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Abstract

A calculus for classical pseudo-differential operators having coefficients in L?-Sobolev
spaces is presented. The standard elements of pseudo-differential calculi such as com-
positions, adjoints, invariance under coordinate changes and continuity between Sobolev
spaces are implemented. One main feature leading to elliptic regularity and non-linear
microlocal analysis is that parametrices to elliptic operators can be constructed within
the calculus.

The constructions presented below set down the several structural aspects of a pseudo-
differential calculus for operators with non-smooth coefficients. These constructions also
serve as a forerunner for a calculus for non-classical operators with more involved estimates
intended to publication in a further paper. S
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1 INTRODUCTION 3

1 Introduc‘pion

The objective of this paper is to establish a pseudo-differential calculus for classical op-
erators having symbols with coeflicients in certain L2-Sobolev spaces.

Since their invention in the 60’s by J. J. Kohn, L. Nirenberg, and L. Hérmander, pseudo-
differential operators have become an important tool in the study of solutions to linear
partial differential equations. They were used in the proofs of existence and regularity
results, deriving energy estimates, constructions of parametrices, and many other wide-
ranging applications. Over the last two decades, non-linear partial differential equations
have received more and more attention. In order to make pseudo-differential techniques
also available in the investigation of non-linear partial differential equations, one is neces-
sarily forced to develop certain elements of pseudo-differential theory for operators having
symbols with restricted regularity.

A great deal of applications in partial differential equations leads to classical pseudo-
differential operators. Thus classical operators have always been a particular part of the
program. Although once the general pseudo-differential calculus is established one has it
especially for classical operators, it turns out that as a rule proving results for non-classical
operators is much more involved than for classical ones. For the non-regular calculus this
distinction becomes significant. Therefore, in this paper we develop the pseudo-differential
calculus for classical operators first. It permits us to work out in detail the structural
elements of the calculus (which are the same as for the non-classical calculus) so making
the main ideas transparent.

However, in the theory of partial differential equations on several occasions one is forced
to leave the range of applicability of classical operator calculus and to take advantage of
pseudo-differential technique in its full strength. Therefore it is desirable to generalize the
constructions given below to obtain a calculus for non-classical operators in which one is
mainly interested in. This is subject of a further paper (see [25]).

Several authors contributed to pseudo-differential operators with non-regular symbols un-
der quite different aspects. In order to mention only some topics, the mapping properties
of pseudo-differential operators with non-smooth symbols, the mapping properties of the
adjoint operators and commutator estimates were studied, e.g., in [4], [5], [15], [16], [20]
and many other places. Also further elements of pseudo-differential calculus like compo-
sitions and asymptotic expansions were treated, e.g., in [2}, [3], [7], [12].

An important role was played by Bony’s paradifferential calculus, see (3], [17]. Here it had
been for the first time that a pseudo-differential calculus for operators with non-smooth
symbols was realized. Moreover, additionally to the complete calculus a parametrix con-
struction for the elliptic operators was given in full generality. The remainder terms were
characterized by their mapping properties.

In [1], [2], M. Beals and M. Reed proposed a calculus for pseudo-differential operators with
non-smooth symbols having coefficients in certain L?-Sobolev spaces. Their exposition is
distinguished by the very simple estimates used. In this paper we fall back on some of the
ideas exploited there and develop them further. In the result we obtain a calculus which
on the one hand is sufficiently general for applications in non-linear partial differential
equations and in which on the other hand the simplicity of the approach of M. Beals
and M. Reed is preserved. One main feature is that parametrices to elliptic operators
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can be constructed within the calculus. Especially this point is important in non-linear
microlocal analysis and, in [1], [2], it had not been completely realized.

Before we describe the content of the paper in more detail we want to discuss some of
the ideas involved in the constructions. The coefficients of the operators must be at least
continuous. Discontinuities in the coeflicients lead with necessity to symbolic levels ad-
ditionally to the principal one which then, e.g., enter in ellipticity conditions to provide
only one argument. Continuity of coefficients, however, immediately causes the next ob-
servation, namely that asymptotic expansions that typically appear in pseudo-differential
theory have to break off after finitely many steps. For instance, in case of smooth coeffi-
cients the symbol ¢(z,n) of the composition b(z, D) a(z, D) allows the asymptotic expan-
sion ¢(z,n) ~ Elalzo(l/a!)ag‘b(:c,n) D?%a(z,7), and various differentiations with respect
to z arise. -

The main parts of operators in the calculus of M. Beals and M. Reed were of the form
M

Y ai(@)pi(s, D) Y
j=1
for some M < oo, aj € H*(R") for s sufficiently large, and p; € S™(R" x R"). Then
it is obvious that a general parametrix construction is possible only after an appropriate
completion of expressions of the kind (1.1) is chosen. This immediately leads to tensor
products. Our approach is based on the work with completed tensor products on the
symbolic level.

In [25], the constructions rely on the weak symbol topology, 7, on symbol classes S™(R";
E) introduced in [24], e.g., for E being a Fréchet space. Recall that for the space
S™(R™; E) we have S™(R™ E) = S™(R")®.E. Moreover, a mapping from S™(R"; E),
where E stands for certain coefficient space, into some space of bounded operators be-
tween Sobolev spaces realizing concrete pseudo-differential operators is continuous in gen-
eral only when the latter space carries the strong operator topology. In this paper the
considerations are based on the symbol classes ST (R"; E). Here we have ST (R™; E) =

™(R")®xE due to the fact that ST(R") is a nuclear space. For that reason, arguments
simplify considerably. So we are now allowed to work with the natural Fréchet topology on
the symbol classes, hence deducing boundedness of the operators under consideration in a
direct manner. The simplifications give us the possibility to introduce the several elements
of the calculus without disturbing about the more difficult topological considerations used
in [25] in estimating the remainders. v

[n the paper we make use of standard notation in the theory of pseudo-differential oper-
ators, the reader is referred to classical textbooks dealing with this subject, e.g., [6], [11],
[21]. In order to be definite, let £ € R™ be the space variable, £, n € R” be frequency
variables. Introduce the Fourier transform : '

Fu(&) =u(6) = / e™ " u(z) dz

such that the inverse Fourier transform becomes F{_tzﬁ(f) = (2m)™" [ e'=q(&) d¢. For
brevity, in what follows, we forget about the factor (27)™" and work in Fourier space with
a renormalized Lebesgue measure, i.e., d€ is the usual Lebesgue measure times (27)7",
and :

Fola(e) = / 7€) dE.
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Then, with symbols p(¢, z, ), we associate operators p(D, z, D),

(p(D, 2, DY) (€) = / BE, € = mym)i(n) dn, (1.2)

where p(€,(,n) = Fis¢{p(€,z,n7)}. We shall see later on that this definition makes
perfectly good sense for our symbol classes under consideration. Intuitively, the operator
p(D,z, D) is applied to u from the right to the left acting first by differentiation, then by
multiplication, and finally by differentiation again. That holds precisely if p(¢,z,7n) has
product form, i.e., p(€, z,n) = p1(€) a(z) po(n), where po(n), p1(n) are certain symbols with
constant coefficients, and a(z) is multiplication by some coefficient. For symbols p(z,7),
q(&,z), at least formally, (1.2) becomes the standard operator convention in pseudo-
differential theory, i.e.,

pla, D)ule) = [ (e, a(6) e

and q(D,z)u(z) = [ e =¥ q(€, y)u(y) dy d¢.

The plan of the paper is as follows: In Section 2 we discuss classical vector-valued sym-
bols used in the sequel to establish the calculus for classical operators. Then Section 3
is devoted to the introduction of the several operator classes and the derivation of their
basic properties. Compositions, adjoints, commutators, and mapping properties between
Sobolev spaces are treated. Special emphasize is put on the accurate description of the
mapping properties of the remainders. Also in this section M. Beals and M. Reed’s
estimate is reproduced and the basic technique in estimating the remainders is estab-
lished. Finally, in Section 4, some further topics are grouped together like the parametrix
construction and elliptic regularity, invariances under coordinate changes and operators
on manifolds, and the equivalence of ellipticity and the Fredholm property on compact
manifolds. In the notes at the end we comment on some additional material.
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2 Classical .Symbols'

In this section we discuss several aspects of classical pseudo-differential symbols. Our
standpoint is to treat symbols having their coefficients in certain function spaces as vector-
valued ones. The classes S7(R"; E) are deﬁned if E is a Fréchet space.

First we are concerned with abstract vector-valued classical symbols. The main result,

m(R™; E) = S?(R™)®,E, is stated in Proposition 2.4. Then we deal with symbols de-
pending on two covariables which are separately classical in both covariables. In a final
subsection, we specify the results previously obtained to symbols having their coefficients
in Sobolev spaces. In addition, auxiliary symbol classes arising during subsequent cal-
culations, e.g., symbols depending on three covariables, symbols one coefﬁcxent of which
belongs to Cy°(R") and so on, are briefly introduced.

2.1 Abstract Vector-Valued Symbols

In treating classical symbols it is convenient to replace the elliptic symbol (£)" € S™(R")
usally used, where (£) = (1 + |£|?)}/2, by a classical symbol which shall again be denoted
by (6)7, i.e., (€)" € ST(R™). We choose £ = (£) to be a smoothed norm function, i.e., () is
positive on R" satisfying (£) = |¢| for all £ € R", |€| > C, and some constant C' > 0. The
symbol estimates are not effected by this substitute. When dealing with classical symbols
we also need 0-excision functions 1, i.e., functions ¥ € C*®(R") satisfying ¥(£) = 0 for
€] < Cy, ¥(€) =1 for |£] > €, and some constants C;, C;, where C; > Cy > 0.

Let E be a Fréchet space with fundamental semi-norm system {|| ||;};en. Recall that a

fundamental semi-norm system for S™(R"; E) is given by

S™(R™ E) 3 a — sup (6™ 92a(6), (2.1)

{ern

for all « € N*, 1 € N. S™(R"; F) equipped with the resulting locally convex topology is
a Fréchet space. The space S™(R"; E) =(,,ca S™(R"; E) of E-valued symbols of order
—oo is the Schwartz space S(R"; E), and we have S~®(R"; E) = S~(R™)&. E.

If E is a Fréchet space, then it is possible to form asymptotic sums in S™(R"; E).

2.1 Proposition. Let E be a Fréchet space. Let {m;};ex C R be a sequence satisfying
mj = —oo as j — oo. Suppose further that we are given symbols a; € S™(R"; E),
J=0,1,2,... Then there is a symbol a € S™(R"; E), m = max;enym;, such that for every
r € R there ezists M € N, M > 1, such that

M-1
a- Y a;€S(RYE). (2.2)

i=0

ais uﬁiqucly determined modulo S~(R"; E).

Proof: We make the ansatz

a(6) =Y ¥(c;t) a;(€). (2.3)
2 |
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with i being a 0-excision function. Then it is routine procedure to check that the reals
¢;j > 0 converging to 0 sufficiently fast can be chosen in such a way that, for every M € N,
the sum 332 s %(c;i€)a; converges absolutely in S™u(R™; E), where mj, = max;sp m;.

Then, for every M € N, M > 1, we have that the symbol

M-1 M—1 > :
a= 3 ai==3 (1-¥(et)a+ ) wled)e;

i=0" i=0
belongs to S(R"; E) provided that r > m},, which shows that (2.2) is valid.

The uniqueness statement is obvious. ‘ o

In the case that (2.2) holds we also write
a r~ Z aj.
. 7=0

Now we are in a position to introduce classical E-valued symbols.

2.2 Definition. Let E be a Fréchet space, m € R. Then the space ST(R"; E) of clas-
sical symbols of order m consists of all functions a € S™(R™; E) admitting asymptotic
ezpansions into homogeneous components, i.e., there are homogeneous functions a(,_j) in
Sm-(R*\0; E), 7 =0,1,2,..., such that

a(€) ~ 37 B(€) (s (€) (2.4)

holds for an arbitrary 0-excision function .

Notice that the homogeneous components of a symbol a € SJ(R"; F) are uniquely
determined. The space S™)(R" \ 0; E) is defined as the space of all functions a €
C>(R" \ {0}; E) which are homogeneous of order m, i.e., which satisfy a(A£) = A™a(£)
for all ¢ € R*\ {0}, A > 0.

Next a suitable Fréchet topology for S7(R"; E) is introduced. The spaces S"™(R™\0; E) ~
are topologized by identifying them with C°(S§™~!; E), S*~! being the unit sphere in R".
[n particular, S™(R™ \ 0) is a nuclear Fréchet space. Now, once a 0-excision function
is fixed, we have natural continuous injections we have natural continuous injections

S(m)(Rn; E) P Sm—l(Rni E) — Sm(Rn; E)a (a(m)a am-l) ’_)'_"»[)(é)a(m) + Am-1 (25)

leading, for all M € N, to continuous mappings

M ’ M-1
P s (R E) @ S™ MR E) » P STI(R E) @ S”TM(RY E)
3=0 j=0

with the mapping in the first M components being the identity. The space STR™ E) is
algebraically a projective limit,
M-1 ' ‘
7(R* B) = proj-lim @ S™I(R™; E) @ S™~M(R™; E) (2.6)

j=0
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with the limit is extended over M — oo, and ST (R"; E) is equipped with the pro_)ectlve
limit topology This definition is 1ndependent of the choxce made on .

