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EFFECTIVE GLOBAL GENERATION ON VARIETIES WITH NUMERICALLY

TRIVIAL CANONICAL CLASS

ALEX KÜRONYA AND YUSUF MUSTOPA

Abstract. We prove a Fujita-type theorem for varieties with numerically trivial canonical bundle.
We deduce our result via a combination of algebraic and analytic methods, including the Kobayashi–
Hitchin correspondence and positivity of direct image bundles. As an application, we combine our
results with recent work of U. Riess on generalized Kummer varieties to obtain effective global
generation statements for Hilbert schemes of points on abelian surfaces.

Introduction

Fujita’s conjectures on global generation and very ampleness have long been a strong driving
force in birational geometry. The conjecture says that for a polarized complex manifold (X,L ),
the line bundle ωX ⊗L ⊗m should be basepoint-free if m ≥ dim(X) + 1, and very ample whenever
m ≥ dim(X) + 2. The statement is classical if dim(X) = 1, and has been verified for dim(X) ≤ 5 in
the case of global generation [Rei88,EL93,Kaw97,Hel01,YZ17]; there are also partial results for the
case of very ampleness when X is a Calabi-Yau threefold [GP98]. For arbitrary dimension, there
exist strong global generation statements due to Angehrn and Siu [AS95] and Heier [Hei02], whose
bounds are nevertheless not linear in dim(X).

While sharp for hyperplane bundles on projective spaces (for instance) Fujita’s conjecture is very
far from the truth in general. One notable class where global generation holds for much smaller
powers is that of abelian varieties. Indeed, for a polarized abelian variety (X,L ) of any dimension,
the line bundle L ⊗m is globally generated for m ≥ 2 and very ample for m ≥ 3 by a theorem of
Lefschetz. Similar statements include a result of Pareschi and Popa [PP03, Theorem 5.1] to the
effect that if (X,L ) is a polarized smooth irregular variety whose Albanese morphism is finite onto
its image, then (ωX ⊗L )⊗2 is globally generated. We mention the recent work [Rie18] on the base
locus of L ⊗2 when X is an irreducible holomorphic symplectic manifold.

Following this train of thought, we define the Fujita number fX of a given variety X as

fX
def
= min{m ≥ 1 : ωX ⊗A ⊗m

′
is globally generated for all m′ ≥ m and all ample A on X} ,

while for a smooth fibration π : X → Y we set fπ
def
= max

{
fXy : y ∈ Y

}
.

Fujita’s prediction for global generation can be phrased as fX ≤ dim(X) + 1. The examples
above suggest that fX may be rather strongly influenced by the Albanese dimension. Since there
exist non-minimal X with maximal Albanese dimension and fX ≥ dim(X) − 1 (see Example 4.1),
it is natural to restrict our attention to minimal varieties.

The main goal of our paper is an effective global generation result for minimal varieties of Kodaira
dimension zero. Recall that these are precisely the varieties whose canonical bundle is numerically
trivial, and that their Albanese maps are étale-trivial fibrations (Section 8, [Kaw85]).

Theorem A. Let X be a smooth projective variety for which KX =num 0, and let albX : X →
Alb(X) be its Albanese fibration. If L is an ample line bundle on X, then L ⊗2m is globally
generated for all m ≥ falbX .
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The closed fibers of albX have numerically trivial canonical bundles themselves (cf. Proposition
1.2), and since the Fujita numbers of such varieties can be as low as 1 or at least as high as
their dimension (see Examples 4.2, 4.3 and 4.4) the shape of Theorem A is essentially optimal
modulo Fujita’s conjecture. Fibrations over abelian varieties have recently been studied by Cao–
Păun [CP17], who proved subadditivity of Kodaira dimension in this case; their proof was recently
simplified by Hacon–Popa–Schnell [HPS16].

Our starting point is a generalization of the Lefschetz theorem for global generation of line bundles
to ample semihomogeneous vector bundles on abelian varieties (Proposition 2.7); it should be noted
that this fails without the semihomogeneity requirement (see Remark 2.8). The most involved
part of our proof of Theorem A is showing that albX∗L is a vector bundle which is ample and
semihomogeneous. Here we make essential use of the Kobayashi–Hitchin correspondence. Along
the way, we also rely on a positivity result of Berndtsson [Ber09] and Green–Laplace operator
techniques of To-Weng [TW98].

Combining our work with the aforementioned results of [Rie18] we obtain an effective global
generation result for the Hilbert scheme Hilbn(A) of length-n subschemes of an abelian surface A
which improves on the Fujita bound when n = 2.

