[— S(R) is bounded (for example, x; can be
chosen as the Mellin transform of a function from C§°(IR;)}. Further let x; € S(R), and

X7 (5,€) = x1(ei)x2(—¢clog 3).
Now associate I to g#h as in (2.6). Then

ati(t2) = [[ 5k (0 O09(a + i) @) st 2) S,

Write the integration in £ as an integral over the curve I'y. For fixed s,t and z, the integrand
extends holomorphically to {—2 < Rew < 2} and decreases as a Schwartz function uniformly
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on parallel lines of the imaginary axis. Hence, by Cauchy’s integral formula, we can replace
[y by I'_y. This yields

Ol (t, 2) = f /Om 4% (5,6)(T™ g(2 + i€))(Beh) (st, 2) ?d&

with ¥} (s,&) = x1(ei€ ~ €)x2(—¢logs). Taking the limit € — 0 implies (1). It remains to
verify that lime_o(g#h)(t,-) = g(0,-)h(0,-) in S#+t#(C; Ey, E3). But this is true because of
g#h = gh+ ¢ with a certain ¢ € S#*+#'~ (R, x C; By, E,), in view of Theorem-2.3. Obviously,
limeo ¢{t, ) = 0 in S4T#(C; By, By). .

Let us finally mention, that the part of the previous theorem concerhing the Leibniz product
was obtained in [7] for scalar-valued Mellin symbols, i.e. Ey = E; = E; = C equipped with
the trivial group action kK = 1.

3 Application to operators on an infinite wedge

We illustrate an application of the results from Section 1 to an algebra of pseudo-differential
operators on an infinite wedge, introduced in [16]. Here the wedge is the product of the edge
Rq and a (stretched) cone X" = Ry x X, where X is a smooth closed manifold. The Sobolev
spaces of the wedge are of the form W* J(IRq E) for certain spaces E of distributions on X".

The operators have symbols taking values in a certain class of operators (namely the cone
algebra with asymptotics in the sense of SCHULZE) that act between the Sobolev spaces on the
cone.

Let us fix some notation. By L#(X) we denote the space of all pseudo-differential operators of
order £ on X, and by L*(X;R) the parameter-dependent ones with parameter 7 € R, which
is treated as an additional covariable. The standard Sobolev spaces on X are H*(X). On
CP(XM) = C§°(Ry, C*®°(X)) we define the Mellin transform as in Section 2.1, now acting on
functions taking values in C*°(X).

In the following, w(t) € C$P(R.) is a cut-off function with respect to 0, i.e., w(t) = 1 for
small . For a Fréchet space E, which is a left module over an algebra A, and a € A we set
[¢]E = {ae; e € E}, where the closure is taken in the topology of E.

3.1 Cone Sobolev spaces and spaces with asymptotics

For 3,7 € R let #*7(X") be the completion of C(X") = CP(Ry,C®(X)) with respect to
the norm

= [ BRI My (s 2
Pagi_,
Here, R*(z) € L*(X ;Fua__il_,') is a parameter-dependent pseudo-differential operator that in-
duces isomorphisms H*(X) — H*~%(X) for each s’ € R and 2z € PLF-’Y' Moreover,
dz = (2mi)~1dz.
To an f € L¥(X;T /2_,,) we associate a Mellin pseudo-differential operator

okl = [ CH@MwEE  we GRX),

1/3—~
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This extends for each s € R by continuity to operators
0p7 (f) : ?_{s,'y+n/2(XA) - Ha—-p,7+n/2(Xf\).

Let {U1,...,Un} be a covering of X and x; : U; = V; C S™ be dlffeomorphlsms Here S™ is
the unit sphere in R1*7. To the mappings x; associate

%Ry xU; 2 R 2 (8,2) = tx;(x).

Let {¢1,...,¢n} be a partition of unity on X with ¢; € C§°(U;). Then (1 — W] HIS (XM
denotes the closure of C§°(X") with respect to the norm

N
Hll = 3100 - w)bj) 0 %5 pns griny-

J=1
The cone Sobolev spaces are defined as
K(X1) = [WIHET(XM) + [1 - wlHED(XP).
Note that K*7(X) < K7 (XM} if s > &' and y > 7.