From the representation (2.6) we draw some conclusions. For example, for all M € N, we

have that
M-1

TR E) = EBS‘"‘"” (R E) & S5 ~M(R"; E) @

j=0

holds in a topological sense. In particular, ST~ (R"; E) is a complemented subspace
™(R"; E). Similarly, it is seen that $=* (R";E) carries the topology induced by
;’,‘(IR"; E). However, S™°(R"; F) is closed but not complemented in 57 (R"; E).

Next we will recognize that S7}(R") is a nuclear space.

2.3 PropOSItlon STR™ is a nuclear Fréchet space.

Proof Setting £ = ST'(R"), we have to show that for every continuous semi-norm p
on £ there is a contmuous semi-norm ¢ on E, ¢ > p, such that the canonical mapping
E' — E is nuclear.-Thereby,- E denotes the local Banach space-to a.given.semi-norm p,
i.e., the compietlon of the space E/kerp normed in a canonical way.

We start with the representation

M-1
7(R") = projlim €P $"-(R*) & S""M(R")

j=0

Let p be a continuous semi-norm on E. We may suppose that, for some M, p is a
continuous semi-norm living on @ﬁgl Stm=1(R") @ S™~M(R"). Since in the direct sum
the first M summands are nuclear, we may further suppose that p is a continuous semi-
norm living on S™~M(R"). Assume that, for some r > 1, only estimates of derivatives up
to order r — 1 are involved in the semi-norm p. Then we can choose ¢ to be a continuous
sermi-norm on GB"_I Sim=-M-i)(R™) @ S™~M-"(R™) living on the first » summands such
that ¢ pulled back to S (R™} estimates p from above. Again using the nuclearity of
EB;_(I, Sim-M-i)(R") we conclude that the mapping E — F, is nuclear. g
The following proposition is basic in proving continuity between Sobolev spaces of oper-
ators arising in the classical calculus. [t is interesting that its proof can be based on the
weak symbol topology that has been introduced in Part I. Another proof independent of
the weak symbol topology shall be given in the notes at the end of the paper.

2.4 Proposition. Let E be a Fréchet space, m € R. Then
ST(R™; E) = ST(RY)®,E. (2.8)

Proof: The assertion (2.8) is implied by the following calculation:

M-1 _
Z(R* E) = proj-lim @ S™(R™ E) @ SP~M(R"; E)

j=0
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- = proj-lim (Aé;l S(m_j)(Rﬂ)‘ch) ® (S‘:’nﬁM(Rn)®‘E)

3=0
M-1 .
= proj-lim (@ SR & S;“‘M(R")) ®E
=0 .
= S?(R™®.E.

Hereby in the first line we have used the continuity of the embedding S™(R"; E) —
S™(R™ E) for m’ > m, in the second and the forth line the nuclearity of the spaces
§m=)(R") and ST(R"), respectively, and in the third line the fact that the injective
tensor product is well-behaved under forming projective limits. i

2.2 Multiple Classical Symbols

The constructions in the classical calculus prompt to symbols p(¢,z,n) which are sep-
arately classical in both covariables (¢,7) € R?*". Here we introduce the corresponding
notions. The spaces S™™ (R" x R"; E) have been considered in [24]. Recall that a fun-

damental semi-norm system is given by

S™™(R™ x R E) 3 arr sup (€)7™Fel )=+ 920Pa(€, n)|li (2.9)
' & neR"

for E being a Fréchet space with fundamental semi-norm system {|| [i}ien-

As in Proposition 2.1 one shows that it is possible to form double indexed asymptotic
sums in S™™ (R* x R™; E).

2.5 Proposition. Let E be a Fréchet space. Let {m;}jen, {m}}ren be sequences of reals
satisfying m; — —o00 as j — 00, mj, — —oo0 as k — oo. Suppose further that we are
given symbols aj, € S™ ™ (R™ x R*; E) for j,k =0,1,2,...

Then there is a symbol a € S™™ (R™ x R*; E), where m = max;exm;, m' = maXyen m},
such that for all v, v’ € R there exist M, M' e N, M > 1, M’ > 1, such that

M-1,M'-1
a— > ax€S”(R*xRYE). (2.10)

J,k=0

a is uniquely determined modulo S™~(R" x R"; £).

In the case that (2.10) holds we write
a ~ z A5k,
© 5Hk=0

Notice that in (2.10) asymptotic summation can take place first in one index and then in
the other leading to the same result. That means, e.g., if we put

aj NZajk, . (2.11)
k=0
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where this asymptotic sum exists in S™™(R™ x R"; E) with the result unique modulo
Smi—(R" x R"; E), then we can asymptotically sum up the a;'s in S™™ (R" x R"; E)
with the result unique modulo S ‘°°'""(R" X _R"; E), and we find

an~ Zaj. " (2.12)
=
The definition of the classes ST™ (R™ x R™; E) is the following one:

2.6 Definition. Let E be a Fréchet space, m, m' € N.

Then the space Z."m’(IR“xR"; E) consists of all functions a € S™m (R*xR™; E) for which,
for j,k =0,1,2,..., there are symbols a(m—j) (m'-k) € Sim=3).(m'=k) ((R™\ 0) x (R™\ 0); E)
homogeneous of multi-order (m — j,m’ — k) such that

a(&,n) ~ > $(E,7) Gmeipimi-k) (&) - (2.13)

71k=0

holds for an arbitrary 0-ezcision function .

In (2.13), the homogeneous components a(;, ;) (m/~k)(€,7) are uniquely determined. The
space S(MMH(R™\ 0) x (R™\0); E) is defined as the space of all functions a € C*((R™\
{0}) x (R™\ {0}); E) satisfying a(\, un) = A™ u™a(€,7) for all £, n € R™\ {0}, A > 0,
u> 0.

In order to topologize ST™ (R™ x R"; E) we provide the spaces S(™M™)((R™\ 0) x (R" \
0); ) with Fréchet topologies by identifying them with C*°(S§"~! x §*~!; F'). Moreover,
for m, m' € R, M, M’ € N, we have natural continuous injections

M-1,M =1
P SRR 0) x (R”\0); B) @ S™M M (R x R B)
7,k=0
— Sm.m'(Rn x Rn; E)’ (a(m).(m')a vy G(m=M41),(m'=M'+1)y a'm-M.m—M’) =
M-1.M'=1
Z ) %1’(5, ﬂ)a(m—j),(m'—k) + am-Mmi-M-
Jk=0 o

Then S} 'm’(]R" x R"; E) becomes equipped with the projective limit topology

™ (R x R™; E) (2.14)
M-l M!'-1 .
= projlim~ @ S H(R™\ 0) x (R*\ 0); E)
7,k=0

& SmMim' =M (R « R™; E).

2.7 Proposition. Let E be a Fréchet space, m', m' € N.

Then we have ‘ .
Sa™ (R" x R™ E) = S7(R™ 57 (R% E)). (2.15)
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Proof: The proof of (2.15) is a straightforward but lengthy exercise in employing the

representations of S7(R™; S7'(R™; E)), (R" x R"; F) as projective limits according
to (2.6) and (2.14), respectlvely ]

Especially, from Propositions 2.4 and 2.7 we get
™R x R E) = ST(R™)®.ST (R“)@,E (2.16)

Notice also for further reference that the linearization of the continuous bilinear mapping
(R™) x ST (R™; E) = SO+ (R, E), (a,d)— ad
extends by continuity to a continuous surjective mapping

™™ (R x R E) = S3H™(RY E),  a(€,n) = a(€,7)] 7= (2.17)

2.3 Coefficients in Sobolev Spaces

We particularize the results on abstract vector-valued symbol classes to symbol classes
used subsequently. We will be mainly concerned with symbols having their coefficients in
L*-Sobolev spaces, H°(R"), where s > . This means, in particular, that the coefficients
are at least bounded and continuous.

[n the case that the coefficient space is }'(R ), e.g, F = H°, H , C5°, we shall denote
S™(R™; F(R™)) = FS™(R" x R"), ST (R™; F(R™)) = F (R" x R™), S™™'(R*"; F(R™))
= FS&™™(R™ x R*™™) etc., where the ﬁrst set of coordma,tes refers to the space variable
z and the second set of coordina.tes to the frequency variables £, n. As mentioned in the
introduction, for symbols p € FST(R" x R") we adopt to different operator conventions,
p(z, D) and p(D, z). In the first case the symbol is denoted by p(z,7), in the second case

by P(E,z)-

To describe later on the behaviour of operators under compositions, we introduce fur-
ther symbol classes. For s, s’ € R, the space H* **'(R* x R") consists of all tempered
distributions u € S'(R**) sa,tlsfymg

(&) (n)* a(€,n) € LAR™ x R™). (2.18)

H**(R® x R™) is the Hilbert space tensor product H*(R™)®@yH*(R"). Note that for
u € H*'(R™ x R*) we have

’U(CB) = u(may)|y=: € H”(Rn)s
if |s'| <'s, s > 2. This is seen by writing 9(§) = f4({ —n,7) dn

Let m,m/,m" € R, 5,8 € R, s > 2, s > 2. Then the symbol class H**Sm™m"m"

(R*™ x Rs") consists of all functions p(¢, z,(,y,n) € C®(R®") satisfying

sup (€)™ Hlat ()= +PI (m)y=m+bl
(€.¢n)er3n

Hoo'

02000l )|, <o (219)

This definition is in complete analogy to those in (2.1), (2.9).
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For symbols.in (2.19) we choose the following operator convention:

.(P(Da T, D: I, D)U)A(f) = '/ﬁ(£1 £ = ¢, ¢, ¢ —n,ma(n) d{ dn. (2.20)

The first * under the integral sign refers to the partial Fourier transform of p(¢,z,¢,y,7)
with respect to z, y.

The classes H%*' §™' ™" (R¥™ x R®") have been introduced for the reason that for py €
H% Smomo(R™ x R*™), p, € H Sm}'m’l(]R” x R*") we have

p(D,z,D,z, D) = py(D,z, D)po(D, z, D)

- with symbol p(€,z,(,y,7) = pi(€, 2, po(C, y, 1) € Hos1§momotmimi(R? x R™).

The definition of the symbol classes H*>* ST™ ™ (R™ x R®") is obvious by the foregoing
considerations. Only note that
H? §mm ! (R 5 RP™) = H* (R™)@, S0 ™" (R>")

with S:?'m“m"(lR:;") being the class of symbols with constant coefficients which are classical
'separately in all covariables (£,¢,n) € R*".

In the parametrix construction as well as in the discussion of invariance under coordinate
changes we shall encounter symbol classes H’Cf"S:;‘ml'm”(]R?" x R®™), CooH? :;_.m'.m"
(R?" x R*") etc. These classes consist of symbols depending on five coordinates, p(¢, z, ¢,
y,n). Asexplained in [24], no additional complications arise if one of the coeflicients belong
to the space C°(R™) such that we do not further comment on these classes. Note only
that H*C stands for the space Cf°(R™)®, H*(R") = C°(R™)®. H*(R"), where subscript
2 indicates the tensor product associated with the Banach ideal of 2-factorable operators,
in agreement with the choice made for H** (for a discussion of tensor products see {8]).
Here, as usual, we adopt the convention that operators are applied from the left to the
right such that the first symbol in H*C® refers to the space from which the coefficient
depending on y is, while the second symbol means the space from which the coefficient
depending on z is.
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3 Elements‘ of the Calculus

In this section we introduce the several operator classes. Thereby, we first only regard
operators globally defined on R®. A distinction is made between the classes further on
called the standard operator classes and operator classes arising from these standard
classes through conjugation with powers of a fixed elliptic operator. Mapping properties
between Sobolev spaces are treated as well as compositions, adjoints, and commutators.
We take care in the precise description of the mapping properties of the remainders.

In Subsections 3.1-3.3 we introduce the operator classes and list some of their basic
properties. Proofs are postponed to Subsection 3.4, where the basic technique for showing
continuity between Sobolev spaces is developed. The remainders in Subsection 3.1 are not
of the most general form, but their mapping properties are modelled on those of the other
components appearing in an asymptotic expansion. We prefer instead, in Subsection
3.2, to motivate the introduction of the general remainder classes by a first example.
Afterwards, the remainder classes so obtained turn out to be an integral part of the
calculus. Subsection 3.5 is devoted to compositions, adjoints, and commutators. For
commutators, one of the operators involved has C'*-coefficients. A thorough discussion
of the general case will be given in [25].

A motivation for the special appearance of the operators discussed below has been given
in the introduction.

3.1 The Standard Operator Classes

The following lemma is needed in order to assign to formal expressions appearing in
Definition 3.2 operators acting between Sobolev spaces.

