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Mellin and Green Symbols for Boundary Value Problems on Manifolds with
Edges

ELMAR SCHROHE AND BERT-WOLFGANG SCHULZE

We introduce the algebra of smoothing Mellin and Green symbols in a pseudodifferential calculus for manifolds
with edges. In addition, we define scales of weighted Sobolev spaces with asymptotics based on the Mellin
transform and analyze the mapping properties of the operators on these spaces. This will allow us to obtain
complete information on the regularity and asymptotics of solutions to elliptic equations on these spaces.

Introduction
In this paper we develop a crucial part of the pseudodifferential calculus for boundary value problems on
manifolds with edges, namely the smoothing Mellin and Green symbols along with the Sobolev spaces
with asymptotics on which the associated operators act naturally. According to the basic principles in
the design of pseudodifferential calculi on singular manifolds developed by the second author it is the
interplay of the structure of the spaces with the structure of the symbols and their (pointwise) inverses
which provides the specific information for the parametrix construction in the final calculus and the
conclusions on regularity and asymptotics of solutions to elliptic boundary problems.

While the more technical details of the calculus are deferred to other publications [16, 17], ... , we
introduce here the concepts of meromorphic Mellin symbols and (non-branching, discrete) asymptotics.
Both are new and differ from earlier versions in the boundaryless case.

A few details: Glose to the edge, a manifold with edges and boundary has the structure of a wedge: It
is the Cartesian product of q-dimensional Euclidean space with a cone whose base is a smooth compact
manifold with boundary.

Following the general concept of iterated symbolic structures we devise the calculus on this wedge as
a pseudodifferential calculus along the edge Rq with operator-valued symbols. They have values in the
cone algebra developed by the authors in [14, 15]. Looking more closely, each of these pseudodifferential
symbols will be a sum of three terms: An analytic edge symbol, a smoothing meromorphic Mellin
symbol, and a Green symbol. Having dealt with the analytic edge symbols in [16 1 17), the smoothing
Mellin and Green symbols are the object of the present investigation.

Both symbol classes are subspaces of the parameter-dependent regularizing elements in Boutet de
MonveFs calculus on the smooth open manifold obtained by deleting the edge of the wedge. However,
they have a much finer interior structure. The smoothing Mellin symbols are pseudodifferential symbols
along the edge with values in Mellin operators on the cone having regularizing meromorphic Mellin
symbols with asymptotics; the Green symbols are described in terms of their mapping properties on
weighted Mellin Sobolev spaces with asymptotics.

As a consequence, the Green symbols pointwise take values in compact operators. Hence the residual
operators in the final edge calculus, namely the smoothing Green operators induced by the regularizing
Green symbols, will be compact. A parametrix will yield a Fredholm inverse within the calculus.
rvloreover, the parametrix will act on the Mellin Sobolev spaces with asymptotics; the residual operators
will map any Sobolev space into a corresponding Sobolev space of smooth functions with asymptotics.
This will enable us to decribe precisely the structure of solutions to elliptic boundary value problems.

The construction of a pseudodifferential calculus on manifolds with edges is another step towards
corresponding calculi for boundary value problems on manifolds with higher singularities and towards
an index theory for these objects. More generally, the analysis on manifolds with singularities also
is of considerable interest for concrete applications in mathematical physics and engineering. For
pseudodifferential calculi in many different situations see Schulze [7, 18, 19, 21, 20].

1. Mellin Sobolev Spaces with Asymptotics

Throughout this article let X be an n-dimensional 0 00 manifold with boundary Y, embedded in an
n-dimensional manifold X without boundary. All of them are supposed to be compact. We write X
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for the open interior of X, while X is its closure; VI, V2 , ... are vector bundles over X and W I , W2 , ...

vector bundles over Y. On X we fix a Riemannian metric; moreover we endow the vector bundles with
Hermitian structures so that we can speak of L2 -sections. By or we denote an operator which coincides
with the normal derivative in a neighborhood of the boundary and vanishes outside a slightly larger
neighborhood of the boundary.

Regularizing Operators in Boutet de Monvel's Calculus

In this paper we shall only need the notion of regularizing elements. For a short introduction to Boutet
de Monvel's calculus see Section 2 of [14].

Definition 1.1. A regularizing operator 0/ type 0 in Boutet de Monvel's calc'Ul'Us is an operator

whose formal adjoint with respect to the inner products on L 2 (X, VI) ffi L 2 (y, Wd and L 2 (X, V2 ) ffi
L 2 (Y, W2 ) respectively, R*, induces a continuous operator

These mapping properties imply that R is an integral operator with a smooth kernel. A regularizing

operator 0/ type dEN is a sum R = r::~o R j [~ ~] with oll R j regularizing cf type zero. Für

s > d - 1/2, R defines a continuous operator

Using integration by parts we may write R = C + r::=1 [~:~:~: ~]. Here, C is a regularizing

operator of type zero, rj is defined by '"'Yju = atuly, while K j : L 2 (y, Wd -+ CCX>(X, V2 ) and Sj :
L 2 (y, Wd -+ CCX>(Y, W2 ) are integral operators with smooth kernelsj C as well as the K j and Sj are
uniquely determined.

We write B-cx>,d(X) for the space of regularizing elements of type d and B-=,d(X; Rq) for the
parameter-dependent regularizing elements, i.e., the Schwartz functions on Rq with values in B-cx>,d(X).

Group Actions and Operator-Valued Symbols

1.2 Operator-valued symbols. A strongly continuous group action on a Banach space E is a family
'" = {"',\ : A E R+} of isomorphisms in l(E) such that "').K/1 = K'\1l and the mapping A f-t "'Ae is
continuous for all e E E.

We fix a smooth positive function [.] : Rq -+ R+ with [1]] = 11]1 for large 1771. H8(R) is the usual
Sobolev space on R, while HS(R+) = {uIR+ : u E HS(R)} and H5(R+) is the set of all u E H8(R)
whose support is contained in R+. Furthermore, Hs,t(R+) = ([r]-tu : u E HS(R+)}, and H~,t(R+) =
{(r]-tu : u E Hö(R+)}i here r is the variable in R+. Finally, S(R~) = {ulRq : u E S(Rq)}.

+
For all Sobolev spaces on Rand R+, we will use the group action

(1.1) (K,\f) (r) = At f(>.r).

This action extends to distributions by K,\U(<p) = U("'"A-1<P)' On E = Cl use the trivial group action
"',\ = id.

Let E, F be Banach spaces with strongly continuous group actions K, r.." let 0 ~ R k , a E COO(O x
Rn,L:(E,F)), and J.l E R. We shall write a E SIl(O,Rq;E,F) provided that, far every K ce n and
all multi-indices 0:, ß, there is a constant C = C(K, a, ß) with

(1.2)

The space SJl(O, Rqj E, F) is Fnkhet topologized by the choice of the best constants C.
The space Stt(f2, Rqi C k

I Cl) coincides with the (l x k matrix-valued) elements of Hörmander's dass
Si,o(f2 x Rq). One has asymptotic summation: Given a sequence {aj} with aj E Slli(O,RqjE,F) and
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/-Lj -+ -00, there is an a E S/-L(!1,RqjE,F), /-L = max{J.Lj} such that a "-' :Laj; ais unique modulo
S-OO(!1, Rq; E, F). Note that S-=(!1, Rq; E, F) is independent of the choice of K and K.

A symbol a E S/-L (n, R q; E, F) is said to be classical, if it has an asymptotic expansion a ,....., E~o aj
with aj E S /-L- j (!1, R qjE, F) satisfying the homogeneity relation

(1.3)

for all ,,\ ~ 1, 17]1 ~ R with a suitable constant R. We write a E S~(n, Rqj E, F). For E = C k , F = Cl
we recover the standard notion.

There is an extension to projective and inductive limits: Let E, F be Banach spaces with group ac­
tions. If F I f-J F2 +-' ... and EI Y E 2 Y ... are sequences of Banach spaces with the same group ac­
tion, and F = proj - lim Fk , E =ind - lim Ek, then let S/-L(!1, Rq; E, F) = proj - limkS/-L(O, Rq; E, Fk )

and define S/-L (0, Rq; E, F) aB weIl as S/-L(O, Rq; E, F) similarly as projective limits.

