A Topological Version of Novikov's Closed Leaf Theorem

U. Hirsch

SFB 40/MPI für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3

SFB/MPI 84-28

In 1965 S.P. Novikov published the following theorem which affirms a conjecture of Ehresmann (see [No; p. 286-289]):

Theorem 1. Let M be a closed 3-manifold with finite fundamental group. Then any codimension-one foliation of class C² on M admits a compact leaf.

In his list of open problems [Sc; p. 249] P. Schweitzer asks whether there is a C° version of theorem 1.

Using the methods and results of [HH 2] we are able to prove the following *)

Theorem 2. Let M be a closed 3-manifold with finite fundamental group. Then any codimension-one foliation on M admits a compact leaf.

The proof of theorem 2 breaks into several steps the first of which establishing a C^O version of the Poincaré-Bendixson type argument used by A. Haefliger in this thesis [Ha 1]. We also make use (in a not very essential way) of the notion of averaging sequence of the holonomy pseudogroup of a foliation; cf. [GP] and proposition 1 below.

In what follows we use the terminology of [HH 1] and [HH 2].

Given a 2-dimensional foliation (M,F) we fix once and for all a 1-dimensional transverse foliation F^{\bigcap} of F. (The existence of F^{\bigcap} was established by L. Siebenmann in [Si]. Compare also [HH 2; IV,1.1]).

^{*)} The author was informed that this result is also contained in V.V. Solodov's paper [So]. Our methods of proof are different.

1. Vanishing cycles.

<u>Definition</u>. i) A (non-trivial) <u>vanishing cycle</u> of (M,F) is a map

$$v: S^1 \rightarrow L_0, L_0 \in F$$

together with a homotopy

$$f: S^1 \times [0,1] \rightarrow M$$

such that

- (1) $f_0 = v$ and f_t is contained in a leaf L_t of F for any $t \in [0,1]$,
- (2) f is transverse to F,
- (3) v is not null-homotopic in L_o but f_t is null-homotopic in L_t for any $t \in (0,1]$.

We say that ν is supported by L_0 or L_0 is the support of ν . The homotopy f is referred to as a vanishing deformation of ν .

ii) Call a vanishing deformation $f F^{\bigcap}$ -principal if for my $x \in S^{1}$ fixed the arc f(x,t), $t \in [0,1]$, lies in some leaf of F^{\bigcap} .

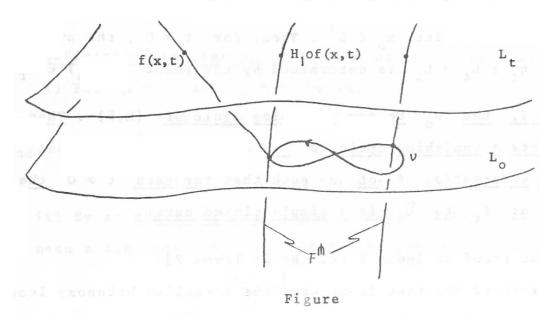
The typical example of a vanishing cycle is provided by the meridional circle on the boundary torus of a 3-dimensional Reeb component $(D^2 \times S^1, R)$. Note, however, that in general a vanishing cycle need not be embedded.

Lemma 1. Let v be a vanishing cycle of (M,F). Then there exists an F^{0} -principal vanishing deformation of v.

<u>Proof:</u> Let $f: S^1 \times [0,1] \to M$ be any vanishing deformation of v. Using local translation along the leaves of F we can find $t_0 \in (0,1]$ and an F-isotopy

$$H:(M,F)\times I\rightarrow (M,F)$$

which is stationary outside some open neighbourhood of $f(S^1 \times [0,t_0])$ in M and such that $H_1 \circ f(S^1 \times [0,t_0])$ is an F^{\bullet} -principal vanishing deformation; see fig.



From now on all vanishing cycles are assumed to be F -prin-cipal.

Remarks. i) If v is a vanishing cycle supported by $L \in F$ and w is homotopic to v in L then w is also vanishing cycle. See [HH 2; VII, 1.7, ii)]. Therefore, since every element of $\Pi_1 L$ is represented by a loop whose only multiple points are isolated double points we may work only with vanishing cycles of this type.

