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Mellin and Green Symbols for Boundary Value Problems on Manifolds with
Edges

ELMAR SCHROHE AND BERT-WOLFGANG SCHULZE

We introduce the algebra of smoothing Mellin and Green symbols in a pseudodifferential calculus for manifolds
with edges. In addition, we define scales of weighted Sobolev spaces with asymptotics based on the Mellin
transform and analyze the mapping properties of the operators on these spaces. This will allow us to obtain
complete information on the regularity and asymptotics of solutions to elliptic equations on these spaces.

Introduction

In this paper we develop a crucial part of the pseudodifferential calculus for boundary value problems on
manifolds with edges, namely the smoothing Mellin and Green symbols along with the Sobolev spaces
with asymptotics on which the associated operators act naturally. According to the basic principles in
the design of pseudodifferential calculi on singular manifolds developed by the second author it is the
interplay of the structure of the spaces with the structure of the symbols and their (pointwise) inverses
which provides the specific information for the parametrix construction in the final calculus and the
conclusions on regularity and asymptotics of solutions to elliptic boundary problems.

While the more technical details of the calculus are deferred to other publications [16, 17],..., we
introduce here the concepts of meromorphic Mellin symbols and (non-branching, discrete) asymptotics.
Both are new and differ from earlier versions in the boundaryless case.

A few details: Close to the edge, a manifold with edges and boundary has the structure of a wedge: It
is the Cartesian product of g-dimensional Euclidean space with a cone whose base is a smooth compact
manifold with boundary.

Following the general concept of iterated symbolic structures we devise the calculus on this wedge as
a pseudodifferential calculus along the edge R? with operator-valued symbols. They have values in the
cone algebra developed by the authors in [14, 15]. Looking more closely, each of these pseudodifferential
symbols will be a sum of three terms: An analytic edge symbol, a smoothing meromorphic Mellin
symbol, and a Green symbol. Having dealt with the analytic edge symbols in [16, 17], the smoothing
Mellin and Green symbols are the object of the present investigation.

Both symbol classes are subspaces of the parameter-dependent regularizing elements in Boutet de
Monvel’s calculus on the smooth open manifold obtained by deleting the edge of the wedge. However,
they have a much finer interior structure. The smoothing Mellin symbols are pseudodifferential symbols
along the edge with values in Mellin operators on the cone having regularizing meromorphic Mellin
symbols with asymptotics; the Green symbols are described in terms of their mapping properties on
weighted Mellin Sobolev spaces with asymptotics.

As a consequence, the Green symbols pointwise take values in compact operators. Hence the residual
operators in the final edge calculus, namely the smoothing Green operators induced by the regularizing
Green symbols, will be compact. A parametrix will yield a Fredholm inverse within the calculus.
Moreover, the parametrix will act on the Mellin Sobolev spaces with asymptotics; the residual operators
will map any Sobolev space into a corresponding Sobolev space of smooth functions with asymptotics.
This will enable us to decribe precisely the structure of solutions to elliptic boundary value problems.

The construction of a pseudodifferential calculus on manifolds with edges is another step towards
corresponding calculi for boundary value problems on manifolds with higher singularities and towards
an index theory for these objects. More generally, the analysis on manifolds with singularities also
is of considerable interest for concrete applications in mathematical physics and engineering. For
pseudodifferential calculi in many different situations see Schulze {7, 18, 19, 21, 20].

1. Mellin Sobolev Spaces with Asymptotics

Throughout this article let X' be an n-dimensional C'*® manifold with boundary Y, embedded in an
n-dimensional manifold X without boundary. All of them are supposed to be compact. We write X



2 Elmar Schrohe and Bert-Wolfgang Schulze

for the open interior of X, while X is its closure; V4, Vs, . .. are vector bundles over X and Wy, Ws, ...
vector bundles over Y. On X we fix a Riemannian metric; moreover we endow the vector bundles with
Hermitian structures so that we can speak of L?-sections. By 8, we denote an operator which coincides
with the normal derivative in a neighborhood of the boundary and vanishes outside a slightly larger
neighborhood of the boundary.

Regularizing Operators in Boutet de Monvel’s Calculus
In this paper we shall only need the notion of regularizing elements. For a short introduction to Boutet

de Monvel’s calculus see Section 2 of [14].

Definition 1.1. A regularizing operator of type 0 in Boutet de Monvel’s calculus is an operator
R:L*(X, V) ® L*(Y,W1) - C°(X,V2) & C°°(Y, W>)

whose formal adjoint with respect to the inner products on L?(X,V;) @ L¥(Y, W) and L}(X, V1) @
L2(Y, W) respectively, R*, induces a continuous operator

R LA X, V)@ L*(Y,W,) = C®(X,V}) @ C°(Y, W,).

These mapping properties imply that R is an integral operator with a smooth kernel. A regularizing

J
operator of type d € N is a sum R = Z;LO R; [ % ? ] with all R; regularizing of type zero. For

s >d—1/2, R defines a continuous operator
R:H° (X, Vi)®H’(Y,W1) - C®(X,Va) @ C®(Y, Ws).

Kpyj-1 0
Sivi-1 0
operator of type zero, ; is defined by y;u = dJuly, while K; : L2(Y,W;) = C®(X,V,) and S; :
L*(Y,W1) = C(Y,W,) are integral operators with smooth kernels; C as well as the K; and S; are
uniquely determined.

We write B~°4(X) for the space of regularizing elements of type d and B~°4(X;R%) for the
parameter-dependent regularizing elements, i.e., the Schwartz functions on R? with values in B-°%¢4(X).

Using integration by parts we may write R = C + E?zl [ ] . Here, C is a regularizing

Group Actions and Operator-Valued Symbols

1.2 Operator-valued symbols. A strongly continuous group action on a Banach space E is a family
k& = {kx : A € Ry} of isomorphisms in £(E) such that kyx, = xy, and the mapping A = ke is
continuous for all e € E.

We fix a smooth positive function ] : RY - Ry with [] = |»| for large |n]. H*(R) is the usual
Sobolev space on R, while H*(R4.) = {u|r, : v € H*(R)} and H§(R) is the set of all v € H*(R)
whose support is contained in Ry. Furthermore, H**(Ry) = {[r]™*u : v € H*(R4)}, and HJ*(R.) =
{{r]7*u: v € H§(Ry)}; here r is the variable in R,. Finally, S(R]) = {ulry :u € S(RI)}.

For all Sobolev spaces on R and R, we will use the group action

(1.1) (kaf) (r) = A f(Ar).

This action extends to distributions by &xu{p) = u(kx-19). On E = C' use the trivial group action
Ky = id.

Let E, F' be Banach spaces with strongly continuous group actions &, &, let  C RF, @ € C®(Q x
R™ L(E,F)), and i € R. We shall write a € S#(Q, R?; E, F) provided that, for every K CcC Q and
all multi-indices a, 8, there is a constant C = C(K, «, ) with

(1.2) &m-1 DD aly, )l ce,ry < ClnlH~1o.

The space $*(Q, RY; E, F) is Fréchet topologized by the choice of the best constants C.
The space S#(2, R9; C*, C!) coincides with the (I x k matrix-valued) elements of Hérmander’s class
81 (€ x R7). One has asymptotic summation: Given a sequence {a;} with a; € S#(Q, R%; E, F) and
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pj — —oo, there is an a € S*(Q,R% E, F), p = max{u;} such that a ~ Y a;; a is unique modulo
S=*(Q,R%; E, F). Note that S™*°(2,R%; E, F) is independent of the choice of « and &.

A symbol a € SH#(Q,RY; E, F) is said to be classical, if it has an asymptotic expansion a ~ Z;’io a;
with a; € S¥77(Q,RY; E, F) satisfying the homogeneity relation

(13) aj(y)An) = ’\”_jk)\ aj(y:ﬂ) Kx—1

for all A > 1,|n| > R with a suitable constant R. We write a € S4(Q%,R%; E, F). For E = C*, F =C!
we recover the standard notion.