Remark 1.3. Recall that
5'(R+) = ind -limer,TEN H~er,-T(R+).

and

Example 1.4. Let rj : 5(R+) -+ C be defined by rji = limr-to+ atf(r). Then, for an s > j + 1/2 ,
we can consider '"'fj as a (Y,7])-independent symbol in Sj+l/2 (Rq x Rq; H8 (R+), C).

In fact, all we have to check is that IIK[ry]-l'"'fjK[1]JII = 0([7]]1+1/2) for the group actions K, on C and K

on H 8 (R+). Since the group action on C is the identity, that on HS(R+) is given by (1.2), everything
follows from the observation that

The following lemma is obvious.

Lemma 1.5. For a E S/-L(O,Rq;E,F) and b E SV(O,Rq;F,G), the symbol c defined by c(Y,7]) =
b(y,7])a(y,7]) (pointwise composition 01 operators) belongs to S/-L+V(!1,Rq;E,G). Moreover, D~D~a E

S/-L~IQI (!1, Rq; E, F) lor all multi-indices Q, ß.

Lemma 1.6. Let a = a(y,7]) E C=(O x Rq, L(E, F)), and suppose that a(y, "\7]) = ,,\/-LK)... a(y, 7]) "')...-1

fOT all ,,\ ~ 1, 17]1 ~ R. Then a E S~(n, Rn; E, F), and the symbol semi-norms for a can be estimated in
terms of the semi-norms fOT a in C=(!1 x Rq,L(E,F)).

P roof. Without loss of generality let R = 1. We only have to consider the case of large 17]1. For these,
D~D~a(y, 7]) = ,,\-/-L+laIKA _ 1 (D~D~a)(y, )..7]) K A· Letting A = [7]], we conclude that K;[1]J-1D~D~a(y,7])K[1])

= [7]]1-t- 1a l(D~D~a)(y, 7]/[7]]). The norm of the right hand side in [(E, F) clearly is O([7]]/-L~lal). More­
over, a is classieal, sinee it is homogeneous of degree J.L in the sense of (1.3). 0

Mellin Sobolev Spaces

1.7 Parameter-dependent order reductions on X. Let V be a veetor bundle over X. For eaeh
J.L E R there is a parameter-dependent pseudodifferential operator All- = {AIl-(T) : r E R} with loeal
parameter-dependent elliptic symbols of order J.L such that

is an isomorphism for all T.

One way to construet such an operator is to start with symbols ofthe form (~, (T, C))/-L E S/-L(Rn, R€\ R r)

with a large eonstant C > 0 and pateh them together to an operator on the manifold X with a partition
of unity and cut-off functions.

Definition 1.8. For ß E R, r ß denotes the verticalline {z E C : Rez = ß}. The Mellin transform
Mu of u E CÖ(R+) is given by

(1.4) (Mu)(z) =1= t'-IU(t) dt, z E C.
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M extends to an isomorphism M : L 2 (R+) -+ L2 (f1/ 2 ). Of course, (1.4) also makes sense for functions
with values in a Frechet space E. The fact that Mulr1/Z_1' (z) = Mt_H(t-'YU)(z + J) motivates the
definition of the weighted Mellin trans/orm M'Y:

M'Yu(z) = Mt-'lz(t-'Yu)(z + ,), u E C~(R+, E).

For a Hilbert space E, the inverse of M'Y is given by (M:;lh)(t) = -2
1. ];r t-Zh(z)dz.

I 1n 1/2-1'

1.9 Totally characteristic Sobolev spaces. Write X/\ = X X R+, X/\ = X X R+, y/\ = Y X R+.
(a) Let {Al1 : J.t E R} be a family of parameter-dependent order reductions as in 1.7. For s" E R,

the space HS,J(X/\) is the closure of Co(X/\) in the norm

(1.5)

Recall that n is the dimension of X and X. The space H s, 'Y (X /\) is independent of the particular choice
of the order reducing family.

(b) For sEN we obtain the alternative description u E HS,,(X/\) iff tn/2 -'Y(t8d k Du(x, t) E
L2 (X/\) for all k ::; s and all differential operators D of order::; s - k on X, cf. (20, Section 2.1.1,
Proposition 2].

(c) Set H 9,,(X/\) = {fixA: f E HSI'Y(X/\)}, endowed with the quotient norm.
(d) HS,'Y(X/\) ~ Htoc(XI\.) , where the subscript 'iod refers to the t-variable only. Moreover, HS,,(X/\) =

t'YH 9 ,O(X/\); HO,O(X/\) = t-n/2 L2 (X/\) has a natural inner product

(u, v),.{O,O(XII) = -2
1

. ( (Mu(z), Mv(z)pun dz.
7rZ Jr !!.:}l

(e) Let 'P be the restriction to XI\. of a function in Cö(X xR). Then the operator M<p ofmultiplication
by cp yields a bounded map HS''Y(XI\.) -+ HS,J(XI\.) for all s, JE R. The mapping 'P r-7 M<p is continuous
in the corresponding topology.

Definition 1.10. Let E, F be Frechet spaces and suppose both are continuously embedded in the
same Hausdorff vector space. The exterior direct sum E EEJ F is Frechet and has the c10sed subspace
N = {Ca, -a) : a E EnF}. The non-direct sum of E and F then is the Rechet space E+F := EE9F/N.

1.11 The spaces H~one' Let {Xj }f=l be a finite covering of X by open sets, K.j : Xj -+ Uj the
coordinate maps onto bounded open sets in Rn, and {CPj}f=l a subordinate partition of unity. The
maps ""j induce a push-forward of functions and distributions: For a function u on Xj for example,

(1.6)

For j = 1, ... , J, consider the diffeomorphism

Xj: Uj x R-+ {(x[t],t): x E Uj,t E R} C R n+1

given by Xj(x,.t) = (x[t], t). For s E R we define H~one(.X x R) as the set of all u E Htoc(X x R) such
that, for j = 1, ... , J, the push-forward (Xj 0 (K.j ®id)*('Pju), which may be regarded as a distribution
on R11+1 after extension by zero, is an element of HS(Rn+1). The space H~one(X x R) is endowed with
the natural Hilbert space topology. We let

(1. 7)

For more details see Schrohe&Schulze [15, Section 4.2]. The subscript "cone" is motivated by the fact
that, away from zero, these are the Sobolev spaces for an infinite cone with center at the origin and
cross-section X. In particular, the space H~one(sn x R+) coincides with HS(Rn+1 \ {O}) outside any
neighborhood of the origin.

Definition 1.12. For s" E Rand w E Cö(R+) with wer) == 1 near r = 0, let

(1.8)
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The definition is independent of the choice of w by 1.9(e). We give KS''i'(X/\) the topology of the
non-direct sum of the Hilbert spaces 1I.. 6 ,,(X/\) and H~one(X/\).

ClearlYl KO,O(X/\) = lI..0 ,O(X/\) = t- n / 2L2 (X/\).

The lemma, below, can be deduced from the trace theorem for the usual Sobolev spaces. The shift in
the weight , H ,- 1/2 is due to the fact that dirn Y = n - 1.

Lemma 1.13. For s > 1/2 and, E R the restrietion 'aU = uly'" of u to Y/\ induces a continuous
operator )(S"(X/\) ~ ,(S-I/2,,-1/2(y/\).

By r denote the normal coordinate in a neighborhood 0/ Y. Then the operators 'j :U l---7 atuly'" define
continuous mappings ,(8" (X/\) ~ ,(8- j -I/2,,-1/2(y/\).

Lemma 1.14. A strongly continuous group action K,>. is defined on KS,,(X/\) by (K,>.f)(x, t) =
.\(n+I)/2f(x, .\t) provided s ~ O. This action is unitary on ,(o,O(X/\) and naturally extends to dis­
tributions in JC8"(X/\)J s" ER.

Proo f. It is lengthy but straightforward to see that K, is strongly continuous; it is unitary on ,(0,0 (X /\ )
in view of 1.12. 0

Remark 1.15. The definitions of the spaces 7-{8" and K8" also make sense for functions and dis­
tributions taking values in a vector bundle V. We shall then write 7-{S"(X/\, V) and K,8,,(X\ V),
respectively. In later constructions we will often have to deal with direct sums JCs" (X/\, V) EB
K8-I/2,,-1/2(y/\, W) for vector bundles V and W over X and Y, respectively. On these spaces we use

!!±1_ 11

the natural group action K,>.(u,v) = (.\-r-u(-,.\·),.\2V(-,.\·)).