Corollary B. If A is an abelian surface, L is an ample line bundle on A[n], and m ≥ 2, then
L ⊗2m is globally generated when n = 2 and globally generated in codimension 1 when n ≥ 3.

Returning to Fujita numbers, in rough analogy with the subadditivity of Kodaira dimension,
several classes of examples (for instance surfaces, products of varieties with no non-trivial corre-
spondences) including our main result point towards the following

Conjecture. Let X,Y be smooth projective varieties and π : X → Y a smooth fibration. Then

fX ≤ fπ · fY .

About the organization of the paper: the first section deals with the results we need about
varieties with numerically trivial canonical bundle. Section 2 is devoted to the study of semihomo-
geneous bundles both from the algebraic and analytic point of view. While the relation between
semihomogeneity and projective flatness has been mentioned in the literature (cf. [Yan89]), our
proof uses a precise formulation coming from the Kobayashi–Hitchin correspondence, so we include
all the relevant arguments here. Since many of our essential tools come from Hermitian geometry
and our main result is a purely algebro-geometric statement, we go over the associated terminology
in some detail. Section 3 contains the proofs of Theorem A and Corollary B, while the last section
contains some examples and some discussion around Fujita numbers.

Acknowledgements. We would like to thank Daniel Greb, Lawrence Ein, Stefan Kebekus, Sarah
Kitchen, Vladimir Lazić, Thomas Mettler, John C. Ottem, Mihai Pǎun, Mihnea Popa, and Julius
Ross for useful discussions related to this work. The second author was supported by the Max-
Planck-Institut für Mathematik while a substantial part of this work was done; he would like to
thank them for their hospitality and excellent working conditions.

1. Minimal Varieties of Kodaira Dimension Zero

In this section we lay out the structure of our argument up to the point where we can use semi-
homogeneous vector bundles on complex tori. We will use the following fundamental decomposition
result for compact Kähler manifolds with numerically trivial canonical class; we refer to [Bea83] for
the proof. Recall that a compact Kähler manifold Y is hyperkähler if it is simply connected and
H0(Ω2

Y ) is spanned by a symplectic 2-form, and Calabi-Yau if dim(Y ) ≥ 3, the canonical bundle of
Y is trivial, and H0(Ωp

Y ) = 0 for 0 < p < dim(Y ).



Theorem 1.1 (Beauville–Bogomolov decomposition). Let X be a compact Kähler manifold with
c1(X) = 0. Then there exists a finite étale cover ν ′ : Πd

i=1Xi → X such that every factor Xi is a
compact complex torus, a compact hyperkähler manifold, or a Calabi–Yau manifold.

Proposition 1.2. Let X be a smooth projective variety satisfying KX =num 0. Then the Albanese
fibration albX : X → Alb(X) fits into a commutative diagram

(1.1) Y ×A′ ×A′′ ν //

prA′×A′′

��

X

albX
��

A′ ×A′′
prA′ // A′

ρ // Alb(X)

where Y is a smooth projective variety satisfying KX =num 0 and q(Y ) = 0, A′ and A′′ are abelian
varieties, ν : Y ×A′ ×A′′ → X is a surjective étale map, and ρ : A′ → Alb(X) is an isogeny.

Proof. By Theorem 1.1 there exists an étale covering ν ′ : Y ×B → X where Y satisfies the claimed
properties and B is an abelian variety. Since q(Y ) = 0, we have that Alb(Y × B) = B, and the
Albanese map of Y ×B is the projection prB : Y ×B → B.

The Stein factorization of alb(ν ′) : B → Alb(X) has the form ρ′ ◦ γ, where γ : B → A′ is an
epimorphism of abelian varieties with connected kernel and ρ′ : A′ → Alb(X) is an isogeny. If
A′′ := ker(γ) then we have a diagram

A′ ×A′′ θ //

prA′

��

B

γ

��
A′

ρ′′ // A′

where θ and ρ′′ are isogenies. Letting ρ = ρ′ ◦ ρ′′ and ν = ν ′ ◦ (1Y × θ), we see that the desired
diagram (1.1) exists. �

Remark 1.3. If Y is a single point, then X is a hyperelliptic variety in the sense of [Lan01], and
Theorem 1.2 of [CI14] implies that L⊗2 is globally generated for any ample L on X, i.e. that fX ≤ 2.

2. Semihomogeneous Bundles

2.1. Algebraic Preliminaries. The main result of this subsection, which is central to our proof
of Theorem A, is Proposition 2.7, which generalizes the standard Lefschetz theorem on ample line
bundles to ample semihomogeneous vector bundles. Let A be a complex abelian variety.

