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Abstract

Let Ky be the self-adjoint generator of a Feller semi-group in L?(E, m),
let V be a Kato-Feller potential and let £ be an appropriate open subset
of the locally compact second countable Hausdorff space E. Conditions
are given in order that differences of {(powers) of resolvents of the form
ng-}—Ko-{'-V)"q —J*(al+(Ko+V)g)~9J are Hilbert-Schmidt operators.

ere Jf is the restriction of the function f to & and J*g extends the
function with 0 on the complement of £. The operator (Ky+V )g is the
generator of the Dirichlet semigroup in L?(E,m) generated by Ko+V,
but killed on the complement of ¥.
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ON DIFFERENCES OF GENERALIZED SCHRODINGER SEMIGROUPS:
HILBERT-SCHMIDT PROPERTIES

1. INTRODUCTION AND EXAMPLES

The main purpose of this paper is an exhibition of a number of conditions, guar-
anteeing that certain differences of generalized Schrédinger semi-groups consist of
Hilbert-Schmidt operators. We will not only consider so-called regular perturba-
tions, but also singular ones. This kind of properties has some spectral theoretical
consequences like stability of the essential spectrum. In what follows we give some
examples to which our results are applicable. For this reason we mention the kind of
operators that generate (self-adjoint) Feller semi-groups in spaces of the form Coo(E)
or L2(E, m), where E is a locally compact second countable Hausdorff space. The
formal definition of Feller semi-group will be given in BASSA, section 2.

EXAMPLE 1. Certain operators Ky of the form

1 — 8% ~ 8
Ky =—= . —_— E (2)=— + 1.1
0 2 “"(z)az,-az,- = bJ(x)B:r:J- z) (1.1)

i,y=1

generate self-adjoint semi-groups in L2(R¥); for details and conditions to be imposed
see Kochube¥ [46, Theorem 2.].

Under some appropriate assumptions the operator Ky generator gemerates a
Feller semi-group and hence a Markov process

{(Q,7,P2),(X(t): £ 20),(d: : £ 20),(E, )}

with state space E = R”. Moreover the one-dimensional distribution P {X(t) € A)
are given by P (X(t) € A) = [, po(t,2,y)dy. If ¢ = 0 and the functions a;; and
bj, 1 < 1,7 < v are uniformly bounded then the corresponding Markov process has
infinite lifetime. If the coefficients (ai;) are unbounded, then the corresponding heat
kernels cannot be estimated in terms of the classical Gaussian kernel, see {21, Example
2.14]. On the other hand we do have po(t,z,y) < Ct=*/? for all t > 0 and for all z
and y in R”. In [69] Taira considers operators of the form (1.1) on (open) subsets of
R”, but now with boundary conditions (Neumann, Dirichlet, Wentzell).



In the following two examples we consider relativistic Hamiltonians, which were
introduced by Ichinose (see e.g. [31, 32, 33, 34, 35]). For systems without electro-
magnetic fields we use the notation of Carmona, Masters and Simon [9].
EXAMPLE 2. The present example is taken from Carmona, Masters and Simon (9].
Let 4 be non-negative measure on R¥ with the property that fﬁ, min (1, |z|2) du(z) <
00, let a and b be a vector in R and let C be a square v X v matrix. In addition let
h : R — R¥ be a function of compact support with the property that h(z) = z for all

z in a neighborhood of the origin. Define the negative-definite function F' : R¥ — R*
by

F(p)=a+tbp+p.Cp—- . [ei"‘ -1 —ip.h(z)} du(z). (1.2)

Then there exists a generator K of a semi-group {exp (—tKjp) : ¢t > 0} with the prop-
erty that exp(—tKj) is given by

[exp(=to)f1(2) = [ f(z+9)dma(y), (13)

where f belongs to Coo(R”). Here the family {m,:t 2 0} is a vaguely continuous
convolution semi-group of probability measures on RY with the property that the
Fourier transform m; of m, is given by m;(p) = exp (—tF(p)), p € R¥. I, in addition
the integrals [, exp(—tF(p))dp are finite, then the function po(t,z,y) defined by

plt2,9) = o [ exp(~tF(p) +indz - p) dp (14)

defines the density of the corresponding Markov process. In case F(p) = |p|", 0 <
a < 2 (stable case), the following inequalities can be proved:

C1
v/ |z - y|

C2
i |z _ ylu-{-a ’

if @ # 2. In particular, if F(p) = \/p? + m? —m, m fixed, then Ky = V=A + mZ—m.
In this case the density is given by

polt,z,y)

= (23‘,), ﬁ f' exp (mt - \/(lx - y|2 + t’) (p? +m2)) dp. (1.6)
z-y|° +

= /0°° exp((::u;uzzzu) exp (_ |z ;uy|2) _ tuﬂ exp (_£> du. (1.7)

The previous results can be generalized for negative definite functions F defined on
a locally compact, second countable, abelian group G. In that case the variable p



varies over the dual group. It is also noticed that these results fit in the theory of
Lévy processes.

EXAMPLE 3. The following example is related to the previous one and can be found
in Ichinose [30]. Let the Lévy measure u™ be defined by the equality:

VETmi=m- / exp(ipz) ~ 1 — ipylp(@)] du™(y).  (18)
{lyj>0}

Here B = {y € R” : |y| < 1}. An explicit form of these measures is given by

dp™(y) =2 e (mlyl)d m >0 (1.9)
= K, m , .
v+1 1
=T dy, m=0. 1.10
( 2 ) (m lyl)y-H Y ( )

Here I'(z) is the gamma function and K,(z) is the modified Bessel function of the
third kind of order r. Let A : R¥ — RY be a locally bounded function with the
property that the function

. j |A(z —y/2) - A(x)ldy (L11)
{o<|yl<1} lyl”

is also locally bounded. Define the Weyl quantized relativistic Hamiltonian H}' via
the formula (B, = {y e RV : |y| < 1}):

(HZ fl(z) — mf(z) (1.12)
= /{[ 503 [exp (—iyA(z + y/2)) f(z + y) — f(z) — 1B,(y)y (8: — iA(z)) f(=)]du™(y).

Under suitable conditions on A, the operator HT is the following pseudodifferential
operator:

(HY f](z) — mf(z)
= (2_111-?//';”‘“’ exp (i(z — y).p) AT (P, I—;—y) f(y)dydp, (1.13)

where A} is the function

alpz) = \/(;— A(z))*+m?, peR’ zeR" (1.14)

The operator Ky = HT — ml! is than the self-adjoint generator of a strongly continu-
ous semi-group in LZ(R"). Let the density function py(t, z,y) be as Example 2. Then



the integral kernel of the operator exp(—t(HY — ml)) is given by the imaginary
path integral

exp(—t(HY —mI)}(z,y) = lf'ga E: (exp(—S5(s)) po(t — 8, X(s),9)) .

Here {(Q,F,P.),(X(#):t20),(J9¢:t > 0),(E, )} is the Markov process generated
by HJ® — mI, with state space E = R” and with transition density po(t,z,y). The
process S(t) is given by

s =i [ [, ACK) +u/2) uix(dsa)
ti /0 ] oy X +9/2) s (dsdy)
i / / [A(X(s) + y/2) — A(X(s))) .y N (dady)
0 Jo<lyj<1
i / / A(X(s=) +y/2) .y Nx(dsdy)
ly|>0

/ f oy AX() +3/2) = AX(0))] y R (dady)

and here the random measures Nx, Nx and Nx are respectively given by

Nx((tn,t2] x U) =#{s € (t1, t2] : X(8) # X(s-), X(s)—-X(s—)€U};
Nx(dsdy) = Nx(dsdy) — N(dsdy);
Nx(dsdy) = Eo (Nx(dsdy)) = dsdu™,

where 0 < t; < t; and where U is a Borel subset of R” \ {0}. For more details see
Ichinose {34]. :

EXAMPLE 4. This example is due to N. Jacob [38, 40]. Let p: R xR* - R be a
continuous function such that for fixed ¢ € R¥ the function z — p(z,§) is a bounded
C®-function with bounded derivatives of all orders. Suppose that for fixed z € R?,
the function £ — p(z, £) is negative definite. In addition we assume that there exists
a continuous negative function a : R — R such that, for some 0 < r < 2,

rf2
coct (1+KF) " Sa(1+a©)?) <p(z,8) e (L +a(©). (115)
Define the Sobolev spaces H?**(R"), ¢ > 0, as follows:
H9*(R) = {u € LX(R") : |lull, , < oo}, (1.16)



where |||, , 15 given by:

qla

Il = (0 aler)" i de. (117

If a(¢) = €], then we just write H9(RY) instead of H%*(R*) and ||- fl, replaces |-l ;
Put H*(R") := g5, HI(R*) and let the pseudodifferential opemtor p(z, D) be
defined by

1

(211_)11/2

Again under some appropriate assumptions the operator —p(z, D) generates a Feller
semi-group in Co(RY). If, in addition, the inequality

[p(z, D)u] (z) =

[ =4z a(0de (118

lullz, <e (Eo(u,u) + co llullﬁ) , u € dom(&), (1.19)

holds for some ¢ > 2 and some constants ¢ and cg, then the associated Markov process
M= {(Q,F,P:),(X(#):t20),(d,:t>0),(E,£)}, where E = R¥, possesses the
following property. There exists a Borel set N of capacity zero such that RY \ NV is
M-invariant and such that:
(i) The resolvent kernel R(A)(z,-) is absolutely continuous with respect to the
Lebesgue measure for every A > 0 and for each z € R \ N.
(ii) The transition function exp(tL)(z,-) is absolutely continuous with respect to the
Lebesgue measure for every ¢ > 0 and for each z € R \ N.
Here L = p(z, D) and &, is the corresponding Dirichlet form:

£0(u,v) = lim (u,v) = (e’t‘P(’L)"’”), u,v € dom(&p). (1.20)

Here u belongs to dom(&,) if and only if the limit in the right-hand side of (1.20)
exists with v = u.