Asymptotics

Convention: Whenever we shall write in the following w, W, WI, ... 1 without further specification or
refer to a function as a cut-off function we mean an element of cgo (R+) whieh is equal to one near the
origin.

Definition 1.16. (a) A weight datum is a tripIe g = Ci, J, (-k, 0]), where, and 8 are reals and (-k, 0]
is a finite interval with 0 i- k E N.

(b) An asymptotic type associated with the weight datum g is a pair P = (PI, P2 ), where PI and P2

are tuples with the following properties:

(i) PI = {(Pj, mj) : j = 1, ... , J}, where Pj E C with ~ -,- k < Repj <~ - " and mj E N;

(ii) Pz = {(qj,nj) : j = 1, ... , J'}, where qj E C with ~ -, - k < Reqj < ~ -" and nj E N.

The numbers J and J' may depend on P. We might have J = 0 or J' = O. Vve then write PI = 0 and
P2 = 0, respectively. We let 'lrc PI = {PI,···,PJ}, 7fCP2 = {qI, ... ,qp}, and 7rCP = 7rCPI U7rCP2.
Note that the conditions on P are independent of the seeond entry of the weight datum g.

(e) A Mellin asymptotie type over an open set U ~ RP is a sequenee Q = {(qj, nj, Lj ) : j E Z}; here
qj E C with Reqj ~ =foo as j --+ ±oo, nj E N, L j = {Lj(y) : y E U,o: E NP}, and each Lj(y) is a
finite-dimensional subspace of finite rank operators in B-OO,d(X). As before, 7fcQ = {qj : j E Z}, and
we explicitly admit the case that {(qj, nj, L j )} has finitely many elements only or even no element at
all. In this last case we speak of the trivial asymptotic type and use the notation Q = o.

(d) Let P = (PI, P2 ) and J be as above. For s E R we define 7-{~; (X/\) as the set of all distributions
U in 7-{8,,(X/\) for which there are functions ejl E COO(X), j = 1, ... , J, l = 0, ... , mj, and a cut-off
function w such that

J m'

(u -~~ Cj'(x)CP; In' t)w(t) E 1i,,'+'-'(XA
)

for every E > O. Clearly, if one cut-off function has this property, then any other will also have it.
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Similarly, we let 'H~:-1/2(y/\) be the space of all distributions v in 1-l s ,,-1/2(1'/\) for which there are
functions d jL E C= (1') I j ::= 1, ... , J', l = 0, ... , nj, and a cut-off function w such that, for every c > 0,

J' n·

(v -~~ dj/(x)C" In' t)W(t) E H,,>-l/Hk-'(YA),

This gives them natural Frechet topologies.
(e) K~: (X /\) denotes those distributions u on X /\ for which wu E 'H~: (X /\) and to (1 - w)u E

H~one(X/\), Analogously, K~;-1/2(1'/\) is the space of all distributions u on 1'/\ with wu E

1i s ,'y-l/2 (1'/\) and (1 - w)u E H S (1'/\)P2 cone .
(f) S;1 (X/\) is the space of all smooth functions u on X/\ with WU E 1iA'''f(X/\) and (l-w)u E S(X/\).

V/e define S;2 (1' /\) correspondingly.
The spaces in (e) and (f) are topologized as non-direct sums of Frechet spaces.

Our next goal is a description of the Mellin images of functions in the spaces KS,,(X/\). We start
with the following simple observation.

Lemma 1.17. (a) Let w be a cut-off function near O. Then Mw(z) =z-lM( -t8tw)(z). Since -tEhw E
COO(R+), its Mellin transform is rapidly decreasing on each line r,ß. If X is a smooth function on C
which vanishes near zero and is equal to 1 near infinity, then XMw is rapidly decreasing on each line
r .0' uniformly for ß in compact intervals.

(b) Given a cut-off function w E COO(R.r) with w(t) :::; 1 near zero, pE C, and k E N, let

dk

'ljJp,k(Z) = Mt~z(t~Plnktw(t))(z) = dz k (-z- IM(t8tw)(z))(z - p).

Here we interpret Alt - H as the weighted Mellin transform M, with r < 1/2 - Rep. Then 'l/Jp,k extends
to a meromorphic function in C with a single pole of order k + 1 at p. If X is a smooth function on C
which vanishes near p and is equal to 1 outside some compact set, then X'l/Jp,k is rapidly decreasing on
each line r .0, uniformly for ß in compact intervals.

Definition 1.18. Let g = (')',8, (-k,O]) and P = (PI,PZ) be as in Definition 1.16.
(a) A~: (X, Vd is the space of all analytic functions

f : {z E C : (n + 1) /2 - ')' - k < Re z < (n + 1) /2 - 1'} \ 7rC PI ~ H S (X, Vd

with the following properties:

(i) In Pj E 7rCP1 , the function f has a pole of order mj and a Laurent expansion

mj

fez) = L Cjl(Z - pj)-L-I + fez),
1=0

with Cjl E c= (X, Vd and j analytic near Pj.

(ii) For E > °choose an excision function XE' vanishing in an E-neighborhood of 7rCP1 and equal
to 1 outside a 2c-neighborhood of 7rCPl. We then ask that, for each c > °and each ß with
')' ::; ß < ')' + k,

IIMß~n/2(xEf)II1i~,ß(XA,Vt) < 00,

uniformly far ß in compact subintervals of b, ')' + k).

(b) Similarly we define A~: (1', W1 ) as the space of all analytic functions

f : {z E C : nf2 - r - k < Rez < nf2 - ')'} \ 7rCP2 ~ HS(1', lVd

with poles of order nj at qj E 7rc P2 and Laurent expansions

nj

fez) = L djl(z - qj)-l-I + fez),
L=O
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o

with djl E Coo(y, Wd and j analytic near qj. We also ask that, for each excision function x~ for 'lrCP2
and each ß with , ::; ß < ,+ k, we have

IIMß~(n_I)/2(x~I)II1{~,ß(YA.wd < 00,

uniformly in compact subintervals of [", + k).

Proposition 1.19. Let w be a cut-off function, and let P = (PI, P2 ), , be as in Definition 1.16. Then
the weighted Mellin transform together with the operator 01 multiplication by w induces continuous maps

(i) M,-nj2 w : K~: (XI", VI) -+ Af: (X, Vd,

(ii) WM:;~nj2 : A~:(X, Vd -+ K~:(X/\ Vd,

(iii) M'Y-(n~I)/2 W : K~; (Y/\, WI ) -+ A~; (Y, W I ), and

(iv) wM:;~(n_I)/2 : A~; (Y, Wd -+ K~: (Y/\, WI ).

Proof. This follows immediately from Lemma 1.17 and the definition above.

Lemma 1.20. The spaces K~'Y can be written as projective limits of Hilbert spaces: Kf'Y(X/\)
proj - limEj, where

(i) KS" (X) = Eo f--' EI f--' ... f--' K~r (X/\), and

(ii) the group action coincides on all spaces.

The same statements hold for S; (X /\) as weil as for the corresponding spaces over Y A or for distribu­
tional sections.