We say that such a vanishing cycle is in general position.

ii) Let $p: \hat{M} \to (M,F)$ be a covering map and $\hat{F} = p*F$. Then ν is a vanishing cycle of F if and only if any lift $\hat{\nu}$ of ν is a vanishing cycle of \hat{F} . Consequently, we may assume that all foliations under condenation are transversely orientable. Since all leaves of a transversely orientable foliation are two-

sided we can fix a transverse orientation of F (or, equivalent-

ly, a local flow defining F^{\oplus}) and consider henceforth only right-vanishing cycles; see [HH 2; V, 1.1.3, 1.1.4 and VII, 1.8, ii)].

Now let $f: S^1 \times [0,1] \rightarrow M$ be a vanishing deformation of v.

We choose a base point $x_0 \in S^1$. Then, for t > 0, the universal

covering $q_t : \widetilde{L}_t \to L_t$ is determined by the point $f_t(x_0) \in L_t$.

Lemma 2. Let v_0 be any vanishing cycle of (M,F). Then there exists a vanishing cycle v of F and an F^0 -principal vanishing deformation f of v such that for each t>0 the lift \widetilde{f}_t of f_t to \widetilde{L}_t is a simple closed curve.

For the proof of lemma 2 cf. [Ha 2; lemme 2].

The proof of the next lemma uses the so-called holonomy lemma stating that a disk in a leaf of F can be lifted by means of F^{\cap} to nearby leaves; see [HH 1; III, 1.2.9] and [Ha 2, lemme 3] for details.

Lemma 3. There is a map $F: D^2 \times (0,1] \rightarrow M$ such that:

- (1) F is transverse to F and to F and F*F = H, $F*F^{\cap} = V, \text{ where } H \text{ and } V \text{ are the horizontal resp. vertical}$ foliation on D² × (0,1].
- (2) $F_t | \partial D^2 = f_t$ for $t \in (0,1]$ and each $F_t : D^2 \to L_t$ is the restriction of a covering map.
- (3) F cannot be extended continuously to $D^2 \times \{0\}$.

Proof: We use lemma 2 and the Jordan-Schönflies theorem to construct F_1 . The holonomy lemma then permits us to construct F_t for all $0 < t \le 1$. Conditions (1) and (2) are satisfied, and (3) holds because f_0 is not null-homotopic in L_0 .

Now choose a nice covering U of (M,F) by bidistinguished open cubes with respect to (F,F^{\bigcap}) . Denote by (P,Q) the holonomy pseudogroup of F constructed by means of U and with canonical set of generators Γ . Note that \overline{Q} is compact and Γ is finite because M is compact.

Definition and remark. (Cf. [GP] or [HH 2; X, 2.2])

i) For $A \subset Q$ and $g \in P$ we set

 $gA = g(A \cap domain g)$

and

$$\Delta_g(A) = (A - gA) \cup (gA - A)$$
.

ii) By an averaging sequence of (P,Q) (with respect to Γ) we mean a sequence $\{A_n\}_{n\in TN}$ of finite subsets of Q such that

$$\lim_{n\to\infty} \frac{\#\Delta_h(A_n)}{\#A_n} = 0 \quad \text{for every } h \in \Gamma$$

(where # denotes cardinality).

iii) The Γ -boundary of $A \subset Q$ is by definition the set $\partial^{\Gamma} A = \{x \in A \mid h(x) \notin A \text{ for some } h \in \Gamma\}.$

If $\{A_n\}_{n \in IN}$ is a sequence of finite subsets of Q with $\lim_{n \to \infty} \frac{\|A_n\|_{n}}{\|A_n\|_{n}} = 0$ then $\{A_n\}$ is an averaging sequence.

iv) Given an averaging sequence $\{A_n\}$ of (P,Q) the set of points $x \in \overline{Q}$ for which there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that

 $x_n\in A_n \quad \text{for any } n \quad \text{and} \quad x=\lim_{n\to\infty}x_n$ is called the <u>limit set</u> of $\{A_n\}$. We denote it by lim $\{A_n\}$.

The next result is due essentially to Plante and Sullivan.

Proposition 1. If (M,F) supports a vanishing cycle then

the holonomy pseudogroup (P,Q) of F admits an averaging sequence

<u>Proof:</u> Let v be a vanishing cycle of F with vanishing deformation f and let $F:D^2\times (0,1]\to M$ be as in lemma 3. There exists $z\in D^2$ such that the curve $F_z(t)=F(z,t)$ cannot be extended continuously to zero. Since U is finite this means that there exists a plaque P of U and points

$$1 \ge t_1 > t_2 > \ldots > t_n > \ldots > 0$$

such that

$$F_z(t_n) \in P$$
 for all n.