EXAMPLE 5. It is perhaps interesting to recall Theorem 10.3. in Ikeda and
Watanabe [37], stating that under appropriate conditions (boundedness of cer-
tain vector fields V;, 0 < j < v, and Hormander’s hypo-ellipticity condition)
the P.-distribution of the solution (X(¢) : t > 0) of the stochastic differential
equation dX(t) = o(X(t))dB(t) + b(X(t))dt, X(0) = z, defines a Markov pro-
cess {(2,F,P;),(X(t):t>0),(9,:t>0),(E,E)} with the property that, for ev-
ery compact subset K, there exists a constant Cg such that, for appropriate
n, [1xP(t)l; o < Ckt™™/%, t > 0. To make this precise we write Vi(z) =

v a
L= oi(z)g— k=1,...,v, and

1

Vo(z) = Z bi{x) — :12 Z z %U:k(g’)aﬂ(z) Bz

=1 k=1 j=1



The above stochastic differential equation can be rewritten as follows:

{dX = YU V(X($)dBi(t) + Va(X (1) dt,
X(0) = =.

Define for V a vector field on R” the vector fields (V},, V), k=1,...,v, by (V},,V) =
[Vk, V] and define (V4, V) by
1 v
(Vo, V) = [Vo, V] + 5 ;[Vu Ve, V1]
The subsets of vector fields £,,, n € N, are given by &p = {V},V2,...,V,} and, for
n 21, X, is given by

T, ={(ViaV): V €Sar, k=0,1,...,0}.

The vector fields are Vi, k = 0,1,...,v are said to satisfy the hypo-ellipticity condi-
tion of Hormander at z € R if there exists m € N and 44,...,4, € U"_0 2% such
that A,(z),...,A,(z) are linearly independent. Suppose that a.ll the coefficients o;;
and b; are bounded and have bounded derivatives of all orders. Also suppose that
Hérmander’s condition is satisfied. Then the operator L := 1 3 {_, V¥ +V, generates
a Feller semi-group with C*-density py(?,z,y). For more details we refer the reader
to Ikeda and Watanabe (37, Chapter V).

EXAMPLE 6. The previous example has its counterpart for Riemannian manifolds.
In fact instead of the Laplace operator on R¥ we can also consider the Laplace-
Beltrami operator on a Riemannian manifold. For details we refer the reader to
Elworthy [24], (23], Azencott et al [3], Bismut [6] and several others. The authors
also establish existence results for and bounds on the corresponding heat kernels. A
recent and very interesting paper is [17] written by Davies. It provides the reader
with much insight into the behavior of heat kernels. Of course his book [16] should
be consulted also.

EXAMPLE 7. In this example we consider so-called hyper-singular integrals. Define
the operators A{ on C(R") as follows:

¢
(241 (2) = So(-* () £z — b (1.21)

k=0

In {47} Kochubef proves that operators K of the form

1-8 h\ [85f] (=)
o= _ﬁ.; *) ri0s; 3:,( Y Je (”’ |‘h'|> e
= (20 f] (=),
kz nc(‘Yk ./ k(z |h|) |h|"'+"‘”i

Zv: (1.22)



generates a Feller semi-group in C(R¥) provided that the following conditions are

satisfied:

(a) The functions @ and Q, 1 < k < m, are non-negative and continuous on
R¥ x §¥~!. They are also even: Q(z,0) = Q(z,—0), z €RY, ¢ € S¥~L.

(b) The orders of homogeneity v, vi, 1 <k <m,venfy: 0 < yy <y <2. Iy =2,
then f=1andify <2 then 3 =0. Ify=1thend; =0,1<j<v.

(c) Some ellipticity conditions on (a;;) are also required. In fact, the inequality
ReY [, aij(2)&E; > ao [¢|*, for all {; € C, 1 < j < v. Here ao is some strictly
positive real number.

(d) The constants dy, ¢(v) have to be chosen suitably. In fact they are chosen in such
a way that the expression

~ 1 (1 — exp(—i€.h)) h
Qz,£) = 5 e TaE 0 (z’l—h_l) dh,

called the symbol of the hyper-singular integral D f, does not depend on the
particular choice of £, where ¢ > a.

(e) The characteristics  and Qi, 1 < k < m, are supposed to be non-negative and
symmetric in the second variable, i.e. Q(z,0) = Q(z,—¢) for all z € R and for
all ¢ € SV—1.

Moreover the life time of the corresponding Markov process is co. In [47]

Kochubei proves that the corresponding Markov processes posses transition densi-

ties po(t, z,y) verifying inequalities of the form

m(t,z,y)ﬁC{ ! ]y+7+z : ]u+m.}'

[t/ + |z - y| = [+l -yl

EXAMPLE 8. In this example we consider the generator Ko := —1A + 2.V of the
so-called Ornstein-Uhlenbeck process in L? (R",exp (— ]y|2) w‘”/’dy) . Its integral
kernel po(?, z,y) is given by

po(t, z,y)

- - oo [ _exp(=28) [z]” + exp(=21) lyI* — 2exp(-1) (ay)) .
(1 — exp(=2t))*/* 1 — exp(-2t)

The semi-group in L? (H",exp (— |y|2) w‘"/zdy) is given by

dy

ﬂ-v/2

exp(=tKo)1(z) = [ polt,z,0)f (o) exp (= IuP)
= /f (exp(—t)z + /1 - exp(—2t)y) exp (— |y|2) :’!;2.




For more details the reader is referred to e.g. Simon [61].

EXAMPLE 9. In this example we consider the generator Ky := —%A + %lt
of the oscillator process. The integral kernel of the corresponding semi-group
exp(—tKo)(z,y) may be written as (again see Simon [61])

2 .
exp (—tKo)(z,y) = exp (—% |2|2) mﬁ exp (- leirli(e—:r),(_zf)l ) exp (% 1y|2)

)

l2

1 1
——expl — -
(2 sinht)*/? ( 2sinht

x

(coeh )i/ ~ y(cosh t)llz

1
= exp (—E |:|:|2 tanht)

It follows that the corresponding semi-group {exp(—tKj):t > 0} is given by
[exp(—tKo)f] ()
exp (—% |z|? tanh t)
(27 cosh t)“/2

/exp (—% Iylz) f (;o-;—t + \/t;-n_h_fy) dy.

For more details we refer again to Simon [61}.

2. STOCHASTIC SPECTRAL ANALYSIS (BASSA)

There are different ways of introducing semi-groups with perturbed generators. The
analytic way starts with the unperturbed semi-group and uses the Trotter-product
formula to find a Feynman-Kac representation of the perturbed semi-group. The
semi-analytic or semi-stochastic manner begins again with the unperturbed semi-
group. Then the potentials are introduced stochastically by verifying the sensibility
and the semi-group property of the Feynman-Kac formula.

In order to introduce semi-groups with perturbed generators we employ a purely
stochastic approach in the sense that we begin with the process, or what is equivalent,
with the transition density function. Our aim is to formulate all assumptions on the
process or its generator in terms of assumptions on the density. An advantage is
that we can consider a large class of generators, containing the eéxamples in the
introduction.

The objective of this paper is to present some Hilbert-Schmidt properties of
differences of semi-groups generated by these operators. We start with the basic
assumptions on the transition density function, which form the foundations of this
theory. This theory will be called ”Stochastic Spectral Analysis”. The state space
(or configuration space) will be a second countable locally compact Hausdorff space
E with Borel field £. A non-negative Radon measure m (reference measure) on £ is
given. Instead of dm(z) or m(dz) we usually write dz.

Basic Assumptions of Stochastic Spectral Analysis (BASSA).
In what follows the function po(t, z, y) defined on (0, 00) x E x E will be a continuous
density function with the following properties:



Al. It is non-negative and it verifies the Chapman-Kolmogorov identity, i.e.
J po(s,z, z)pa(t, 2, y)dz = pp(s + t,2,y), 3, t > 0, z, y € E, and its total mass is
less than or equal to 1,i.e. [po(¢,z,y)dy<1,t>0,z € E;

A2. (Feller property) For every f € C,(E) the function
z — [ f(y)po(t, z,y)dm(y) belongs to Coo(E); K

A3. (continuity) For every f € Co(FE) and for every z € E the following identity is
true: limy o [ f(¥)po(t, 2, y)dm(y) = f(z);

A4. The function po(t, z,y) is symmetric: po(t,z,y) = po(t,y,z) for all ¢ > 0 and for
all z and y in E.

Sometimes we shall need a boundedness assumption of the following form:
B. There exists finite constants m, b and ¢ such that 0 < po(¢, z,y) < ct~™ exp(bt)
forallt > 0and forallz, y€ E.

Remark 1. It is well-known that there exists a strong Markov process
{(Q,F,P.),(X(#):¢20),(9::t>0),(E, &)}

(see e.g. Blumenthal and Getoor {7]) with the following properties. The omne-
dimensional distributions are given by P (X (t}) € B) = [5po(t,z,y)dy, t > 0, B
Borel subset of E. Its sample paths are P.-almost surely right continuous and pos-
sess P -almost sure left limits in E on its life time. In other words the process
{X(t),P.} is cadlag on its life time. Moreover we may assume that the closure of the
(random) set {X(s):0 < s <t} is a compact subset of E, whenever X (¢—) belongs
to E. In other the process does not re-enter E once it hals hit §, the point at infinity.
Remark 2. It is not necessarily true that densities are available. In principle one
may formulate the basic assumptions (BASSA) in terms of the transition function
P(t,z,B) =P (X(t)€ B),t >0,z € E, B € £, where £ is the collection of Borel
subsets of E.

This is perhaps the right place to fix some notation and insert an interesting
inequality. Let K, be the L*-generator of the Markov process

{(F,P2),(X(#):t>0),(J: : t 2 0),(E,E)}

and let a be a strictly positive real number. For any Borel function g, defined on E,
we write

lexp(~3Ko)g) (z) = Ex(g(X(s))) = / po(s, 2, 5)g(¥)dy (2.1)

and

[(aI + Ko)™'g] (z) = jom e [exp(—sKo)g] (z)ds =/0 e po(s, z,y)9(y)dy

whenever these expressions make sense.
We begin with a definition and a result, due to Varopoulos, on the (spectral)
dimension of a semi-group.