Proof. Coo(X) is the projective limit of the Hilbert spaces Hk(X), k E N. Next, }C~'Y(XA) is the
non-direct sum of the intersection ne>o KS,r+k-e(X/\), which is a projective limit of Hilbert spaces,
and the space of all linear combinations of functions of the form

with d E Coo(X), Pj E trcP, 0 ::; 1 ::; mj. This also is a projective limit in a natural way. For S;(X/\)
we use the representation as the non-direct sum in 1.16(f). We deal with 1t;·'Y(XI\) = ns 1i.~'Y(X/\)

as before and use Remark 1.3 for S(X/\). 0

2. Operator-Valued Mellin and Green Edge Symbols

Green Symbols

2.1 Notation. In the following, n denotes an open set in Rq. Given a weight datum g = (" J, (-k, OD,
an asymptotic type P = (PI, P2) associated with g, and s" E R, 1 = 1,2, ... , we introduce the
abbreviations

(2.1)

(2.2)

(2.3)

KS,'Y (xA, Vi) ffi K S ,'Y-1 j2 (yl\, VVl ) ,

S;) (X A
, vt) ES S;;1/2 (Y/\, Wl ), and

A 8 ,,(X Vi) ffi A 8 ,,-1/2(y W).
Pi ,l P2 ,l

Definition 2.2. Let g = (" J, (-k, 0]) be a weight datum, p, E Z, and dEN.
(a) R.~/ (n x n x Rq 1 g) is the space of all operator-valued symbols

(2.4) g En S/-f. (0 x n Rq· Ks,r ffi C NI K S -/-f.,8 ffi C N2 )cl "1 \.V 1 2 <;]7

s>-1/2
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with the following property: There is an asymptotic type P = (PI, P2 ) associated with g such that, for
each s > -1/2, the symbol 9 yields an element of

(2.5)

while the pointwise formal adjoint g., defined by g. (y, 1]) = g(y, 1])*, yields an element of

(2.6)

for an asymptotic type Q = (Q1, Q2) associated with the weight datum (~8, -" (-k, 0]). The last '*'
denotes the formal adjoint with respect to the inner products on K~'o and K~'o. The dimensions NI, N 2

will not be indicated.
(b) 'R6'd (0 x 0 x Rq, g) is the space of all operator-valued symbols

(2.7) g En SI-' (0 x 0 Rq· KS''Y ffi c NI KS-I-',o ffi C N2 )
cl "1 w '2 w ,

s>d-1/2

which can be written in the form

(2.8) d [[ 80
t

o
00] 00]9 = 90 + Lgi

j=l

with 9j E 'R6- j
,0 (0 x 0 x Rq, g). The matrix in the upper left corner refers to the decomposition

(2.1). We call these elements Green edge symbols of order J.L and type d. lf we want to indicate the
asymptotic types we will use the notation 'R6,d(0 x 0 x Rq J g)p,Q.

For fixed asymptotic types P and Q the space 'R6,d(O x 0 x Rq, g)p,Q is a Frechet space topologized as

a non-direct surn via (2.8). We write 'R6,d(0 x Rq, g) for the space of all symbols that are independent
of the variable y' E O. Since all symbols are classical, we naturally have the notion of a principal
(operator-valued) symbol.

Remark 2.3. Similarly as in Boutet de Monvel's ca1culus, we are dealing with matrices of operators.
Note, however, that we now have 3 x 3 block matrices. The additional entries correspond to trace and
potential operators at the edge.

Proposition 2.4. Let 91 E 'Rd'd(O x 0 x Rq, g) and 92 E R~ ,d' (0 X 0 x Rq, g). Then

(a) D~D~ 91 E 'R~~IQI,d (0 x 0 x Rq, g).

(b) The pointwise composition glg2 is an element oj'R6+1/,d
J

(0 x 0 x Rq,g).
(c) 1/ d = 0, then 9i, defined as the pointwise adjoint gi (y, y' , 1]) = 91 (y, y' , 1])* is an element 0f
'R6'°(0 x 0 x Rq,g).
(d) Given a sequence gj E 'R6- j ,d(0 x 0 x Rq, g)p,Q with constant asymptotic types P, Q, there is a

9 E R~/(O x 0 x Rq, g)p,Q with 9 t'V .L~o gj.

Proof. (a), (b), and (c) are obvious. (d) Although we are dealing with operator-valued symbols, the
usual asymptotic summation procedure with respect to the variable 1] furnishes the desired result. 0

Proposition 2.5. Let VI, V2 E N and 9 E R~,d(O x n x Rq, g). Then

Here we understand tVI as the operator of multiplication by the diagonal matrix diag {tVI , tVI , I}, acting

apriori in C[f(XI\, Vd ffi C[f(YA, Wd ffi C NI which is dense in K:''Y ffi C N1 . A similar interpretation
applies to tV2

• It is apart of the result that the composition extends to a symbol in

SI-'-VI- V2(0 x 0 Rq· KS''Y ffi C N1 KS-P.,rS ffi C N2 )
cl "l w '2 \J7

with the properties in Definition 2.2.
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P roof. In view of the fact that 8r commutes with t we mayassume that d = O. For fixed y, y/, 7], the
operator 9(y, y' ,7]) has an integral kernel

k(x,y) = (ku(x,y) k12 (X,y»)
k21 (x, y) k22 (x, y) ,

with ku E sg p0 1rS--Q' ,kI2 E sg p 0 C N1 , k21 E C N2 0 S--Q', and k22 E C N2 '21 C N1 . Here Q is the
, 1,' I,

conjugate asymptotic type, i.e. Ql = {(qT,nj)} ifQl = {(qjl),nj)}. This can be deduced from [14,
Theorem 3.3.2].

In particular, multiplication of g(y, y',7]) by powers of t from either side furnishes a continuous
operator from K:')' ffi C N1 to K~-IJ.,J ffi C N2 for all s> -1/2. Moreover,

Hence the order is lowered by VI + 1)2. Properties (2.5) and (2.6) follow in the same way. o

Proposition 2.6. Let r.p E S(R+) and 9 E 1?/~./(n x n x Rq, g). Then r.pgJ gr.p, <P(-[1]])g, and gr.p('[7]])
alt are elements 01 'R6,d(O x n x Rq, g).

Again we interpret <P as the operator of multiplication by the diagonal matrix of functions diag(<P 1 r.p),
acting on K:')' and K~~tl,8 for all s E R; furthermore, <p('[1]]) is the corresponding 1]-dependent multi­
plier.

PIOOf. Since multiplication by <p(t) and r.p(-[1]]) commutes with 8r we may assurne that d = O. Next
we note the identities

1>:[1]J-1 <pg(y, y', 1])1\:[1]]

1\:[1]]-1 g(y, y', 7] ) 'P I\:[1]]

cp([1]]-l')I>:[1]]-lg(y, y', 1])1\:[1])'

K:[1]]-lg(y, y',1])K:[1]]r.p([1]r I
-).

For fixed 1], multiplication by <p([1]]-I.) furnishes a bounded operator on both K:')' and K~-P.,J. Had
we instead started with <P('[77]) then we would now only have to deal with multiplication by r.p. Writing
sg,p and S;,~ as projective limits of Hilbert spaces, say E~j and E~)'lj, as indicated in Lemma 1.20,

multiplication by <p([1]]') and I.p in aB cases induces continuous actions

and

for suitable asymptotic types P and Q associated with g. l\1oreover, the norm of the operator <p([1]]-I.)
is uniformly bounded as 7] varies over Rq. A corresponding argument applies to derivatives.

Hence we get symbols of the desired order. It remains to show that they are classical. So suppose gj
is homogeneous of degree j in the sense of (1.3). Then one has, for large 1771 and ).. ~ 1,

K;>.<P([1]]' )gj (y, y' ,1]) K:>.-1 = r.p()..[1]]' )K;>. r.pgj (y, y', 1])K:>.-1 = /p([)..1]]'» ..-j9j (y, y', )..1]);
K;>.<pgj(y,Y',1])I\:>.-1 = r.p()"·)k->./P9j(Y, y',1])K,)..-1 = cp()...) ..-j9j(y, V', )..1]).

Similar equations hold for multiplication from the right. In the first case we therefore have homogeneity
of degree j right away. For the second we use Taylor's formula to write

N-I 81 (0)
<p(t) = " _'P_tl + t N (j;

L-- l!
l::::O

for some smooth bounded function (j;. From the above and Proposition 2.5 we conclude that the operator
induced via multiplication by the remainder term has order j - N while the others are homogeneous
for large 1771. This completes the proof. 0

Smoothing Mellin Symbols

2.7 Smoothing Mellin symbols with asymptotics. Let P = {(Pj, mj, L j )} be a Mellin asymptotic
type over an open set U in Euclidean space. In applications, U will be 0 or n x O. Recall that, for an
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open subset G of the complex plane and a Fnkhet space [" A(G, E) is the space of all analytic functions
on G taking values in E.

vVe define CCO(U, A1pCO ,d(X)) as the space of all smooth functions

h : U -+ A(C \ 1fcP, B-co,d(X))

having the following additional properties:

(i) the points Pj E 1fcP are poles of order ~ mj. For l = ü, ... ,mj -1, the coefficient hjl(y) of
(z - pj)-l-l in the Laurent expansion of h(y,,) satisfies a~hjl(Y) E Lj(y) far all multi-indices 0:.