Definition 2.1. A vector bundle E on A is semihomogeneous, if for every a ∈ A there exists a line
bundle L such that

(2.1) t∗aE ' E ⊗L

where ta : A→ A stands for translation by a. If L ∼= OA in (2.1) we say that E is homogeneous.

Note that in this definition we must necessarily have L ∈ Pic◦(A). We now collect some funda-
mental facts about semihomogeneous bundles from [Muk78]

Proposition 2.2 (Propositions 6.17 and 6.18, [Muk78]). Let E be a semihomogeneous bundle on
A. Then

(1) for any semihomogeneous bundle F on A, we have that E ⊗F is semihomogeneous.
(2) there exist simple semihomogeneous bundles E1, · · ·Es and indecomposable unipotent bundles

U1, · · · ,Us on A such that

E ∼=
s⊕
j=1

Ej ⊗Uj .



Moreover, for each j ∈ {1, · · · , s} there exists αj ∈ Â such that Ej ∼= E1 ⊗ αj .

Proposition 2.3 (Propositions 6.13 and 6.16, [Muk78]). If E is a semihomogeneous bundle on A,
and H is an ample divisor on A, then E is µH-semistable, and is µH-stable if and only if E is
simple.

Proposition 2.4 (Theorem 5.8 and Proposition 7.3, [Muk78]). Let E be a simple vector bundle on
A. Then the following are equivalent.

(1) E is semihomogeneous.
(2) There exists an abelian variety A′, an isogeny p : A′ → A and a line bundle L on A′ such

that E ∼= p∗L .
(3) There exists an abelian variety B along with an isogeny σ : B → A and a line bundle M on

B such that σ∗E ∼= M⊕r, where r = rk E .

Proposition 2.5 (Proposition 5.4, [Muk78]). Let A′ and A′′ be abelian varieties, and let π′ : A′ → A
and π′′ : A′′ → A′ be isogenies. If E is a vector bundle on A′, then all three of the vector bundles
E , π′∗E , π

′′∗E are semihomogeneous if and only if one of them is semihomogeneous.

Lemma 2.6 (Chern classes of semihomogeneous bundles). Let E be a semihomogeneous vector
bundle on the abelian variety A. Then it has the total Chern class of a direct sum, that is,

c(E ) =

(
1 +

c1(E )

r

)r
with r = rk E .

Proof. Assume first that E is simple. Then Proposition 2.4 yields the existence of an isogeny
σ : B → A such that σ∗E ∼= M⊕ rk E for a line bundle M on B. Then

c(σ∗E ) = c(M⊕r) = (1 + c1(M ))r =

(
1 +

c1(σ
∗E )

r

)r
.

By the projection formula for finite flat morphisms, we then have

deg σ · c(E ) = σ∗c(σ
∗E ) = σ∗

(
1 +

c1(σ
∗E )

r

)r
= deg σ ·

(
1 +

c1(E )

r

)r
from which (2.6) follows at once for simple semihomgeneous bundles.

Dropping the simplicity assumption, let E now be an arbitrary semihomogeneous bundle. By
Proposition 2.2, there exists a simple semihomogeneous bundle E1, topologically trivial line bundles
αj , and unipotent bundles Uj such that

E ∼=
s⊕
j=1

E1 ⊗ αj ⊗Uj .

Since c(Uj) = c(αj) = 1 for all j, we have from the previously established case of simple bundles
that

c(E ) =

s∏
j=1

c(E1 ⊗ αj ⊗Uj) =

s∏
j=1

c(E1)
rkUj =

s∏
j=1

(
1 +

c1(E1)

rk E1

)rkUj

=

(
1 +

c(E1)

rk E1

)rk E

,

and by c(E1)
rk E1

= c(E )
r the proof is complete. �

Proposition 2.7 (Effective global generation of ample semihomogeneous bundles). Let E be an
ample semihomogeneous bundle on A of rank r ≥ 1, and let m ≥ 2 be an integer. Then E ⊗m is
globally generated. In particular, Symm(E ) is globally generated.



Proof. By Proposition 2.2, the indecomposable summands of E ⊗m are all of the form U ′ ⊗ Ej1 ⊗
· · ·⊗Ejm for U ′ unipotent and Ej1 , · · · ,Ejm simple and semihomogeneous. Given that an extension
of ample globally generated semihomogeneous bundles on an abelian variety is globally generated,
we are reduced to considering Ej1 ⊗ · · · ⊗ Ejm . By Proposition 2.2 (ii), we have Ejk

∼= Ej1 ⊗ αk for

some αk ∈ Â for all 2 ≤ k ≤ m. If α′ is any m-th root of α2 ⊗ · · · ⊗ αm, then

Ej1 ⊗ · · · ⊗ Ejm
∼= (Ej1 ⊗ α′)⊗m .