2.1. DEFINITION. The (kernel of the) semi-group {exp(—tK,):t > 0} is said to
be of spectral dimension n, if |lexp (=tKo)|l, , < Ct—"/? for all (small) ¢ > 0. In
[74], Varopoulos shows that this is equivalent to saying that the generator Ky verifies
"f”2n/(n_2) < C(Kuf, f) for all f € D(K,), provided n > 2. In [10] Coulhon gives
a simple proof of this equivalence and in [11] the authors apply this result to semi-
groups of operators acting on functions defined on a Lie group. In (8] the authors use,
following Nash [51], the Dirichlet form associated to a semi-group, to characterize the
dimension of a semi-group. Let £ be the Dirichlet form associated to the semi-group

{exp(—tK,): t > 0}, i.e.

(f1 .f) - (f! exp(_tKﬂ)f)

tw n , [ € dom(&). (2.2)

EO(f)f)

Then [lexp(—tKy)||, o, € Cie’t™"/2, ¢ > 0, if and only if

11,00

MAIEH™ < Ca [eth, 1)+ 811G 118"

for all f € dom(&;). The constant C, depends on C; and on n and the constant C,
depends on C, and n. Another instance where the spectral dimension of a semi-group
pops up is given Example 6.

Before in the next section we actually give some estimates on the norms of
differences of semi-groups and resolvents, we insert a convenient inequality for the
unperturbed resolvent. This inequality will among others be used in Theorem 2.5.
Its proof will be omitted, but we refer to van Casteren (70, Theorem 6.4. p. 116-117)
for a proof of a similar statement.

2.2. PROPOSITION. Let g: E — R be a Borel measurable function and let a and 75
be strictly positive real numbers. The following inequalities are valid:

(1-e"") || (al + Ko)~! |g|”

< sup/ E:(lg(X(s))])ds < *" ||(al + Ko)™" lgl|| - (2.3)

For a concise formulation of our results we introduce the following definitions.

2.3. DEFINITION. Let V : E — [0, 00] be a Borel measurable function on E.
(a) The function V is said to belong to K(E) if

f t Po(s)Vds

0

lim sup
t10

= lintllf;]up sup /0 ‘ ( / po(s, z, y)V(y)dm(y)) ds = 0.
o (2.4)

(b) The Borel measurable function V : E — [0, co] belongs to Kjo.(E) = Kioe(E, Ag)
if 15V belongs to K(FE) for all compact subsets K of E.

- 10—



(c) The Borel measurable function V = V, — V_ is said to be a Kato-Feller potential
if its positive part V; = max(V,0) belongs to Kioc(E) and if its negative part V_ =
max(—V,0) belongs to K(E).

If a non-negative function W is a member of K(E), then W is said to belong to
Kato’s class and if W is a member of Kjoc(E), then W is said to belong to Kato’s
class locally. The following general result can be proved. For details in the symmetric
case see [70], [73], [72] and [71]. For the Gaussian semi-group the reader may consult
Simon [60] and [61]. Also notice the equality

XD (~tKo)llao o = llexp (~tKo)], = sup [mottzn)im). @5)

2.4. THEOREM. Suppose that V = V. — V_ is a Borel measurable function defined
on E such that V_ belongs to K(E) and such that V, belongs to Kj.(E).

(a) There exists a closed, densely defined linear operator Ko+V in Co(E), extend-
ing Ko + V, which generates a strongly continuous positivity preserving semi-group
{exp({(Ko+V)) : t 2 0} in Coo(E). Every operator exp(—t{Ko+V)), t > 0, is of the
form

lexp(—t(Ko+V))f] (=) = / exp(—t(Ko+ V)= v)f(v)dm(y), f € CoolE), (26)

where exp(—#(Ky + V))(z,y) is a continuous function which verifies the identity of
Chapman-Kolmogorov:

exp(~t(Ko + V))(z,y) = /em(—a(Ko + V)=, z) exp(—t(Ko + V))(z,y)dz, (2.7)

fort>0,z,y€ E.
{(b) The semi-group {exp(—t(K,+V)) : t > 0} also acts as a strongly continuous
semi-group in LP(E,m), 1 < p < co. '
(c) If exp(—tK,) maps L!(E, m) into L®°(E,m) for all £ > 0 (i.e. if sup{po(?,z,¥) :
z,y € E} < o for all t > 0), then exp(—t(Ko+V)), t > 0, maps LP(E,m) into
LYE,m),for1<p<g<oco. Ht>0andif 1 < p < q < oo, then exp(—t(Ko + V))
maps LP(E, m) into LY(E,m) N Co(E).
(d) In L*(E,m) the family {exp(—t(Ko+V)) : t > 0} is a self-adjoint positivity
preserving strongly continuous semi-group with a seif-adjoint generator.
(e) The Feynman-Kac semi-group in L?(E, m) coincides with the semi-group corre-
sponding to the quadratic form Q with D(Q) = D (K;n) NnD (Vi/z) and defined
by

QUf.9) = (K £, K2 g) = (VA £, V1 g) + (Vi £,V g),

where f and g belong to D(@).
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Remark 1. From the general assumptions it follows that, for t > 0, the operator
exp(—tKo) maps L'(E, m) in Coo(E). As indicated in (c), then we may prove that,
always for ¢ > 0, the operator exp(—t(Ko+V)) maps LP(E, m) in LY(E, m) [ Cx(E),
provided that 1 < p < ¢ < o0, p # oco. This is explained in [72), in {70] and in [73].
In fact the integral kernel exp (—~t( Ky, + V)) (z,y) is given by

exp (~t(Ko + V) (2,9) = imEs (oxp (= [ VKOS ) plt - 7, X))

’ (2.8)
Remark 2. A proof of (e) follows from Proposition 2.13.
Remark 3. Let K be a self-adjoint generator in a Hilbert space with a lower bound.
Let wy be the smallest number w with the property that (Kf, f) 2 —w(f,f) for
all f € D(K). Then wy is called the type of the semi-group {exp(—tK):t> 0}
generated by K. In fact it follows that |lexp(—tK)|| < exp(wet), t 2> 0. The

) ) . ) 1/2

corresponding quadratic form @ with domain D(Q) = D (K +wp) ", defined by

Q(f,g9)= l;lﬁl {f,9) - (exi)(—tK)f,g), f and g € D(Q) possesses lower bound wy. In

fact there exists a one-to-one correspondence between the class of self-adjoint opera-
tors with largest lower bound wy, the class of symmetric closed quadratic forms with
largest lower wy and the self-adjoint semi-groups {T(¢):¢ > 0} with the property
that ||T'(t)|| < exp(wot) for all ¢t > 0. For all this the reader may for example consult
Chapter 6 in [70].

Next we want to discuss the way in which the generator of the Feynman-Kac
semi-group {exp(—t(Ko-i-V)) 11> 0} is related to the Friedrichs’ extension of Ko +V.
We also are interested in " core”-type problems. Theorem 2.5. is closely related to the
well-known KLMN-theorem: see Reed and Simon {55, Theorem X.17, p. 167]. The

fact that D (K; / 2) nD (V_:/ 2) is automatically dense implies that the Trotter-Lie
product is available; see Kato (44, Theorem 1, p. 694}.

2.5. THEOREM. Suppose that for every function f € D (K;/*) n D (V,/*) there
exists a sequence {f, : n € N} in D(K,) N D(V) with the following properties:

(B.) ]'imn—oo “fn - f”g = 0;

(b) imm,neco (Ko(fa — fm), fn — fm) = 0;

(¢) imm n—oo (Vi(fn — fm) fn — fm) = 0.

Then the Feynman-Kac generator Ko+V is the Friedrichs’ extension of Ko + V.

It is noticed that the hypotheses in Theorem 2.5. can be rephrased as “the
subspace dom(Ky)Ndom(V) is a core for the operator K| ; 7 VJ_/ 2 o1, equivalently,
“the subspace dom(K,) N dom(V) is a form core for Ko + V;".

PROOF. Fix a number a that is strictly larger then the type of the Feynman-Kac
semi-group {exp (=t(Ko+V)) : t 2 0}. The quadratic form Q%Y associated to the
Feynman-Kac semi-group is given by (see Proposition 2.13)

Q*Y(f,g):= <(aI + Ko-i-‘/')”2 fy(al + Ko-i-V)I/2 g> (2.9)




 (ar s ko f s 5o 5) o (VA1)
— (VY (@I + Ko)™/* (al + Ko)'/? £,V2/* (al + Ko)™'/* (al + Ko)'/* 9),

where f and g belong to the domain D(Q"'V) = (K”z) NnD (V”z) Moreover,

for a large enough, we have by Proposition 2.2. together with the definition of Kato-
Feller potential,

[V @1+ k) h| < [|VE2 (ar 4+ K0) T2 (2.10)

= V272 ar oy V22 bl < o2+ o)™ VL B, < VR B,

where h belongs to L%(E, m). Since the negative part V_ of V is supposed to belong to
Kato’s class (because V is supposed to be a Kato-Feller potential), from Proposition
2.4. it follows that £(a) < 1 for a > 0 large enough. From (a) it follows that the
domain of § := Ky +V is dense in L?(E, m). This is so because the domain D(Q*")
is dense in L?(E, m). Since, in addition, the Feynman-Kac generator Ko+V extends
Ky +V, we see that the operator K, + V is closable. Let S denote this closure.
We also write S for the Feynman-Kac generator Ko+V. Furthermore we define the
operators Ty and T; as follows:

T, :=S* |D( (2.11)

. =8 .
Qy")nD(s*y Tz |D(Q§;v)no(s')

Here Q% is the quadratic form associated to S and @2V is the quadratic form as-
5 e s

sociated to §, the so-called Feynman-Kac or Schrédinger form. Then, from Theorem
5.38 in Weidmann [81, p. 123], it follows that T} is the Friedrichs’ extension of S.
Since Ko and V are both self-adjoint, the operator S is symmetric and so § C 5*.
We also have S C S and hence S* 5 §* = § OS5 D S. From the definition Tj it is
clear that Ty C S* and hence T} = T} O S. We also readily see T D S and thus
T; C S. Since D (Q%'V) cD ( ‘g‘:v), we also have T} C T, C S*. A combination
of these inclusions yields:

SCSCT;cSCcT,cs” (2.12)
and
SCSCT;CT, CT, CS". (2.13)