(ii) For each finite strip {Cl< Rez < C2} we find functions Cjl E CCO(U,B-co,d(X)) such that the
difference

h(y, z) -
Cl <Repj<c2

is a smooth function on U with values in A({Cl< Rez < C2}, B-oo,d(X)); it is rapidly decreasing
along fß, uniformly for y E U and Cl < ß < C2. Here w is an arbitrary cut-off function.

These conditions furnish a natural Fnkhet topology on COO(U, Mpoo,d(X)). The Cjl can be expressed
in terms of the Laurent coefficients of the principal part; they are, however, more convenient to describe
the decrease.

Proposition 2.8. Let h E COO(U, Mpoo,d(X)) and j E A~:b fOT a Mellin asymptotic type P oveT U,
an asymptotic type Q associated with g, and s > d-1/2. Then g(y,z) = h(y,z)j(z) defines an element
9 of COO (U, A;:1) fOT each r E Rand a suitable asymptotic type R; the induced mapping

Coo(U M-oo,d(X)) X AB,')' -+ Coo(U, Ar,')' )
, P 1,Q 2,R

is continuous.

Proof. We are only interested in the strip {(n + 1)/2 -,- k < Rez < (n + 1)/2 -,}. By linearity
it therefore is no restrietion to assume that P = {(p, m, L)} and Q = (Ql, Q2) with Ql = {(q,l)} and
Q2 = 0, i.e., both consist of a single element with P and q in the strip.

Choose a cut-off function w. Employing Lemma 1.17 we may write

m-l

h(y, z) = L Cj(y)7f;p,j(z) + ho(Y, z),
j=O

where Cj E Coo(U, B-oo,d(X)), 7f;p,j(z) = Mt-+z(t- P ln j tw)(z), and ho is a smooth function on U, taking
values in the space B of all analytic functions on the strip with values in ß-oo,d(X) that are (uniformly)
rapidly decreasing along each verticalline in the strip. Since Coo(U, B) = Coo(U)®7rB we may assume
that ho(y, z) = v(y)e(z) with v E COO(U) and e E B. Similarly,

I-I

j(z) = L dk7f;q,k(Z) + jo(z),
k=O

with dk E COO(X, Vd EEt COO(Y, Wd and jo E A~'b; recall that 0 denotes the trivial asymptotic type.
Now we consider the terms separately: 'l/Jp,j7f;q,k' is a meromorphic function in the strip with singularity

set {p, q}, possibly P = q. Cutting out a neighborhood of the pole(s), this function is rapidly decreasing
along each verticalline, uniformly in the strip. The continuity of the composition

therefore shows that cjdk'I/Jp,j'I/Jq,k is an element of COO (U, A;',l) for each r E R, provided the asymp­
totic type R takes care of the pole(s), say R = ({(p,m + l),(q,l)},0). Moreover, the semi-norms in
C OO (U1 A;:l) depend continuously on those far Cj and dk.

For fixed z in the strip, the composition e(z)dk defines an element of COO(X, V2 ) ES COO(Y, W 2 ). It
depends analytically on z in all the strip, and its semi-norms decay rapidly as z varies over a vertical
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line, uniformly in the strip. Hence also vedk'l/Jq,k E CCO(U, A;;'h) for arbitrary r. The corresponding
mapping is continuous. Finally one treats Cj'l/Jp,j 10 and velo in the same way. 0

2.9 Mellin operators. Given a subset U of Euclidean space, h = h(y, z) E CCO(U, Mpco,d(X)), and
rE R with f 1/ 2-, n 1rcP = 0, we introduce the operator family {oPAth(y) : Y EU}:

opIth(y) : Cgo (X", VI) EB Cgo (1''', ltV1 ) -7 CCO(X", V2 ) EB CCO (1''', W2 )

is defined by

[ap1h(y)]u(t) = ~ r t- Z h(y, z)M,u(z) dz = (M:;1 h(·, y)M,u)(t).
271"1, irr

1/2-"'7

Here, we identify u with a function in Cg:>(R+, CCO(X, VI) EB CCO(1', Wd), and M,u is the Frechet
space-valued weighted Mellin transform of this function. As an immediate consequence we have, for
arbitrary ß E R,
(2.9) tßop1h(y) = op'J"ßTßh(y)tß.

Here Tßh(y, z) = h(y, z + ß). For each y E U the operators oPAth(y) extend to continuous maps

(2.10)
1-ls ,,+n/2(X", VI)

Op1-h(y) : EB
1ls ,,+(n-l)/Z(y", W 1)

1-l co ,,+n/2(X''', V2)

-7 ffi
1-l co ,,+(n-l)/2 (y", W Z)

provided s > d - 1/2. It follows immediately that, for every choke of cut-off functions Wl, Wz, we have
bounded operators

2.10 Convention. From now on we shall fix 1 E R, j.L, v E Z, v ~ j.L, k E N \ {O}, and the weight
datum g = (r, 1- J-L, (-k, 0]).

2.11 The space 'R.';:.d+G• Rit"t-dfl x fl x RQ, g) is the space of all symbols a = [~ ~] + g, where

gE Rdd(O x 0 x Rq,g), and m E CCO(O x 0 x Rq,B-CO,d(X)) is ofthe form

(2.11)

with cut-off functions W1, W2,

(i) h jn E CCO(O x n, Mp.co,d(X)) ,
)a

(ii) r - (J-L - v) - j - n/2 :S Ij ::; 1 - n/2, and

(iii) Mellin asymptotic types P jOi with 71"CPjOi n r I!Z-,j = 0.

Note that m is a 2 x 2 matrix of operators defined e.g. on the space Cg:> (X" , \11) EB Cg:> (1''', 1111); the

matrix [~ ~] refers to the decompositions [Cö" (X A, Vd ElJ Cö" (Y A , Wd) ElJ C N , and [C= (X \ V2) ElJ

CCO(1''', W z)] ffi C N
2.

Theorem 2.12. Let m be as in Definition 2.11, s > d-1/2, and let Q be an asymptotic type associated
with g. For fixed (y, y' ,1]), the symbol m(y, y' ,1]) then induces continuous operators

m(y,Y',1]) : K;" -7 Kr;,,-/1- and m(y,Y',1]) : K~:Q -7 Si,?;
here R is a resulting asymptotic type. Furihermore,

m E SlJ,d(O x n Rq· KS
" KCO,,-tl

) n SII,d(O x n Rq· KS
" 5'-/1-)

cl "1 l 2 cl "l,Q' Z,R .
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Proof. By 2.9, the first assertion is immediate from the fact that m(y,Y',1]) takes values in ~lpOCl,d(X).

For the seeond we apply Proposition 1.19 eombined with Proposition 2.8. In order to see that it
additionally defines a symbol in the asserted classes we foeus on one summand as in (2.11); denote it
by mjcl'1 j ~ lai. Let us show that this is a homogeneous symbol in the sense of (1.3). Indeed, for large
11]1 and A~ 1,

K,>. mjo. (y, y', 1]) = Wl (At[1]]),Aj-v tj-I-' K,),op1hjo. (y, y')1]aW2 (t(1]])

Wl (t[A1]])A j - lal -1-' t j -vop1 hja (y, y') (A1])o. K,>.W2 (t[7]])

Aj-Ial-I-'mja (y, y', A1])K,>..;

here we have used the fact that, for u E cgo (R+, COCI(X, VdffiCOCI(Y, Wd), we have 1'\,..\[op1h(y, y')U) =
oPfvrh(y,y')K,>.u.

Hence mja(Y, y' , A1]) = AI-'-j+lal K,>.mjo. (y, yl, 1])1'\,>.-1, and Lemma 1.6 yields the assertion. 0

Proposition 2.13. Suppose R E ß-oo,d(X) has finite rank and rEN. Let C be a contour in the half
plane {Re z > (n + 1)/2 - /} with winding number 1 with respect to the point p E C. Then the operator
G de/ined by

Gu(t) = -2
1

. r t-Z(z - p)-r-l RM1 - n / 2 (wu)(z) dz
1n Je

maps 1-{s,,(X", Vd ffi H S ,1-1 / 2 (y", Wd to the finite-dimensional space 01 all functions of the form
2:;=0 Vj(x)t- Pln j t, Vj E im R.