There is an extension to projective and inductive limits: Let E, F be Banach spaces with group ac-
tions. If F; « Fy « ... and E; — E; — ... are sequences of Banach spaces with the same group ac-
tion, and F' = proj — lim Fy, E = ind — lim Ey, then let $#(, R%; E, F) = proj — lim, $#(Q, RY; E, F},)
and define $# (2, R%; B, F) as well as $#(Q, R?; E, F) similarly as projective limits.

Remark 1.3. Recall that S(R;) = proj — lim, . en H27(Ry), and
S'(Ry) = ind — limg ren Hy 27T (Ry).

Example 1.4. Let v; : S(R+) = C be defined by «; f = lim,_,o+ 82 f(r). Then, for all s > j + 1/2,
we can consider ; as a (y,7n)-independent symbol in S3+1/2(R? x R%; H*(R..), C).

In fact, all we have to check is that [|&(;-1vj&[ |l = O([n}+1/2) for the group actions % on C and &
on H*(R.). Since the group action on C is the identity, that on H*(R.;.) is given by (1.2), everything
follows from the observation that

A )2 £ ((nlr)}r=o = [}’ /2814 (0).

The following lemma is obvious.

Lemma 1.5. For a € S*(},R%, E, F) and b € S¥(Q, R F,G), the symbol ¢ defined by c(y,n) =
b(y,m)aly,n) (pointwise composition of operators) belongs to S**(Q,RY; E,G). Moreover, DZDfa €
S““""'(Q, RY; E, F) for all multi-indices a, .

Lemma 1.6. Let a = a(y,n) € C(Q x R, L(E, F)), and suppose that a(y, An) = MKy a(y,n) ka1
for all A > 1,|n| > R. Then a € S4(Q, R™; E, F'), and the symbol semi-norms for a can be estimated in
terms of the semi-norms for a in C=(Q x R, L(E, F}).

Proof. Without loss of generality let R = 1. We only have to consider the case of large |n|. For these,
D;‘]‘Dga(y, n) = A~#tlelg, (Df?‘Dga) (y, An) k. Letting A = [n], we conclude that Fz{n]-fo;Dga(y, K
= [n]*~1*l(Dg DBa)(y,n/[n))- The norm of the right hand side in £(E, F) clearly is O([n]*~1°!). More-
over, a is classical, since it is homogeneous of degree 1 in the sense of (1.3). 0

Mellin Sobolev Spaces

1.7 Parameter-dependent order reductions on X. Let V be a vector bundle over X. For each
i € R there is a parameter-dependent pseudodifferential operator A* = {A*(7) : 7 € R} with local
parameter-dependent elliptic symbols of order p such that

A1) : HY(X,V) = H#(X,V)

is an isomorphism for all 7.
One way to construct such an operator is to start with symbols of the form (¢, (1, C))* € S*(R", RZ; R;)

with a large constant C' > 0 and patch them together to an operator on the manifold X with a partition
of unity and cut-off functions.

Definition 1.8. For 3 € R, I's denotes the vertical line {z € C : Rez = 8}. The Mellin transform
Mu of u € C§°(R4.) is given by

(1.4) (Mu)(z) = /-oo t*~lu(t)dt, z€C.
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M extends to an isomorphism M : L*(R4) — L*(T'y/3). Of course, (1.4) also makes sense for functions
with values in a Fréchet space E. The fact that Mulr, ,_. (2) = Mi.(t77u)(z + v) motivates the
definition of the weighted Mellin transform M,:

Myu(z) = My, (17" u)(z +7), ue G (Ry, E).
For a Hilbert space E, the inverse of M, is given by (M h)(t) = 55 fl’l/z t~*h(2)dz.
1.9 Totally characteristic Sobolev spaces. Write X* = X xRy, X" =X xRy, Y* =Y x R,.

(a) Let {A* : p € R} be a family of parameter-dependent order reductions as in 1.7. For s,v € R,
the space H*7(X") is the closure of C§°(X") in the norm

1/2
(15) iy ={ [ IAm M)
ntl

Recall that n is the dimension of X and X. The space H””'(X' ") is independent of the particular choice
of the order reducing family.

(b) For s € N we obtain the alternative description u € H*7(X") iff */2=7(t8,)* Dulz,t) €
L3*(X™) for all k < s and all differential operators D of order < s — k on X, c¢f. [20, Section 2.1.1,
Proposition 2].

(c) Set H™Y(X") = {f]x~ : f € H*7(X")}, endowed with the quotient norm.

(d) H#Y (X)) € Hf .(X"), where the subscript ‘loc’ refers to the t-variable only. Moreover, H*7(X ") =
tYHSO (XY, HOO(XA) = t~™/2L2(X ") has a natural inner product

(w0)ro000xm) = 5 / (Mu(z), Mu(2)) £2(x) de.
7 Jp ey

(e) Let ¢ be the restriction to X of a function in C§°(X x R). Then the operator M,, of multiplication
by ¢ yields a bounded map H*7(X") — H®7(X") for all s, € R. The mapping ¢ + M, is continuous
in the corresponding topology.

Definition 1.10. Let E, I’ be Fréchet spaces and suppose both are continuously embedded in the
same Hausdorff vector space. The exterior direct sum E & F' is Fréchet and has the closed subspace
N ={(a,—-a): a € ENF}. The non-direct sum of F and F then is the Fréchet space E+F := E@F/N.

1.11 The spaces H? . Let {Xj};-’=1 be a finite covering of X by open sets, i+ X; = Uj the

coordinate maps onto bounded open sets in R™, and {(Pj}:,i]=1 a subordinate partition of unity. The
maps £; induce a push-forward of functions and distributions: For a function u on X ; for example,

(1.6) (kjew)(o) = u(s5'(2), = € Uy,
For j = 1,...,J, consider the diffeomorphism
xj: Uj x R = {(z[t],t) : z € U;,t € R} c R*T!

given by x;(z,t) = (z[t],t). For s € R we define HS, (X x R) as the set of all u € H, (X x R) such
that, for j = 1,...,J, the push forward (x; o (k; ®id))«(p;u), which may be regarded as a distribution
on R™! after extension by zero, is an element, of H*(R"™*1). The space H?, (X x R) is endowed with
the natural Hilbert space topology. We let

(L.7) Hepno(X") = {t]xxm, % € Hippo(X x R)}.

For more details see Schrohe&Schulze [15, Section 4.2]. The subseript “cone” is motivated by the fact
that, away from zero, these are the Sobolev spaces for an infinite cone with center at the origin and
cross-section X. In particular, the space HZ (5™ x Ry) coincides with H*(R™*! \ {0}) outside any
neighborhood of the origin.

Definition 1.12. For 5,7 € R and w € C°(R,) with w(r) = 1 near r = 0, let
(18) K9T(XM) = {u € D/(X7) :wu € HYT(XM), (1 —w)u € HE, (X)),
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The definition is independent of the choice of w by 1.9(e). We give K%7(X") the topology of the
non-direct sum of the Hilbert spaces H®7(X") and HS,, (X").

Clearly, K®0(X ") = HOO(X ") = t~™/2[2(X1).

The lemma, below, can be deduced from the trace theorem for the usual Sobolev spaces. The shift in
the weight v — v — 1/2 is due to the fact that dimY =n — 1.

Lemma 1.13. For s > 1/2 and v € R the resiriction you = uly~ of u to Y" induces a continuous
operator K37 (X7) — K5—1/2=1/12(y Ay,

By r denote the normal coordinate in a neighborhood of Y. Then the operators v; : u — dulys define
continuous mappings K& (XN) = Ke—I-1/27=1/2(y Ay,

Lemma 1.14. A strongly continuous group action sy is defined on K¥7(X") by (spf){(z,t) =
X+D/2f(z At) provided s > 0. This action is unitary on K°°(X") and noturally extends to dis-
tributions in K*7(X"), 5,7 € R.