We may therefore assume without loss of generality that E is simple.
Let σ : A′ → A be an isogeny and let L be an ample line bundle on A′ such that E ∼= σ∗L . We

have that

σ∗(E ⊗m) ∼= (σ∗σ∗L )⊗m ∼= (⊕x∈ker(σ)t∗xL )⊗m

It then follows from the standard result for ample line bundles on abelian varieties that σ∗(E ⊗m) is
globally generated. The direct image under σ of the evaluation map of σ∗(E ⊗m) is then a surjective
morphism

H0(σ∗(E ⊗m))⊗OA
σ∗OA′ → σ∗σ

∗(E ⊗m) ∼= (E ⊗m)⊗OA
σ∗OA′

Since this map is canonical, it can be obtained by tensoring σ∗OA′ with the composition

(2.2) H0(σ∗(E ⊗m))⊗ OA
∼= H0(E ⊗m ⊗ σ∗OA′)⊗ OA → H0(E ⊗m)⊗ OA → E ⊗m

where the first arrow is induced by the trace and the second map is the evaluation map of E ⊗m.
Since σ∗OA′ is a sheaf of faithfully flat OA−algebras, the map (2.2) is surjective; thus E ⊗m is
globally generated as claimed. �

Remark 2.8. The global generation of Sym2E can fail when E is not semihomogeneous. For semiho-
mogeneous bundles, ampleness is equivalent to being I.T. of index 0 (cf. [KM18, Proposition 2.6]).
Example 3.4 of [PP08] exhibits vector bundles E and F on a principally polarized abelian variety
(A,Θ) such that E ⊗ F is not globally generated and E,F are both I.T. of index 0; it follows that
Sym2(E ⊕ F )—which contains E ⊗ F as a direct summand—is not globally generated, although
E⊕F is I.T. of index 0. Since E and F can be shown to have different slopes with respect to Θ, their
direct sum E ⊕ F is not slope-semistable with respect to Θ, and is therefore not semihomogeneous
by Proposition 2.3.

Remark 2.9. Every abelian varietyA admits an ample semihomogeneous bundle which is not globally
generated. Indeed, let ρ : A′ → A be an isogeny for which A′ admits a principal polarization Θ,
and note that the ample semihomogeneous bundle ρ∗Θ fails to be globally generated.

2.2. Kobayashi–Hitchin correspondence for semihomogeneous bundles. Our goal here is
to show that on an abelian variety, semisimple semihomogeneous bundles are precisely the vector
bundles which admit a projectively flat Hermitian structure.

Recall that if X is a compact complex manifold and E is a vector bundle on X, a projectively flat
connection ∇ on E is a connection whose associated curvature form is γ · Idr, where γ is a 2-form on
X. A vector bundle E is projectively flat precisely if it supports a projectively flat connection (see
[Kob87, I. Corollary 2.7]), while E is said to admit a projectively flat Hermitian structure (which we
call PFHS for short) if there exists a Hermitian metric h on E whose associated Chern connection
is projectively flat.

We begin with an Appell-Humbert-type characterization of bundles on complex tori which admit
a PFHS. In this subsection we let X = V/Λ be a complex torus unless otherwise mentioned.

Proposition 2.10. Let H : V × V be a Hermitian form such that Im(H) is Z−valued on Λ × Λ,
and let G be a unitary semirepresentation of Λ associated to H, i.e. a map G : Λ→ U(r) satisfying

G(λ1 + λ2) = G(λ1) ·G(λ2) · exp

(
πi

r
· Im(H(λ1, λ2))

)



for all λ1, λ2 ∈ Λ. Define J : V × Λ→ GL(r,C) by

(2.3) J(v, λ)
def
= G(λ) · exp

(
π

r
H(v, λ) +

π

2r
H(λ, λ)

)
Then there exists a PFHS bundle E (G,H) of rank r on X whose space of holomorphic (resp.
C∞) global sections of E (G,H) is isomorphic to that of the holomorphic (resp. C∞) vector-valued
functions f : V → Cr satisfying

f(v + λ)
def
= J(v, λ) · f(v)

Moreover, every PFHS bundle of rank r on X is isomorphic to E (G,H) for some G and H as
above.

Proof. See [Yan89, Section 5] or [Kob87, IV. Theorem 7.54]. �

Lemma 2.11. Let X be a complex torus, E a vector bundle on X. If E is PFHS, then it is
semihomogeneous.