Proof. If u E H S ,1 (XI\, VI) ffi1-{S,1- 1/ 2 (Y", Wd, then M 1 - n / 2 (WU) is analytic in {Re z > (n +1) /2 - /}
with values in HS(X, VdffiHS(Y, Wd. The assertion then follows from complex analysis in one variable:
H the meromorphic function 1 has a pole in p of multiplicity r + 1 then

where 1j is the coefficient of (z - p)-j-l in the Laurent expansion of 1 near p. o

The following corollary shows that the RM+c-symbo}s commute with multiplication by tß , ß ~ 0,
modulo elements of Ra.

Corollary 2.14. Let h E Coo(O x 0, MpOClld(X)) for some Mellin asymptotic type P over n x n. Pick
ß 2: 0 as well as /1 E R with n/2 - / - j S; /1 ~ n/2 -, and 7fCP n r 1/2-11 = 7fcP n r 1/2-1'1 +ß = 0.
Then

is an element 0/ R8d (0 x 0 x Rq, g).

Proof. Für u E Cgo(R+ 1 COCl(X, Vd EIl Coo(Y, Wd),

(Wl (t(1]])op1}h(y, yl)W2 (t[1]])tß ) u(t)

2~i Wl (t[7]]) r t- Z h(y, y', Z)(M'l (wz('(1]])u)(z + ß)dz
Jr1 / 2 -"fl

2~i Wl (t[1]]) r t- w +ßh(y, yl, W - ß)(Ml'l (wz(-(1]])u)(w)dw.
Jr 1 / 2 -"f1 +ß

Using Cauchy's theorem, we may change the line of integration; the error then is
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where C is a countour which simply surrounds the poles of h(y,y',·) between the lines r 1 / 2 -"Yl and
r1j2-'Yl+ß' Henceg(y,Y',1]) E L(K~''Y,IC~''Y). In addition it is homogeneous ofdegree zero in 7J for large
17J1, and .

1'\:[1)]-1 g(y I y', 7J)~[77JU(t) = ~ Wl { t- w +ßh(y, yl, w - (3)M'Y1 (W2U)(w)dw
27l"~ Je

is independent of 1]. By definition, the coefficients of the principal part of the Laurent expansion of
h(y, y', .) are finite rank operators in B-oo,d(X). By Proposition 2.13 we see that ~[1/]-1g(y, y', 1])~[771

defines a continuous mapping from K~''Y to Si,Q for suitable Q. Gf course, the semi-norms are uniformly
bounded in 1]. We may apply the same consideration to derivatives and the adjoint. Using the identity
~[1J]-d j -

lI ~[1/] = [7J]V- j t j -
II and Proposition 2.5, we see that tV- j 9 E n~-j (0 x 0 x Rq, g). 0

In the same way one obtains the following result on invariance under changes in the weight:

Corollary 2.15. Leth and'l be as above. Choose,2 with,",/-n/2-j ~,2:::; ,-n/2 andr1j2-'Y2 = 0.
Then

Proposition 2.16. For l, rEN we interpret tl as the operator 0/ multiplication by diag {tl, t l , I} on
K~''Y EB C N1 and t r as the operator 0/ multiplication by diag {tr , tr , I} on }(~-~,'Y-~ EB C N2 , recalling that
IC~,'Y and 1C~-Il,'Y-~ are direct sums 0/ two spaces. Then

whenever l + r 2: k.

Proof. In view of Proposition 2.5 we only need to consider a symbol m as in Definition 2.11. Also it
is sufficient to consider the case where d = 0 and

with lai = j. So let us estimate the norms of ~[1)1-1rD~D;JD~m(Y,Y',1])tl"'[1]1' Without 10S8 of
generality let ß = , = 0 = O.

"'(1J]-1 tr m{y, yl, TJ)t1K,[77]

[ ]-l-rtr (') t1
1] ~[1/]-1 m y, y ,TJ K[1)]

[1]]-l-r+v- j W1t T +j - 1Iop'"J1h(y, Y')TJCi. t1w2

[1]r l-r+v- j w1 tr+1+j - 1Iop~-IT-lh(y, Y')7JCi. W2 ,

[1]]-l-r+v- j
wl t r +1+j - 1IopDT-1h(y, y')1]Cl'W 2 + g(y, yl,1])

where we applied Corollary 2.15 for the last equality and (2.9) for that beforej here ,1 satisfies , - (p ­
v) - j - n/2 :::; '"'/1 :::; '"'/ - n/2 and 9 is an element of n~-l-r (0 x 0 x Rq, g).

It remains to consider the first term on the right hand side of the above equation. "Ve first employ the
mapping properties of h stated in (2.10). In view of the factor tl+r - II

WI and the assumption I + r 2: k
we see that the operator maps into ster. As before 0 denotes the trivial asymptotic type. In view of,
the special structure, the operator norm is O([7]]II-l-r) with respect to all spaces used to write Si,d
as a projective limit of Hilbert spaces. We obtain a corresponding result for the adjoint by commuting
the powers of t to the right. This completes the proof. 0

Remark 2.17. In view of Proposition 2.16 we may confine the summation in (2.11) to j = 0, ... ,k ~

(p - v) - 1.

Proposition 2.18. A change in the choice 0/ the cut-off functions Wl, W2 01' the weights '"'/j in Definition
2.11 changes the symbol m in 2.11 only by a symbol in n8d (0 x 0 x Rq, g).
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ProoL In Corollary 2.15 we saw already that a change of the weight for fixed cut-off functions results
in a Green symbol. The lemma below, deals with the behavior under changes of the cut-off functions
and therefore completes the proof of the above proposition. 0

Lemma 2.19. Let P be a Mellin asymptotic type and h E 0 00 (0 x n, M;;oo,d(X)). Fix JEN and 1'1
with ,- (J.t - v) - j - n/2 ::; /1 ::; ,- n/2. Moreover, let w be a cut-off function, rp E Co(R+), and a
a multi-index with lai::; j. Then both

are elements of R~d(fl x 0 x Rq, g).

ProoL Choose a cut-off function wwith wrp = rp. Write rp(t[7J]) = cp(t[7J]) (t[7]])-k [7]]kw(t[7J])t k. In view
of the fact that t H rp(t)t- k is a rapidly decreasing function on R+, the assertion follows from 2.6 and
2.16. D

Proposition 2.20. The functions hjo: E Coo(O x 0, Mpoo,d(X)) in Definition 2.11 are uniquely
determined by the operator family

{a(y,Y',rJ) = [m(Y'oY',7J) 0] + ( ') , E n E Rq}., 0 9 Y,Y ,'f} : y,y a,'f} .

Proof. For each fixed choice of Y, y', and 1], we have a family of smoothing Mellin operators on the
cone, as considered in [15, Proposition 3.1.27]. Prom this result we deduce that, for each j, the
sum Llal:Sj hjo: (y, y', Z )'f}a is uniquely determined. Since· this is a polynomial in 'f}, each of the terms
hjo:(Y,Y',z) can be recovered. 0

2.21 Conormal symbols. Let a, m, and 9 be as in Definition 2.11. For j = 0, ... , k - (J.t - v) - 1 we
define the conormal symbol of order v - j of a by

(T~j(a) = L hja(y,y',z)'f}a.
lo:l:Sj

This makes sense according to Proposition 2.20. Note that for j 2: k - (It - v) the operator family
{Wl (t[ry])t j - v Llal:Sj op~hja (y, y')1]aW2 (t[7J])} defines an element in R~d(n x 0 x Rq, g) according to
Proposition 2.18

2.22 Theorem: Adjoints. Let m be as in Definition 2.11; assume additionally th(lt d = O. Then the
pointwise adjoint m* defined by

m*(y,y','f}) = m(y,Y',7])*

induces a symbol in R~;?+G(O x n x Rq, g*), where g* = (-, + It, -" (-k, 0]). In jact,

k-l

m*(y,y','f}) = W2(t[ry]) L L tj-lIop~'Yj-n+lI~j (TII-jh)~) (y,y')rya W1 (t[1]]),
j=O lal:Si

where h}~ (y, y', z) = hja(y, y', n+1-z)* and the last asterisk denotes the adjoint in Boutet de Monvel's
calculus.