Proof. It is lengthy but straightforward to see that « is strongly continuous; it is unitary on K%0{X")
in view of 1.12. O

Remark 1.15. The definitions of the spaces H®? and K7 also make sense for functions and dis-
tributions taking values in a vector bundle V. We shall then write H®7(X”" V) and KS7(XA, V),
respectively. In later constructions we will often have to deal with direct sums K%7(X",V) &
KE=1/20=1/2(y A W) for vector bundles V and W over X and Y, respectively. On these spaces we use
the natural group action ko (u,v) = (A% u(-, A), ATu(, A2)).

Asymptotics

Convention: Whenever we shall write in the following w, @, wy, ..., without further specification or
refer to a function as a cut-off function we mean an element of C§°(R4) which is equal to one near the
origin.

Definition 1.16. (a) A weight datum is a triple g = (v, 8, (=%, 0]), where v and § are reals and (—k, 0]
is a finite interval with 0 # k£ € N.

(b) An asymptotic type associated with the weight datum g is a pair P = (P, P;), where Py and P,
are tuples with the following properties:

(G) P, ={(p;,m;):5=1,...,J}, where p; € C with 2t — v — k < Rep; < 2L — 5, and m; € N;
> T j 2 i < 3 j
(ii) P> = {{(gj,n;):5=1,...,J'}, where ¢; € C with  —y—k <Regq; < ¥ — v, and n; € N.

The numbers J and J' may depend on P. We might have J = 0 or J' = 0. We then write P, = O and
Py = O, respectively. We let ncPy = {p1,...,ps}, 7¢Pe = {q1,...,q1}, and 7cP = ncP, U nch;.
Note that the conditions on P are independent of the second entry of the weight datum g.

(c) A Mellin asymptotic type over an open set U C RP is a sequence Q = {(gj,nj, L;) : j € Z}; here
g; € C with Reg; = Foo as j & +oo, n; € N, L; = {L$(y) : y € U,a € NP}, and each L¥(y} is a
finite-dimensional subspace of finite rank operators in B=°>¢(X). As before, 1cQ = {g; : j € Z}, and
we explicitly admit the case that {(g;,n;, L;)} has finitely many elements only or even no element at
all. In this last case we speak of the trivial asymptotic type and use the notation @ = O.

(d) Let P = (P1, P,) and 7 be as above. For s € R we define Hp7(X") as the set of all distributions
u in H»7(X") for which there are functions ¢ € C®(X), j = 1,...,J, 1 = 0,...,my, and a cut-off
function w such that i

my

J
(u - Z Z Cﬂ(z)t_pj lIll t)w(t) € ’HS,'H-l——E(X/\)

J=11=0

for every € > 0. Clearly, if one cut-off function has this property, then any other will also have it.
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Similarly, we let Hy ™ /2(y'AY be the space of all distributions v in H*7~1/2(Y'") for which there are
functions d;, € C°°(Y) i=1,...,J',1=0,...,nj, and a cut-off function w such that, for every e > 0,

(1} - Z Z dji(z)t™% In* t) (t) € WY1/ 2Hk—e(yny,

i=11=0

This gives them natural Fréchet topologies.

(e) KBJ(X") denotes those distributions u on X* for which wu € Hp(X") and to (1 - w)u €
HZ,ne(X").  Analogously, Kz'™ 2(yM) is the space of all distributions u on Y with wu €
HeT T2 (Y7) and (1 - w)u € He, (YN,

(f) S, (X ") is the space of all smooth functions u on X* with wu € Hp 7 (X ") and (1-w)u € S(X*).
We deﬁne Sp,(Y") correspondingly.

The spaces ‘in (e) and (f) are topologized as non- _direct sums of Fréchet spaces.

Our next goal is a description of the Mellin images of functions in the spaces K%7(X"). We start
with the following simple observation.

Lemma 1.17. (a) Let w be a cut-off function near 0. Then Mw(z)=2z"M(—tOw)(z). Since —tdw €
C§° (Ry), its Mellin transform is rapidly decreasing on each line Tg. If x is a smooth function on C
which vanishes near zero and is equal to 1 near infinity, then xMw is rapidly decreasing on each line
T'a, uniformly for B in compact intervals.

(b) Given a cut-off function w € C§°(R.y.) with w(t) = 1 near zero, p € C, and k € N, let

k
bpi(2) = My (077 0" tw(2))(2) = i—( 27 M (t8w)(2)) (2 = p).

Here we interpret My_,. as the weighted Mellin transform M., with v < 1/2 — Rep. Then ¢, ;. eztends
to a meromorphic function in C with a single pole of order k + 1 at p. If x is a smooth function on C
which vanishes near p and is equal to 1 outside some compact set, then x¥, 1. is rapidly decreasing on
each line I'g, uniformly for 8 in compact intervals.

Definition 1.18. Let g = (7,6, (—%,0]) and P = (P, P2) be as in Definition 1.16.
(a) ApJ(X, V1) is the space of all analytic functions

fi{zeC:(n+1)/2-vy—k<Rez< (n+1)/2-v}\ncP = H(X, V)
with the following properties:
(i) In p; € mc Py, the function f has a pole of order m; and a Laurent expansion
™;
2) = culz—p)™ + f(2),
=0
with ¢y € C*®(X, V1) and f analytic near Dj-

(if) For € > 0 choose an excision function x., vanishing in an e-neighborhood of mcP; and equal
to 1 outside a 2e-neighborhood of mcP;. We then ask that, for each € > 0 and each 8 with
YSB<y+k,

“Mﬁ__ln/g(xéf)”?{"ﬁ()(",Vl] <oo

uniformly for 8 in compact subintervals of [,y + k).
(b) Similarly we define AR (Y, W)) as the space of all analytic functions
f:{z€C:n/2—y—k<Rez<n/2—~v}\ncP, = H(Y,W)

with poles of order n; at ¢; € m1cF and Laurent expansions

fl2) = du(z—g;)™" " + f(2),
=0
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with dy € C°°(Y,W1) and f analytic near g;. We also ask that, for each excision function x. for 7c P,
and each 8 with v < 8 < v+ &, we have

”Mg__l(n_l)/g(Xsf)”’H’-ﬂ(Y’\,Wl) < 0o,
uniformly in compact subintervals of [y, vy + k).
Proposition 1.19. Let w be a cut-off function, and let P = (Py, P2), v be as in Definition 1.16. Then
the weighted Mellin transform together with the operator of multiplication by w induces continuous maps
(1) My_pppw: KpT(XNWV) = .A}’:’(X,Vl),

i -1
(ii) WM

AR (X, V) = KT (XM W),
(111) M’y——(n—l)/2 w ’C?;Y(YA, Wl) — .A:;’:(Y, Wl), and
(iv) wM;_l(n_l) J2 P AR X, Wh) = KB (YR, Wh).
Proof. This follows immediately from Lemma 1.17 and the definition above. O
Lemma 1.20. The spaces K3” can be written as projective limits of Hilbert spaces: KpT(X"} =
proj — imE;, where
(i) K$(X)=Ey « E; « ...« Kp"(X"), and

(if) the group action coincides on all spaces.

The same statements hold for SL(X™) as well as for the corresponding spaces over Y or for distribu-
tional sections.