From (a), (b) and (c) it follows that D(S) forms a core for Q%’V. For let fy €
v o\ 1/2 -\ 1/2
D ( i‘§ ) be such that (aI+ S) f, (aI + S) fo> = 0 forall f € D(S). Then
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((al + S)f, fo) = 0 for all f € D(S). By properties (a), (b) and (c), there exists a
sequence (f,)nen in D(S) such that

~\ 1 ~\ L

nli_'ngo<(aI+S) I = fa), (aI+S) " o __f,,)> = 0. (2.14)

Consequently
~12 |2 A\ 1/2 -\ 1/2
(aI+ .S') fo , = nh_ggo <(aI‘+ 5) fa, (aI+ S) fo>
= lim ((aI +3) fa,fo) = lim ((aI + ) fa, fo) = 0. (2.15)

Hence fo = 0. Next we are going to show that
D(s7)nD( 2")=D(5)nD(ez") =D (5). (2.16)

This is true, because let f € LZ%(E,m) be such that the functional g
- —1/2 .
<(aI+S)g, (aI-I-S) f>, g € D(S), is continuous. Since D(S) is a core

a,V . . - ~\ —1/2
for Qg‘ , 1t follows that the functional ¢ — <(aI+S) g (aI+ .5') f), g€

—-—
s~

- /2
D(S), is continuous as well. We infer that R((aI+S) ) Nn D(S*) =

R ((aI + §) _1,2) NnD (§'), or putting it differently

D( i;."")nD(S'):D( %:")nD(§) =D('s') (2.17)
and hence
T=s5 ID(Q.'S.'V)nD(S“)= d lD(§)= S (2.18)

It follows that 7> = S and hence Tz = T; = Ty. This shows that S is the Friedrichs’
extension of S.

2.6. COROLLARY. If for all sufficiently large a, a > 0, the range of the operator
al + Ko +V is dense in L?(E, m), then the operator Ky + V is essentially self-adjoint
and its closure generates the Feynman-Kac semi-group.

PROOF. Let a > 0 be a real number, that is strictly larger than the type of the
semi-group {exp (—t(Ko+V)) : ¢t > 0}. Since the operator Ko+V is bounded from
below, with lower bound —w say, it follows that |lexp (—t(Ko+V))|| < exp(wt), t > 0
and the type of the Feynman-Kac semi-group is the smallest w for which the latter
inequality is valid. Let the notation be that of the proof of Theorem 2.5. Then we
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have S* D § D 7T. Let fo belong to the domain of S*. Since the closure of the range
of al + Ky + V is dense, it follows that the range of al + 5 coincides with L*(E, m)
and hence (al + 5*)fo = (al + S)f = (al + S*)f for some f in the domain of S.
Consequently (al + S*)(f — fo) = 0. Since the range of al + S is dense, it follows
that f = fo. Whence D(S*) C D (S). Altogether this shows that §* = S=25.

2.7. PROPOSITION. Let Ky+V be the Feynman-Kac generator of the semi-group
{exp (~t(Ko+V)) : t > 0} and let Q*V be the corresponding quadratic form. The

subspace D (Ko-i-V) N Coo(E) is a core for Ko+V and the subspace D (Kt}ﬁ) n
D (V_:_/z) N Ceo(E) is a form core for Q'Y '

PROOF. Let f be a member of the domain of Kg+V. Then there exists a sequence
gn € Coo(E) N L*(E,m), n € N, such that (a] + Ko+V)f = lim,_.o0 gn. Next we
write g, in the form g, = (al + Ko+V) fa. Then f, belongs to L*(E, m) N Coo(E).
The fact that every f, belongs to Coo(E) follows because the Feynman-Kac semi-
group leaves the space Coo(E) invariant. Moreover we have f = limp_.o fn and
(Ko+V) f = lima—oo(Ko + V)fa. This proves the first statement in Proposition
2.7. Upon replacing (a + Ko+V) with (al + }'{o-i-’l/)li2 and noticing identity (2.9)
yields the second assertion.

The results in Theorem 2.5, Corollary 2.6 and Proposition 2.7 have their local
counterparts. In fact, let ' be a Borel subset of the second countable locally compact
Hausdorff space E. In relation to the set T’ we shall be employing the following
stopping times:

S=inf{.!>0:/'lr(X(a’))da'>O}, T=inf{s>0:X(s)eT}. (2.19)

0

It readily follows that S > T, P;-almost surely, for all z € E. The following proposi-
tion gives a sufficient condition on I, in order that, for all z € E, S = T, P-almost
surely. A point z € E belongs to I'" if P,(T' = 0) = 1. Some authors call the time §
the penetration time: see e.g. Herbst and Zhongxin Zhao [28].

2.8. PROPOSITION. Suppose I'" = (int(I'))". Then S = T, P;-almost surely for all
TEE,

PROOF. Since S > T, it suffices to prove that P.(S > T) = 0, P-almost surely for
all z € E. Since on the event {S > T}, § =T + S o9, P,-almost surely, we have
by the Markov property:
P.(5> T) = P(S > T,Sodr> 0)=E; (PX(T)(S >0),5 > T)
=P, (S > T,PX(T)(S > 0) = 1)
(On the event {T' < oo}, X(T') belongs to T{JI'™ P.-almost surely)
=P, ($>T,Pxn(5>0)=1LX(T) eT{Jr)
(Because of symmetry, I'\ I'" is a polar set)
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=P, (S > T,PX(T)(S > 0) = I,X(T) c Fr)
(T7 = (int(T))")
=P, (S>T,Px(S>0)=1X(T) € (int(T))").  (2:20)

However, if y belongs to (int(T'))", then P (S > 0) = 0 and hence P.(S>T)=0.
2.9. DEFINITION. Let S be the penetration time of I'. The integral kernel
exp(—AKsg)(z,y) is given by

exp(—-AKg)(z,y) (2.21)

N
= limE, ( (- / V(X(a))da) Po(A =M, X(A\),3): S > ,\') .

PUEDY

In the results below we let T = E2 \ T be an open subset of E and (Ko+V)y
denotes the Feynman-Kac generator of the semi-group killed in the complement of
%, i.e. the semi-group {exp (—t(K¢+V)g) : ¢ > 0}, defined by

st +V)5)7] =) = Ex (e (= [ VxK()s) 102000 8 > 1)
= [ e (—t(Ka + Vo) 2 ) S0 (2.22)

I I' = (int(T'))", then the penetration time S may be replaced with the exit time T.
In Proposition 2.12. the complement of ¥ is supposed to be regular, which yields the
fact that the Feynman-Kac semi-group, killed on the complement of £, leaves Coo(Z)
invariant. Proofs are not given; they follow the same lines as the ones given above.

2.10. THEOREM. Suppose that for every function f € D ((Ko);:”) nD (( 1’2)2)
there exists a sequence {f,:n € N} in D{(Ko)g) N D((V)g) with the following
properties:

(2) imp—co || fn = fll; = 0;

(b) imm n—oo ((Ko)s(fa — fm)s fn — fm) = 0;

(C) liInm,n—u:ac: (V+(fn - fm)v fn - fm) = 0.

Then the Feynman-Kac generator (Ko—i-V)E is the Friedrichs’ extension of (Ko)y +
(Vg

2.11. COROLLARY. If for all sufficiently large @, a > 0, the range of the operator
al + (Ko)g + (V)g is dense in L2(E,m), then the operator (Ko)g + (V)g is essen-
tially self-adjoint and its closure generates the Feynman-Kac semigroup, killed on the
complement of .

2.12. PROPOSITION. Let (Ky+V)_ be the Feynman-Kac generator of the semi-
group {exp (—t(Ko+V)g):t >0} and let Q%" be the corresponding quadratic
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form. The subspace D (KO-FV)E N C(E) is a core for (Ko-i-V)E and the sub-
space D ((Ko)ln) NnD ((Vllz) ) N Cus(E) is form core for QE‘V, provided that T,
defined by ' = E4 \ L, is regular in the sense that ' = I'".

In (2.8) the following result was employed.

2.13. PROPOSITION. Let V be a Kato-Feller potential and let Q*V be the cor-
responding Schrédinger form (a > 0 is larger than the type of the corresponding

Feynman-Kac semi-group). Then D (Q*¥) =D (Kliﬁ) nD ( 1/2) and

Q"V(£,9) = ((al + Ko)*/* f,(al + Ko)'/? g / V(z)f(2)g(z)dm(z), (2.23)

where f and g belong to D(Q*V).
PROOF. Put V, , = max(min(V,n), —m), m, nin N and fix f € D (Q“'V). Define
the functions f, . € D (KJ”) by (aI+ KO-E-V)I/2 = (al + Ko + Vm,n)ll2 fm,n-
By the Feynman-Kac formula it follows that, in L%-sense, f = limm—oo liMp—co fm,n-
In addition we have

Q“V(f, £) = ((aI + Kok V)" 1, (ol + KokV)' " £)

= ((GI + I{O";“‘/-n-a,n)ll2 fm,n, (GI + K04'Vm,n) 12 fm,n>

= (a1 + K0)"/* fmmi (@I + Ko)'? frm.n )
- /(Vm.n)_ Ifm,nlz dr + /(Vm.n)+ |fm,n|2 dzr
= (@I + K el 4 Ko f) = [VoifP s [VaifPae 22

The ultimate equality in (2.24) follows upon letting, first n and then m, tend to
infinity and by observing the following general argument for closed linear operators
in Hilbert space. Let B be closed linear operator in a Hilbert space (in our situation
we may take B = (al + Ko)l"‘2 or B= Vi/z or B=VY*in L*(E,m)). Let (g,) be
a sequence in the domain D(B) with the following properties:

(a) g =lim,_ gn exists in the weak sense;

(b) sup,en ||Bgnll < o0. Then the vector g belongs to D(B) and some sequence

(gn) in the convex hull of the sequence (Bgn) converges in Hilbert space sense
to Bg.
This shows Proposition 2.13.