For v € R and an intervall & =]4,0], ¥ < 0, we call @ a discrete asymptotic type with respect
<to (v,8), and write Q € As(y,0), if

K Q = {(gj;m;) € CxNo; B2 —y+ 9 <Reg; <2l ~,j=0,..., N}

ifor some N € Ny. With such a type @ associate spaces
N m;

EH(XM) = {(t,z) S w(t) DD Erl(a)tT loght; & € HS(X)}, EQ(X™) = NyerEH(X™),
j:O k=0

which are canonically isomorphic to a finite product of H*(X) and C*°{X), respectively. Writ-
ing Kg"(X") = Ne>oK*7~7=¢(X") we then set

Kg'(X™) = KgH(XM) + Eo(X™),  KQM(X™) = NeerKyT(XM),

which are Fréchet spaces that can be written as projective limits of Hilbert spaces

kg X" = projlim {[Wl{K*T075 (X) + E5(X)} +[1 - W] HERL(XN },

KS7(XY) = proplim {[Wl{(K*77(X") + E§(XM)} +[1 - wHEL(X)},
where ¢x = cg/k and cg is chosen in a way that Reg; > -"—"‘2'—1 — 5419 +cq for all j. Finally, we
define the space of rapidly decreasing functions on X" as §(X") = §(R, C*(X))|gr,, and set

SH(X") = [WKPT(X) +[1 - w]S(X"),
which is a projective limit of the Hilbert spaces
[WI{LF 707 (X ) + E5(X™M)} + [1 — ] HEmo (X,

with ¢, as above. The corresponding group actions on all these spaces now are induced by the
mapping C§°(X") = C§(X") defined by

(kau)(t,z) = /\H_Fu(/\t,:c). (3.7)

On K%0(X*) this is, in particular, a group of unitary operators.
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3.2 Weighted edge Sobolev spaces

First we generalize the material from Section 1 to Fréchet spaces, which are projective limits
of Hilbert spaces. More precisely, let Fj (j = 0,1) be Fréchet spaces that can be written as

F; = proj-lim E¥
j = PIQER™ &

with Hilbert spaces B} + E? « ..., such that the group action on E} induces (by restriction)
the corresponding group action on each E;‘ We then set

3,8 Y — s 3,6 k
W (R, F;) prc’)c%glllmw (RY, E;). (3.8)
Ij‘urthe_;more, we define
S (R x B Fo, F1) = Muen{ Uren S#™(RY x RY B5, B }, (39)

ie, a € SR x RI; Fy, ) if and only if to each | € N there is a k € N such that
a € S¥™(RY x RI; EE, E!). By the definition of projective limits and Corollary 1.11 it is then
obvious that each a € S#™(R? x R?; Fp, F1) induces continuous operators

oL op(a) : W(R?, Fo) - W* ™M™ (R, )
for arbitrary s,6 € R This abstract setting can be applied to the cone Sobolev spaces.

3.1 Definition. Let 5,6,y € R and Q € As(y,©), © =]9,0]. The weighted edge Sobolev
spaces are defined as

WEIRE x X7) i= WH(RI, KY(XM),  WE(RY x X7) = W (R, K§7 (X)),
3.2 Remark. As a consequence of Example 1.5 we obtain |
Hpr(RT x X7) C WEP(RY x XP) C WIS(RT x XP) C HE(RT x XP)
for each 5,4, € R and @ € As(y, 8) (for more details see, e.g. [14]).

3.3 Example: Mellin and Green pseudo-differential operators

Throughout this section let data g = (7,7 — v, ©) with weight-intervall © =] - k,0], k£ € N, be
fixed. Further let N.,N_ € N.

3.3 Definition. For y,m € R the space RZ™(R? x R?,g; N_, N,) consists of all symbols
g(y,1) € NerS*™(RI x RI; K*V(XN) @ CN-, K®7—(XN) @ CN+) satisfying

B € NserSH™(R? x R K*7(XM) @ CYV-, 837 (X)) @ CY+),

8" € MuerS"™ (R x BRI K77(X") @ €Y+, 57 (X") @ CV-)
for certain asymptotic types Q; € As(y — v,08), Q2 € As(—v, ) depending on g. Here the

involved group actions are {kj @ 1}, where {x,} is the standard group action from (3.7).
Further * means the pointwise formal adjoint in the sense of

(gu1v)x0.0(xa\)$c~+ = (uvg*U)KO.O(XA)e‘CN._
for all u € C°(X") ® C¥- and v € CP(XN) @ CN+.
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A set P is called discrete asymptotic type for Mellin symbols if
P={(pj,m;) eCxNy; je€Z}, Rep; = +oo for j ~ Foo.

The projection of P to the complex plane is denoted by mcP = {p;; j € Z}. Then the space
MpP™(X) consists, roughly speaking, of all functions A(y) € C*(R?, A(C\nc P, L#(X))), where
the poles in p; € mcP are at most of order m; + 1, and the Laurent coefficients o;x(y) of the
principal part of A(y) in p; being elements of L=°(X), and

sup ()17 ¢ (8%0jk(y)) < o0

yERY
for all « € N} and semi-norms ¢{-) of L=°°(X). Further one requires, that h(y,z + i8) is
“outside m¢P” an element of L*{X;T'g) such that

sup {(y)lal"mq (B5[h(y,B+i0))) i1 <B<cay€ Rq} < o0

for all ¢; < ¢y € R, each semi-norm ¢(-) of L*(X;R,), and all « € N{. In particular, h(y,z) €
L*(X;Tp) for each B € R such that rcP NT'g = 0.