3.1 Lemma. Lets, m € R, s > 2. Then, for p(x,n) € H*ST(R" xR"), p(z, D) induces
a continuous operator

p(z,D) : H*™(R") - H'(R") - (3.1)
forallt e R, |t] <s. '

The standard operator classes, Aiﬁg’d(R"), incorporate three parameters s, m, d: s stands

for the smoothness of coefficients, m is the order of operators, and d denotes the length
of asymptotic expansions. We require s > 2 + d, since coefficients should be continuous
and bounded. [mposing a restriction on the real variable ¢ in the form ¢t = —s to s — 2d,
as in the next definition, we mean that ¢ varies in the closed interval [—s,s — 2d].

3.2 Definition. Lets, m€R,d€ N, s> 3 +d.

Then .A(m)‘d(]R“) denotes the class of all operators P which can be writien in the form

s, cl

d-1

P=Y pi(z,D)+ Py (3.2)

i=0
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where p;(z,n) € H."'jS;?_j(lR" xR") forj=0,1,...,d -1 and
. 8=2d

Pye [ L(H*™R™), H*+(R")). (3.3)

t=—3s

We add some remarks. The right-hand side in (3.2) provides finite asymptotic expansions

of operators in A£ "4(R™) into operators belonging to A7)~ (R") for j = 0,1,...,d,

s—1, ¢l
by forgetting the first j — 1 summands. The remainder class for Alm) d(R"), where
the latter shall be introduced in [25], is characterized by property (3.3). Therefore,
(m. -d),0/mn (m—d).O n
A ga (RY) = (R™). :
Denoting the operator in (3.2) by 3_, .4 P+ Pa, where P; = p;(z, D) for j = 0,1,...,d~1,

we see that
s—25

Pje (] L(H"™(RY), H'*(R™) . (3.4)

t=—s
according to Lemma 3.1. The assumptions on Py in (3.3) are derived from that fact.

From Lemma 3.1 we obtain:

3.3 Proposition. Lets,me€ R, de N, s> 7 +d. Then

s—d
Pe () L(H*™(R™), H'(R™)) (3.5)

t=—3
for P e A™PHR™).

(m),d

We further introduce operator classes B,

(R™) consisting of the formal adjoints to
- operators in Ag"’z'd(R"). More precisely, we define: '

3.4 Definition. Lets, m€R, d€ N, s > 2+ d.

Then Bit'g_’d(R") denotes the class of all operators QQ which can be written in the form-

d—1
Q=ZQj(D,$)+Qd1 (36)
=0 .
where ¢;(€,z) € H*7IST/(R* x R*) for j =0,1,...,d — 1 and
Qu € ﬂ L(H4(R™), H™(R™)). (3.7)
t=—s+2d '

For _B(m (R"), similar remarks apply as for Alm) d( "). In particular, the analogue of

s,cl

Lemma 3.1 is valid, i.e., for g(£,z) € H*ST(R" xR™), ¢(D, =) induces a bounded operator
¢(D,z): H'(R") = H"™(R") (3.8)
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for all t € R, [t] < s. For the mapping properties of the operator @ in (3.6) we find

Qe [ L(HR"), H ™(R").

t=—s+d

3.2 One Example

Before we proceed we discuss an example. It is about a second-order partial differential
operator in divergence form. A motivation for introducing pseudo-differential operators
1s that one is interested in the nature of parametrices to partial differential operators of
the described kind in case these operators are elliptic.

3.5 Example. Consider the linear partial differential operator
Zﬁa,k 6k+2ak x)ak—Zaa (z) + a(z (3.9)
j k=1

where
aje(z), a;(z), al(z), a(z) € H'(R")

for certain s € R,

n
-+ 2.
§> 3 +
Then
25,1/ mn
Ae AN RM. (3.10)
Next we rise the question what happens if one considers a given operator in .4, d (R")
as an operator with asymptotic expansion shorten by 1. Obviously, we have
d n m d 1
ATTARY) € AT R (3.11)

for any integer d > 1. The next example shows that (3.11) is due to a “lack” of smoothness
of coefficients in the remainder term.

3.6 Example. Consider again the linear partial differential operator from (3.9). Under
the above assumptions we also have

Ae ADYRM). | (3.12)

s,¢l

The minimal hypotheses on the coefficients under which (3.10), (3.12) are true under the
restriction that coefficients should belong to L2-Sobolev spaces are shown in the table: -

AL (R | AZHRY)
a(e) | HR) | H(R?)
ai(e) | HURY) | H(R
ai(z) | HY(R™) | H*(R™)

a(a:) Ha-!(Rn) Hs-l(Rn)
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The operator classes Ag';),'d' #(R") are defined as follows:

3.7 Definition. Let s, m € R, deN, s>%+d, |d-d| <25 —2d
Then AS";, ! (R") denotes the class of all operators P which can be written in the form

d=1
P= ZPJ(:E’D) + Pd)

=0
where p;(z,n) € H* ST (R" x R*) for j = 0,1,...,d — 1 and

s—d—max(d,d’)
Pre () LEHSTMRY), H(RD)). (3.13)
t=-§+d—min(d,d') .

Property (3.13) means that- the scale on which the operators act is shortened by |d d'|,

from above if d’ > d, from below if d' < d. For d' = d we get Af,":, PR = A, D4R,
The mapping properties in (3.5) are changed into
s—max{d,d")
Pe (= LHH™RY), H(R)). (3.14)
t=—s+d—min{d,d’)

Note that |d' — d| < 2s — 2d is required because otherwise the class A,"g b (R™) would
be empty.

With the enlarged operator classes thus defined, the inclusion

acl

substitutes (3.11). Later on we shall see that the classes Aﬁ"; Jdd (R™) also appear, e.g.,

in the composition of operators and consequently are an integral part of the calculus.

(m),d,d

We have again operator classes B,

(R™) defined to consist of the formal adjoints to
(m),d,d'

operators in A7 (R™). These classes are given as in Definition 3.4 with property (3.7)

replaced by :
s—d+min(d,d")

Qu€ (| CHTYRY, H(RY). (3.16)
t=—s+d+max(d,d’)

3.3 The Full Operator Classes

The operator classes Aﬁ"g h d’(IR") are preserved under compositions. However, in veri-
fying that fact we encounter additional operator classes. Furthermore, as we shall see,
the parametrix to an elliptic operator in .A( ™) d(X ), e.g., for X being a closed compact

manifold, belongs to the operator class Aﬁf’l}“"" d(X ). Thus we are going to complete
the operator classes introduced so far with respect to these operations.
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We start with an analogue to Lemma 3.1 and (3.8):

2

3.8 Lemma. Let s, m,m’ € R, s > 2. Then, for p(£,z,n) € H‘S:{’m'(Rn x R"),
p(D,z, D) induces a continuous operator -

p(D,z,D) : H'™(R™) = H'"™™(R") (3.17)

forallt € R, |t| < s.

3.9 Definition. Lets,m,m',d €R,deN,s>2+d, |d—d|<2s —2d.
Then A (™) &4 (R) denotes the class of all operators P of the form

s, cl

P= Zp_, vz, D)+ Py, - (3.18)

where p;(€,z,n) € H*™IST~ jom’ (R* x R*) for j =0,1,...,d —1 and

s—d-max{d,d’'}
P, e N L(H"™(R™), H~™¥4(R™)). (3.19)
t=—s+d—min{d,d"'} -

Similar remarks apply as for the classes Alm (R"). For example, (3.18) gives a fi-

nite asymptotic expansion into operators belonging to AETJ_Q () d=sd'=5(Rny for 5 =
0,1,...,d. For the mapping properties we find

scl

s—max{d,d'}
Pe N L(H™™(R™), H™™ (R™)) (3.20)
t=~s+d—min{d,d’}

for P € A(m)'(m')‘d'dr(]R“). The total order is m + m'.

a,¢cl

The classes for m’ = 0 are the same as before:
3.10 Proposition. Lets,m,d' € R, deN, s> 3 +d, |[d~d'| <25 ~2d. Then
A (R = AT O d (R, (3.21)

s, ¢l a,cl

Proof: The inclusion .A(m) b (R") € A(m) (0.4, (R™) is obvious. To obtain the other

s, ¢l
direction it suffices to deal W1th d’ = d. But then the assertion follows from the proof of
Proposition 3.15 given below, in the special case m’' =0, r = 0. a

s, ¢l 8, ¢l

A )4 Ry o rises from AT %4 (R™) through conjugation with (D)™':
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3.11 Proposition. Lets, m,d €R,de N, s> 2+d, |[d—d|<2s—2d. Then

ATy b R = (D) AT R (DY (322)

Proof: The relation Aﬁ’;"c}"’"”'d"’(R") = (Dym' A0 d Rny (Dy-m' follows from

8, ¢l

the definition. Proposition 3.10 then yields the conclusion. |

(m),(m"),d,d
a,cl

In an analogous manner the classes B (R") are defined. An operator @ belongs

to B (") 44 (R if it has the form

a,cl

d—1

Q=Y gi(D,z,D)+Qu, - (3.23)

j=0
where ¢; € H*-IS7™ I (R* x R™) for j = 0,1,...,d — 1 and

s—d+min{d,d'}
Qi€ N L(HH™4(R™), H™ (R™)). (3.24)

t=—s+d+max{dd'}

We have B2 (R") = B4 ™4 (R"). The adjoint to an operator in Aiﬁ%'(ml)'d'd’

s,cl

(R™) belongs to B(m,)'(m)'d'dl(R“).

s,cl

We conclude this subsection by topologizing the operator classes A (m). d, d’(R") antici-

3¢l

pating explanations given in Subsection 4.1 on symbols. AET;d)’(m')’O'd’_d(IR") is a Banach

space by interpolation. An operator P € Agﬁ’(m')’d' dr(R“) has uniquely determined ho-

mogeneous symbols p; € H*~ISm+m'=)(T*R™\ 0) for = 0...,d — 1 (see Definition 4.2)

leading to a representation of Aif';}"’""'d'”"(R“) as a direct sum:
! d-l - t ’
AL 0 gy = (O =i glmtm'=d) (TR™ \ 0) @ AP MV OE TR (3.05)
. j=0 )

Notice a certain indetermination contained in the composition (3.25) consisting in another
possible choice of the 0-excision function % in fixing the splitting in (4.3). It is, however,
plain that the topology of the locally convex direct sum is independent of that choice.
Then Aﬁf’;}""‘"""“'(k") becomes equipped with the resulting Fréchet topology.

3.4 The Basic Technique

The results leading to, the different conclusions concerning the operator calculus will be
derived by applying Taylor’s formula to produce the asymptotic expansions and then
estimating the remainder terms showing that the remainders obey the right mapping
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properties. Thereby, in the latter step we encounter expressions of the following kind:
For given functions G(&,7), g(€,n) we consider

(Th)(€) = / G(E,m)g(€ — n,m)h(n) dn (3.26)

for h € L*(R"). We want to find conditions under which T realizes a bounded operator
on L*(R").

In [2], M. Beals and M. Reed made the following simple observation. For the sake of
completeness we indicate the proof:

3.12 Lemma. Let G(&,n), g(€,n) be measurable functions on R™ x R". Suppose that

s‘é"f 66l dn = C& <o, sup [ lo(emfde = C2 < oo
1

or

sup / (Gle )l dg = & < oo, sup / l9(€ = nym)Pdn = C? < .
n

Then (3.26) defines a bounded operator on L*(R™) satisfying

ITh s < CaCyllhlla. (3.27)

Proof: We only treat the case when the first of the assumptions is fulfilled. The other
proof is similar. For v € L*(R"), one estimates

| [T | = | [ Glemate - nnhrivte) dn

< { [iseneier dnde}m{ / 9l = m Ikl dr ds}m -
< Collollzs G o,

which implies that (3.27) holds. w

To be able to apply Lemmas 3.12 we need the following statement in which certain Sobolev
exponents are regarded:

3.13 Lemma. Lets, t,r € R. Suppose that, for some § > 0, min{s,t,s+t—-5 -6} >0
and n '
r < min{s,t,s+t — 5—5}

hold. Then .
v [ 8

o, W dT] < 00. | (328)
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Proof: The proof follows by splitting the integral in (3.28) into four integrals over the

regions {(£,7) € R [ —7| <1, ] <1}, {(&,n) € R*™ |6 —n] > 1, || < 1}, {(£,9) €
R*; |6 —n| <1, |n| > 1}, and {(¢,7) € R*™; |€ —n] > 1, |n| > 1}, respectively. m

Now we come to the announced proofs of Lemma 3.1 and Lemma 3.8 so establishing the
basic technique used later on. Of course, it would suffice only to establish Lemma 3.8,
but we use the proof of Lemma 3.1 to familiarize the reader with the technique used in

2].

Proofof Lemma3.1: We present two different proofs. The first one makes direct use
of the estimate of M. Beals and M. Reed and works only in the case when ¢ > 0, whereas
the second one additionally uses considerations involving the projective tensor product.