Next we want to compare the operators (Ko+V)y and Ko+V. The operator
Hg, 2*+V is defined as follows. Its domain is D(Ky+V) and its action is given by

5
(H a+Vf] (exp (—/0 (a + V(X(s)))ds) AX(S):5< oo) ,  (2.25)
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where f belongs to D(K,+V). Intuitively, the function H&*Y f is a function, that
on I' = E\ T coincides with f and that on T is "a + V-harmonic”. The operator
Js restricts functions defined on E to T and its dual J¢ extends functions, defined

on &, with 0 in I'. The operator H ;_."'V as defined in (2.25) is a prioni an operator

defined on bounded continuous functions. It is not clear at all that it is defined on
L*(E,m). In fact the latter does not seem to be true. However, in a natural way it
is defined on the domain D(K,+V) and a little more thought will show that it has
a well-defined meaning on the domain of the corresponding quadratic form given by

D (al + Ko+V)"2. For details see Proposition 2.14. and Corollary 2.15. below.
2.14. PROPOSITION. (a) Let a > 0 be large enough. The following identity holds:

(aI + (Ko+V)g) Je (I - HY) = Jg (al + Ko +V), (2.26)

in the sense of domains and of equality of operators.
(b) The identity

(Ko+V)g = Jx (Ko+V) Jg (2.27)

is valid in the sense of domains and of equality of operators.

PROOF. (a) First let f belong to D ((Ko+V),). Then define the function g €
D (Ko+V) by the equality J& (al + (Ko+V)g) f = (eI + Ko+V)g. Forz € T we
have

9(z) — (=)
= [{(af + KO';‘V)-I - (aI+ (Ko-i-V)z)—l Jg} (af-i— Ko-i-V) g] (z)

- /0 ~ s, (exp (_ /0 "(a+ V(X () du) (I + KodV) g(X(s)): § < a)
—E, (/m ds exp (_ /0 (a + V(X(u))) du) (I + Ko+V) g(X(s)) : S < oo)

S

S
~E. (exp (— / (a+ V(X(u»)du)

x /Ooo ds exp (- /0 (a + V(TX(u + 5))) du) (af + Ko+V) g(X(s+85)): 5 < oo)

(Markov property)

S
=E, (exp (-/0 (a + V(X(u)))du)

x /ow dsE x(s) (exp (- /o (a + V(X(u)))du) (aI + Ko+V) g(X(.s))) S< oo)

S
=E; (exp (-—/0 (a+ V(X(u)))du) g(X(S):5< oo) . (2.28)
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Consequently g(z) — f(z) = [H§+Vg] (z), z € . Conversely, let g belong to
D(K,+V) and define f € D ((Ko+V),) by the identity:

(aI + (I{O-i-V)z) f=Jg (aI-i- Ko-’.rV) g. (2.29)

For z € ¥ we have as above g(z) — f(z) = [H§+Vg] (z). This proves Proposition
2.14(a).

(b) From formula (2.26) in Proposition 2.14(a) we infer (a > 0 large enough)
(K0+V)E = (Ko'l‘V)E JEJE = (aI+ (K0+V):) JEJE - GJEJ-E
= (ol + (Ko+V)y) Jx (I = HZYY) Jg — aJgJ3
= Jg (Ko4V) J2. (2.30)

As a corollary we have the following. The result should be compared to the
fundamental identity for so-called A-potentials in Port and Stone {53, p. 41].

2.15. COROLLARY. Let a > 0 be sufficiently large. The following identity holds in
L*(E,m):

(al + Ko+V) ™' = J* (al + (Ko 4 V) ) ™' J = HEY (al + KodV) ™. (231)

In addition the operator H3*Y (al + KO-i-V)_l is self-adjoint and form positive. In

fact the following identities are true:
HEY (al + Ko+V) ™'
= (e + KodV)'/* HZ*Y (al + Ko+v)™") " (al + Kod V)P HEYY (ol + Ko+V) ™!
= HZ*Y (ol + Ko+V)™/? (H;W (al + K0+V)“”) " (2.32)
Hence the operators
HgtY (al + Ko+ V)™, HE™Y (ol + KodV) ™'/
and also (al + Ko4V)? B2 (al + Ko V)"

are bounded operators in LZ(E, m). Moreover the operator H§+V is self-adjoint in
the space D(Q®*") equipped with the inner-product

Qn+V(f’g) — <(GI + }-\—O_i_v)l/? f7 (GI+ Ko'i'V)l/? g) , (2.33)

where f and ¢ belong to D(Q**Y) =D ((a[ + Ko-i-V)llz). In particular the opera-
tor (al + K(,-Mf')ll2 HetY (al + Kg-i-‘/')"l/2 is a self-adjoint projection in L?(E, m).




PROOF. Notice the identity [Hg*" f] (z) = f(z), for z € I" and for f € D (Ko+V).

Also notice the fact that the operator Hg a+V is a projection in the sense that its square
Vo HE*Y equals H$+V In fact (2. 31) is a reformulation of (2.26). The identities

in (2 32) follow because the operator H°+V (af + Ko+V)~ ~is self-adjoint. The same
argument applies for the proof of the the self-adjointness of the operator HET v~ with

respect to the inner-product in (2.33). The latter also implies the final statement in
Corollary 2.15.

3. HILBERT-SCHMIDT PROPERTIES OF RESOLVENT AND SEMIGROUP
DIFFERENCES

3.1. NOTATION. We denote by C;, C; and Co the collection of Hilbert-Schmidt, the
collection of trace class operators and the collection of compact operators respectively.

3.2. HYPOTHESES. As in section 2 we place ourselves in the surroundings of the
basic assumptions on stochastic spectral analysis (BASSA). In fact, let Ko be the
generator of a self-adjoint semi-group {exp(—tKy):t > 0} in L?(E, m) of the form:
exp [(—tKy) fl(z) = [ pol(t,z,y)f(y)dm(y), where po(t,z,y) is symmetric and con-
tinuous on (0,00) X E x E and where m is some non-negative Borel measure on
E. Briefly, assumptions Al-A4 are verified. Usually we write dy instead of dm(y).
As in section 2 the generator K will be perturbed in two ways. First there will
be a "regular” perturbation, being a multiplication operator V and secondly, there
will be a potential barrier on I'. In principle I' will be a closed subset of E. The
singularity projection operator is defined by: [Pf}(z) = 1r(z)f(z), f € L*(E,m).
Put T := E\ T and introduce the restriction operator J as follows: Jf = f |g.
Hence J* = Idps(py—r3(E), J*J = I — P and JJ* = I13x). Let K := Ko+V be
the Feynman-Kac generator, K3y = K 4+ MP with domain dom(K) = dom(Kjs)
and denote with Ky := (K0+V)£ the Feynman-Kac generator of the semi-group
{exp (—t(Ko+V)g) : t > 0}, killed on T. From formula (2.26) in Proposition 2.14(a)
we infer (Ko-ll-‘f')E =J (Kg-i-V) J*. Also notice that most of the time we write J
instead of Jg. Also see the remarks preceding Proposition 2.14.

It is useful to observe that weighted estimates are important for at least two
reasons. A first reason is the fact that the trace norm of the product of two operators
T and S is dominated by the product of the Hilbert-Schmidt norms of T'p and of ™15
or, in a formula, ||TS||,,sce < “T‘P”Hs ll¢~'S||zs- Here ¢ is a nowhere vanishing Borel
functxon The second reason is that for certain points A in the absolutely continuous
part of the spectrum of a self-adjoint operator K, the limit absorption principle is
valid. This means that, for certain functions p and ¥ and for a certain interval I

containing Ao in its interior, the quantity supyec ReresImaszo ”‘P(/\I + K)~ !b" is

finite. For more details we refer the reader to results based on Mourre estimates
as exhibited in Chapter 4 of Cycon et al [14], Perry [52] and Mourre [50]. Closely
related results and applications can be found in Agmon (1], Lavine [48], Ben-Artzi
(5], Robert and Tamura (58].



A. Regular perturbations.

We want to discuss some Hilbert-Schmidt and trace class properties. First we
do this for regular perturbations. The following results improve some corresponding
results in [21]. The first result improves Theorem 5.5. in [21].

3.3. THEOREM. Let V and W be Kato-Feller potentials. Suppose that

/ exp (—2t(Ko + min(V, W))) (z,z) [V(z) - W(z)|dz < o0 (3.1)
{IV-wi21}
and that
/ exp (—2t(Ko + min(V,W))) (z,z) |V(z) - W(z))? dz < oo. (3.2)
{Iv-wi<1)
Then the operator D(t), defined by

D(t) = exp (~t(Ko+V)) — exp (—t(Ko+W)),

belongs to Z; and

1/2
iD(®)lgs < V2t ( ]{ exp (—28(Ko + min(V, W)))(z, z) |V(z) — W(z)| dz)

IV-w|21}

1/2
+1 ( / exp (—24(Ko + min(V, W) (=, 2) [V(z) - W(z)|* dz) .
(Iv-w|<1)

(3.3)
PROOF. Write D(t) = D;(t) — D2(t) and Vi = (V — W)1v_w|<1), Where
D1(t) = exp (—-t (Ku“}'V)) — exp (-—t (KQ-I-W + Vl)) (34)
and with
Dy(t) = exp (—t (Ko+W)) — exp (-t (Ko+W + V1)). (3.5)

Then [[D(t)||gs < [|D1()|lgs + | D2(t)llgg- A more or less straightforward calcula-
tion will show the following identities:

r

2t
IDy(H)Es = - ds% min(s, 2t — a)/dx/d: (3.6)

exp (=3 (Ko + V) (2, 2) exp (=(2t = 3) (Ko + W + W) (z,2) (W(=) + Vi() - V(z))

and

2t
2= smin(s, 2t — s z )
I1Dx(0)s = [ demin(s, 2t s) [ dz [ o (37)
exp (~s (Ko + W) (2, 2) exp (~(2t = 8) (Ko + W + W) (5, D)Va(2)A (o).
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Since W + V; > min(W, V), it follows from (3.6) that

2 2t )
| D1(t)]l5s S/o dajd:-:/dzexp(—s (Ko +m1n(?, W) (=, z) (3.8)
exp (—(2t — 3) (Ko + min(V, W)))(z,z) [W(z) + Vi(z) - V(z)]
py / dz exp (=2t (Ko + min(V, W))) [W(z) + Vi(z) — V(z)|.

