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IRRATIONALITY OF THE MODULI SPACES
OF POLARIZED ABELIAN SURFACES

VALERI GRITSENKO

ABSTRACT. The moduli space of abelian surfaces with non-principal polarization of
type (1,t) is a three dimensional quasi-projective variety. In the paper we construct
holomorphic sections of the canonical line bundle on a smooth compact model of it
using the theory of Siegel and Jacobi modular forms. It is proved that the moduli
spaces of abelian surfaces with polarization of type (1, t), where t is a natural number
more than or equal to 13 and ¢ # 14, 15, 16, 20, 24, 30, 36, are not unirational.

§1. MODULI SPACES OF ABELIAN SURFACES.

Let S = C?/L be an abelian surface, where L is a free Z-module of rank 4, and
let £ be a ample line bundle on it (i.e., a line bundle for which the sections of some
power embed the surface in a projective space). The integral alternating bilinear
form W representing the first Chern class of the line bundle £ may be reduced to
the following normal form

t
Cl(£)=WT=(_0T :g)) T=(6 t(:),

where t;,t3 € N and t; is a divisor of t;. The pair (S5, L) is called a polarized
abelian surface. The pair (ty,?;) uniquely determined by £ is called the type of
polarization. The period matrix g of §, which is the matrix whose rows are the
basis vectors of L, may be written as :

_(%s
o (%),

where Zg belongs to the Siegel upper half space of degree two
H, = {Z ='Z € My(C), Im(2) > 0}.

The point Zg is defined up to the action of the group of linear isomorphisms of L
preserving the alternating form Wr. Let us define the integral symplectic group of
this form

Sp(Wr,Z) = {g € My(Z): gWr'g=Wr}.

Supported by Max-Planck-Institut fur Mathematik in Bonn.
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This group is conjugate to the following subgroup of the usual rational symplectic
group Sps(Q) (the case of T = 1,)

I("™(T] = I7' Sp(Wr,Z)Ir C Sps(Q), where I = (102 3“) '

(The index m means “moduli”.) For example, if T = diag(1,t) (i.e., t;1 =1, t =1)
this group consists of the following elements

* * * tx
m t tx
=47 T " T esm@y, (1.1)

* 7% % %

where all * denote integral numbers. The real symplectic group acts on the Siegel
upper-half space as the group of fractional-linear transformations

M < Z >=(AZ + B)(CZ + D)™, M=(g g)e&mm.

The quotient space

Ap = T™(T]\ H;

is the coarse moduli space of abelian surfaces with polarization of type (¢,t2) (see
(1], [HKW1]). Without loss of generality we shall consider only the case of the
polarizations of type (1,t) and we put instead of T the index ¢ in all our notation
like Wt, It, I‘(m)[t], At.

It is known, that A; (the moduli space of abelian surfaces with principal polar-
ization), Ag, Aj, A4, As, A7, Ay are rational or unirational (see (I}, [0’G], [BL]).
For t = 5 a finite covering of As is connected with the famous Horrocks-Mumford
vector bundle (see (HKW1]). In this paper we prove the following main theorem,
which is quite opposite to these examples.

Theorem 1. Let A; be a non-singular model of a compactification of the moduli
space Ay of abelian surfaces with polarization of type (1,t). The variety A, 1s not
unirational if t > 13 and t # 14, 15, 16, 18, 20, 24, 30, 36.

To prove this result we shall construct sections of the canonical line bundle of the

variety A; using the theory of Siegel modular forms. It will give us an estimation
from below of the geometrical genus of the variety.

Theorem 2. Let p,y(t) = dimcHa'O(.,Zt) be the geometrical genus of a smooth

compactification A, of the moduli space of abelian surfaces with polarization of type
(1,t). The following inequality is valid

t—1 .9
pa(t) 2 Y {25 +2ha — L),

i=1

where

if m#2 mod 12,

_ [ L]
{m]’12—{ |Zl—-1 #f m=2 mod 12,

12
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and |z] is the integral part of z.