Proof. By Proposition 2.10 we can assume that E = E (G,H). Let x ∈ X be arbitrary, then the

expression Jx(v, λ)
def
= J(v + a, λ) for any a ∈ V mapping to x ∈ X yields a factor of automorphy

for T ∗xE by [Yan89, Lemma 4.2]. It follows that

Jx(v, λ) = J(v, λ) · exp
(
π ·H

(a
r
, λ
))
.

Since the second factor gives a factor of automorphy for a topologically trivial line bundle, E is
indeed semihomogeneous, hence (3) implies (1). �

Definition 2.12 (cf. [LT95], Definition 2.1.1). A Hermitian metric h on a holomorphic vector
bundle E on X is Hermitian-Einstein with respect to a Kähler metric g on X if its curvature form
Fh is of type (1, 1) and satisfies the identity

iΛgFh = λh · IdE

where λh ∈ R and Λg is the contraction operator associated to g.

We include the following fact for lack of a suitable reference.

Lemma 2.13. With notation as above, let E be a vector bundle of rank r on a compact Kähler
manifold (X, g) equipped with a PFHS metric h. Then E admits a metric that is Hermitian–Einstein
with respect to g.

Proof. By definition the curvature form Fh is a (1, 1)-form multiplied by the identity. Contracting
the associated (1, 1)-form by a Kähler form yields a pure-imaginary-valued smooth function γh on
X. Since X is compact, Lemma 2.1.5, (i) of [LT95] implies that h can be rescaled to yield a metric
on E which is Hermitian-Einstein. �

Theorem 2.14 (Kobayashi–Hitchin correspondence). A holomorphic vector bundle E on a compact
Kähler manifold (X, g) admits a metric that is Hermitian–Einstein metric with respect to g if and
only if E is polystable with respect to g.

For proofs we refer the reader to the original articles [Don83,Don87,UY86] or the monograph [LT95].

Theorem 2.15 (Kobayashi–Hitchin correspondence for semihomogeneous vector bundles). Let X
be an abelian variety, and let E be a vector bundle of rank r on X. Then the following are equivalent:

(i) E is semihomogeneous and semisimple.
(ii) E admits a PFHS.



Proof. (i) ⇒ (ii): Since E is semihomogeneous, Proposition 2.3 implies that it is semistable with
respect to an arbitrary polarization. It is also semisimple, so each direct summand of E is slope-
stable with respect to any polarization. Fix a polarization H on X with associated Kähler metric g.
By the Kobayashi–Hitchin correspondence each direct summand of E admits a g-Hermitian-Einstein
metric, so E itself admits a g-Hermitian-Einstein metric h as well. Lemma 2.6 gives that the total
Chern class of E is

c(E ) =

(
1 +

c1(E )

r

)r
.

In particular, the Chern classes of E satisfy

(r − 1)c1(E )2 − 2rc2(E ) = 0 .

We have just shown that E attains equality in Corollary 2.2.4 of [LT95], hence the Chern con-
nection associated to (E , h) is projectively flat, and therefore the metric h is PFHS as required.

(ii) ⇒ (i): Given that E admits a PFHS, it is a vector bundle of the form E (G,H) as in
Proposition 2.10, as a consequence E is semihomogeneous by Lemma 2.11. By Lemma 2.13 it
admits an Hermitian–Einstein metric as well. Consequently, E is polystable by the Kobayashi–
Hitchin correspondence, and therefore semisimple. �

Combining Theorem 2.15 with the Green’s operator method as used by To–Weng [TW98], we
obtain a crucial technical consequence.

Theorem 2.16. Let A,B be complex tori, and let L an ample line bundle on A×B. Then (prB)∗L
is a semihomogeneous vector bundle.

Proof. Since the restriction L |Ab
to every fibre is ample, Mumford’s index theorem yields the

vanishing of all higher cohomology of LAb
for all b ∈ B. Therefore Grauert’s theorem implies that

(prB)∗L is indeed locally free.
As L is an ample line bundle, it will carry a PFHS metric (for instance by 2.15), and so satisfy

the criteria of [TW98, Theorem 2]. This then implies that (prB)∗L will also admit a PFHS metric,
and therefore will be semihomogeneous by Theorem 2.15. �

2.3. Positivity of semihomogeneous bundles. Here we will show that for semihomogeneous
vector bundles ampleness is in fact equivalent to supporting a Nakano-positive hermitian metric.

Recall that a hermitian metric h on a holomorphic vector bundle E is Nakano-(semi)positive if a
certain hermitian form on TX ⊗ E canonically associated to the curvature form Θh of h is positive
(semi)definite; we refer to Chapter VI of [SS85] or Chapter VII, §6 of [Dem] for the precise definition
and further discussion. The properties of Nakano positivity that we will need are given below.