From Cauchy-Schwarz’ inequality it follows that

2t
2 .
| D2(t)llgs < A dam1n(.s,2t—.s)]d::/dz
exp (—8 (Ko + W) (z,z) exp (—(2t — 8) (Ko + W + W) (z,2) Vi (=)’

and again using W + V; 2> min(W, V), it follows from (3.8) that

||Dg(t)||2HS < - ds min(s,2t — a)/d:.,-/dz (3.9)
0
exp (=3 (Ko + min(V, W))) (2, z) exp (—(2t — 8) (Ko + min(V, W))) (z, 2)Vi(z)?
=2 /dz exp (=2t (K + min(V, W))) (z, z)Vi(z)>.

The inequalities (3.8) and (3.9) yield the desired conclusion.

The following result gives conditions on the Kato-Feller potentials V and W in
order that the operator D(t) in (3.10) is compact.

3.4. THEOREM. Let V and W be Kato-Feller potentials with the property that,
for a > 0 sufficiently large, the functions (eI + Ko)~!|V| and (al + Kp)~! |W] are
functions in Ceo(E). The following operators are compact in L2(E, m):

exp (—t (Ko+W)) —exp (~t (Ko+V)), t20, (3.10)
(al + Ko-l'-I"I/')_l ~ (aI + Ko-i—V)—l , a>0 sufficiently large.

Remark. The condition that the function (al + Ko)~' |V| belongs to Coo(E) should
be compared to Weder (80, Lemma III.4} and to (78, Theorem I1.9]. More results
on relative compactness can be found in Smits [64, Chapter 5, in Weder [79] and in
Reed and Simon (57, p. 117, Example 3.

PROOF. Put Vi ¢ = Vl{-ksvgt}lx,. and put Wi s m = Wl{-kgwgt}lf{..., where
(Kwm : m € N) is a sequence of compact subsets of E with the following properties:
E = UnenEm» Km € int(Kpmyy). From Theorem 3.3 it follows that, for k, £

and m € N, the operators (af + 1*'{04-’(/',“,‘,,,)"l — (eI + Ko—i-Wk't_m)-l, fora>0
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large enough, and exp (—t (Ko-i-Vk,z,m)) —exp (-t (Koﬁ'-Wk_t'm)), t > 0, are compact
indeed. It suffices to prove that the differences

llexp (~t (Ko+V)) = exp (=t (Ko+Vat.m)) [ ,
and :
llexp (—t (Ko+W)) — exp (=t (Ko Wie,m)) |,
tend to zero, if k, £ and m tend to co. Therefore we estimate

lexp (=t (Ko+V)) — exp (=t (Ko+Vim)) .,
(Riesz-Thorin interpolation together with symmetry)
< Jlexp (=t (Ko+V)) — exp (=t (Ko+Ve,tm)) [l g oo

_ H | "exp (=a(Ko + Viotum)) (V = Vigom) exp (~(t = 3)(Ko + V) d’”

<sw [E. (exp (— [ Vit (X)) ) V(X (6)) = Vi (X (0)

T€E Jo

XE x(s) (exp (— '/0 o V(X@))@))) ds

(Markov property together with Schwarz’ inequality a couple of times)

<2 sup (e, (o (5 [ v-cxana)))

csupE ([ V0X) - VeI 4s). (3.11)
Since the function (al + Ky)~! |V| belongs to Coo(E) we infer that
. tl}unim iggE ('/(: [V(X{(38)) = Vi e.m(X (s} ds) =0. (3.12)

From (3.12) it follows that the right-hand side of (3.11) tends to zero and hence the
claim in the theorem follows.

The following theorem seems more practical then the corresponding result in (21,
Theorem 5.7).

3.5. THEOREM. Let V and W be Kato-Feller potentials. Suppose that the quantity
M(t), defined by

M@) = /0 ds / dz[V(z) = W(2)| (3.13)

x {(exp(—a(fco VY () sup exp(—a (Ko + W))2(z,2)

t<a<2t

+ (exp (—s(Ko + W)) (2,2))'/? sup exp(—s(Ko +V))'/*? (z,z>}
t$a$2t
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is finite. Then D(t) := exp (—t(K, + V)) — exp(—t(Ko + W)) belongs to Z; and
1D, < 3M(2).

Remark. For semi-groups of dimension n (see Definition 2.1.), the quantity in
(3.13) is finite if V — W belongs to L!'(E, m) and if n < 3. The result is applicable in
scattering theory: see Baumgirtel and Wollenberg [4] and also Reed and Simon [56).

PROOF. Suppose that the unitary operator U verifies D(t) = |D(¢)]U*. This is the
so-called polar decomposition of the operator D(t). Then the following (in-)equalities
are more or less self-explanatory:

1D(8)l, = trace(D()U~)
t
= [de [ as [ dzexp(~o(ko + V) (22) (V) - W)
x [U exp (—(t = 8)(Ko + W))(z, )] (=)
= /o d.s]dz (V(z) = W(z)) (exp (—s(Ko + V)) (-, 2),
Uexp (—(t — 3)(Ko + W)) (2,°))
(Cauchy-Schwarz and Chapman-Kolmogorov)
2t
<3 [ de [V - Wil e (-alKa + V) (2,20

x (exp (—(2t — s)(Ko + W)) (z,2))"/*. (3.14)

From (3.14) the claim in Theorem 3.5. readily follows.
B. Singular perturbations: Hilbert-Schmidt properties.

We wish to establish a number of Hilbert-Schmidt properties of resolvent and
semi-group differences. We begin with a proposition on differences of powers of
resolvents. The main ingredient of the proof is the observation that the process
{M{(r):0 <1 <t}is a P,-martingale on the interval (0,t) for all z € E and for all
t > 0. Here M{/(7) is defined by

MY (r) = exp (* /0 ' V(X(u))du) exp (—(t = 7)(Ko + V))(X(7), 1)

3.6. PROPOSITION. Suppose that a > 0 and ¢ > 1 are chosen in such a way that
the integral f[; dz [H§+V (al + Ko + V)29 (., :c)] (z) is finite. Then the operator

J(al + Ko+V) ™7 - (al + (Ko +V)g) 7T (3.15)
is a Hilbert-Schmidt operator and

|7 (a + KoV) ™" — (al + (Ko4V)5) ™! J”;s

1"(2q — 1) a -
<TED [ [ @l Ko+ VTG @ Gas)
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Here S =inf {s > 0: Jy Ir(X(o))do > 0}. The operator HE*Y is discussed in equal-
ity (2.31) of Corollary 2.15.

PROOF. Observe that the integral kernel of the operator in (3.15) is given by

1 * —atyg—1
f,—(-‘ﬁfo dte t9 (3.17)
S
x E; (exp (—/0 V(X(u))du) exp (—(t = §) (Ko+V)) (X(S),y): S < t)

where z belongs to £ and where y is in E. Hence from Chapman-Kolmogorov’s
identity it follows that

/dy (J (al + Ko-i—V)_q (z,y) — (al + (Ko-i-V)E)_q J(z, y))z

1 co oo
= — —a(ty+t3) -1
I‘(q)2 ‘/0 dtl -/0 dtgc (tltz)

S(w)
E. ®F, ((u,w') — exp (— | V(X(u»(u)du) 1o.(S()
S(w’)
 exp (- / V(X(u))(w')du) o.n(S())

X exp (= (t, + 1tz — S(w) — S(w")) (Ko + V) (X(S)(w),X(S)(W')))

(apply Fubini, substitute t; — S(w) = 7 and t; — S(w') = 7; and apply Fubini again)

W/ dn/ dry

S{w)
E. ®F, ((w,w') > exp (— [ @ vemey du) 10,00)(S())
S(wh) .
X exp (-/0 (a + V(X (u))(w)) du) Lig,00){S(w"))
x exp (~ (1 + 72) (a + Ko + V))(X(S)(w), X(S)(w"))

(1 + S(w)"™" (2 + S(M'))q—l>

(substitute y + ;, =7 and 1, = 7)

=ﬁ‘/omdf

Slw)
E. ®F, ((w,w') — exp (— N V(X(u))(w))du) 1po,00)(5())
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¢ exp (- [ vcxcu»(w'»du) 1o00)(S(6")
x exp (—7(a + Ko + V) (X(S)(w), X(S)(w"))
/o "do (0+SW)  (r-0a+ S(w’_))""l)
(2ab < @? + b? with a = (:+ S(w))?~! and with b = (7 — ¢ + S(w'))*™")
S T ), ©

S(w)
E.®E, ((w,w') — exp (-—fo (a + V(X(u))(w)) du) 1{0,00)(S(w))

S(w")
X exp (— /0 (a +V(X(u))(w’))du) 10,00 (S(w"))
x exp(—7(a + Ko + V)) (X(S)(w), X(S)w")
((7+ SN +(r + S(W'))““‘))

(the roles of w and w’ are interchangeble,

Fubini’s theorem is applicable and ¢ = 7 4 S(w') is substituted)

1 S(w)
= —-————(2q T E: (w — exp (—fo (a + V(X (u))(w)) du) 1(0,00)(S(w))

] S(w')
X /0 T (exp (- /0 (a+V(x(u))(w’))du) 1jo,0(S(w")

exp (= (t = S(w")) (a + Ko + V)) (X (S)(w), X(S)(w'))))

(the process exp (— fof V(X (u))du) exp (—(t — )(Ko + V)) (v, X (7))
is a martingale on the interval (0, 1))

oo s
= 24 = ;)I‘(q)z jo dit2-1E, (exp (_./o (a + V(X(u)))du)

x exp(—t(a+ Ko + V))(X(S),z) 15 < oo)

(definition of Hgt")
I'(29)

= (2q — 1)T(q)? [H§+V (af + Ko + V)-z‘ir (H'—”)] (). (3.18)
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Inequality (3.16) in the proposition follow upon integrating (3.18) with respect to z.

In what follows we write

1/2
C’:(t) = sup pO(t/zssz) (Ez (Po(t,.X(S),I) 1S« OO)) dz.
I,weE =

3.7. PROPOSITION. Supp-ose that there is a ¢ € N, ¢ 2 1, such that for some
constant ag > 0 and for some g > 0 the expression

/ 129- e O (t)dt (3.19)

0

is finite. The following assertions hold true:
() J(Ka —2I)7P — (Kg = 2I)™P J € Coo (L*(E, m), L*(Z, m)) for all p € N, for
all M > 0 and for all z € res(K ) [\ res(Kg).
(ii) Moreover J (Kp — 2I)™? — (Kg — 2I)™" J belongs to C; (L*(E,m), L*(Z, m)),
for all p > ¢, for all M > 0 and for all z € res(K ) [\res(Kg).