Proof. C®(X) is the projective limit of the Hilbert spaces H*(X),k € N. Next, K37(X") is the
non-direct sum of the intersection (1,5 K*7t*~¢(X"), which is a projective limit of Hilbert spaces,
and the space of all linear combinations of functions of the form

d(z)tPi In' tw(t)

with d € C®(X), p; € 1P, 0 <1 <mj. This also is a projective limit in a natural way. For SH{X")
we use the representation as the non-direct sum in 1.16(f). We deal with HZ" (X"} = N, Hp{(X")
as before and use Remark 1.3 for S(X*). 0

2. Operator-Valued Mellin and Green Edge Symbols

Green Symbols

2.1 Notation. In the following, {2 denotes an open set in R?. Given a weight datum g = (v, 4, (-, 0]),
an asymptotic type P = (P, P;) associated with g, and s,v € R, ! = 1,2,..., we introduce the
abbreviations

(2'1) ' }C;ﬂ — }CW’(XA,V;)GB/CS"Y_J‘/Z(YA,VV;),
(2.2) Sp = SHEXMNWV)eSH Py W), and
(2.3) VR o= AR V) e AR Ay, W)

Definition 2.2. Let g = (v, 4, (—k,0]) be a weight datum, p € Z, and d € N.
(a) 'Rfé’o(ﬂ x 2 x RY,g) is the space of all operator-valued symbols

(2.4) g€ [\ SLEO@xQRLETdCM K5 @ CMe2)

s>—1/2
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with the following property: There is an asymptotic type P = (P, P») associated with g such that, for
each s > —1/2, the symbol g yields an element of

(2.5) SH(Q x Q,RGK) @ CM,SE @ CN2),
while the pointwise formal adjoint g*, defined by ¢*(y,n) = g(y,n)*, vields an element of
(2.6) SHOQx Q,REKy @ CN ST e CM)

for an asymptotic type Q = (Q1,Q2) associated with the weight datum (-6, —v, (—k,0]). The last ‘«’
denotes the formal adjoint with respect to the inner products on ICCI)'O and /Cg’o. The dimensions N;, N»
will not be indicated.

(b) R‘éd(ﬂ x (0 x RY, g) is the space of all operator-valued symbols

(2.7) g€ [) ShOxQREGK @ CM KT e CM2,
s>d—1/2

which can be written in the form
|

(2.8) g=go+ 9 0 0
=1

with g; € ’R‘(‘;j’o(ﬂ x § x R9,g). The matrix in the upper left corner refers to the decomposition
(2.1). We call these elements Green edge symbols of order 4 and type d. If we want to indicate the
asymptotic types we will use the notation R‘é’d(Q x QxR g)po.

For fixed asymptotic types P and Q) the space ’R‘é’d(Q x xR, g)p o is a Fréchet space topologized as

a non-direct sum via (2.8). We write R‘é’d(Q x RY, g) for the space of all symbols that are independent
of the variable ' € €. Since all symbols are classical, we naturally have the notion of a principal
(operator-valued) symbol.

Remark 2.3. Similarly as in Boutet de Monvel’s calculus, we are dealing with matrices of operators.
Note, however, that we now have 3 x 3 block matrices. The additional entries correspond to trace and
potential operators at the edge.

Proposition 2.4. Let g, € ’Rfé;’d(ﬂ x xR, g) and g2 € Rgl’dl (Qx Q2 xR g). Then

(a) D2D8g; € RE 1M x 0 x RY,g).

(b) The pointwise composition g1 g, is an element of 'R'é“‘ d 1 x QxR g).

(¢) If d = 0, then g7, defined as the pointwise adjoint g} (y,y',n) = g1 (y,¥’,n)* is an element of
RE(Q x O x RY,g).

(d) Given a sequence g; € R‘C‘;—”d(ﬂ x @ x R, g)p o with constant asymptotic types P,Q, there is a
gEREY QX QO x RY, g)pg with g ~ g0 9i-

Proof. (a), (b), and (c) are obvious. (d) Although we are dealing with operator-valued symbols, the
usual asymptotic summation procedure with respect to the variable 5 furnishes the desired result. O

Proposition 2.5. Let vi,vs € N and g € ’R‘(‘;’d(ﬂ x Q¥ x RY,g). Then
gt € RE U x O x RY, g).

Here we understand t** as the operator of multiplication by the diagonal matrix diag {t**,¢"?, I}, acting
a priori in C&(X ", V1) & CL (Y™, W,) @ CMt which is dense in K" @ CM. A similar interpretation
applies to t¥2. It is a part of the result that the composition extends to a symbol in

SE==2(Q xR K @ CM K50 @ V2

cl

with the properties in Definition 2.2.
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Proof. In view of the fact that 8, commutes with t we may assume that d = 0. For fixed y,y',n, the
operator g(y,y’,n) has an integral kernel

( ku(my) ka(z,y)
k(z,y) = ( kzi(w,y) k;i(w,y) >’

with ki1 € S p@S L. k12 € S p ® CM1,ky € CV2 @ STL, and kpp € C™ ® CM. Here @ is the

conjugate asymptotic type, i.e. @, = {(65'1),71]')} if Q; = {(q§~l),nj)}. This can be deduced from [14,
Theorem 3.3.2].

In particular, multiplication of g(y,y’,7n) by powers of ¢ from either side furnishes a continuous
operator from K37 @ CM' to K57 @ C2 for all s > —1/2. Moreover,

Kip-1t" g(y, Y Mt kg = (0] 7 T2 K- g (y, ¥ Mgt

Hence the order is lowered by v; + v;. Properties (2.5) and (2.6) follow in the same way. m|

Proposition 2.6. Let ¢ € S(Ry) and g € Ré’d(ﬂ x 0 x R?,g). Then ¢g, go, ¢(:I))g, and go{-[n))
all are elements of R (0 x @ x R, g).
Again we interpret ¢ as the operator of multiplication by the diagonal matrix of functions diag{yp, ¢),

acting on K{"" and )C;"“"s for all s € R; furthermore, ¢(:[n]) is the corresponding n-dependent multi-
plier.

Proof. Since multiplication by ¢(t) and ¢(-[]) commutes with J, we may assume that d = 0. Next
we note the identities

K109, ¥ e = o)™ )sp-19(y, ' 0k,
K= 98 PR = K19y Mgl )

For fixed 7, multiplication by ([]~!-) furnishes a bounded operator on both K27 and K57*°. Had
we instead started with ¢(-[n}) then we would now only have to deal with multiplication by . Writing
Sgy p and S; E’? as projective limits of Hilbert spaces, say Ef,’j and Ecg"’"j , as indicated in Lemma 1.20,
multiplication by ¢([]-) and ¢ in all cases induces continuous actions

Ef;,’j _)Eg.‘i and E&’Y,J'__)Eé’)’.j

for suitable asymptotic types P and @ associated with g. Moreover, the norm of the operator (=)
is uniformly bounded as n varies over R?. A corresponding argument applies to derivatives.

Hence we get symbols of the desired order. It remains to show that they are classical. So suppose g;
is homogeneous of degree j in the sense of (1.3). Then one has, for large || and A > 1,

‘ap(n])gi (v, y' s mea-1 = (Al )Erpg; (v, ¥  n)ka-1 = o([M]-)A 7 9;(y, v, An);

Faegi (1,9, mMKa-1 = @A YRA@g; (1, ¥ Mea-1r = (M)A gi(y, o', M),

Similar equations hold for multiplication from the right. In the first case we therefore have homogeneity
of degree j right away. For the second we use Taylor’s formula to write

N-1
3'o(0 .
OEDY ";( )t‘+tN<p
=0 ’

for some smooth bounded function . From the above and Proposition 2.5 we conclude that the operator
induced via multiplication by the remainder term has order j — N while the others are homogeneous
for large |n|. This completes the proof. m|

Smoothing Mellin Symbols

2.7 Smoothing Mellin symbols with asymptotics. Let P = {(p;,m;,L;)} be a Mellin asymptotic
type over an open set U in Euclidean space. In applications, U will be £ or 2 x ). Recall that, for an
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open subset G of the complex plane and a Fréchet space £, A(G, £) is the space of all analytic functions
on G taking values in £.
We define C*°(U, M';°°’d(X }) as the space of all smooth functions

h:U — A(C\ mcP,B~%(X))
having the following additional properties:

(i) the points p; € wcP are poles of order < m;. For I = 0,...,m; — 1, the coefficient hj(y) of
{(z —p;)~*""! in the Laurent expansion of A(y, -) satisfies 85 hji(y) € L§(y) for all multi-indices c.