(a) Assume that t > 0.. Under this assumption we are going to show that the L?-norm of
(€)1*™4(€) yields an upper bound for the L%-norm of (€)*(p(z, D)u) (£).

To do so write

(€

(€)' (p(z, Dyu)"(§) = /W(E—Wﬁ(é—n,n)(n)"’" (my*™a(n)dn.  (3.29)

and apply Lemma 3.12 with

(€)"
(€ =) (m?’

where the first of its assumptions is fulfilled.

G(€,n) = g(€,m) = (€ B(&, ) ()™,

(b) Exemplary we treat the case t < 0.

" Writing p(z,7) = a(z)po(n) with a € H*(R™), po € S™(R"), Lemma 3.12 applies to (3.29)
with :
(m)~

UG (M ™"po(n),  g(&,m) = (§)°a(6),

with now the second assumption fulfilled, showing that the bilinear mapping

G(&m) =

H*(R™) x S7(R") = L(H*™(R™), H'(R")), (a,po) = a(z) po(D)
is continuous. Equivalently, the linearization of the last mapping,
H*(R") @, SH(R™) = LIH™(RY), H'(R™), 4 ® po — a(x) po( D)

is continuous and extends by continuity, in view of Proposition 2.4, to a continuous
mapping

H*STR™ x R™) = L(H""™(R™), H'(R™)).
Thereby, the symbol p(z,£) is mapped to the operator p(z, D), since this is true on
H*(R") ® S7(R") and the mapping H*ST(R" x R*) = S'(R"), where p — p(z, D)u, is
continuous for each u € S(R"). : 0

Notice that the first proof also does not work for symbols p(£,z,7n) even in the case that
-t 2 0. But the second proof does, and we obtain:
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Proof of Lemma 3.8: We apply again Lemma 3.12. But this time we only provide
the functions G(£,7), g(£,n) showing continuity of the trilinear mapping

T(R") x H'(R") x ST(R") — L(H*™(R"), H'"™(R™)),
(p1,a,p) = pi(D)a(z)po(D).

Incaset > 0

e = — (€ ) polm)y a6 m) = (6)°a(E),

(€ —n)*(m)
incaset < 0 A
_ (Tl)_: -m’ -m _ i
G(&n) = o (O™ pu(§) (M) "po(m),  g(€,m) = (€)’a(¢),
where in any case h(n) = (n)**t™a(n). O

Finally, we provide a natural companion to Lemma 3.12 which we use in the proof of
Proposition 3.20. For that we consider the formal expression

(TRE) = [ GE,Cnlglé = ¢.¢ = mn)h(a) dc (3.30)
for given functions G(&,(,n), 9(&,(,n). |

3.14 Lemma. Let G(&,(,n), g(§,(,n) be measurable functions on R® x R* x R".
Suppose that

sup [ 16(6,Cn)f dndc = GG <o, sup [ lofé,C.n)fPddd = C < o
or

sgp/IG(E,C,n)IQdCd£=Cé < 0o, srzpflg(ﬁ—é,(—n,n)lgdCdn=ng < 0o,

Then (3.30) defines a bounded operator on L*(R™) satisfying

IThz2 < CaCyllh]za. (3.31)

A possible generalization of Lemma 3.13 is as follows. Let so, 81, &, 7 € R satisfying
min{se, s1,t, 50+ 81 — 5 — 8,50+t =5 ~ds1+t—F—d,so+s1+t—n —26} > 0 and

rSmin{so,sl,t,so+sl—%—5,30+t—%f5, (332)

31+t—%—5,30+31+t—n—-25}
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for some 6 > 0. Then

. (€)2r
?23./ =0 (c —mymys 2640 < oo (3.33)

A proof follows by noting that for k = min{so,t,s0+t—%—J} the quantity min{s, k,s1+
k — 2 — 4} is equal to the right-hand side of (3.32). Therefore,

' (€>2r
fs;.;;/ (€ = )2 (¢ — n)3n(n)2 d¢ dn

WG ()
= ?é‘n%f = © ?é‘n"n/ T mym(mys 1<

3.5 Change of Representation, Compositions, and Adjoints

After introducing the several operator classes in previous subsections we come now to
further elements of the classical operator calculus like compositions, adjoints, and com-
mutators. First we clarify what happens when one representation is changed for another.

The particulars in the subsequent proof are carried out in detail making use of the tech-
niques developed in Subsection 3.4. Later in similar proofs we shall confine ourselves to
certain steps, e.g., we indicate the changes to the proof of Proposition 3.15.

3.15 Proposition. Lets,m,m',r€R,deN, s> 24+d, |m' —r[ <25 —2d.
Then we have
8,cl s, cl

A G, d(Rn) C Alm+m'=r).(r).d, d+m’-f(Rn)_ (3.34)

In particular, we have Ai?‘c}‘(ml)‘d'd_m +r(]R") = Ag":fm =) (r),d, dm’— T(R™).

To prove Proposition 3.15 we need two lemmas. The proof of the first one is straightfor-
ward.

3.16 Lemma. Let r € R, r > 0." Then there ezxist symbols Xo, X1 € SPO(R™ x R") such
that

()" = xol&m) (M) + xa(&m){E =) (3.35)

holds. In case (£)", {(n)" are classzcal symbols (as we always assume) xo(€,7), x1(€,7)
could be chosen to belong to S °(R" x R™).

The main step in the proof of Proposition 3.15 consists in establishing the next lemma.

3.17 Lemma. Lets,m,m',r€R,deN, s> 5 +d, —2s+m'+d <r<2s+m'-2d.
Let further p(€,z,7) € H*S™™ (R" x R*). Then we have

AlmEmi=n) el diml=r ey i g < m! —p < 25 — d,

s, ¢l

p(D,z,D) € { AmFm™=r)(hd(gny ifo<m' —r<d, (3.36)

8,cl

A=) (D ddimi=rpny i 954+ 9d <m! —r < 0.

s, cl
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Proof: First we show that, for |d — m’ + r| < 25 — 2d, we have

s, cl

p(D, I, D) E A(m-{-m F‘) (7‘) d m' —P(Rn)‘ | (3.37)

We set p(¢,z,n) = (€)"q(€, z,n) with q(€,z,7) € H’S:,"m'-'(R" x R*™). Then

(p(D, 2, DYu)"(€) = f (66,6 = n (o) do | (3.39)
/Z ] )*(08q)"(n, € ~ m,m)i(n) dn
jal<d

[ ty & { Ja t)d"l(Di’@?q)"(nH(E—n),f—n,n)dt}ﬁ(n)dn-
laj=d o! 0 .

Thus 1
p(D,z,D) =y, — (D) (DI0gq(¢,2, M), (=, D) + R,

©el<d

where for the symbols, for |a| < d, we have

(6"

202q)(E, 2, M) ey € HoTlAl ST T lobr (e o R2Y,

Hence it remains to prove that the remainder R given by the third line in (3.38) is a

bounded operator from H*t™+™'-"(R™) to H!*~"*¢(R") for each t € [—s + d — min{d,

m' —r},s —d — max{d,m’' —r}]. '

According to our general procedure we prove it when the symbol p(¢,z,7) € H’S:,"m’

(R™ x R*") has product form, i.e., q(€,z,7) = q(€)a(z)go(n) with a € H*(R™), g0 €
TRY), q € :,‘I"(R"). In that case the defining formula for the remainder R becomes

(Ru)"(§) | (3.39)

1

N /d 2 %)T {/(1 ~ 14708 q ) (n + t(¢ —n))dt} (Dga) (€ — m)go(n)it(n) dn.
lal=d ‘ |

0

Now the expression fol(l—t)d'l(afql')(n-i-t(f——n)) dt can be rewritten as ko(&,n) (€)™ "¢
+k(&,7) (Y™ "%, where ko, k) € L®(R"™ x R™). This is seen by writing

k(& m) x({(&n); (&) <(m}) k(& n) x({(&n); (&) > (m)})

ko(€,m) = ey L ki(Em) = s
incase m' —r —d <0, and |
ko(e,n) = S xU&m)i () 2 (m}) oy BEM XA ); ) < ()})

GEEE R (o)==

. in case m' —r — d > 0, respectively, where we have set k(£,7) = jg(l — )1 (dgq)(n +
t(€ —n))dt, and x(M)(£,n) is the characteristic function of a set M C R*".
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In this situation Lemma 3.12 applies. For the first summand, the first assumption in
Lemma 3.12 is fulfilled in case t € [-m' +r,s —d — m' 4 r] if we set

R(n) = ()*™™a(n),  g(€,m) = (€)*~(Dga)(§),

G(€ — (6)‘+m’-r -m
a’?) - ko(fa 7]) (E _ n),_d(n)u.mf_,- (7?) 40(77),

whereas the second assumption is fulfilled in case ¢t € {—~s+d —m' +r, —m’ +r] if we set
h(n) = ()™ " aln),  g(6m) = (€)™ (Dga)(©),

66, = hl€o) 7= "}Z:;;;ff_m,ﬂ ()" o).

This shows that this part of the remainder R defines a bounded operator acting from
Hitm+m'=r(R™) to H*-"+t4(R") for any t € [~s +d —m'+7r,s —d —m' +7].

In a similar fashion we argue for the second summand. This time the first assumption in
Lemma 3.12 is fulfilled in case t € [—d, s — 2d] if we set :

h(n) = ()™ "a(n),  g(&,m) = (€)' (DFa) (),

. t+d .
G(&,n) = k(&) (€= 7(’§)+( >t+d( 7" " q0(n)

whereas the second assumption is fulfilled in case t € [—s, —d] if we set

B = A, g(6n) = (€ H(Da)(6),
Glen) = hl6m) 1 <’)’Zfd;5> )" aolm).

Thus the second part of R defines a bounded opera.tor acting from H*tm+m' "(]R") to
H*—"+¢(R™) for any t € [—s,s — 2d].

All in all we have obtained that -

s—d—-max{d,m’-r} ’
Re m . 'L(Ht-i-m-i-m’——r(Rn)’ Ht—-r(Rn))
—s+d—min{d,m’'-r}
as required, in the special case that the symbol p(€, z,n) has product form.

Since Lemma 3.12 also provides us with corresponding estimates, we have actually shown
that the multilinear mapping

S (R™) x H*(R™) x SB(R?) — Amim=r=dh(),0mi-r-d pn (3.40)
(<§)rql’a7QO) = R

is continuous, with R given by (3.39). Hence, according to the propertles of the projective
tensor product, the linearization of (3.40) is contmuous as mapping -

S (R") @5 H*(R") @ S7(R?) — A== (D0m'=r=d(geny
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and may be extended by continuity to a continuous mapping
HST™ (R” x R?™) = Alrgm=r=dh ().0m'=r=d(gn) (3.41)

Thereby, it is seen that the symbol p(€,z,7) € H*ST™ (R™ x R*") is mapped to the
operator R given by the third line in (3.38), since the mapping H*S™™ (R™ x R*) —
SR, p o> [ d Tpueal€) fal L2(1 — O (D20EQ) (m + 4(E )y € — mym) deYa(n) di,
p = (€)"q, is continuous for each u € S(R"). Thus (3.37) follows.

To conclude the proof, for a symbol p(¢,z,7) € H‘SC’?""'(R" x R*™) we write

p(€,z,m) = (M€, 2,1) = xo(&1)(€)*a(€, 7. 1) + x1(&,m)(€ — n)?q(€, z,n)

withqg € H° m-dm (R*xR*), and xo, X1 € SO°(R™ xR") according to Lemma 3.16. Now
(6Yq(€,z,m) G H*SY™ —dm'+d(R™ % R*™), and the operator with symbol (¢ — nYq(€,z,n)

can be written as an operator with symbol A(¢,z,n) € H°*~4S7] _d'm‘(R" x R®™) if we put

h(é,z,n) = c_m{(C)dé(ﬁ,C,n)}. Therefore, by (3.37) the operator p(D,z, D) has been
(m+m'—r), (r),d, d+m’—r

represented as the sum of an operator in A"

A£T+m'—r—d), (r),O,m'-r(Rn)

(R™) and an operator in

if |m’ — r| < 2s — 2d. That is, in this case we have seen that

p(D,z, D) € A mrh i didtmior gy (3.42)

(3.36) follows from a discussion of the several cases resulting from (3.37), (3.42). c

Notice that the choices of g(¢,n), G(£,n) made in the proof of Lemma 3.17 can be recorded,
e.g., for the first case in the form

g(é = n,m) = (£ = n)*"*(D3a) (£ - 1),

G(&m) = ko(€,m) = éiz_d?n;:+mr_r (™" ao(m)

leaving it open whether t + m’ — r > 0 holds or not and whether in the assumptions
of Lemma 3.12 integration of the square of the modulus of g(é — n,7) takes place with
respect to § and 7, respectively. :

Proof of Proposition 3.15: Let P € AP ) dRay - According to Definition 3.9

s, cl
write P = 3., P; + Py with P, = p;(D,z,D), p; € He=3 ST =9 (R™ x R™) for j =
0,1,...,d — 1. By the foregoing lemma (see especially (3.42)) we have

p € _A(m+m =j=r)(r)d=7, d+m’—j— "(Rn)

s—j,¢l
for j =0,...,d — 1, so it remains deal with P;. :
We show that 4{m7% ()0 —m'+r(gny = glmtm’=r=d),(rh 0 m'=r gry poldg, e,
s—d—max{d,d—m'+r}
N ®), BHERY)
t=—s+d—min{d,d—m'+r}
s—d—max{d,d+m'—r}
= N L(HH™™ = (R™), HT4(R™)).
t=—g+d-min{d,d+m’'-r}
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To do so we have to verify s —d — max{d,d—m'+r} = s—d+m'—r —max{d,d+ m'—r},
—s+d—min{d,d —m' + r} = —~s+d+m'—r —min{d,d + m' —r}. The first relation
is implied by max{d d—m +r} =2d-m +r—min{d d—m'+r}=2d—m'+r+
max{—d,—d+m'—r} = -m'+r+ ma.x{a' d+m’' —r}, the second relation follows in an
a,na.logous manner.