JFor a precise definition of these spaces we refer to [16], Section 4.
L
1

:3.4 Definition. Let z € R with v — 4 € Ny. A function

X

& k+p—v—1
mly,n) =w(tl) D>, 7> opp (hia))n*w(t[n)) (3.10)
j=0 e <5
with

hia € Mp2™(X"), mcPiaNTijz—yy, =0, 7=1/2= (¥ =p) = < %a S 7=-n/2

is called smoothing Mellin symbol (of order (z,m) with respect to g). Note that m = 0
if v — pu > k. Hereby, w(t[n]) and t~#*7 have to be understood as (parameter-dependent)
operators of multiplication between the cone Sobolev spaces, and 7 + [n} is a smooth strictly
positive function that equals |7} for large |n|.

Now the space Ryy;(R? x RY,g; N_, N..) denotes all functions of the form

K:a,’y(XA) K:oo,'y—u(XA)
(m+g)(y,n) = ( m(%’n) 8 ) +gym): @ — . @
CN- CN+

with g € R (R? x R?,g; N_, N,) and m(y,7) as in the above Definition 3.4.
3.5 Theorem. (cf. [16], Proposition 2.19) Let m(y,n) as above. Then

m € NyerS*™ (R x R KM (XM) @ CV-, KT (X ") @ CN).
Furthermore, to each Q € As(y,©) exists a Q' € As(y — v,©) such that

m € N,erS*™(RY x R, KZY(XN) @ CV-, £Z (X)) @ C).

19



Together with Corollary 1.11 we now get the following theorem.

3.6 Theorem. Let m+ g € Ry o(R? x R?,g; N_, N,) and let asymptotic types Q1,Q2 be
associated with g. Then for each 3,8 € R we obtain continuous operators

WIS(R x X7 W5 RY x XA)
op(g) : ® — @ )
Hs,J(IRq’CN_) Hs—p,ﬁ-—m(]Rq,CN+)
WR? x X1) W2THA—™(RE x X 1)
op(m+g) : o — o :
H”J(RQ,CN‘) Hs—p,&—m(Rq,CN+)
Further, to each Q € As(vy,0) thereisa Q' € As(y — ':/, 0), depending on m and g, such that
W5 (R x X*) W5 (RI x XA)
op(m +g) : o — &
H"'J(Rq, CN‘ ) H3—mb-m (RQ,CN"')

?ontinuously.
i

i;et 1 denote the identity operator £ — F and 1 = ( 1

0 g ) , viewed as an operator EQ F —

E & G for various spaces E, F,G.
Further let from now on g = (0,0,0). In the following we consider the algebra of operators

op(l+m+g), with m+ge Ry (R x R, g; N_, Ny).

3.7 Definition. A symbol 1+ m + g and the corresponding operator op(1 + m + g) are called
elliptic if

i) there exists an asymptotic type P with 'mCPﬂFE{_: = @ such that (1+hgo)™! € l‘-/ff,l.’o(X)1
where hgg corresponds to m via (3.10),

ii) for large |(y,7)|

]CO,O(XA) ]CO'O (XA)
(I+m+g)yn): & — &
CN- CN+

is invertible and the inverse is uniformly bounded in (y, 7).
From Theorem 3.6 and [16}, Theorem 3.10 we can conclude:

3.8 Theorem. Let A=op(l+m+g) withm+ge€ R%;’+G(]Rq x R7,g; N, Ny) be elliptic.
Then there exists a B = op(1+ m' +g') withm'+-g' € Rgf+G(Rq x R9,g; Ny, N_) such that

AB-1=op(g,), BA-1=op(g_)
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for certain g, € RE;°°’—°°(]R‘7 x R, g; Ni, N+ ). Further,

W (RT x XA W (R x X1
A & — &
H*S(RI,CN-) H*S(R?,CN+)

is Fredholm for each 3,6 € R. Let u € Wy © " ®(RI x XM @ H = ®(R?®CM-) and Au = f.
Then

a) fe WS’J(]R" x X") @ H**(R? @ CN+) implies
ue W R x XM @ HY (R @ CV-),
b) fe wgf (R? x XN) @ H**(R? @ CN+) implies the existence of a Q; € As(0, ©) such that
‘ u€ Wi (R x X) & H (R @ C-).

The Fredholmness of A is a consequence of Proposition 1.12.
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