For instance p,(13) > 1, p,(29) > 2, p,(37) = 4, py(53) =2 5. Theorem 1 is a
corollary of Theorem 2. The genus py(t) could be zero only for the special values
of t mentioned in Theorem 1. The estimation of Theorem 2 gives us even more.

Corollary 1. The geometrical genus of A, tends to infinity as t — oo. More

¢ :
ezactly, PgT() > C as t — 0o, where the constant C' does not depend on t.

For any smooth compact variety X one may define the Kodaira dimension of X
through the transcendence degree of its canonical ring

k(X) = tr. deg @HO(X, nKx) - 1.

n=0

The Kodaira dimension is a birational invariant of X. If the geometrical genus of
X is strictly greater than one, then the Kodaira dimension of X is positive. The
estimation of Theorem 2 gives us the following

Corollary 2. The Kodaira dimension of A, is positive if t > 29 and t # 30, 32,
35, 36, 40, 42, 48, 60.

It is known that the Kodaira dimension x(X) is not more than the dimension of
the variety X. If x(X) = dim X, then X is said to be of general type.

The Kodaira dimension is known for some moduli spaces of abelian surfaces for
which the moduli group is a subgroup of the Siegel modular group Sps(Z). The
group T'(™[¢] is conjugate to a subgroup of Sps(Z) only in the case of perfect
squares. If t = d?, then

* dx * dx

m ~ d* * dx =x
T(m[g?] = A - Spe(Z)

dx % dx *

(compare with (1.1)). Thus the moduli space A2 is a finite covering of the ra-

tional variety A; of abelian surfaces with principal polarization. Using this fact

K. O’Grady proved, that A2 is of general type for any prime p > 17 (see [0’G)).
The geometrical type of the moduli space A:f” of abelian surfaces with polariza-

tion of type (1, p) (p is a prime) and with an additional level structure is investigated
by K. Hulek and G. K. Sankaran in [HS]. Al* is isomorphic to I‘_ff" \ H;, where

* * *  px
2
lev D* px  p* *
Ipy'=q9€8p(Z); g—1a=|"" " 7, 1;* € Sps(Z)
* * *  px

The moduli space Af,“’ is a ramified covering of the moduli space A, of degree

g(_!”?;ll and a ramified covering of the rational moduli space A, of degree P—(ﬂ‘;—_l-l.

In [HS] they proved that for p > 41 the variety A:,“’ is of general type, using



4 VALERI GRITSENKO

the classification of singularities of a toroidal compactification of I', \ H; given in
[HKW2].

In this paper we shall construct examples of cusp forms of weight 3 with respect
to the paramodular group I'™)[¢], which give us canonical differential forms on
A;. Our method does not depend on the resolution of singularities of a compact-
ification of the moduli space. Moreover, using our result it is possible to improve
the mentioned results of [0’G] and [HS]. We shall come back to these questions in
a future paper.

The statement of Theorem 1 for a square-free ¢t was proved in [G1] using a
reduction to a very particular case of moduli spaces of polarized K3 surfaces. In
this paper we follow a more direct method.

The author is indebted to D. Zagier and G. K. Sankaran for helpful conversations.
I am grateful to the Max-Planck-Institut fiir Mathematik in Bonn for hospitality
and excellent working conditions.

§2 SIEGEL MODULAR FROMS AND JACOBI LIFTING

We remind the definition of modular forms with respect to Sps(Z).

Definition. A holomorphic function F(Z) on the Siegel upper half-space Hy 1s
called a Siegel modular form of weight k with respect to Spy(Z) if the following
condition 18 satisfied

Fleg(Z):=J(g,2)*F(g< Z >)=F(2), J(g,Z)=det(CZ+ D),

framyg= (5 ) esm)

Analogously one can define the space 9 (T") of all modular forms of weight k
with respect to an arithmetic subgroup I' of Sps(@Q). In this chapter we construct
modular forms with respect to the group

tx  * *
* * * 171k m
F[t] = *  fx % * € SW(Q) = T )[t]a

tx  tx  ix *

where all ¥ denote integral numbers and ! means the transposition.
Let us take the decomposition of the matrix Z = (: z) € H,, where r,w € H,

lie in the usual upper half-plane. The Fourier-Jacobi expansion of F' is its Fourier
expansion with respect to the variable w