Therefore,

Pd € Agrl‘ld—d),(m‘),O(Rn) g AET;d],(m‘)'O,—m’+r(Rn) — A(m:m -r—d),{r),0, m —F(Rn)

which proves the first part of the proposition.

The second part follows from

.Ai‘:nc},(m'),d,d—ml-l-r(Rn) A(m) (m ) d(Rn) + A(m—d),(m’),D,—m‘+r(]Rn)

s, cl

g A(m+m -r) (l“) d d+m'’ —F(Rn)

by what which has been already proved, and
A(m+m =r),(r),d,d+m’ -r(Rn) A(m),(m'),d,d—m’-{»r(Rn)

s,¢cl s,cl

by the same argument. 0O

[n our next result it is asserted that B-classes constitute merely another representa.t;on
for A-classes.

3.18 Proposition. Lets,m,m',d € R, deN,s>%+d, [d+m' —r| <25~ 2d.
Then we have _
. A(m) (m"), d(Rn) C B(m-l-m -r),(r),d,r=m' (Rn) (343)

a,cl s,¢cl

In particular, we have A(,mc}‘(m hdr=m!(gny = gimbmi=r) () dir=m’(gay

s, cl

Proof: For P & A(m) (") 4(R™) we have to show that P ¢ BE'T'"‘I_F)‘(r)‘d‘r-m'(Rn). This

s, cl

is obviously true if P € .A(m 74 (m), O(R™).

Hence we may assume P = p(D, ¢, D) for some p(€,z,7n) € H® :;‘m'(Rf‘ x R?). But then
we obtain '

(Pu)(€) = fé(f,f—n,n)(n)”””‘"'ﬁ(n) dy
|a|
_/Z ~ — 7)(02q)"(€,€ = 0, E)(m)™+™ " i(n) d +

je|<d

[ex

lorl=d

{f ~ t)*(D265q) (6, € — n, € — (€ — 1)) dt} ()™ ™ () dn,

where we have set p(€,z,7) = q(€,z,n)(n)™t™ ", q(g,x,n) € H’S;mq""m'(R" x R*™).

Thus
P=y &

|al<d

Ial

(D2074(€,2,m)),,=¢(D ) (D)™™ " + R,
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where for the symbols, for |a| < d, we have

1 L fo - m4m’—rr—|o :
2 (D2059)(6,#,mhigme ()™~ € HHIST 1ol (R s ).

To treat the rema,mder we write ¢(£,z,n) = qi(§)a(z) qo(n) with a € H*(R"), q €

S™H(R™), i € ST'(R™). The defining formula for the remainder term becomes

{/ )(E—t(é—n))dt}

x qu(€)(Dga) (€ = m)(m)™*™ " a(n) dn.

The expression fol(l — 1) 1(02¢0)(€ — t(€ — n)) dt can be rewritten in the form ko(€,7n)
(E)=™"+r=d 4k (€,7) (n)~™ +" ¢ with certain ko, ky € L®(R™ x R"). Now Lemma 3.12
applies with

h(n) = (Y™ rda(n), (6,6 =) = (€ = n)*"Y(D2a) (€ — 1),

. (5)‘ ~ -’

t4m’ —r ,
(€~ éfz—d(n)t-i-m’-r (5)—‘"‘ a1(€),

(Ray(© = [a ¥

lo|=d

and

G(&n) = k(&)

respectively, yielding that

s—d+min{d,r-m‘}
Re m E(Ht+m+m'—r—d(]Rn)’ Ht_r(Rn)),
—s+d+max{d,r—m’}

l.e., we get P € plrAm=rh(r)d r=m’ (R™).

s,cl
By symmetry we further have BE":?"” LRy € Agiz'(m’)'d"_m'(R"), and it is easily
checked that .A(m ~ 4 (m),0, r-m’ -d(R") = Bﬂ’_";”" _r}'(r-d)'o‘r_m‘_d(]R"). The second asser-
tion follows. : i

The second part of Proposition 3.18 can equivalently be formulated as

A(m) ,(m'), d, d’(]Rﬂ) _ B(m —d"),(m’+d'),d, d' (Rn) (344)

s, ¢l s, cl

(m),(m'),d,d’
s, cl

which is seen by setting r = m’ 4+ d’. Recall that the classes B (R™) have been

designed to incorporate the formal adjoints to operators in AS"L,) (m.d. o (R™). Thus as a

further corollary to Proposition 3.18 we obtain that P € Ag:, Jm).d,d (R") implies P~ €
Al ) (mod') d,d

ol (R™). We call a representation in B-classes an adjoint representation.

Relation (3.44) can be used to find statements for B-classes from the analogous ones for
A-classes. For example, an analogue to Lemma 3.17 is that for s, m, m’, r € R, d € N,
s>%54+d, -2s+m'+2d < 523+m'—d_we have

B =k ddkmiorgey ifd <d+m' —r < 25— d,

5,¢l

p(D,z,D) € ¢ B{f™ = 0h4(Re) f0<d+m —r<d,

s,cl

Bimm'=rh () d2dtm'=r gy if 954 2d <d+m! —r <0

s, cl
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provided that p(¢,z,m) € H*Sg" ™(R" x R?).

Next the behaviour under compositions is established.

3.19 Proposition. Lets, mo, mg, my, mi €R, d €N, s> Z+d, jmp+my| < 25 —24d.

Then we have

A(mo) {mg), d(Rn) A(ml)-(m'x)rd(Rn) C A(mo+mo+'ﬂ1) i (my),d, d+(mo+m1)(Rn) (3.45)

s, ¢l s, cl s, cl

In (3.45), the composition on the left-hand side is understood in the opposite direc-
tion, i.e., we mean that P € Am‘,’)'(%)'d(R"), Q € Ag":})(m‘)d(R") implies QP €

Agﬂ‘;c; +mg+ma), (m).d,d+{my+m,) (]Rn ) ]

To prove Proposition 3.19 we first show the following lemma:

3.20 Lemma. Lets, m,m',m" €R,de€N, s> 3 +d, ~25+2d <m' <25 —-d.
. Then, forp € H"’S;""'"m"(RZ" x R*"), we have

AlmAm) m) dom (ny i g < mf < 25 — d

8, cl
p(D,z,D,z,D) € ¢ Apm) D4Ry if0<m' <d, (3.46)
AL (O gry if _95 +2d < m! < 0.

Proof: We first show (3.46) under the assumption that we have already proved it when
m' = 0. By (2.16), (2.17), we may assume that p(¢,z, (, Ys1 n) is given in product form, i.e.,
P& 2, Gy n) = pi(§, 2, () pol(, 4y m), where po € H*S, (R x R™), p; € H*SG™ (R” X
R*). .

By Lemma 3.17 we have po(D,z,D) € A&"ZT"‘) ©dlRr) with { = m/ if d < m/ <
2s —d, [ =dif0 <m <d andl =d+mif =2s+2d < m’ < 0. Thus we write

po(D,z,D) = E =y Poj( D, x D) + Pog, where po; € H"’Sm+m _’O(R" x R*™), Py €
A=) (00,01~ “(R") We find py(D, =, D) poj (D, z, D) € A("‘*"‘ =) =T (R for § =

3—j,cl

0,1,...,d — 1, whereas py(D,z, D) Py € AT =D m"h0I=d(Rny by direct calculation.

[t remains to prove the validity of (3.46) in case m’ = 0. We first prove it when m’ = d.
Thus let p € H“Smd"'"(RQ” R®"), where we assume that p(, z, C Y, n) = p2(&) ai(z)
p1(¢) ao(y) po(n), a0, &y € H*(R™), po € SH(R™), pr € S4(R"), p; € S7"(R"). We write

(D2, 0,2, 0))"(€) = [ 46,6~ . C.c—nmitnydcdy (347)
fZ—(c M p) (6,6 ~ (0, ¢ —n,m)i(n) dC d
lal<d &

+/dz

l|=d

.{/l-t‘“(D'“ ep) (6,6 — G +4(C — n)C nn)dt} () d¢ dn
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and obtain -
1 (s ggaled
p(D,z,D,5,D) = Y | = (D508, ¢, 4:m), ey oy (Dr, D) + R,
: feelcd
where the remainder R is given by

9=/

|or|=d

al {/ (1 = )13 p)(n + (¢ =) dt}
% &1(& = €) (D% o) (¢ = 1) p2(€) poln) @(n) dC dn.

For the symbols, for |a| < d, we have

1 . a-la| em+d—|alm” ‘mn n
_.I.(D an)(Evm ¢y, )U‘IC=F?EH | lScI+d ol (R x R? ))

whereas to estimate the remainder we apply Lemma 3.14 with ¢ € {—s,s — 2d] and
h(n) = ()" *™*a(n),
o€ = C,¢ = mm) = (€ = O)%an(€ — ¢ — )" ™(Dao) (¢ — ),

G(E ) = A O e )

with k(¢,n) = [(1 — t)d‘l(af’pl)(n + t(¢ — n)) dt bounded, getting R € Ai’f& (]R“).
This shows (3.46) for m' = d. Now let p € H**ST°™ (R*™ x R®*). Then (3.46) for

m’ = 0 follows by writing p(¢,,¢,y,7) = (n)? (6,2, C y,1) = xol¢,m) (¢)a(é, 2, ¢,y m) +
x1($m) (¢ = m?a(é, 2, y,m) with g € H**SE**™(R™ x R™), xo, x1 € S3°(R*™). O

Note that in the proof of Lemma 3.20 we have obta.ined as a byproduct

p(D,z, D,z, D) € A (Pt gy - (3.48)

s, ¢l

for |m'| €25 —2d.

Now we are prepared to give the proof of Proposition 3.19.

ProofofProposH:lonB 19: From (3.48) it follows that, for p € H*S," °(R“><R2"),
q€ H*SY' m‘(}R" x R*"), we have ’

s, ¢l

g(D,z, D)p(D,z, D) € Almetmatmi):(midddimotmy gny (3.49)
for the symbol of the operator ¢(D,z, D) p(D,z, D) is q(§,z,¢) p(¢,y,n)-
Now (3.49) implies that

Bk (madd gy . gl (mi)id gy ¢ glmodmitmadmi).dimobmi gy

8, ¢l

This is seen by choosing P = Y. , P+ Py € B(m°) {mo), d( R, Q=3,.Qc+Qs€
AT VAR here Py = pi(D, z, D), p; € H*=I SIS (R x R™) for § = 0,1,...,

a,cl
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d—1, Qi =q(D,z,D), qx € H**ST' ™ (R" x R™) for k= 0,1,...,d — 1. Then, for -
J+k—l<d we obtain

QP € A(mo+mo+m1-1) ,(mi),d=1, d+m°+ml_;(Rn)

s—{, el
whereas, for j + k > d, it is checked that

Qk P e A£T3+m"’"f'"‘-d)'(m")'o'd”"""'m"d(]R"),

Finally, Proposition 3.18 yields

A(mo) {mg), d(Rn) . A(";jl)'(m'i)'d(Rn) - B(’"o-d)-(m3+d)'d(Rn) A(ml) . (m1), d(R")
CA,

s,cl

A£m0+mo+ml) y(mi),d, d+mo+ml(Rn).

N

The probf is furnished. =

Note the equality

Airy::?+m1+mo) Ami)d, d+(mi+m)) ( " = Aiﬂ::c;) H(mytmy+mi),d. d-(mn+mo)(]Rn) (3.50)
which is valid by Proposmon 3.15. Further note that the compos:t;on result for the
B-classes is

B(mo) (mb), d(]Rﬂ) B(m,) ,(m?), d(Rn) B(mo+m°+m1) (mi),d, d+(mo+m1)(Rn) (3_51)

s,cl s, cl s, cl

Finally in this subsection we come to a discussion about commutators. Although it
is possible to describe commutators in the calculus in general the formulas arising for
remainders are complicated. Therefore, we confine ourselves to the special case when one
of the operators involved has smooth coefficients and postpone the general case to [25].
The special case is sufficient, e.g., in treating semi-linear partial differential equations.