(ii) For each finite strip {c; < Rez < ¢z} we find functions ¢;; € C®(U, B~°>%(X)) such that the
difference

hy,2) = D cu(y) My (7P In' tw(t))

c1<Rep;<cz

is a smooth function on U with values in A({c; < Rez < ¢z}, B~>%(X)); it is rapidly decreasing
along I'g, uniformly for y € U and ¢; < # < c3. Here w is an arbitrary cut-off function.

These conditions furnish a natural Fréchet topology on C(U, M;‘”’d(X )). The c;; can be expressed
in terms of the Laurent coefficients of the principal part; they are, however, more convenient to describe
the decrease.

Proposition 2.8. Let h € C®(U, Mp*%(X)) and f € ATY for a Mellin asymptotic type P over U,
an asymptotic type Q) associated with g, and s > d—1/2. Then g(y, z) = h(y, z) f(z) defines an element
g of C=(U, A}}) for each r € R and a suitable asymptotic type R; the induced mapping

CoU, Mp™(X)) x A1l — C(U, A7y
is continuous.

Proof. We are only interested in the strip {(n +1)/2 —v—k < Rez < (n +1)/2 — v}. By linearity
it therefore is no restriction to assume that P = {(p,m, L)} and @ = (€1, Q2) with @; = {(¢,1)} and
@2 =0, i.e., both consist of a single element with p and ¢ in the strip.

Choose a cut-off function w. Employing Lemma 1.17 we may write

m=—1

hy,z) = ci(W)dpi(2) + ho(y, 2),

j=0

where ¢; € C®(U, B~ X)), 1, j(2) = My (t "7 In tw)(2), and hg is a smooth function on U, taking
values in the space B of all analytic functions on the strip with values in B~°¢(X) that are (uniformly)
rapidly decreasing along each vertical line in the strip. Since C*®(U, B) = C*®(U)&, B we may assume
that ho{y, 2) = v(y)e(z) with v € C°°(U) and e € B. Similarly,

=1

F(2) =D dutyr(2) + fol2),

k=0

with dy, € C°(X, V1) @ C®(Y,W,) and f, € A5 recall that O denotes the trivial asymptotic type.

Now we consider the terms separately: 1, ;4,1 18 a meromorphic function in the strip with singularity
set {p,q}, possibly p = ¢. Cutting out a neighborhood of the pole(s), this function is rapidly decreasing
along each vertical line, uniformly in the strip. The continuity of the composition

B~ X) x C*°(X,V}) ® C®(Y, W) = C®(X, Vo) @ C®(Y, Ws)

therefore shows that c;diip,j9q,x is an element of C*°(U, Ay'R) for each r € R, provided the asymp-
totic type R takes care of the pole(s), say R = ({(p,m + 1),(¢,1)},0). Moreover, the semi-norms in
C*(U, Ay %) depend continuously on those for ¢; and di.

For fixed z in the strip, the composition e(z)d) defines an element of C®(X,V,) @ C®°(Y,W,). It
depends analytically on z in all the strip, and its semi-norms decay rapidly as z varies over a vertical
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line, uniformly in the strip. Hence also vedyip,r € C°(U, A;,}’{) for arbitrary r. The corresponding
mapping is continuous. Finally one treats c;yyp ; fo and vefp in the same way. o

2.9 Mellin operators. Given a subset U of Euclidean space, h = h(y, z) € C®(U, M;*%(X)), and
v € R with T'yj5_, N mc P = 0, we introduce the operator family {op},h(y) :y € U}:

opjsh(y) : G (X7, V1) @ C(Y ", W) = C=(X", V) @ C° (YA, W)
is defined by

[ M) de = (M5 A )M (),
Ti/2-4

27

[op s ()]u(t) =

Here, we identify u with a function in C°(R4,C®(X,V;) ® C®(Y,W1)), and M.u is the Fréchet
space-valued weighted Mellin transform of this function. As an immediate consequence we have, for
arbitrary 8 € R,

(2.9) tPop) hly) = opFPTP h(y)t?.

Here TPh(y, z) = h(y, z + B). For each y € U the operators op W h(y) extend to continuous maps

Hs,7+n/2(XA’V1) Hoo,‘y+n/2(x/\,v2)
(2.10) oph(y) : ® - &) ,
7{3’7+(n—1)/2(y/\, Wl) Hoo,'y—i—(n—l)/Z(yA’ Wz)

provided s > d — 1/2. It follows immediately that, for every choice of cut-off functions wy,ws, we have

bounded operators

w10p o h(y)ws IC;’7+"/2 — ngo"H'"/z.

2.10 Convention. From now on we shall fix y € R, u,v € Z, v < p, k € N\ {0}, and the weight
datum g = (7,7 — g, (=%, 0]).

2.11 The space ’RM+G RM+G(Q x 1 xR, g) is the space of all symbols a = [ 7(7)1 8 ] + g, where
g€ RB“(Q x 2 x R7,g), and m € C®(! x 2 x R, B~°%(X)) is of the form

k-1

(2.11) m(y,y',n) = wi(tln]) ( > tj"”op}\’}hja(y,y')n“)wz(t[n])

=0 lo|<j
with cut-off functions wy,ws,
(i) hja € C®(Q x Q, M524(X)),

(i) y=(p—v) -j—n/2< v <y—n/2 and

(iii) Mellin asymptotic types Pjo with mcPjq NTya_-; = 0.
Note that m is a 2 x 2 matrix of operators defined e.g. on the space C§° (7/\, Vi) @ C§° (Y, W), the
matrix [ 7(7)1 8 ] refers to the decompositions [Cg (X", V1) @ CS(YA, W1)]@ CM and [C(X, V) &
C® (YN, Wa)] & CN=.

Theorem 2.12. Let m be as in Definition 2.11, s > d—1/2, and let Q be an asymptotic type associated
with g. For fized (y,y',n), the symbol m(y,v',n) then induces continuous operators

m(y,y',m K77 = K77 and my,y',m) : K7h = SIH
here R is a resulting asymptotic type. Furthermore,

m € Syt x Q,RG KT, K577 0S54 x 0, RG KDY, ST R
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Proof. By 2.9, the first assertion is immediate from the fact that m(y,y’,n) takes values in ]\/[;O"”d(X).
For the second we apply Proposition 1.19 combined with Proposition 2.8. In order to see that it
additionally defines a symbol in the asserted classes we focus on one summand as in (2.11); denote it
by mja, j > |a|. Let us show that this is a homogeneous symbol in the sense of (1.3). Indeed, for large
7l and A > 1,

mamia(y, ¥, m) = wiADN T kr0pd hja (Y, ¥ I wa ()
= w (NI opY hia (y, 3 ) (M) mawe (¢])
Ml (3,4, M)k

here we have used the fact that, for u € C§° (R4, C® (X, V1)@ C®(Y, W1)), we have ky[op) h(y, y')u] =
op ey, ¥ )kan. _
Hence mjqo(y,y', An) = A¥~ el m i, (y,4',n)kr-1, and Lemma 1.6 yields the assertion. O

Proposition 2.13. Suppose R € B=°>4(X} has finite rank and r € N. Let C be a contour in the half
plane {Rez > (n+1)/2 — v} with winding number 1 with respect to the point p € C. Then the operator

G defined by

1
Gult) = 57 [ £ =9 RM, a(wu)(2)
2w Jo
maps HSV (XN Vi) @ HOV Y2V N W) to the finite-dimensional space of all functions of the form
Y=o ¥i(T)t7PIn’ t, v; € im R.