(iii) Lmps— oo ”J (Kpp — 2P —(Kg —2I)7PJ|| =0, forall z € res(Kg) for r =2
ifp>gandforr=00ifp=1.

(iv) The rate of convergence in (iii) is the same for all z € res(Kxg).

(v) Suppose that the dimension of the semi-group {exp(—tK,) : t > 0} is m,
i.e. suppose po(t,z,y) € cit~™/2eht.  Also suppose that the inequality
Jdz (E; (po(t, X(S),z): S < 00))!/? < ¢t~™/2ebat is valid. Then, for Rea > 0
large,

|7 (oI + Kot v) ™0 = (al + (Ko+V)5) " 1|, < Constant x (Re a)=#*m/*.

Suppose m < 4. If —Rezy = a is sufficiently large, then the following represen-
tation in the sense of Hilbert-Schmidt norm is valid:

J(Ky —20]) ' = (Kg = 2I)7' J (3.20)

=(g-1) fo ~ -2 [J(KM — (2= t))™? = (Kg = (20 = )])* J] dt.

Remark 1. Representation (3.20) says that if the Hilbert-Schmidt property is true
for some ¢ € N, then it is true for all ¢ € N.

Remark 2. It follows that the semi-group difference exp (—tKys)—J* exp (—tKg) J,
t > 0, consists of Hilbert-Schmidt operators, whenever the integral (see (3.41) below):
[dz SUP} ¢ <act SUP,er Po(3, 2, z)!/? is finite.

Remark 3. Suppose that the penetration time S and the hitting T of T" are equal P_-
almost surely. Since V is a Kato-Feller potential (i.e. V_ € K(E) and Vy € Kjoc(E))
the operator K is a well-defined self-adjoint operator in L?(E, m). The spectrum of
K is contained in [—v,00), ¥ > 0, or C\ [—v,00) C res(K), the resolvent set of K. If
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the operator norm convergence u-limps_ o J(Kp — 2I)"'J* = (Kg — zI)~! can be
established for some z € res(Kyg), then this convergence is true for all z € res(Ky):
see Kato [42, p. 211-212]. Because res(K'p) = [\pss g, T65(K M), for M large enough,
we also have C \ [—v, 00) C res(Kx).

PROOF of Proposition 3.15. Choose M, and Cp in such a way that
exp (—t(Ko + V) (2,y) < Moe®'po(t, z,y)"/* sup po(t/2,z,w)"/>.

z,we

Such constants M, and Cy exist: see {72, p. 301]. For the proof we need the following
property of functions V, that belong to the Kato-Feller class. For a > 0 sufficiently

the following supremum sup, ¢z E, (exp (-—2a5’ + 2_[05 V_(X(u))du) 15 < oo) is fi-
nite. A proof of this fact runs as follows. Fix t; > 0. From Khas’minskii’s lemma it
follows that sup ¢z E, (exp (2 fo - u))du)) < oco. Choose a > 0 so large that

e **sup, o E, (exp (2 v (X(u) du ) < 1. From the Markov property it then
follows that:

(
E. (exp( 2a5+2 V (X (u) )du) S< oo)

< i E. (exp (—-2a(k “ 1)t +2 f o V_(X(u))du) (k=1 < S < kto)
k= 0
- (k=1)to

<Y E (exp (-2a(k ~vt+2 v.<X(u))du)
k=1 o

EX((k=1)t0) (exp (2/:' V_(X(u))du)) (k= 1)t < s)

20 o k
< Z e—2a(k=1)to (sup E, (exp (2/ V_(X(u))du))) < oo.
k=1 ver ’

Henceforth we pick a > Co + ag so large that

s
sup E, (exp (-205 + 2] V_(X(u))du) 15 < oo) < oo.
TeFE 0

For such a it follows that

s
E. (exp (-/0 (a + V(X(u)))du) exp (—t(Ko + V))(X(S),z): S < oo)
S 1/2
< (Ez (exp (—2/ (a +V(X(u)))du) 1S < oo))
0
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x (Ez ((exp(—t(Kg 4 V)) (‘Y(S),z)f .S < oo))l/?
< My(a)exp(Cot) sup po(t/2,z w)1/2 (Ez (po(t, X(S),z): 5 < oo))llz

2 weE

where

1/2
My(a) = M, sup (E, (exp (——2 /S (a+ V(X(u)))du) 1§ < 00)) .
T€E 0

Hence from this together with (3.19) it follows that

|7 (aZ + Kodv) ™" — (I + (Ko V)2 J”

1 * —at; 2g—-1 » a N s u u
S(2qr—1)1“(q)2/0 dte™™t fszz(XP( /0 (a + V(X( )))d)

exp (—t(Ky + V))(X(S),z): S < oo)

My(a

= m(q—/ dtt?7 e (0= O (1) < co. (3.21)

The proof of Proposition 3.15. begins with establishing the Hilbert-Schmidt property
in (i1). Let zg be such that Rezg = —a < —2A. Suppose p > ¢q. Then, as above, the
Hilbert-Schmidt norm of the operator in (ii) can be estimated by

= e - - 3

My(a)

*® 2g-1 2p—2q ,—(a—=Co)t ¢
< ———(2;)_1)1,(?)2'[0 ditt max(1,1) e Cg(t)

o0
< Mé(a)/ dtt?9~ e~ Cp(1),
0

MD(G) .
. .19) it foll
@2~ 1) So from (3.19) it follows

that the operator in (ii) is a Hilbert-Schmidt operator for —Rez > Cy+ao and p 2 g.

(1) Representation (3.20) always holds in the sense of the usual operator norm. Hence
the compactness of J (Ky — 200} "' = (K5 — zoI) ™" J follows for zg as in (i). But (i)
and (i1) also hold for all other z € res(Kas){)res(Kg). Let d be the distance between

where Mj(a) = sup {tzp—ﬂqc-(a-co—ao)t}
t>0
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zg and o(K). For |z — 29| < d one gets from the Neumann series:

”J(KM - zf)" - (Kz —)7h

r

(3.22)

< Z(k T At HJ Ky —z00) ™" = (K = z00)™"

r

where r = oo or r = 2. Consequently (i) and (ii) now follow.

From (3.22) together with the definition of the operator HY it also follows that
in the inequality (we always suppose p > q):

|| [J(KM —20D)"" — (Kg — %)~ J] “;S (3.23)

1"(2p - 1) a4V -2p
_—W—/d [H (al + Ko +V + M1r) (‘13)](3)

we may apply Lebesgue’s theorem on dominated convergence. In fact fixz andy € £

and let E“ be the conditional expectation that pins the process {X(s):s > 0} in

y at tlme 0 and in z at time ¢{. More precisely E; '0 is determined by the prop-
erty that for all 0 < s < ¢ and for all A € F, EJ; (lA)po(t y,r) = py.o(A),
where u (A) = Ey (po(t - 51, X(s1),2),4), with s S sy < t. Since the process

{po(t —-a,X(.s),::) :0 < s <t} is a martingale on (0,t), the measure p::; is well-
defined. It has the property that

exp (—t(Ko + V + M1r)) (y,z) — exp (—t(Ko + V)z) (v, 7)

= linE, (exp (_ /0 " (VX () + M1p(X (@) du) polt — T,X(T),z))

- limE, (exp (- /0 V(X () + er(X(u)))du) polt — 7,X(r),2),S > T)
im

— limE, (exp (_ /,, " (VX (W) + M1p(X(w))) du) polt — 7, X(r),2), S < T)
= [ e (= [ X + MioCx@ dn) yscnduzs (3:24)

Hence

Jim_exp (=t(Ko + V + Mir)) (y,2) - exp (~t(Ko + V)5) (3,2)

= A}"E]oo exp (—]; (V(X(u)) + M1p(X(u))) d“) 1{S<t}dli:,'(t)

t
= /exP (—'/; V(X('U))d‘u) 1{fot lr(X(u))th:D}l{S(t}d“::;
t
- ,/exp ("fo V(X(“))d“) 1(s21{s<nydiyy = 0. (3.25)
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Inserting the result of (3.25) in (3.24) yields

Jim || [J(KM ~ 20D)™ = (Kz = 201) ™ J] |[

< s 1)1" / die—ot32p=1 / dzE . (exp ( / (a + V(X(")))d")

A}iflmexp(—t(ffo +V + M1p))(X(S),z): S < oo)

_ 1 i —aty2p-1 - e _ g u
- ooy, T E‘( “’( | tervex )))d")

exp (—t(Ko + V)5 )(X(S),z): S < oo) = 0.

because, on {S < oo}, X(S) is P-almost surely in ' and for y € I’ the expression
exp (—t(Ko + V)z)(y, z) vanishes. All this is true provided Rezp = —a < —24, i.e.
for —Rezp positive and large enough. An argument as in (3.22) yields the same result,
not only for —Rezq large, but for all z € res(Ky). Instead of the Neumann series we
write (|z — zp| < d)

(Km—zD)P=>" ("’ +:" 1)(z —z0)* (Kpg — 2o I) ™50
k=0

This shows (iii) and also (iv), except for the convergence in operator norm for p = 1.
For this we again take —Rez, large enough and we use representation (3.20) for the
operator norm. In fact we have

”J(KM — D)™ = (Kg — z0I)™" J“
<tg=1) [ 12| 7K = (2o = D7 = (K = (3 - 1) T

and, since the Hilbert-Schmidt norm dominates the operator norm, we know that
limps—o "J(KM — (20 =)™ = (K5 — (20 =)D J|| = 0. This proves (iii) for
p = 1 and for the operator norm replacing the Hilbert-Schmidt norm.

Next we shall prove (v). It suffices to take for a a large real positive number. From
(3.21) we infer

|7 (e + Ko v) ™™ - (al + (Ko +V)z) ™ a||
Ms(a)
~ (2p - 1)T(p)?