The results on commutators could be achieved by considerations similar to those above,
but we prefer to take advantage of the elements of the calculus developed so far. In
doing so, we have to anticipate two points of our later discussion: The first one is that
to construct globally parametrices to elliptic operators within the calculus we adjoin the
pseudo-differential calculus of classical operators having their coefficients in C{°(R") to
our calculus, i.e., we work in the operator classes

L™ (R™) + AT AR, | o (352)
. Here L’““"’" (R™) is the space of classical pseudo-differential operators of order m + m’
deﬁned on R with uniform symbol estimates in the space variables. Then it is easy to
see that our non-smooth calculus obeys the ideal property in the calculus given by (3.52),
e.g., we have

L:;"(Rﬂ) .A(m).(m )'d(IR") C Agt';?'mo).(m )'d(R").

a el

The second point to anticipate is that operators have a symbolic structure. That point
will be discussed in detail in Subsection 4.1. '
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3.21 Proposition. Lets, m, m',me € R, d€R, s> 2, d> 1, |mg| < 25— 2d.
Then, for A € .A(m) MR, P e L™(R™), we have

[P, Aj=PA— AP g Amfmoh{mhd=lidtmot gny (3.53)

a-1,¢cl

Proof: We have AP € AE’:TW')'("") ‘R*) and PA € A(m) (m4mo). 4Ry By Propo-
sition 3.15, A{™)(mHmo)d(gay A£m+m°) )i didtmo gy Rurthermore, the principal

s, ¢l
symbol of the operator PA— AP € Almmo) (m).d. d+m°(R") vanishes. Hence, [P, 4] €

s, cl

A(m+mo 1),(m’},d—1,d+mg— I(Rn) ) |

3—1,cl
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4 Further Elements

In this section, several elements of the classical operator. calculus are further developed.
The selection made owns to the author’s decision. In Subsection 4.1, principal symbols
and subordinated homogeneous components for complete symbols are introduced. The
results obtained there are used in the parametrix construction for elliptic operators which
is performed in Subsection 4.2. Elliptic regularity and the Fredholm property for operators
on closed compact manifolds are dealt with in Subsection 4.4. Before, in Subsection 4.3,
we discuss coordinate invariance and operators on manifolds.

4.1 Symbolic structure

Next we become acquainted with the symbolic structure of operators in AE"’;} (m),
(R™). For those operators we have principal symbols as well as complete symbols, the
latter circumstance is due to the fact that we are working on R".

4.1 Lemma. Lets, m,m/,d €R,de€N,s>3+d, d>1, |d—-d| <2 —-2d.

Let p(€,,7) € H*ST™ (R" x R™). Then p(D,z, D) belongs to AT, F™*"14~! (k)
if and only if p(¢,z,n) € H*SL ™" ™(R™ x R*™).

r

Proof: First assume p(D,z, D) € Alme ) (m), d-t,d'- “N(R™). Writing p(D,z, D) = (D)™

s—1,cl

(q0(z, D) + Q'), where go € H*STH™ (R* x R"), Q' € A7~ 47141 (R") " we reduce
to the case that m’ =0 and p € H’ 7(R* x R™).

By assumption, there exists some t € [—s + d — min{d,d'},s — max{d,d'} — 1] such
that p(z,D) € L(H™(R"), H*'(R")). Now suppose po(z,£) # 0, where py denotes
the principal part of p. Choose some (zo,&) € R® x (R* \ 0) such that po(zo, &) # 0.
Further choose u € H™™(R™), u ¢ H:"*!(z0,&), where the latter means u is not
in H*+™+(R") microlocally at (z¢,&). Then, for' ¢ € CP(R™), x € SY(R") with ¢
supported in a small neighbourhood of zy, ¢(zo) # 0, and x supported in a small conic
neighbourhood of &, |x(£)| > ¢ for £ € R” in some smaller conic neighbourhood of &,
€] > C, we find a symbol ¢ € S;™(R" x R") such that ¢(z,£) p(z, ) = é(z)x(£). By
Proposition .3.19 we have g(z, D) p(z, D) = ro(x, D) + R', where ro(z, £) = gz, &) p(z, £)
and R' € Ag ll)cf '(R™). This implies ¢(z)x(D)u = q(z, D) p(z, D)u R’u € H*™+(R™),
which contradicts u ¢ H:E™ (24, &). Hence, po(z,£) =0, ie., p € HST (R x R™).

The reverse direction is straightforward. 0

4.2 Definition. Lets, m,m/,d €R,de€N,s>2+d,d>1, |d—d|<2s-2d.

. Let further P € Aﬁj’;}"’“"""‘”(R"). Then (po,p1,- .., Pa-1), where H*=3 Sim+m'=iR™ x
(R™\0)) for 3 =0,1,...,d ~ 1, is called the complete symbol of P if '

™ S W) e )2 D) (D)™ € AN (4

7=0
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holds, with 3 being an a.rbitrary 0-ezcision function. py € H*S™™)(R"™ x (R™\ 0)) is
called the principal symbol of P.

Each operator P € AE:}'(m‘)‘d'd’(R") has a complete symbol found by arranging the

homogeneous components of the symbols appearing in Definition 3.2 of the operator
(D)y=™ P (D)™ € AS’;T“ 44 (R™). As a consequence of Lemma 4.1 we obtain uniqueness

of the components of the complete symbol.

For Q) € Bif’:}'(m’)"d‘ d‘(]R"), define the complete symbol as d-tuple (qo, q1,. - .,qs-1), where
. gq; € H-I§m+m =R x (R™\ 0)) for j =0,...,d — 1, such that ~
d-1 '
Q- (DY Y ($(6) 4i(€,2)) (D, ) (D)™ € BP0 E Ry (42)
j=0

holds. go € H*S™+™)(R™ x (R™ x 0)) is called the ‘p.rincipa,l symbol of Q.

Principal symbols behave in the same manner as they do in the case of pseudo-differential
operators with Cf-coefficients. We list some of their properties in Proposition 4.3. Proofs
follow by examining the asymptotic expansions provided in the proofs given in Subsection
3.5. '

4.3 Proposition. The principal symbol of an operator-is independent of the represen-
tation chosen for this operator in one of the classes Agm‘(m YEE(RY), e, it does not
change altering the representation in accordance with Proposition 3.15. [t even does not

change passing to the adjoint representation according to Proposition 3.18.

Under compositions of operators principal symbols are multiplied. The principal symbol of
the adjoint to an operator is the complex conjugate of the principal symbol of that operator.
The principal symbol of a commutator is the Poisson bracket of the principal symbols of
the operators involved times 1/1.

Proof: We must be careful in compositions, since the proof of Lemma 3.20 has been

rather implicit. But checking the single steps, the proof can also be accomplished in that
case. a

The subordinated components of the complete symbol depend on the chosen represen-
tation. They also depend on the elliptic operator, (D), the powers of which enter into
the reduction to the standard operator classes. We shall provide, in [25], some formulas
demonstrating how subordinated components alter when the representation is changed.
The corresponding formulas for the classical situation are produced by collecting homo-
geneous components in the right way.

In the sequel let the symbol m be an abbreviation for the data set (m,m’,d,d’). Let
further the set (m — j,m',d — j,d' - j) be abbreviated by m — .

As a conclusion to Lemma 4.1 we obtain the short exact principal symbol sequence:

4.4 Proposition. Lets,m,m',d € R, deN, s> 24+d, d>1,|d-d| <25 -2d
Then we have a short exact split sequence

00— AT L (RT) — AT (R -5 HOSHP(R® x (R™\0)) — 0 (4.3)
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with the natural injection and o being the principal symbol mapping.
Ijsing subordinated symbols, for j = 0,1,...,d — 1, we obtain short exact split sequences:

J_ .
0 — AL (RY) — AD(RY) — (P HIS™ T HRY x (R 0) — 0. (4.4)

a—;—-1,cl
k=0

Notice that for 7 = d — 1 the sequence (4.4) is a reformulation of (3.25) thus completing
(m)l(m‘)ldnd’(kn).

the discussion around the topologization of A,

4.2 The Parametrix Construction

Now we come to the parametrix construction for elliptic operators within the calculus. To
start with record that a(z) — 0 holds as |z| & oo for @ € H*(R"), s > 2. For that reason
it is impossible to obtain uniform ellipticity estimates for operators in Aﬁf’jj'("‘ )'d(]R").
Moreover, the identity Id = op(1) does not belong to the calculus.

To get round this problem, we adjoin the classical pseudo-differential operator calculus,
as mentioned in Subsection 3.5. Thus we work in the operator classes

LT+ (R™) + AT )44 gy (4.5)

s, cl

Here L’"+’“ (R™) is the space of classical pseudo-differential operafors of order m + m/
which are defined on R™ with uniform symbol estimates in the space variables, i.e., the
coefficients are taken from C{°(R"™). Recall that the non-smooth calculus has the ideal
property in the larger calculus given by (4.5), e.g., we have

L:}O(Rn) R A(m)|(m‘)ldld’(Rn) g Ag:’l}"mo)!(m,)-d'd,(Rﬂ).

3, cl

Notice that on C*°-manifolds, X, to be considered in the Subsection 4.3, Wthh corre-
sponds to coefficients from local Sobole»r spaces, A} (X), we have

Lo (X) ¢ Ay A (x), (4.6)

8¢l

4.5 Definition. Lets, m,m',d €R, deN, s> 2+d, d>1,|d—d| <2 —2d.
Then an operator A € L™ (R™) + AT )44 (Re) s called elliptic if it has an elliptic

s, cl
principal symbol ap(z, €) € C°°S(’“+”")(R“ x (R*\ 0)) + H*S(m+m)(R"™ x (R \ 0)), i.e.,
ao(z, &) satisfies the estimate '

|ao(=, &)| = 8™+ (4.7)
for all (z,£) € R™ x (R™\ 0), and certain constant § > 0.

4.6 Definition. Let s,m,m',d' €R,deN,s>2+d, d>1, |d—d| <25 —2d.
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' m),(m"),d,d" ympn . ~-m=-m' n
Let an operator A € .L"H_'m (R™) + Al (m) (R") be given. Then P € L] (R*) +

. . cl s, cl

Af,:,"')'(_m)'d‘d (R") is called a parametriz to A if it satisfies
PA-1d e Almy9h=m).0d=dipny (4.8)
AP-1d € A7 ()04 =d(gny) (4.9)

Uniqueness modulo Aﬁ:zr-d)‘(—m)'o’d’_d(R") is immediate from (4.8), (4.9) if a parametrix
exists.

Preliminary to Proposition 4.8 we establish a lemma providing the formal Neumann series
. argument required in the parametrix construction:

4.7 Lemma. Lets,meR,deN,s>%+d,d>1.

Further assume that C € L7 (R") + AP Gmhd=lgn) - Thep

-1,cl
(d=C)(Id+C+C +...+C+Y) = 1d (4.10)

is satisfied modulo Almodh (=m).0 gy

Proof: In view of Proposition 3.45, we obtain by induction
Ci € L7 (R) + Alm7 ) (mmhd=lid=i(gny | (4.11)
for 7 =0,1,...,d. Then the assertion follows from

Agm‘j),(‘m), d-1,d-j (]Rn) - A(m-j)’ (—‘m),d—j (Rn) -

—1,¢l s—j,cl

and

(d-C)(ld+C+C*+...+C+) =1d-C". m

Notice that in the proof of Lemma 4.7 we get another interpretation for d' additionally
appearing in Definition 3.9. Now it yields that the expansion given by (4.11) is asymptotic.

4.8 Proposition. Lets,m,m',d €R,deN,s>5+d, d>1, |d—d|<2s-2d.

Then, for an operator A € L it (RT + _A( ) (m), dodf R™), the following conditions are
cl s, ¢l
equivalent:

(a) A is elliptic in the sense of Definition 4.5. .
- (b) There ezists a parametric P € L7™ ™ (R") + A(_mi)’(_m)'d'd’(R") to A.

el s, cl

8, ¢l

Proof: It suffices to deal with A € L7*+™ (R") + A™) ™) 4(R"), since

A(m)l(m‘)rdid‘(Rﬂ)=A(m)l(m")ld(Rﬂ)+A£T;d)v(ml)v0'd"d(Rn)'

8, ¢l s, ¢l



36 4 FURTHER ELEMENTS

Suppose that A is elliptic. Let ao(x, &) € CRSM™)(R® x (R™\ 0)) + H*SM+™) (R™ x
(R™ \ 0)) be the principal symbol of A. It is clear that, under condition (4.7), po(z,§) =
ao(z, €)™ belongs to C S~ )(R" x (R*\0))+ H* S )(R" x (R”\0)). Thus using
the short exact sequence (4.3) (and its analogue for classical pseudo—differential operators
with coefficients in C°(R™)) we find an operator P, € L™ ™ (R™) + AL =m)d gy

s, cl
having po(z,€§) as its principal symbol. Then by the composition rules for principal
symbols and the short exact sequence (4.3) again we conclude that
C=1d- P Ae L3R + A7 ™4 (RR,
Therefore, by Lemma 4.7, P = (Id+C+C?+...+C4 1) P, is a left parametrix to A. In a
similar manner, a right parametrix to A can be constructed. The argument is completed
by noting that a left parametrix and a right parametrix if they exist are equal modulo .
A(—;ﬂ'—d)»(-m).o(Rn)
— .