Next, setting

$$D_n = F_{t_n}(D^2)$$

and using the fact that

$$\partial D_n \cap \partial D_m = \emptyset$$
 for $n \neq m$

we see that either

- a) there exists n_0 such that $D_n \subset D_{n_0}$ for all $n > n_0$
 - b) there exists an increasing sequence $\{n_k\}_{k \in \mathbb{N}}$ such that $D_{n_k} \subset D_{n_{k+1}}$.

But in case a) it easily follows that ν would be null-homotopic in its support, so b) must hold, and reindexing, if necessary, we may assume that

$$D_1 \subset D_2 \subset \ldots \subset D_n \subset \ldots$$

Now for $x \in Q$ denote by P_{x} the corresponding plaque of U. Define

$$A_n = \{x \in Q \mid P_x \cap D_n \neq \emptyset\} .$$

Further, let $d \in IN$ be the number of plaques P of U for which $P \cap v(S^1) \neq \emptyset$.

We may assume that

$$L_{o} \cap \partial \bar{Q} = \emptyset$$
 ,

where $L_0 \in F$ is the support of v. Then, for $n \ge n_0$, d is also

the number of plaques P of U such that

$$P \cap f_{t_n}(s^1) \neq \emptyset$$
.

Since each F_t is the restriction of a covering map we conclude that

$$\partial D_n \subset F_{t_n}(\partial D^2)$$
.

This implies that

$$\sharp \partial^{\Gamma} A_n \leq d$$
 for $n \geq n_o$.

Finally, it only remains to show that the numbers $\#A_n$ are unbounded as n tends to infinity. But for n>m any plaque intersecting $f_{t_n}(S^1)$ does not meet $f_{t_m}(S^1)$. This shows that $\#A_n>\#A_m$ for n>m.

Therefore, $\{A_n\}_{n \in \mathbb{N}}$ is an averaging sequence of (P,Q).

For the proof of theorem 2 we need one more result that was established in [HH 2; VII, 3.1]:

Proposition 2. If the codimension-one foliation (M,F) admits a closed transversal which is of finite order in Π_1M then F supports a vanishing cycle.

Proof of theorem 2: Every non-compact leaf of F admits a closed transversal and thus, by proposition 2, F supports a vanishing cycle. Hence, by proposition 1, any holonomy pseudogroup (P,Q) of F, with canonical set of generators Γ , admits an averaging sequence $\{A_n\}$. Since Γ is finite the Riesz representation theorem may be used to construct a holonomy invariant measure μ for (M,F) (whose support is contained in $\lim \{A_n\}$); see [HH 2; X, 2.2.4 and 2.2.5]. Since by assumption $H^1(M;\mathbb{R}) = 0$ it follows from [Le] that the support of μ consists of compact leaves (cf. also [HH 2; X, 2.4.7]).

Note that if L is such a leaf then there is no closed

transversal passing through L because $H_1(M;IR) = 0$, so L is a torus or Klein bottle; see [Go].

Literature

- [Go] Goodman, S.: Closed leaves in foliations of codimension one. Comment. Math. Helv. 50, 383 388 (1975)
- [GP] Goodman, S. Plante, J.: Holonomy and averaging in foliated sets. Preprint.
- [Ha 1] Haefliger, A.: Structures feuilletées et cohomologie à valeur dans un faisceau de groupoids. Comment. Math. Helv. 32, 249 329 (1958)
- [Ha 2] Haefliger, A.: Travaux de Novikov sur les feuilletages.

 Seminaire Bourbaki n° 339, Février 1968
- [HH 1] Hector, G. Hirsch, U.: Introduction to the geometry of foliations. Part A (1981)
- [HH 2] Hector, G. Hirsch, U.: Introduction to the geometry of foliations. Part B (1983)
- [No] Novikov, S.P.: Topology of foliations. Trudy Mosk. Math.

 Obsch. 14, 248 278 (1965). Trans. Moscow Math. Soc.

 268 304
- [Sc] Schweitzer, P.: Some problems in foliation theory and related areas. Springer LN 652, 240 252 (1978)
- [Si] Siebenmann, L.: Deformation of homeomorphisms on stratified sets. Comment. Math. Helv. 47, 123 - 163 (1972)
- [So] Solodov, V.V.: Homeomorphisms of the line and a foliation.

 Math. USSR Izvestiya, 21, No. 2, 341 354 (1983)

Bonn, June 1983