Proof. Ifu € HOY (XA, Vi) @H* Y~ Y2(Y A, W), then M., _,,/2(wu) is analytic in {Rez > (n+1)/2 -~}
with values in H¢(X, V)@ H*(Y,W)). The assertion then follows from complex analysis in one variable:
If the meromorphic function f has a pole in p of multiplicity r + 1 then

L t7* f(2)dz = i 5 tPIn’ t
. -' y
21 Jo iV L
where f; is the coefficient of (z — p)~7~! in the Laurent expansion of f near p. ]

The following corollary shows that the Rjs4+g-symbols commute with multiplication by t#, 8 > 0,
modulo elements of Re.

Corollary 2.14. Let h € C®(1x 0, M;°°‘d(X)) for some Mellin asymptotic type P over Q x . Pick
B20aswellasy € Rwithn/2—y—3j<m <n/2—7yand rcPNTyj5_y, =n1cPNTyp 45 =0.
Then

wi (D opTih(y, ¥ wa (t))tE — wi (t[n)# =P op T (T Ph) (y, ' )wa (t[n])
is an element of R x O x RY, g).
Proof. For u € C*(Ry, C®(X, V1) & C=(Y, Wh)),

(wi(tim)op sy, ¥ we (tn])tP) u(?)

= QLm,wl(t[n]) /1:1/2_,1 £ h(y, o, 2) (M, (wa([7])w) (z + B)dz
= -2—175«)1&[77])/F t““+ﬁh(y,y’,w - B) (M, (wz(-[n])u)(w)dw.

1/2—v1+8

Using Cauchy’s theorem, we may change the line of integration; the error then is

909/, mu®) = 5 wn (el /C t B h(y, v w — B) (M, (wa - [r])u) (w)duw,
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where C is a countour which simply surrounds the poles of h(y,y’,-) between the lines I'y/5_,, and
I'y/2—+a- Hence g(y,y',n) € L(KT7,K37). In addition it is homogeneous of degree zero in 7 for large
nl, and '

1 —w
K[n]“g(yay',ﬂ)”[n]“(t) = 2_750‘)1 /Ct +ﬁh‘(yaylaw - 6)M’n (WQU)(U))d'U}

is independent of 5. By definition, the coefficients of the principal part of the Laurent expansion of
h(y,y’,-) are finite rank operators in B~°>¢(X). By Proposition 2.13 we see that K= (s ¥, 1)K
defines a continuous mapping from K77 to S; , for suitable Q. Of course, the semi-norms are uniformly
bounded in . We may apply the same consideration to derivatives and the adjoint. Using the identity
Kin)-18 YKy = [7]* 774777 and Proposition 2.5, we see that t*~7g € RS (2 x @ x R, g). a

In the same way one obtains the following result on invariance under changes in the weight:

Corollary 2.15. Let h and v, be as above. Choose y2 withy—n/2—j <7y <v-n/2 andTy/5_,, = 0.
Then

wi(tM]) = {opJsh(y,y") — opRh(y, ¥)} wa(tln]) € RE 4D x 2 x RY).

Proposition 2.16. For l,r € N we interpret t' as the operator of multiplication by diag {#,t',I} on
K" @ CN and t™ as the operator of multiplication by diag {t",t", I} on K3~ ™* @ CN2, recalling that
K37 and K3™#77# are direct sums of two spaces. Then

t RyLG(QAx QxR g) " CRETHA x O x RY, g)
whenever [ +r > k.

Proof. In view of Proposition 2.5 we only need to consider a symbol m as in Definition 2.11. Also it
is sufficient to consider the case where d = 0 and

m(y,y',n) = wi(t])t™"Hop)Fh(y,y In*wa (t[n])

with |a| = j. So let us estimate the norms of ki -1t"DPDY, Ddm(y,y’,n)t k. Without loss of
(n] ¥y (]
generality let f =~y =46 =0.

K- My, y' )t Ky

[~ T K-y, ¥ m) gt

7]~ " ot Y op i Ay, ¥ Int we

— [n]—l—7‘+u—jwl tT+l+j—llop‘1{2-lT——lh(y’ yl)ﬂaw%

= [T Tt op i T Ry, v )% ws + 9(y, ¢ s m)

where we applied Corollary 2.15 for the last equality and (2.9) for that before; here v, satisfies v— (u —
v)~-j—nf2<v <v-—n/2and g is an element of R"G_l_"(ﬂ x QxR g).

It remains to consider the first term on the right hand side of the above equation. We first employ the
mapping properties of h stated in (2.10). In view of the factor #+"~¥w; and the assumption | +r > k
we see that the operator maps into Sg, . As before O denotes the trivial asymptotic type. In view of
the special structure, the operator norm is O([n)*~'~") with respect to all spaces used to write 8;’_5“
as a projective limit of Hilbert spaces. We obtain a corresponding result for the adjoint by commuting

the powers of t to the right. This completes the proof. 0O
Remark 2.17. In view of Proposition 2.16 we may confine the summation in (2.11) to  =0,...,k —
(p—-v)-1

Proposition 2.18. A change in the choice of the cut-off functions w1, ws or the weights v; in Definition
2.11 changes the symbol m in 2.11 only by a symbol in ’Rgd(ﬂ x 0 x R, g).
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Proof. In Corollary 2.15 we saw already that a change of the weight for fixed cut-off functions results
in a Green symbol. The lemma below, deals with the behavior under changes of the cut-off functions
and therefore completes the proof of the above proposition. O

Lemma 2.19. Let P be a Mellin asymptotic type and h € C®(Q x @, M;°>%(X)). Fiz j € N and 1
withy — (u—v) —3—n/2 <1 <v—n/2. Moreover, let w be a cut-off function, ¢ € C§°(Ry), and «
a multi-indez with |a| < j. Then both

p(tln)) t'~ opayAly, y' I w(tln]) and w(tl)) £~ opiih(y, y')n™ e(tl))
are elements of R (0 x O x R, g).

Proof. Choose a cut-off function & with @y = . Write o(t[n]) = @(t[n])(t[7])~* M*@@n]))tE. In view
of the fact that ¢ — (¢)t™* is a rapidly decreasing function on R., the assertion follows from 2.6 and
2.16. O

Proposition 2.20. The functions hj, € C*(Q x Q,M;m’d(X)) in Definition 2.11 are uniquely
determined by the operator family

1 ’! 0 I
{a(y,y',n) = [ m(yoy m) 0 ] + 9y, y"\n) sy, Eﬂ,neR"}.

Proof. For each fixed choice of y,3’, and n, we have a family of smoothing Mellin operators on the
cone, as considered in [15, Proposition 3.1.27]. From this result we deduce that, for each j, the
sum Z|a|< j hja(y,y', z)n™ is uniquely determined. Since this is a polynomial in %, each of the terms
hja(y, ', 2) can be recovered. O

2.21 Conormal symbols. Let a, m, and g be as in Definition 2.11. For j =0,..., k= (p—v) — 1 we
define the conormal symbol of order v - j of a by

oyl (@) = ) hialy,y', 20>

lal<i

This makes sense according to Proposition 2.20. Note that for j > k — (u# — v) the operator family
{w (t)t7 > 2 al<i opirhia(y, ¥ )n%w2(t[n])} defines an element in ’R,gd(ﬂ x QO x R, g) according to
Proposition 2.18

2.22 Theorem: Adjoints. Let m be as in Definition 2.11; assume additionally that d = 0. Then the
pointwise adjoint m* defined by
m*(y, v, m) = m(y,y', )"

induces a symbol in 'R;"JO+G (Qx QxR g*), where g* = (—v + p, —, (—%,0]). In fact,

k-1
m*(y,y'm) =@a(tn]) D Y ¢ opp T (T "‘jhg-';)) (v, 9" @1 (),

7=0 |o|<j

where h;(i;) (¥,y,2) = hja(y,y',n+1-2)* and the last asterisk denotes the adjoint in Boutet de Monvel’s
caleulus.