The reverse direction follows from the composition rules for principal symbols. o

We conclude this subsection by remarking that the parametrix construction in Proposition
4.8 can also be achieved either only locally, or on a closed compact manifold as discussed
in Subsection 4.4, or right form the beginning in larger classes of operators taking their
coefficients in H{ -spaces. But the element of adjoining the smooth calculus to the non-
smooth one is familiar in the analysis of non-linear partial differential equations; thus we
have decided to do the constructions in the indicated way.

4.3 Coordinate Changes and Operators on Manifolds

In this subsection we discuss the invariance of operator classes Al (m) i (R™) under

a,cl
Eﬁ%'(mr)'d'd‘(X), X being a C*°-manifold.

Our first goal is to explain the action of the pseudo-differential operator p(D, z, D) for
pE H,Dc mm (X xR, s > %, and X being an open set in R". The expression p(D, z, D)
will in general not be defined. This corresponds to compositions in the C*-theory in
which one of two operators has to be properly supported. Here we have to make a
similar assumption. We discuss only a rather special case, which, however, suffices for the
applications we have in mind. :

coordinate changes and introduce the classes A

Notice that, for ¢ € C(R™), we have ¢(z) p(€,x,7) € H*S™™ (R" x R™).

4.9 Lemma. Lets, m, m' € R, s > 7. Let further p(¢,z,n) € H,ocSmm (R™ x R™).

(a) Suppose that the Fourier transform e_,,p{p(f,a: n)} is compactly support in p uni-
formly in (z,n). Then p(D,z, D) induces a continuous operator

p(D,z,D): H*™(R") = H™ (R (4.12)

forallteR, |t]| <s

(b) Suppose that the Fourier transform F, | {p(¢,z, 1)} is compactly support in p’ uni-
formly in (€,z). Then p(D,z, D) induces a continuous operator

p(D,z, D) : HE™ (R™) - H"™™(R") (4.13)

comp
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forallt € R, Jt| < s.

Proof: (a) Suppose that supp(F., {p(¢,2,7)}) C K x R* x R" for some compact set
K C R". Then, for ¢, ¢' € C5°(R") satisfying (suppé — supp¢’) N K = @, we have

é(z) (¢'(v) p(£,y,m)) (D, z, D) = 0.

Let u e H*™(R") fort € R, |¢| < s. In order to define p(D,z, D)u, we define p(D, z, D)u
on K’ for any compact set K’ C R". To this end, choose functions ¢, ¢' € C§°(R") such
that ¢ =1 on K', ¢’ =1 in a neighbourhood of K — supp¢ and set

p(D,z, D)u = ¢(z)(¢'(y) p(&, y,1)) (D, z, D)u

on K’. It is seen that this definition is independent of the functions ¢, ¢’ with the

above properties, consistent on intersections of compact sets K " and agrees with the usual
definition in the case that p € H*S7™ (R" x R?"),

(b) Now suppose that supp(F2} {p(€,z,m)}) € R x R" x K for some compact set
K C R™. Then, for ¢, ¢' € CP(R™) satisfying (suppé — suppd’) N K = B, we have

(p(€,7,m) #(2))(D, 2, D) §/(z) = 0.

Let u € HY™(R") for t € R, {t] S.s. We choose functions ¢, ¢’ € C§°(R") such that

comp

¢''= 1 on suppu, ¢ = 1 in a neighbourhood of K + supp¢’ and set

p(D,z,D)u = (p(&,2,1) $(2))(D, z, D)¢'(z)u.

[t is seen that this definition is independent of the functions ¢, ¢’ with the above properties
and agrees with the usual definition in the case that p € H*S™™ (R® x R**), O

Now let p(é,z,n) € H.SY (X x R™") with X being an open set in R™. As a corollary
to-Lemma 4.9 we obtain tha.t we can give a meaning to the expression p(D,z,D) as a
continuous operator :

p(D,z,D) - HER(X) = HE™(X) (4.14)
for all £ € R, |t] < s, if one of the assumptions of Lemma 4.9 is satisfied.
Notice that for symbols p(¢,z,7n) € H?® mm (R™ x R*") we can always assume that one
or both assumptions of Lemma 4.9 are sa.tlsﬁed. To see this, choose a 0-excision function
¥ and consider, e.g.,

Fp—»&{(l_ﬂl’ f-)p{p (¢,z,7) }} € H° mm(Rn XR%) . . (4.15)
This symbol fulfills assumption (a), while the symbol Foe{v(p) FZ {p(& =7 )}} leads
to an operator which belongs to L{H~**"(R"), Hf,.(R")) for any t € R.

We need a technical lemmas:

4.10 Lemma. Lets,m,m',d € R, d€N, s> 2+d, [d—d'| <25 —2d. Let further
Pe .A(m)’("")'d'd,(]R") and suppose that, for the kernel K of P, we have that K(z,y) =0

3¢l
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forz,y€e IR", lz —y| < 5 and some § > 0. Then P € A(m @), (m),0, d'-d(]R“)

Proof: We may reduce to the case m’ =0 and P € Af,','c‘,)'d'd’(R"). Then it is sufficient
to prove that P € AN R if d > 1

Write P = po(z, D) + P’ with pg € H*SZ(R™ x R"), P’ € AT ' (R™). Let Ko
be the kernel of pyp(z, D) and K’ be the kernel of P'. Then Ko(z,y) = Lo(z,z — y),
where Lo(z,p) = F; 4 {po(z,n)}. In particular, ¥(p) Lo(z,p) € H*(R")®-S(R") for an
arbitrary 0-éxcision function 3. Choosing ¥ € C®(R") in such a way that ¢¥(p) =1 for
|p| 2 & we arrive at a decomposition (1 —¥(z — y))Ko(z,y) + ¢ (2 — y)Ko(z,y) + K'(z,y)
for the kernel K of P, where (1 — ¥(z — y))Ko(z,y) and ¥(z — y)Ko(z,y) + K'(z,y)
give rise to operators in Aﬁ’f;;)'d-l'd’_l(k“), since (1 — ¥(z — y))Ko(z,y) is supported in

|z — y| < 4. Hence, we have P € AET;;,)'J—I'dr—l(R“). , a

The transition to the operator classes mentioned in the end of the previous subsectlon is
accomplished by the next lemma:

4.11 Lemma. Let s, m, m', deR, deN, s> 3, [d-d|<2s-2d.
Let further, for some open subset X C R*, P: C{°(X) = D'(X) be a linear continuous
operator such that for any ¢, ¢ € C§°(X) the operator S(R*) 3 u— ¢' P (qbu) e S'(R")
belongs to Aiﬁ}‘(mq’d'd’(R”). Then there are symbols p;(€,z,n) € HL ST™9™ (X x R™)
for 3 =0,1,...,d — 1 satisfying one of the conditions of Lemma 4.9 and an operator
s—d-max{d,d'}
P, e n E(Ht+m (X) Hi=m +d(X))

comp loc
t=—s+d—min{d,d’'}

such that
d~1

P =Y pi(D,z,D)+ Pu. (4.16)

1=0

~ In the notation of the operators S(R") 3 u — ¢ P(¢u) € S'(R") in Lemma 4.11 we have
omitted the extensions to R" and the restrictions to X, respectively.

ProofofLemma4.11: Choose a partition {¢x}ren of unity on X and choose functions

Y € C§°(X) such that ¢ptpx = @ for all k € N and {suppyi }ren Is a locally finite cover
of X. Then, for u € C§°(X), we have

Pu=Y"P(¢su) =Y eP(dru)+ ) (1 — i) P(¢iu). (4.17)
k=0 . k=0 k=0 .

By Lemma 4.10, we have ¢ (1 — 1) Py € AT ™ *I~4R™) for all k, 1 € N. Thus,

(1 — )Py € n:;i:f;ff,;‘i:{i_d, L(H*™(X), H‘;”"*"(X)) for all k € N. Moreover, for

u € C§°(X), the sum 372 (1 — %) P(¢xu) is finite. Consequently,

oo s~d-max{d,d’}

Y (1 - )Py € N LOHED (X), HEZ™+H(X)),

k=0 t=—s+d—min{d,d'}
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By assumption, the operators 1 P¢; belong to AE""C}'(mI)‘d’d'(R") for all k € N. Write
U P = 3120 piu(D, 7, D)+ Pji, where pj € H* ST ™™ (R*xR™) for j = 0,1,...,d—1,
k € N, and Py € AET;d)’(m‘)’O'd'“d(R“). We can arrange that the p;x(€,z,n)’s satisfy,
e.g., the first assumption of Lemma 4.9 and, for fixed 7, their supports in z form a locally

finite cover of X uniformly in (§,7). For the kernels of the Py’s, we may assume that
their supports, both in z and y, form locally finite covers of X. Then, on X,

pi(6zm) =Y pxl(€,2,m) € HiST ™5™ (X x R*™)
k=0

satisfies the first assumption of Lemma 4.9. Thus, for 7 = 0,1,...,d — 1, these symbols
give rise to operators p;(D,z,D) : HF™(X) = Hj;™(X) for every t € R, |t] < s.
Eventually, the sum Y 7>, Py exist, and

s—d—max{d,d'}

Y Puc N LOHZ (X, HiZW (X)),
k=0 t=—s+d-min{d,d'}

The proof is finished. 0

Next we are concerned with the invariance of Agzz'(ml)'d'dr(R") under global changes of

coordinates of R”. Let x : R® — R” be a diffeomorphism of R™. In the sequel, we shall
always assume that there are constants ¢;, ¢z > 0 and ¢, > 0 for a € N” such that

o < |det&'(z)| < e (4.18)
and
102k(z)| € o (4.19)
hold for all z € R™. Recall that, for functions u € S(R") and distributions v € S§'(R"),
the pull-back x*u is defined by «x*u(z) = u(x(z)) and the push-forward x.v by
(kov, @) = (v,5*¢|det&'[), ¢ € S(R™).

By (4.18), (4.19), we have x* : S(R") = S(R") and «. : §'(R*) - S’(R"). Furthermore,

£« = (k71)* holds on functions, since distributions are transformed as 1-densities.
For P: S(R™) — §'(R™), we define the operator P, : S(R") = S'(R™) by

Pu(#) = 5. P(x9). (4.20)

4.12 Proposition. Let s, m, m',d €R,de€N, s> 3 +d, |[d—d| < 2s—-2d.
Let further & : R® = R" be a diffeomorphism satisfying (4.18), (4.19). Then, for P €
Af,?g'(m’)‘d’d'(IR"), we have

P, € A did gny | (4.21)

s,cl
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(m},d,d’

Proof: It suffices to show that the conclusion holds for the operator classes A;

(R"), since
A(m)-(m ), did (Rn) — (D)m' A(m+m ),d,d (R™) (D)_m‘,

s, cl 8, cl

and the behaviour of classical pseudo-differential operators with coefficients in C§°(R")
under coordinate changes is known.

The mapping «* : S(R*) = S(R") extends by continuity to an isomorphism x* : H*(R")
— HY(R") for every t € R. Thus A € A" % "4R") implies A, GIA_(,T;d)'O’d"d(R").
Therefore, we may assume that P = p(z, D) holds for some symbol p(z,n) € H*ST(R" X
R"). Then, for the symbol p, of the operator P, = p«(z, D), we claim that

pe(r(z),1) = e™*p(z, D). (4.22)

This is immediate for symbols in product form, i.e., p(z,n) = a(z)po(n) with a« € H*(R"),
po € ST(R™), from the corresponding result in the C*®-situation (see, e.g., [11, Theorem
18.1.17]). In that manner we obtain a continuous bilinear mapping

H*(R™) x §7(R") = H*'SG(R" x R"), ~(a,po) = a(x™'(z)) (po)x(n)

showing that p.(z,n) defined by (4.22) indeed belongs to H*ST(R” x R"} for p(z,n) €

H°ST(R™ x R") by invoking the usual tensor product argument. That p.(x,7n) is actually
the symbol of P, now follows from the fact that it is true on ST(R™) ® H*(R") and that
the mapping S(R") — S'(R"), u = p«(z, D)u, is continuous for each u € S(R"). O

In the proof of Proposition 4.12 we have shown that the principal symbols of P and Py
are interrelated by

(pN)O(K'(I)s n) = polz, t""(-’f)n), (4.23)
i.e., as usual, the principal symbol behaves like a function defined on T*(R") \ {0}.