Proof. It is well-known that, pointwise, the above formula furnishes the adjoint operator, see e.g.
[14, Lemma 5.1.10]. In view of the fact that TII-jhjo:(y,y',n + 1 - z)* defines an element Coo(O x
n, MQoo,d(X)) for a suitable (easily computable) Mellin asymptotic type, we get the desired result. 0

The following proposition prepares the ground for treating compositions.

Proposition 2.23. Let h1, h2 E Coo(fl x 0, MiOO,d(X)) jor some Mellin asymptotic type P over 0 x O.
Choose 11,,2 with , - n/2 - j ~ 11,,2 ~ , - n/2. Then

g(y, y', 7]) = Wl (t[ry]) ti-li OpJ.1h1(y, yl) (1 - W2 (t[1]]) )op1}h2(y, yl)WS (t[7]])
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is an element oIR(/(o' x 0, x Rq, g).
In order for the eomposition to make sense, we assurne that the operators aet between vector bundles
in the following way: For fixed (y, y l

, 1]),

h2 (y,y', z) : COO(X, Vd EB COO(Y, Wd -t COO(X, V2 ) EB C=(Y, W2 ), and

h1 (y,y',1]) : COO(X, V2) EB C=(1', W2) ~ COO(X, V3 ) EB C=(1', W 3 ).

P roof. In order to save spaee, we shall use, just for the moment, the notation Wj,T/ = Wj ('[1]]). Supposing
that r 1/ 2-"'rt-k n 7T'cP = 0 we rewrite g(y,y',1]) as

Wl,TJ t-V {opJ..}hdY, y') - opJ..}+k h1(y, y/)} (1 - w2'T/)opJ..}h2(y, y')W3,TJ

+ W1,TJ t- V op1}+kh1(y, y')(l - W2,T/)OP jJh2 (y, y')W3,T/'

Due to the factor 1 - W2, the operator

HS,'Y1 +k+n/2 (X/\, V
2

)

(1 - w2)op1}h2(y,y')W3 : K~''Y ~ EB
1-l00 ,'Y1 +h+(n-l)/2 (1'/\, W

2
)

is bounded, henee the last composition makes sense. Applying Corollary 2.15, the first term on the
right hand side is a symbol in R8d (O x n x Rq, g). The second one we rewrite as

tk-1/ 'Y1T-kh ( I) -k(l ) 1'2h ( ') .W1,TJ oPM 1 y,y t - W2,T/ OPM 2 y,y W3,1} 1

then we apply Proposition 2.16 to see that it also is a Green symbol of the desired kind.
If h1 has singularities on r 1/2-1'1 +kJ then we may change 11 slightly without changing the operator;

so we also get the assertion. Finally note that the adjoint is of the same type, so the proof is eomplete.
D

2.24 Theorem: Compositions. Let a E R';1+c (0, x 0, x Rq, g) and al E R~'~~ (0, x 0, x Rq, g).
I d'

Then the pointwise composition b(y,Y',1]) = a(y,yl,1])a'(y,y',TJ) defines an element b E R~t;G (0 x
n x Rq, g) and therefore a mapping

n';":/+c(n x 0 x Rq,g) x n~I~~(n x n x Rq,g) ~ n~:.'ad'(0 x 0, x Rq,g).

This mapping is continuous. It restriets to continuous maps

R8d (O, x n x Rq,g) x n~,~'c(n x n x Rq,g) ~ n~+vl,dl(0 x n x Rq,g),

n,;:/+c(o' x 0 x Rq,g) x n~,dl (0 x 0, x Rq,g) -t n~+v',d'(0, x n x Rq,g).

The conormal symbols 01 bare given by

a~:I/'-j(b) = 2:= [TVI_qa~p(a)] a;G.-q(a').
p+q=j

ProoL Consider symbols of the form

a= [r; ~] + 9, a' = [,;;' ~] + 9'

with m, m l
, g, and g' as in Definition 2.11. Applying Theorem 2.12, we see that the eomposition is a

Green symbol whenever one of the faetors iso So it only remains to eonsider the eompositon of m and
7n'. By linearity we may foeus on one summand of the type (2.11) for eaeh of them, say

m Wl (t[1]])t V
-

j op1}h1(y, Y')TJOoW2 (t[1]]) ,

m l Wl (t[1]])tV'
-jop jJh2 (y l y')1]Oo' W2 (t[1]]).
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In the cornpostion we first remove the cut-off function in the middle at the expense of a Green term by
applying Proposition 2.23. Then we commute the fador tV' to the left, taking advantage of Corollary
2.14. Next we move both weights /1, ;2 to a single one, say /3; by Corollary 2.15 the error is a Green
symbol. Finally, we apply the composition rule for Mellin symbols [15, Lemma 3.2.4] which implies
that

op1}h1 (y, y')opl}h2(y, y') = opl}h3 (y,y')

for h3 = h1h2 E Coo(O x 0, M~+I/,d'(X)); here R is a resulting Mellin asymptotic type.
The rule for the conormal symbols is immediate from the standard case; it is not affected by the

parameters y, yr, 1]. The proof is complete. 0

Operators of the considered type come up quite naturally:

Lemma 2.25. Let '7rcP n f 1!2--y = 0 and

f = !(t,t',y,y',z,ry) E Coo(R+ x R+)01r Coo (0 x O,Mpoo,d(X»®rrS(RQ).

For fixed (y,y',1]) and cut-off funetions Wl,W2, we define the operator m(y,Y',1]) on
C~(R+, Coo(X, Vd ES Coo(Y, Wd) by

(2.12)

Then 7n is an element ofRjJ~G(O x 0 x Rq,g).

P roof. Ernploying Taylor's formula we write

f (t, t' , z, y, y', t1])

L L Cjlhlalla~a:,f(O,O,y,y',z,O)1]O'tjt,l
il +IO'I=j~k-ll~k-l

+ L Tl,O'(t,t"Yly',Z,t1])1]O'tk + L T2,ja(O,t',y,y',z,O)1]at j t,k
lalSk jaISj:Sk-l

- - >0, ood ~

with Tl,0',T2,ja E Coo(R+ x R+)01r Coo(O x O,M;; , (X»@1l"S(RQ) and suitable constants cilhl. The
terms und~r the first surn on the right hand side are of the form (2.11).

Let us show that we obtain elements in R6'd(O x 0 x Rq, g) if we replace, on the right hand

side of (2.12), the function f (t, t', y, y', z, try) by Tl,a (t, t', y, y', z, try )1]at k or r2,ja (0, t l
, y, y', z, O)TJatjt,k.

Since Coo(R+ x R+) = Coo(R+)®rrCoo(R+) we mayassume that Tl,O'(t,t',y,y',z,tTJ) is ofthe form
'Pl(t)<P2(t')h(y,y',z)s(t[TJ)) with 'Pl,'P2 E Coo(R+), h E Coo(O x O,M-oo,d(X»), and s E S(Rq). We
may even suppose that both <PI and 'P2 have cornpact support, since we will eventually multiply by
Wl(t[1])) and W2(t[TJ]) which both have compact support uniformly in 1]. Then, however, the asser­
tion for Tl,O' (t, t', y, y', Z, tTJ)1]atk follows by combining Propositions 2.6 and 2.16. With the terms for

. k
T2,jo (0, t', y, y', z, O)TJOtJt' we can deal in the same way. 0

2.26 Notation. Fix an element h E 0 00 (0 x 0, Mpoo,d(X» for some Mellin asyrnptotic type over
o x O. For given (y,y',z) the operator h(y,y',z) is an element of S-oo,d(X;Rq). We consider the
operators I + h(y, y' , z) on the space

We will be interested in the structure of their inverses. In order for this to make sense we assurne that
111 = V2 and ltVI = W2 •

2.27 Facts from Boutet de Monvel's calculus. If R in ß-oo,d(X) and I + R is invertible on H S

for some s > d - 1/2, then (I + R)-l = I + R' for suitable R' E B-oo,d(X), see [14, Theorem 2.3.8].
For arbitrary R E S-oo,d(X), the kernel of I + R : HS --+ H8 is independent of s and consists of

functions in Coo(X, VI) EBCoo(y, Wd by elliptic regularity. The operators in S-oo,d(X) are compact on
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HS. Hence 1+ R is a Fredholm operator of index zero; kernel and cokernel have the same dimension. As
s increases the cokernel can only decrease. Therefore also the cokernel is independent of sand consists
of smooth functions. Choosing orthonormal bases {'PI,"" 'PM} and {'I/;l"'" 'IjJM} of the kerneI and
cokernel, and defining Fu = ~~l (u, 'Pj) 'ljJj, we obtain a finite rank operator F E B-OO,O(X) such that

I + R + F is invertible on H S
• The projection P onto its range is given by PU = ~~l (u, 'l/;j) 'ljJj, thus

also is in B-OO,O(X).