Theorem 2.17 (Vanishing for Nakano-positive vector bundles). Let E be a holomorphic vector
bundle on X which admits a Nakano-positive hermitian metric. Then for all i > 0 we have that
H i(ωX ⊗ E ) = 0.

Proof. See [Dem, Chapter VII, Corollary 7.5] for instance. �

We now specialize to semihomogeneous bundles. The following result plays a role in the afore-
mentioned proof of Proposition 2.10 given in [Yan89].

Proposition 2.18. Let E ∼= E (G,H) be a vector bundle of rank r on an abelian variety A = V/Λ.
Then

(1) the matrix-valued function

h(v)
def
= exp

(
−π
r
·H(v,v)

)
· Idr



gives a Hermitian metric on E ,
(2) the curvature form Ωh of the Chern connection associated to (E , h) is given by

Ωh(v) =
π

r
∂∂H(v,v) · Idr .

In particular, c1(E ) = c1(det(E )) is represented by the (1, 1)-form tr(Ωh(v)) = π∂∂H(v,v).

Proof. Consider

J(λ, v) = G(λ) · exp

(
π

r
H(v, λ) +

π

2r
H(λ, λ)

)
where G : Λ → U(r) is a unitary semi-representation for H. (1) Consider the pairing on vector-
valued C∞ global sections of E given by

(2.4) 〈f ,g〉(v) = f(v)?h(v)g(v)

To show that (1) yields a hermitian metric on E as claimed, it suffices to show that this pairing is
Λ-periodic. Let v ∈ V and λ ∈ Λ be given. By (2.3) we have

J(λ,v)?J(λ,v) = exp

(
π

r
· (2 · Re(H(v, λ)) +H(λ, λ))

)
· Idr

We then have

〈f ,g〉(v + λ) = exp

(
−π
r
·H(v + λ,v + λ)

)
· f(v + λ)?g(v + λ)

= exp

(
−π
r
· (H(v,v) + 2 · Re(H(v, λ)) +H(λ, λ))

)
· f(v)?J(λ,v)?J(λ,v)g(v)

= exp

(
−π
r
·H(v,v)

)
· f(v)?g(v) = 〈f ,g〉(v).

The curvature computation in (2) and the formula for the first Chern class follow immediately from
(1) since Ωh(v) = −∂∂ logH(v,v) in our case. �

Proposition 2.19. Let E = E (G,H) be a simple semihomogeneous vector bundle of rank r on an
abelian variety A of dimension g ≥ 1. Then the following are equivalent:

(i) The Hermitian form H is positive definite.
(ii) The Hermitian metric h on E given by (1) is Nakano-positive.

(iii) E is ample.

The proof of the special case r = g = 2 of this result is essentially contained in the proof of
[Ume73, Theorem 3.2].

Proof. (i)⇒(ii): Since H is positive definite and ampleness coincides with Nakano-positivity in
the line bundle case, we have from Proposition 2.18 (ii) that the hermitian metric given by (1) is
Nakano-positive as claimed.

(ii)⇒(iii): This follows from Theorem 6.30 in [SS85].
(iii)⇒(i): If E is ample, then det(E ) is ample, and c1(det(E )) is represented by π∂∂H(−,−)

according to (ii) of Proposition 2.18. But then [BL04, Proposition 4.5.2] implies that H is positive
definite. �

Corollary 2.20. If E is a semihomogeneous bundle, then E is ample if and only if E admits a
Nakano-positive hermitian metric.

Proof. It suffices to show that ampleness of our semihomogeneous bundle E implies the existence
of a Nakano-positive hermitian metric. Since the property of having a Nakano-positive hermitian
metric is preserved under extension [Ume73, Lemma 2.2] and the case when E is simple follows
from Proposition 2.19, the general case follows from Proposition 2.2. �



In studying direct image bundles we will make essential use of the following result of Berndtsson
[Ber09] (see also the main result of [MT08] for a generalization).

Theorem 2.21 ([Ber09], Theorem 1.2). Let f : X → Y be a smooth surjective morphism of compact
Kähler manifolds, L an ample line bundle on X. Then f∗(ωX/Y ⊗L ) is locally free and admits a
Nakano-positive Hermitian metric.

3. Proofs of Theorem A and Corollary B

Before proceeding to the proof of our main result, we make a brief detour to discuss the use of
fibrations in ensuring global generation. The statements below are surely known to experts, we
include them for the sake of completeness and the lack of a precise reference.

Lemma 3.1. Let f : Y → Z be a morphism of projective varieties, E a vector bundle on Y . Assume
furthermore that the adjunction map f∗f∗E → E is surjective.