In the situation considered in (4.22) we get as in the case of coefficients in C;°(R") that

pels(z)yn) ~ 3 L (05p)(z, R (2)m) Dy (PO, (4.24)

la>0

in H°S™(R™ X R") holds, where p.(y) = «(y) — x(z) — «'(z)(y — z). Recall that the
D2 (e'=)), _.’s are polynomials in 7 of degree less than or equal to |a|/2 with coefficients
in Cg°(R™). One obtains, from (4.24), formulas for the components of lower order of the
complete symbol of P, by replacing p in (4.24) by the complete symbol of P and ordering
terms with respect to homogeneity.

(m),(m"),d,d’

We go now over to the operator classes A,

C*=-manifold. -

(X). From now on, let X denote a

4.13 Definition. Let s, m,m',d' € R, deN, s> 2 +4d, |d—d'| <25 —2d.

Then Aﬁ?‘c}'(’“"'d""()() denotes the class of all operators P : C°(X) = D'(X) such that
for every chart (Y, k) and arbitrary ¢, ¢' € CP(Y) '

(¢ Pg)n € AT (R). (4.25)



4.3 Coordinate Changes and Operators on Manifolds 41

holds.

Note that, by Proposition 4.12, it is enough to ask (4.25) only for a collection of charts
(Yi, xi) such that the Y; x Yi's cover X x X. Further note that, for X = R", the oper-

ator classes A(m)'(m‘)'d'd,(X ) introduced in Definition 4.13 are different from the classes

s, cl
Aiﬁ‘(m b d (R") considered earlier in that respect that the behaviour of coefficients is

not now restricted as Jz| — oo.

Below we summarize some of the properties of the operator classes .Af,":,)' ()" X which
are immediate from our foregoing considerations.

4.14 Proposition. Lets, m, m', r, mo, mg, my, m;, d €R,d €N, s > 2+d, |[d—d'| <
25 —2d, Im' —r| < 2s —2d, |my + mq| <25 — 2d.
Then the following properties are valid:
(a) We have |
s—max{d.d'}

A(m)»(m'),d’d'(X) c n E(Hé;",,’,’;,(X), Ht-m'(X))a (4.26)

s, ¢l loc
t=—s+d-min{d,d’}
and the remainder classes are completely characterized by that property, t.e.,

s—d-max{d,d'}
Az d=doey -\ L(HER(X), HEM X)) (4.27)

loc
t==s4d-min{d,d'}

In (4.26), for properly supported operators, one can replace either HiF™ (X)) by H;I™(X)

comp loc

or HiZ™ (X) by HIZm (X).
(b) We have ‘

AT AKX © AT (X, (4.28)-
c) The adjoint to an operator in A 0.4 Xy belongs to A(m""w)'(m—dl)’d'd'(X).

s, ¢l s,cl
(d) For the composition of P € Af,’f‘c‘;"‘mﬁ"‘*(X), QE AE"’:})'(m“)'d(X), where one of these
operators is properly supported, we have
QP € AE‘?:;'*‘"‘E'*‘"H)-(m‘t)'drd"'(ma"'ml}(X). | | (4.29)

In order to define the homogeneous principal symbol for operators in AEZ}'(m’)'d' d'(X ) we

introduce the space Hp St+m)(T*X \ 0) as the space of all functions p(z,£) on T*X \ 0
which are homogeneous of order m+m' in the fibres and which, in any chart on X, belong
to HE, S+ (R™ x (R™\ 0)). It is plain that an operator P € Agﬁ,(m 144 (X) has a

uniquely defined principal symbol op(z,£) € HZ,S™(T*X \ 0). As in (4.3), we obtain a
" short exact split sequence, i.e.,

0 — A" (X)) — AT (X)) =+ H* S ™) (T°X \ 0) — 0, (4.30)
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where m = (m,m’,d,d"). An operator A € Af,j"c}'("")"" d'(X) is called elliptic if its principal
symbol o4(z,&) never vanishes on T*X \ 0. In that case, using a partition of unity, a

parametrix P € Ag'-cfl"’).(—m).d,df

(X) to P can be constructed, i.e., an operator P satisfying

PA-1d e AlmdEm0d=d ) gp_1d e AT D0y T (431)

Conversely, from the existence of a parametrix we conclude on the ellipticity of A. Again,

natural Fréchet topologies on the operator classes A(m) (m) i (X) are introduced also by
using a partition of unity.

4.4 Elliptic Regularity, Parametrices, and the Fredholm Prop-
erty ’

In this subsection we quote results when X is a closed compact manifold. Then the
spaces H} (X)), comp(X) become replaced by H*(X). Note that, for ¢ > ¢, the embed-
ding H¥(X) < H'(X) is compact. The spaces H}, St} (T*X \ 0) are now denoted by
H*S™)(T*X \ 0).

In case X is compact, ellipticity is equivalent to the Fredholm property: -

4.15 Proposition. Lets,m, m',d €R, d€N, s> 2 +d, d>1, |d—-d'|<2s—2d.

Let X be a closed compact C®-manifold. Then, for an operator A € Aﬁf’;}'(’”"'“" dI(X),
the following conditions are equivalent:

(a) A 'is elliptic.

(b) The operator A : H*t™(X) — H* ™ (X) is Fredholm for some (and then for all)
t € [—s+d — min{d,d'}, s — max{d,d'}].

In that case, there ezists a parametriz P € Aﬁjc',""""""“'d'(){) to A. Moreover, elliptic

reqularity holds, i.e., u € H-stm+d-min{ldd}( Xy Ay € H*"™(X) for somet € [—s+d —
min{d,d'}, s — max{d, d'}] implies that u € H"*™(X).

Proof: Suppose that A : H*™(X) = H*™(X) is a Fredholm operator for certain -
t € [~s+d—min{d,d'}, s — max{d, d'}]. By order reduction and other manipulations we
may assume that m =m'=0,d=4d',t =0, and AEA(ON( X).

We use a device from [18] to recover the principal symbol o4(z,§) of A: Given (zq,&) €
T=R™ \ 0, there exists a family of unitary operators Ry, A > 0, on L?(R™) such that, for
u € LZ(R"), Ryu — 0 weakly in L*(R") as A = o0 and

Ry A+ K)Rou — 0.4(z0,€)u in LA(R™) as A = 0o (4.32)

for A € Afl}d(R") and any compact operator K on L?(R"). A family of operators R),
A > 0, obeying these properties is given by

Rau(z) = Mestoy (A3 (g — 1)) (4.33)

For details, see [18, Section 2.3.4].
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Using a partition of unity, we find, for fixed (z¢,&) € T*X \ 0, a family of isomorphisms
Ry, A > 0, on L%*(X) such that R), Ry' are uniformly bounded in norm for A > 0
independently of (zo,&) € T*X \ 0, further, for u € L?(X), Ryu = 0 weakly in L%(X) as
A —oo0and -

RyY A+ K)Ryu = ca(zo,&o)u in LEH(X) as A = o0

for A € Af,f’}_.;‘*(X) and any compact operator K on L*(X). Then, if A € Ag?‘):'ld is a

. Fredholm operator on L?(X).and P € L(L*(X)) is a Fredholm parametrix to A, i.e.,
P A—-1d, AP — Id are compact operators, we get, for u € L?(X) and K = P A - 1d,

lull < CliRsull = ClI(PA = K) Rull < C|R;* ARwi|| + C |K o],

where || || is the norm on L2(X) and C > 0 is some generic constant. Now, if A tends to
0o, we find, for each u € L*(X), u # 0,

0 < Jlull £ Clealzo, ol llull, - (434)

with C > 0 being independent of (zo,60) € T*X \ 0, yielding the ellipticity of A.

" Conversely, if A € Aﬁj’;}'('""'”" d‘(X ) is elliptic, then a parametrix exists. The existence of

a parametrix implies elliptic regularity and the Fredholm property. - g
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5 Notes and Remarks

We conclude with further notes on topics discussed in previous sections. Our exposition
in this paper is based on the classical stock of pseudo-differential calculus. For references
concerning the theory when the operators have smooth coefficients, the reader is referred
to standard textbooks, e.g., (6], {11], [21]. The theory of classical pseudo-differential
operators goes back to the classical paper [14]. A little later, in [10], the invariance of the
calculus under coordinate changes was proved and the general calculus was invented.

We add references which are close to the subject treated in the body of the paper. Further
references may be found in papers cited in the bibliography.

Section 2. The main attribute avoiding the complications in the treatment of non-
classical operators in [25] is the nuclearity of S7}(R"). This property was recognized
by F. Mantlik (Dortmund). He observed that, under radial compactification of R" and
appropriate renormalization, SJ(R") is transformed into the space C®(B"). Here B*
is the closed unit ball in R", and expansions of symbols in ST (R") into homogeneous
components correspond to Taylor expansions near the boundary 9B".

The topologization of the symbol spaces S77(R") is taken from [19] and represents in a
closed form the construction given there (cf. (2.6)). The proof announced for Proposition
2.4 that does not rely on the result ST'(R™; £} = SM(R™)®.E is as follows: We have that
STR™) @ E is algebraically a subspace of ST(R"; £). The induced topology is that of
the injective tensor product. S7(R"; E) becomes a subspace of L({ST{R")), E) via the
mapping a — (® — (®,a)). Here (ST(R")) is the strong dual to S7(R"). Note that
functionals ® € (57 (R™))’ can be applied to symbols ¢ € ST(R"™; F) yielding elements
in E. It is seen that ST7(R"; E) carries the topology induced from L{(ST(R")), £) when
the latter is equipped with the topology of uniform convergence on all bounded subsets of
(STHR™)). We further have L{(ST(R™)), E) = ST(R")Q.E (see, e.g., [13]), since ST(R™)
is a nuclear Fréchet space. Therefore,

S3(R") @ E € S3(R™ E) C L((ST(R™)Y, E) = 53 (R") & E,

and ST(R™; E) = ST (R*)®. E.

The symbol classes S:;“m'(R" x R"™) were introduced by T. Hirschmann in connection with
a pseudo-differential calculus on R" for operators having symbols the coefficients of which
satisfy certain exit conditions at infinity. From (2.11), (2.12) and the same with the roles
of 7, k interchanged it is seen that the definition given in [9] agrees- with that one used
above.

Section 3. The structural aspects of the pseudo-differential calculus which have been
considered follow the general framework of a pseudo-differential theory. In particular, we
had to take care in two respects: only finite asymptotic expansions are allowed in the
calculus, and the components in these asymptotic expansions are generally of the form
p(D,z, D). The latter requirement causes that so-called spectral conditions otherwise to
impose on the symbols are avoided, as it has been already mentioned in the introduction.

The symbols considered in this paper are infinitely differentiable in the covariables. Some-
times one is interested in symbols satisfying weaker differentiability conditions. Here we
did not go into this question, and no attempts were made to obtain optimal results. In
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[25], after the non-classical operator calculus will have been established, we will come
back to that topic and will make several comments on it.

It is natural to provide the classes Af,f’;}""'""" “(R") with suitable Fréchet topologies. For
example, using these Fréchet topologies one confirms oneself that the inclusions stated in
Propositions 3.10, 3.15, 3.18 and 3.19 hold in a topological sense. The operator classes
AS"‘)"”")"’"*'(R") to be introduced in {25] will turn out to be Banach spaces mainly due
to the fact that only finitely many derivatives with respect to the covariables are needed
in estimates. In any case we have

A(m).(m').d,d'(Rn) s A‘('m),(m‘),d,d'(Rn)’

3, cl

and the embedding is continuous.

Section 4. We compare the pseudo-differential calculus for operators with non-smooth
coefficients developed in this paper to other possible alternatives. In our calculus, the op-
erators have coefficients in L?-Sobolev spaces H°(R"), while, roughly speaking, in Bony’s
paradifferential calculus the coefficients are taken from Hélder-Zygmund spaces. One ad-
vantage in our approach manifests in the simpler estimates used not built on Littlewood-
Paley decompositions. Moreover, e.g., in view of applications to quasi-linear hyperbolic
equations it is desirable to demand coefficients in L*-Sobolev spaces, since solutions are
looked for in energy spaces. There are, however, applications in nonlinear partial differ-
ential equations which oblique one to leave the range of applicability of L%-theory. In
such instances it would be better to have a calculus at one’s disposal in which the coef-
ficients are permitted in more general function spaces, e.g., in Besov- or Bessel-potential
spaces. In a future paper, we shall lead into such pseudo-differential calculi along the
lines stressed in this paper. In the global parametrix construction in Subsection 4.2 we
had to adjoin the operator classes LT (R") to our calculus to obtain uniform ellipticity
estimates, since functions in H*(R") vanish at infinity. This setting-up and also some
trouble in formulating the commutator results would be prevented when working from
the beginning with coefficients, e.g., in Holder-Zygmund spaces.

A further subject not touched upon in this paper concerns microlocal analysis, but it has
been already used in embryo in the proof of Lemma 4.1. Questions related to microlocal
analysis and similar questions are also intended to publication in a future paper. Here
we only note that the expected effect that proofs simplify considerably in dealing with
classical instead of non-classical operators again occurs.
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