2.28 Structure of the inverses. Let y, y' E n and consider a finite strip Cl :S Re z :S C2 in C. As
11m zl -+ 00, the norm of h(y, y', z) becomes small in the strip, uniformly for (y, y') in a compact subset
of n x n; therefore I + h(y, y', z) will be invertible for large 11m zl.

Next fix (Yo, vb, Zo) E n x 0 x (C \ 'lrcP). According to 2.27 we find a finite rank operator F E
B-oo,O(X) such that I + h(yo, vb, Zo) + F is invertible on H. Let P E B-oo,O(X) be the projection onto
its range and q = I - p.

For (y,y',Z) in a small neighborhood of (yo,yb,zo), z ~ 7fcP,

(2.13)

1+ h(y,y',z) = (I - F(I + h(y,y',z) + F)-l)(I + h(y,y',Z) + F)

(I - pF(y, y', z)q)(I - pF(y, y', z)p) (I + h(y, y', z) + F),

where we used the abbreviation F(y,y',Z) = F(I +h(y,y',Z) +F)-l). This decomposition has several
consequences. First we note that pF(y, y', z)q is an element of B-OO,O(X), and the first factor has the
inverse 1+ pF(y,y',Z)q. The last factor is invertible in a neighborhood of (yo,Yb,zo). Both the first
and the last factor depend smoothly on (y, y') and analytically on z. The factor in the middle is a
diagonal matrix; in the lower right corner we have the identity, in the upper left a finite rank matrix
function, smooth in (y,y') and analytic in z. It is invertible whenever 1+ h(y,y',Z) iso The strip with
7fcP removed is connected and I + h(y, y', z) is known to be invertible for large 11m zl. For fixed (y, y')
it therefore is invertible outside a discrete set D contained in C \ 7fcP. The singularities are poles of
finite order; the coefficients of the principal part of the Laurent series are elements in B-OO,O(X). As
(y, y') varies, the residue theorem shows that they vary smoothly with (y, V').

In general, the set D will depend on y and y'. There are, however, interesting situations when this is
not the case. Under this assumption we shall see in Theorem 2.30 that the inverse (I + h(y, y', Z))-l is
of the form 1+ hl(y,y',Z) for same h' E Coo(O x O,MQoo,d(X)), for a suitable Q.

The following lemma will be used in the proof of Theorem 2.30.

Lemma 2.29. ([14, Lemma 4.3.14]) Let V be a neighborhood 0/ zero in C, E a Banach space, N E N,
and Al, ... ,AN E L(E) operators 0/ finite rank. Let H be an analytic function on V with values in
L(E) with H (z)e = 0 tor all e in a finite- codimensional subspace Eo 01 E. Then there is a 0 > 0 such
that the meromorphic E -valued funetion

(2.14)
N

F(z) = I + H(z) + L Akz-k

k=l

is invertible for all 0 < Izi < J, unless it is nowhere invertible near O.

Theorem 2.30. Let h E COO(O x n, M;;oo,d(X)) with a Mellin asymptotic type P over 0 x n. Assume
that there is a discrete set D such that, /01' all y, y' E n and all z E C \ D, the operator I + h(y, y' , z)
is invertible. Let 0 0 ce n. Then the inverse (I +h(y,y',z))-llnoxno is o/theform I +h'(y,y',Z) for
some h' E COO(no x n o, MQoo,d(X)), where Q is a Mellin asymptotic type over n o x 0 0 with 7fcQ ~ D.

P roof. Let us first show that the set D has no finite accumulation point. By 2.28, such a point neces­
sarily would be an element Po E 1rcP. Near Po write I +h(y, y', z) = I +ho(y, y', z) +~~=o Fj(y, y')(z­
PO)-k-l = I + (ho + hs)(y, y', z) with some function ho E Coo(O x 0, M;;oo,d(X)) , which is analytic

near Po, a smooth family Fj of finite rank operators, and hs(y, y', z) = ~~::::;o Fj (y, y')(Z - PO)-k-l for
a suitable K.

Fix y and y'. The function ho also satisfies the assumptions of Lemma 2.26. Since it is analytic near
Po we may conclude as in 2.28 that it is invertible in a neighborhood of Po, execpt for (possibly) the
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point Po, where it might have a pole of finite order. Hence

(2.15) 1+ h(y,y',z) = (I + ho(y,y',z))(I + (I + hO(y,yl,Z))-lhs(y,y',z)).

We note that I + (I + ho(y, yl, z))-l hs(y, y', z) is of the form (2.14) due to the fact that the operators
Fj have finite rank. Applying Lemma 2.29, it is invertible near Po, although possibly not in Po· The
same is true for I + h(y, yl, z).

Since h depends continuously on y and y' we may vary both variables a little and still have invertibility
in a slightly smaller neighborhood. Since 0 0 x 0 0 is compact, D cannot have accumulation points.

For Po E D, the order of the pole of (I + h(y,y', Z))-l might depend on y and y'. However, it will be
uniformly bounded as y and y' vary over 0 0 : According to 2.28, the operator 1+ h(y, yl, z) is invertible
whenever a scalar-valued function in GCXJ(O x 0, A(C \ 7rcP)) is, namely the determinant of the matrix
operator in (2.13). For this scalar function, however, the order of the pole of its inverse at Po is the order
of its zero at Po; this in turn is the index of the first non-vanishing Taylor coefficient. By continuity, this
number can locally decrease only. Since 0 0 x 0'0 is compact, the order of the poles will be uniformly
bounded.

So let Q be the Mellin asymptotic type with entries (pj,mj, L j ), where Pi are those elements of D
where 1+ h(y, y', z) 100 XOo is not invertible, mj is the bound on the order of the pole, and Lj(y, yl), for
y, y' E 00, a = (al, a2) an arbitrary multi-index, is the space of operators in S-CXJ,d(X) spanned by the
coefficients of the principal part of the Laurent series of a~la~?(I+ h(y,yl,Z))-l near z = Pj' Notice
that Re Pj ~ =FOO as j ± 00, since D has no finite accumulation point and I + h(y, y', .) is invertible for
large Im z in any finite strip. .

Supposing that the inverse to I + h(y, y', z) exists for some fixed choice of y, yl, and z, it is of the
form I + R with R E ß-CXJ,d(X) by 2.27. The continuity of the inversion implies that

(2.16) (I + h(y,y',Z))-l = 1- h(y,yl,Z)(I + h(y,y',Z))-l = 1+ h'(y,y',z)

with h' E GCXJ(Oo x 00, A(C \ 7rcQ, S-CXJ,d(X))). We saw already that the singularities are poles, the
coefficients of the principal part of the Laurent series for a~l a~? (I + h(y, y', Z))-l near Pj being finite
rank operators in the finite-dimensional subspace Ljl,Q2(y, y') of S-CXJ,d(X).

It remains to check the decay properties. Pick an arbitrary strip and a semi-norm 11·11 for S-CXJ,d(X).
For large IImzl, say IImzl > p, we have Ilh(y,y',z)l! :s 1/2, uniformlyon 0 x n. Therefore IIU +
h(y,yl,z))-lll :s 2. Employing (2.16) we conclude that Ilh'(y,y',z)11 = O«(Imz)-N) for arbitrary N,
uniformly for y, y' in compact subsets of n x O. Since this estimate also holds on the compact set
0 0 x 0 0 x {z : 11m zl :S p, dist(z, D) 2: E} the proof is complete. 0
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