(1) If Symm(f∗E ) is globally generated for some positive integer m then so is Symm E .
(2) If ωZ ⊗ f∗(ωY/Z ⊗ E ) is globally generated then so is ωY ⊗ E .

Proof. For (1), the adjunction morphism is surjective, so the same is true of the induced map
Sym2(f∗f∗E )→ E ⊗2. It follows that the composition

f∗(Sym2f∗E ) ' Sym2(f∗f∗E )−→E ⊗2

is surjective as well. As f∗(Sym2f∗E ) is globally generated by assumption, we have that E ⊗2 is
globally generated as claimed. Part (2) follows by a similar argument using the projection formula

f∗(ωY ⊗ E ) ∼= f∗(ωY/Z ⊗ f∗ωZ ⊗ E ) ∼= ωZ ⊗ f∗(ωY/Z ⊗ E ) ,

and the surjectivity of the adjunction map. �

Remark 3.2 (Variant for continuous global generation). The above statements have natural coun-
terparts in the setting of continuous global generation (cf. [PP03]). Here is an example. Let Y ,Z
be projective varieties, Z irregular, f : Y → Z be an arbitrary morphism of varieties. Let F be a
coherent sheaf, L a line bundle on Y . Assume that

(1) f∗F and f∗L are continuously globally generated;
(2) the adjunction morphisms f∗f∗F → F and f∗f∗L → L are surjective.

Then F ⊗L is globally generated.
Indeed, this is a slight variation of [PP03, Proposition 2.12]. Due to loc. cit. applied to the

identity morphism of Z, the sheaf f∗F ⊗ f∗L is globally generated. This implies that

f∗f∗F ⊗ f∗f∗L ∼= f∗(f∗F ⊗ f∗L )

is globally generated as well. By the surjectivity of the adjunction morphisms in (2), the tensor
product

f∗f∗F ⊗ f∗f∗L
⊗−→ F ⊗L

is surjective, too. Therefore F ⊗L is globally generated as promised.

Theorem 3.3. Let X be a minimal variety of Kodaira dimension zero, and let L be an ample line
bundle on X such that Bs |La| is of codimension k in Xa for all a ∈ Alb(X). Then Bs |L ⊗2| is of
codimension k in X.

Proof. Consider the diagram (1.1) from Proposition 1.2

(3.1) Y ×A′ ×A′′ ν //

prA′×A′′

��

X

albX
��

A′ ×A′′
prA′ // A′

ρ // Alb(X) .



Define F1
def
= (prA′×A′′)∗ν

∗L . Since ν∗L is ample and there are no non-trivial correspondences
between Y and A′ × A′′, ν∗L = M1 � M2 for ample line bundles M1 on Y and M2 on A′ × A′′.
Pushing forward via the projection to A′ ×A′′ yields

F1
∼= (prA′×A′′)∗(M1 � M2) ∼= ((prA′×A′′)∗(prY )∗M1)⊗M2

∼= H0(Y,M1)⊗M2 ,

Since M2 is ample, F2
def
= (prA′)∗F1 is an ample semihomogeneous bundle on A′ thanks to

Theorem 2.16 and Theorem 2.21. The morphism ρ : A′ → Alb(X) is an isogeny, so ρ∗F2 is an
ample semihomogeneous vector bundle on Alb(X). By the commutativity of the diagram (3.1),

ρ∗F2
∼= (albX)∗(ν∗ν

∗L ) ∼= (albX)∗(L ⊗ ν∗OY×A′×A′′) .

As ν is finite and étale, ν∗OY×A′×A′′ ∼= OX ⊕ G for a vector bundle G on X, therefore

ρ∗F2
∼= (albX)∗L ⊕ (albX)∗(L ⊗ G ) .

Being a direct summand of an ample semihomogeneous vector bundle, (albX)∗L is ample and semi-
homogeneous itself. Consequently, Sym2(albX)∗L is globally generated thanks to Proposition 2.7.

Our assumption on the base loci of the La implies that the map (albX)∗(albX)∗L → L is
surjective away from a subset of codimension k, so the same is true of its symmetric square

Sym2((albX)∗(albX)∗L )→ L ⊗2

It follows that Bs |L ⊗2| is of codimension k in X as desired. �

Finally, we prove our main result.

Proof of Theorem A: Upon replacing L by L ⊗m for a positive integer m ≥ fπ we can assume
without loss of generality that La is globally generated for all a ∈ A; the adjunction map associated
to the fibration π is then surjective. Applying Theorem 3.3 to L and π, we obtain from Lemma
3.1 that L ⊗2m is indeed globally generated. �

We now turn to Corollary B. If A is an abelian surface, the Hilbert scheme Hilbn(A) parametrizing
length-n subschemes of A is smooth, projective, and has trivial canonical bundle (see [Bea83] for
instance); in particular, it satisfies the hypothesis of Theorem A.