Proof. It is well-known that, pointwise, the above formula furnishes the adjoint operator, see e.g.
(14, Lemma 5.1.10]. In view of the fact that TV I hja(y,y’',n + 1 — Z)* defines an element C*® () x
Q, MQ_m’d(X )) for a suitable (easily computable) Mellin asymptotic type, we get the desired result. O

The following proposition prepares the ground for treating compositions.

Proposition 2.23. Let hy, he € C°(Qx 0, M;oo‘d(X)) for some Mellin asymptotic type P over Qx ().
Choose ¥1,v2 withy —n/2 — 7 < 71,72 < 7v—n/2. Then

9y, v',m) = wi(t[n)) 7~ op}iha (v, ¥') (1 — wa(t[n]))opashe (y, y")ws (t[n])
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is an element of RL* (1 x Q x RY, g).
In order for the composition to make sense, we assume that the operators act between vector bundles
in the following way: For fixed (y,v’,n),

ha(y,y',2) : C¥(X, 1) @ C*(Y, W) — C®(X,V2) ® C=(Y,W>), and
hi(y.y',n) : C¥(X, V) @ CO(Y,W2) = C%(X,V3) & C®(Y, Ws).

Proof. In order to save space, we shall use, just for the moment, the notation w; , = w;(-[n]). Supposing
that 'y /3y, —x N7TcP = 0 we rewrite g(y,y',n) as

wint™ {opYiha(y,y") = oA (W, 1) | (1= w2,n)opliha(y, ¥ hws.s

Y1 +hh1

+wrpt™opr; T R (y,y") (1 — wa g)opiihe (v, ¥ )ws n-

Due to the factor 1 — w9, the operator

st,-y,+k+n/2 (XA, Vz)
(1 = wp)opyzha(y,y Iws : K77 — ®
'Hoo,71+k+(n—l)/2 (YA, Wz)

is bounded, hence the last composition makes sense. Applying Corollary 2.15, the first term on the
right hand side is a symbol in Réd(Q x 2 x R, g). The second one we rewrite as

t* Vw1 op b Tk (3, ")t ™4 (1 — wa )0 R2 ha (Y, ¥ w3 m;

then we apply Proposition 2.16 to see that it also is a Green symbol of the desired kind.
If h; has singularities on I'y /5,44, then we may change v; slightly without changing the operator;
so we also get the assertion. Finally note that the adjoint is of the same type, so the proof is complete.
O

2.24 Theorem: Compositions. Let a € 'R,M_,,G(Q x QA xRy,g) and d' € RM+G(Q x xRy g).

Then the pointwise composition b(y,y',n) = aly,y',n)a'(y,y',n) defines an element b € 'RK;':G“[ (Q x

2 x RY,g) and therefore a mapping
Ril (2 x @ x R, g) x RipIo(Q x 2 x R%,g) = RyF (U x U x RY,g).
This mapping is continuous. It restricts to continuous maps

R x @ x RY, g) x M+G(Q xQxRig) - RSO xQxRYg),
Rt o@x QxRLg) xRET(Ox2xR%,g) -+ RE™4(QxQxR,g).

The conormal symbols of b are given by

o) = Y (k@) oA,

po=j

Proof. Consider symbols of the form

_ mO 1 m/ O !
a—[00]+g,a—[0 0]-}-9

with m, m’, g, and ¢’ as in Definition 2.11. Applying Theorem 2.12, we see that the composition is a
Green symbol whenever one of the factors is. So it only remains to consider the compositon of m and
m'. By linearity we may focus on one summand of the type (2.11) for each of them, say

m = wi ()t opih (y,y' ) wa(t]),

!

m' = & ()t Topha(y, v )n® Do (tn)).
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In the compostion we first remove the cut-off function in the middle at the expense of a Green term by
applying Proposition 2.23. Then we commute the factor " to the left, taking advantage of Corollary
2.14. Next we move both weights v;, 2 to a single one, say 7s; by Corollary 2.15 the error is a Green
symbol. Finally, we apply the composition rule for Mellin symbols [15, Lemma 3.2.4] which implies
that

opaha (¥, ¥ )opagha(y,y') = opiihs(y,y')

for hg = hihy € C™(2 x 0, M;"’"r’d' (X)); here R is a resulting Mellin asymptotic type.
The rule for the conormal symbols is immediate from the standard case; it is not affected by the
parameters y,y',7. The proof is complete. O

Operators of the considered type come up quite naturally:
Lemma 2.25. Let rcPNTy/5_y =0 and
f=101,9,9, 20 € C® Ry x Ry)®.0%(Q x Q, Mp™(X))®S(RY).

For fized (y,y',n) and cut-off functions wi,ws, we define the operator m(y,y',n) on
C8° (R4, C®(X, V1) @ C(Y, Wh)) by

(2.12) m(y, y', mu(t)

1
- Ewl(t[n])/r

Then m is an element of ’:‘?,“Mic(ﬂ x 1 x RY,g).

o0 d '
[ e sty e

1/2-+

Proof. Employing Taylor’s formula we write

ft,t, 2,09, tn)

. -

= Z Z cjlj?[aglaf;al'f(oaOyy’ylaZ5O)natjtf
J1+lol=j<k—-11<k-1

+ Z 6t ty, Y, 2, tnnth + Z ra.ial(0, 5,1 2, 0t
lal<k lal<i<h—1

With 71 4,72 ja € C®° (R4 x R})&,C®(Q x Q, Mp®*(X))®,S(RY) and suitable constants ¢;, j,i. The
terms under the first sum on the right hand side are of the form (2.11).

Let us show that we obtain elements in R’é’d(ﬂ x 1 x R4, g) if we replace, on the right hand
side of (2.12), the function f(¢,¢',3,4',2,tn) by r1a(t, ', 5,9, 2, tn)n*t* or 720 (0, ¢y, ¥, 2, Ontie’*.
Since C® (R4 x Ry) = C®(R4)®,C®(R,) we may assume that 1 o(t, ', 5,7, 2,tn) is of the form
01 ()2 (t)h(y, 9, 2)s(t[n]) with p1,02 € C®(R,), h € C®(Q x Q, M~4(X)), and s € S(RY). We
may even suppose that both ¢, and s have compact support, since we will eventually multiply by
wi(t[n]) and wa(t[n]) which both have compact support uniformly in 7. Then, however, the asser-
tion for vy o(t, ', y,5', z,tn)n*t* follows by combining Propositions 2.6 and 2.16. With the terms for
r2,50(0, 'y, 4, z,(])n"‘tjt"c we can deal in the same way. )

2.26 Notation. Fix an element h € C*(Q x Q,M;m’d(X)) for some Mellin asymptotic type over
£ x Q. For given {y,y',2) the operator h(y,y',2) is an element of B=°>¢(X;RY). We consider the
operators I + h{y,y’, z) on the space

H® = H*(X,Vi)® H*(Y,Wy).
We will be interested in the structure of their inverses. In order for this to make sense we assume that
Vi = Vo and W, = Ws.