/ dtt?P=1e=(e=Colt oy (1)
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~(2p- 1)1"(10

My ( a)c 2cp2m/4 2p—1 1
< p=1-m/2 _ _ I S
S ~p - DI(p)? f att ( (“ Co—gh =)t

_ Mo(a)cx 2ep2m/4 I'(2p—m/2)
@p—1I()}  (a—Co = Lby ~ b)) ™/

My(a) / 44?71 g—(a=Co)t 1/22m/4t—m/4 ( blt) 1/2)-m/4 exp (bat)

This proves the first part of (v). For —Rezy = @ sufficently large and for
t > 0, the Hilbert-Schmidt norm of J (K — (20 — t)I)™7 — (Kg — (20 — t)[)™7J
is dominated by a constant times (a + t)~?t™/4.  Since the mapping ¢
”J(KM — (20 = )I)7 = (Kg — (20 = t)I)7* J”Hs and since, upon employing the

first claim of (v), the Hilbert-Schmidt norm of the right hand side of (3.20) can
be estimated by (¢ > 1 > m/4)

o 492 I'(g)T'(1 — m/4)
<C - =
< Constant x (g 1)/; (a + t)—q+m/4 dt = Constant X al-m/4T(q —m/4)’

the assertion in (v) follows.

Next we turn our attention to resolvent differences on the whole space.

3.8. PROPOSITION. Suppose that the BASSA hypotheses A1-A4 are satisfied. Also

suppose that m(bdr(I')) = 0 and assume that the boundedness condition B is verified.

Then the following assertions are valid.

(i) For every q € N, for every M 2> 0 and for every z € res(K)s), the operator

P(Kpm — 2I)77 is compact.

(i1) In fact, for every ¢ € N, ¢ > m/2, for every M > 0 and for every z € res(Kps)
the operator P(K s — zI)”? is a Hilbert-Schmidt operator.

(iii) Lmpge oo ”P (KM — zI)_lu = 0 for every z € res(Kx).

PROOF. It suffices to prove these assertions for zy € res(K), Rezp = —a < -2A4.
Assertion (ii) follows because

|

((q-l)'> oo b JE

/ / / dAdpes i X1~ 1= 1 exp (~(A + u) Ky ) (2, 2)

/ dre™* A exp (=AK pr) (2, y) (3.26)

" (G- 1)'
< Cm(I")/ dz\/ dpe=(a=DO+u) ya=1,9-1 g5 pg (A +“,x,y)
0 0 z,yEE 2
< Cim(T). (3.27)
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Here, the constant C, is finite, provided the integral kernel is of dimension 2m, where
2¢ > m. For the notion of dimension see Definition 2.1. Then (i) is a consequence of

P(Ky +al)™ = (¢—1) / 41t~ P(K g + ol + tI)~7. (3.28)
n B
The next step shows that the equality in (3.26) yields:
. —ail2 . m
Jim |P(Ky +al)79, =0, if ¢> 7 (3.29)

Therefore we estimate:

(g = 1) |P(K s + )02

=/dz/dy
r E

o [~ =]
=/ d,\/ dpe"“’\_““/\q"lp"ljexp(—(A+y)KM)(z,z)dz
0 0 r

- / ~ /0 ~ dpemsA-an())0-1 /r (exP (—(A + W) Kpm) (z,2) - exp (~(A + w)Kx) (z,z)) dz

2

| arem et exp (-2 K) (2,9)
4]

[T [T due ey [ e (= w)Ke) 2, 233 (3.30)

Here

exp(—AKz)(z,y) = lim exp(-AKwm)(z,y) (3.31)
*I
= imE, (ex‘p (— /0 V(X(a))da-) po(A = A, X(N),y): S > A') , (3.32)

where S = inf {s > 0: [ 1r(X(0))do > 0}. The equality in (3.29) will follow
from (3.30) together with (3.32), as soon as we have shown that the integral
Jrexp(=AKg)(z,z)dm(z) vanishes. Put I” = {z€ E:P($=0)=1}. Then
T\ Fr is contained in the boundary of I'. Consequently m(T \ f") = 0 and hence
Jfrexp (=AKg)(z,z)dm(z) = 0.

In the same way we have, for ¢t > 0, imp—oo ||P(Kp + al +tI)7?|gs = 0.
Hence (iii) follows by means of (3.28) and the dominated convergence theorem.

3.9. COROLLARY. Let the hypotheses be as in Proposition 3.7. The following
assertions hold:

(i) For M > 0and for = € res(K pr)Nres(Kg) the resolvent difference (K — 1)~ ' —
J*(Kg — zI)~" J is a compact operator.

(i) The equality limps—eo "(KM —z)7' I (Kg - 2Dy J" = 0 is valid for z €
res(Kyg).
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PROOF. These assertions follow from the propositions 3.7 and 3.8 together with the
identities:
J(Kpg—2D)™ = (Kg =z T =17 [(KM _ ) - It (Kg - 2D)7! J]

and g

(Kp — 2D — J* (Kg — 2I)™' T = P(Kp — 2I)71 (3.33)

B [J (Ky = 2I)™" = (Kg — 2I)™! J] .

We conclude this paper with a weighted semi-group difference consisting of Hilbert-
Schmidt operators, where one of the semi-groups is singularly perturbed.

3.10. PROPOSITION. Let ¢ and ¥ be real functions defined on E with the property
that the expression

[ dz (1ol + 19@)I*) (Ex (ro(2t ~ 5,X(5),2) : § < ) (3.34)

is finite. Then, for ¢ > 0, the operator y (exp(—tKp) — J* exp(—tKg)J)¢ is a
Hilbert-Schmidt operator and moreover

llo (exp (—=tKp) — J* exp(-tKE)J),png
< %/d: (Icp(z)l‘ + |¢(a,~)|4) (E. (po(2t — S, X(S),z): S < t))!/?

e (=t (Ko (=2V) | s00 lexp(~sKo)lfe-  (3.35)
tCa<t

Remark. Suppose that ¥» = 1. An inspection of the proof below will show that the
conclusion (3.35) still holds if in (3.34) as well as in (3.35) the quantity |p(z)[* +

l$(2)| is replaced by 2|p(z)|*.
PROOF. From Theorem 4.6. in [21] we obtain the following:

lp (exp (K ) = J* exp (~tKz) J) ¥
= [ [ ey lo@ i

s 2
X (E; (exp (—-/o V(X(a))dc) exp(—(t — S)Km)(X(S),y): S< t))

(write u(z,y) = u(y, z)
= E. (exp (= J; V(X())de) exp (~(t - $)Ka) (X(S),9) : S < t))

= / /d:l:dy ‘90(3:)'2 hb(y)lz H(I, y)u(y,'x)
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S
=/dr lp(2)|” Ee (exp (—fo V(X(U))dﬂ) /v(z,y) [b(y)I?

x exp (—(t — S)Kp) (X(5),y)dy: § < t)

(Feynman-Kac formula)

= [dzle)E, [exp (— ] ’ V(X(a))da)

-5
x Ex(s) (BXP (-—/0 (V + M1r] (X(a'))dcr) u(z, X(t - S)) |P(X(t - S))|2) 1S5 < t]

(time dependent strong Markov property)

= [l E. (exp (— JALER D (X(a))da) u(X(1),2) (X)) : 5 < t)
(definition u(z,y))

- [ &, (exp (= [ v+ s xconas ) wexenr
S
x Ex(e) (exp (-A V(X(a))da) exp (=(t — S)Kp) (X(S),2) : § < t) .5 < t)
< j dz |p(z) / dy [$()]? exp(—tK 3)(z, )

S
x E, (exp (—/0 V(X(a))da) exp(—(t — S)Kp ) (X(S),z): S < t)

(2ab < a? 4 b? for a, b € R together with symmetry and the identity of
Chapman-Kolmogorov: a = j(z)[* and b = | (¥){?)

1 . S
<z / dz |o(z)[*E. (exp (- / V(X(a))do-) exp (=(2t — S)K n) (X(S),2) : S < t)
0

1 4 s
+3 /dyhb(y)l Ey (exp (—/ V(X(a))da) exp (—(2t - S)Kp)(X(S),y): 5 < f) -
0

(3.36)

Write Vyy = V 4 M1r. Since

ATTA

I 2
(exp(—AKp)(z,¥))* = lim E, (eXP (— /0 V(X (ﬂ)da) po{A =N, X (X", y))
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Al
< lim E; (exp (-—2/ VM(X(J))da) po (A =N, X(A"), y)) po( N, Z,Y)
0
S “exp (_’\ (KO + 2VA#I))"I,(':(:; PO(As z, y)

1 2
exp (—5/\(}\0 +2VM)) Po(A, z,y)

2,00
1
exp —-2-/\Ko

<

pO(’\’xay)'r (337)

1,00

1
exp (—'2"\ (Ko + 4VM))

Hoo,oo

we infer the following inequalities:

s 2
|:Ex (exp (—/0 V(X(a))da’) exp (—(2t — S)Kp) (X(S),z): S < t)]

S
<E, (exp (—2 / V(X(o'))da) 'S < t)
0

x E; (exp(~(2t — S)Kp)(X(S),2)*: S < 1)

S
<E, (exp (-2/0 V(X(cr))dcr) .S < t)
X E,( exp (— (t—%S) Ko)

x po(2t - 5, X(S),z): S < t)

exp (—(t - %S)KM)

”oo,oo 1,00

< flowp (=t (KoH-2V- )L 300 llosp (<ol o Ex (2t = 5, X(),7) S <8
<t

t
o2 (-3%)

Consequently the result in Proposition 3.10. follows.

COROLLARY. Let ¢ and ¢ be real functions defined on E with the property that
the expression

E. (po(2t — 5, X(S),z): S < 1).

1,00

< |lexp (=t (Ko+(-2V2))) ”Zooo

(3.38)

/ dz (Jp(@) + W(@)I') (Ex (po(2t = S, X(8),2) : § < )*F* (3.39)
is finite. Then, for z € res(K ) N res(Kyg), the operator

o [(KM )7 = I (Kg — 2)7 J] " (3.40)
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i1s compact.

Remark. Notice that the expression in (3.39) is finite whenever

[z (1ol + BE@I) sup suppols,z2) /<o (@1
Ft<act s ‘

This is so because, on {S < o0}, X(S) belongs to the closure of ' P,-almost surely.
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