Proof of Corollary B : Consider the natural map κn : Hilbn(A) −→ A defined by composing the

Hilbert-Chow morphism to the symmetric product A(n) with the addition map from A(n) to A. The
fiber of κn over each closed point of A is isomorphic to the generalized Kummer variety Kumn−1(A),
which is a compact hyperkähler manifold (cf. [Bea83]) and thus simply connected. It follows that
κn is the Albanese map of Hilbn(A).

By [Rie18, Corollary 4.9] we have that for any ample line bundle L on Kumn−1(A), the tensor
square L ⊗2 is globally generated in codimension 1. Corollary B then follows from Theorem 3.3 and
the fact that Kum1(A) is a K3-surface, so that fKum1(A) ≤ 2. �

4. Examples and Complements

The material in this section will hopefully illuminate, and point towards extensions of, the effective
global generation phenomenon discussed earlier in the paper. First we highlight the importance of
our earlier minimality hypothesis on X.

Example 4.1. Let A be an abelian variety of dimension n ≥ 2, let φ : Ã → A be the blow-up of a

point p ∈ A with exceptional divisor E ∼= Pg−1, and let L be an ample line bundle on Ã such that

L|E ∼= OE(1). To see that such an L exists, first consider that if φ′ : P̃N → PN is the blow-up at
p′ ∈ PN with exceptional divisor E′ ∼= PN−1, and H ′ is the pullback of the hyperplane class on PN
via φ′, then there exists m′ > 0 such that L′ := m′H ′ − E′ is ample and L′|E′ ∼= OE′(1). It follows

that if we take an embedding of A in PN which maps p to p′, the desired line bundle L on Ã can

be taken as the restriction of L′ to Ã in the induced embedding Ã ⊂ P̃N .



Since K
Ã

= (n− 1)E and K
Ã
|E ∼= OE(1− n), we have for all m ≥ 1 that

(4.1) (K
Ã

+mL)|E ∼= OE(m+ 1− n)

hence for KX +mL to be globally generated one must have m ≥ n− 1. In conclusion, f
Ã
≥ n− 1

even though Ã has maximal Albanese dimension.

Example 4.2. There exists for each g ≥ 1 an abelian variety A of dimension g such that fA = 1.
By [Gar06] or [DHS94], there exists a primitive polarization type d such that for a very general
member (A,L) of the moduli space Ag(d), any line bundle on A algebraically equivalent to L is
globally generated. We can also take (A,L) to be sufficiently general so that NS(A) is generated by
c1(L). For all such A, we have that fA = 1 as desired.

Example 4.3. There exists for each odd integer n ≥ 3 a Calabi-Yau manifold X of dimension n
with fX ≥ n + 1. One such X is a general smooth hypersurface of degree 2n + 2 in the weighted
projective space P(1n, 2, n+ 2); see Example 3.2 in [Kaw00] for details.

Example 4.4. If X ⊆ PN is a smooth hypersurface of degree d ≥ 2 when N ≥ 4, or a very
general hypersurface of degree d ≥ 4 when N = 3, then Pic(X) is generated by OX(1) and ωX ∼=
OX(d−N − 1); therefore fX = max{1, N + 1 − d}. In particular, fX = 1 for the Calabi-Yau case
d = N + 1.

We now estimate fX in some low-dimensional cases.

Example 4.5. If dimX = 1, then ωX ⊗A ⊗2 is globally generated for every ample line bundle A , so
that fX ≤ 2. At the same time, if P ∈ X is a point and A = OX(P ) the divisor ωX ⊗A is never
globally generated, hence fX = 2.

Example 4.6. When dimX = 2, Reider’s theorem implies fX ≤ 3. However, if we assume further
that X is a minimal surface of Kodaira dimension 0, Reider’s theorem implies fX ≤ 2.

Example 4.7. If X is a surface which admits a smooth fibration f : X → C over a curve C, the
preceding examples imply that fX ≤ 3 < fπ · fC .

Based on these examples and Theorem A, we offer the following conjecture.

Conjecture 4.8 (Fujita numbers in fibrations). Let X,Y be smooth projective varieties and π : X →
Y a smooth fibration. Then fX ≤ fπ · fY .

If this holds, then L ⊗2m can be replaced by L ⊗fAlb(X)·m in the statement of Theorem A. Com-
paring Remark 2.9 with the proof of Theorem 3.3, it seems unlikely that the case of Conjecture
4.8 where KX =num 0, π = albX and fAlb(X) = 1 can be addressed with the methods of this paper
alone.
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