2.27 Facts from Boutet de Monvel’s calculus. If R in 57°¢(X) and I + R is invertible on H*

for some s > d —1/2, then (I + R)™! = I 4 R’ for suitable R' € B~>¢(X), see [14, Theorem 2.3.8].
For arbitrary R € B~°9(X), the kernel of I + R : H® — H* is independent of s and consists of

functions in C° (X, V;) ®C®(Y, W) by elliptic regularity. The operators in B~°¢(X) are compact on
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H?. Hence I+ R is a Fredholm operator of index zero; kernel and cokernel have the same dimension. As
s increases the cokernel can only decrease. Therefore also the cokernel is independent of s and consists
of smooth functions. Choosing orthonormal bases {¢1,...,¢0a} and {31,...,¢a} of the kernel and

cokernel, and defining Fu = Zﬁl (u, ;) ¥;, we obtain a finite rank operator F' € B7>%(X) such that
I+ R+ F is invertible on H®. The projection p onto its range is given by pu = Z;‘il (u,%;) 9;, thus
also is in B=%0(X).

2.28 Structure of the inverses. Let y,y’ € ¢ and consider a finite strip ¢; < Rez < ¢3 in C. As
|Im 2| — oo, the norm of A{y,y’, z) becomes small in the strip, uniformly for (y,%") in a compact subset
of 2 x Q; therefore I + h(y,y’, z) will be invertible for large |Im z|.

Next fix (yo0,¥5,20) € @ X 0 x (C\ mcP). According to 2.27 we find a finite rank operator F €
B=°9(X) such that I + h(yo,¥h, 20) + F is invertible on H. Let p € B~°*9(X) be the projection onto
its range and ¢ =1 — p.

For (y,y', 2) in a small neighborhood of (yo,¥{,20), 2 ¢ 7P,

I+h(y,y,2) = (I-FI+h(y,y,2)+F) I +hy,y,z)+F)
(2.13) (I -pF, v, 2)0)I — pF(y, v, 2)p)(I + h(y,y', 2) + F),

where we used the abbreviation F(y,y',2) = F(I + h{y,y',2) + F)~!). This decomposition has several
consequences. First we note that pF(y,y',2)q is an element of B~°°°(X), and the first factor has the
inverse I + pF(y,y', z)g. The last factor is invertible in a neighborhood of (o, %4, 20). Both the first
and the last factor depend smoothly on (y,y’) and analytically on z. The factor in the middle is a
diagonal matrix; in the lower right corner we have the identity, in the upper left a finite rank matrix
function, smooth in (y,y’) and analytic in 2. It is invertible whenever I + A(y,%', z) is. The strip with
mc P removed is connected and I + h(y,y’, z) is known to be invertible for large |Im z|. For fixed (y,y’)
it therefore is invertible outside a discrete set D contained in C \ 7cP. The singularities are poles of
finite order; the coefficients of the principal part of the Laurent series are elements in B=>%(X). As
(y,y') varies, the residue theorem shows that they vary smoothly with (y,¥’).

In general, the set D will depend on y and y’. There are, however, interesting situations when this is
not the case. Under this assumption we shall see in Theorem 2.30 that the inverse (I + A(y,y’,2))"! is
of the form I + h'/(y,y’, z) for some h' € C*°(Q2 x 0, MQ_w’d(X)), for a suitable @.

The following lemma will be used in the proof of Theorem 2.30.

Lemma 2.29. ([14, Lemma 4.3.14]) Let V be a neighborhood of zere in C, E a Banach space, N € N,
and A,,..., Ay € L(E) operators of finite rank. Let H be an analytic function on V with vaelues in
L(E) with H(z)e =0 for all e in a finite-codimensional subspace Ey of E. Then there is a 6 > 0 such
that the meromorphic E-valued function

N
(2.14) F(x)=1+H(z)+ Y A
k=1

is invertible for all 0 < |z| < 8, unless it is nowhere invertible near 0.

Theorem 2.30. Let h € C* (1 x M;oo'd(X)) with a Mellin asymptotic type P over Q x 1. Assume
that there is a discrete set D such that, for all y,y' € Q and all z € C\ D, the operator I + h{y,y', z)
is invertible. Let Qo CC Q. Then the inverse (I +h(y,y',2)) " aoxao i5 of the form I+ h'(y,y', 2) for
some h' € C(§ x o, M&m'd(X)), where Q is a Mellin asymptotic type over (g x Qp with rc@ C D.

Proof. Let us first show that the set D has no finite accumulation point. By 2.28, such a point neces-
sarily would be an element py € mcP. Near pp write I+ h(y,y",2) = I+ ho(y, 7', z)+2f=o Fi(y,y")(z—
po) ¥t = I + (hg + hs)(y,y', z) with some function ho € C( x Q,M;w’d(X)), which is analytic
near po, a smooth family Fj of finite rank operators, and hs(y,y’, z) = Zfzﬂ F(y,y")(z = po)~*"! for
a suitable K.

Fix y and y'. The function ko also satisfies the assumptions of Lemma 2.26. Since it is analytic near
po we may conclude as in 2.28 that it is invertible in a neighborhood of pg, execpt for (possibly) the
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point pg, where it might have a pole of finite order. Hence

(2.15) I+h(y,y',2) =+ holy, ¥, 2)) I + (I + ho(y,y',2)) " he(n,4', 2)).

We note that I + (I + ho(y,¥',2)) " he(y,v', z) is of the form (2.14) due to the fact that the operators
F; have finite rank. Applying Lemma 2.29, it is invertible near po, although possibly not in py. The
same is true for I + h(y,y’, z).

Since h depends continuously on y and 3" we may vary both variables a little and still have invertibility
in a slightly smaller neighborhood. Since €y x € is compact, D cannot have accumulation points.

For py € D, the order of the pole of (I + A(y,¥', z)) ™! might depend on y and y'. However, it will be
uniformly bounded as y and y' vary over Qy: According to 2.28, the operator I + h(y,y’, 2) is invertible
whenever a scalar-valued function in C*° (2 x 2, A(C\ 7cP)) is, namely the determinant of the matrix
operator in (2.13). For this scalar function, however, the order of the pole of its inverse at pg is the order
of its zero at po; this in turn is the index of the first non-vanishing Taylor coeflicient. By continuity, this
number can locally decrease only. Since 0y x Qg is compact, the order of the poles will be uniformly
bounded.

So let @ be the Mellin asymptotic type with entries (pj,m;, L;}, where p; are those elements of D
where T+ h(y,y', z)|a, xn, is not invertible, m; is the bound on the order of the pole, and L$ (y,y'), for
v,4' € Qo, a = (a1, ) an arbitrary multi-index, is the space of operators in B=°*4(X) spanned by the
coefficients of the principal part of the Laurent series of 95" 9,7* (I + h{y,y', z))7! near z = p;. Notice
that Rep; — Foo as j £ 00, since D has no finite accumulation point and I + h(y,y',-) is invertible for
large Im 2 in any finite strip. '

Supposing that the inverse to I + h(y,y’, z) exists for some fixed choice of y,y’, and 2, it is of the
form I + R with R € B~°>%(X) by 2.27. The continuity of the inversion implies that

(2.16) (I +h(y,y, )™ =1 - hy,y', )T+ hiy,y',2)) " =T+ 1 (y,y,2)

with h' € €y x 9, A(C \ 7cQ, B~¢(X))). We saw already that the singularities are poles, the
coefficients of the principal part of the Laurent series for 8 3;',’ (I + h(y,y’,2))~! near p; being finite
rank operators in the finite-dimensional subspace L3"**(y,y') of B~>4(X).

It remains to check the decay properties. Pick an arbitrary strip and a semi-norm || - || for B=°>%(X).
For large |Imz|, say [Imz| > p, we have ||h(y,y’,2)|! < 1/2, uniformly on Q x Q. Therefore ||(I +
h(y,v',2))7Y| € 2. Employing (2.16) we conclude that ||h/(y,y', )|} = O({Im z)~™) for arbitrary N,
uniformly for ¥,%" in compact subsets of (0 x 2. Since this estimate also holds on the compact set
o x Qo x {z:|Im z| < p,dist(z, D) > €} the proof is complete. 8]
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