F(r,z,w) = fo(r) + Z fm (7, 2) exp(27i mw),

m2>1

where 7 € Hy and z € C. The function f,,(7, z) being SL;-modular form in 7 for a
fixed z and a Jacobi function in z is an example of Jacobi modular forms of index
m. We shall construct a lifting from the space of Jacobi modular forms of index ¢ to
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the space of modular forms with respect to the group T'[t] on the Siegel upper-half
space Hp.

To define this lifting we need the notions of Jacobi forms and corresponding
Hecke rings.

The Satake compactification of the quotient space Sps(Z)\ Hy has two boundary
components: the curve SL(Z)\ H; and the point 0o. The function fo(7) is equal
to the restriction of the modular form F(Z) to the boundary curve. The Fourier-
Jacobi expansion, describing the behaviour of the form F near the boundary curve,
corresponds to the Fourier expansion with respect to the maximal parabolic sub-
group defining the boundary curve (see [BB]). From this point of view the function
f(Z) = fm(r,2)exp (2miw) is nothing else but a modular form with respect to the
parabolic subgroup

* 0 * =
Xk * *

Tw=d |2 8 7 1| esn@)
0 0 0 =

consisting of the elements which preserve an isotropic line:

(flev)(Z2) = f(2) for v € Too.

It is easy to see that

where H(Z) is the integral Heisenberg group, i.e., the central extension of the
abelian group Z x Z
0=+Z—>H(Z)y->ZxZ 0.

We have the following realizations of these two groups as subgroups of I':

'(a 0 b O
0100
SLAZ)=S | . 5 4 o €5P(@) 2,
L\0 0 0 1
'/1 0 0 u
~r Al por
H(Z)= { 0 0 1 —)\ € Sps(Z) . (2.1)
(\o 0 0 1

The group I'eo/{%12} is called the Jacobi group in [EZ].
Definition. A holomorphic function

#(r,z):  xC—>C
19 called a Jacobi form of indez m € N and weight k if the function $(Z) =

&(7, 2)ezp(2mi mw) on the Siegel upper half-space Hy is a modular form of weight
k with respect to the integral parabolic subgroup I':
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1. $|k M=¢ for any M € T';
2. The function has the Fourier ezpansion

#(r, z) = z f(n, ) exp (2mi (n7 + 12)), (2.2)
nl€Z na>0
4nm>1?

i.e., $(2) is holomorphic at “oo”.
We call the function ¢ a Jacobi cusp form if we have the strict inequality N =

(17/12 l r/;?:) > 0 in the last summation. We shall denote the space of all Jacobi

forms or all Jacobi cusp forms of index m and weight k£ by ‘.m;f,m or 6 ,{,m.
For generators of the group I' ., a Jacobi form ¢ of weight k and index m satisfies
the following functional equations

2miemz? ar +b z

¢(r, 2) = (CT+d)_k exp( ct+d )d)(cr-i-d’ et +d

);
¢(7,2) = exp (2mi m(A27 + 2X2))é(T, 2z + AT + 1)

b
d
equivalent to the definition given in [EZ].

The construction of the lifting will be described in terms of a Hecke ring of the
parabolic subgroup I'e,. Note here, that ' is not reductive. We shall consider
this ring as a non-commutative extension of the Hecke ring of Spy(Z). First of all
let us recall the definition of an abstract Hecke ring.

for any ) € SLy(Z) and any u, A € Z. This shows us that the definition is

Definition. A pair (I', G), where T is a subgroup of a semigroup G, is called a
Hecke pair if any double coset T'gI' (¢ € G) is the union of a finite number of
left and right cosets relative to I'. The Hecke ring H (T, G) of the pair (T, G) is
the I'-invariant subspace of the Q-vector space consisting of all formal finite linear
combinations X = Y. a;T'gi (ai € Q, ¢gi € G), where a representation of the group
I' on this space is defined by the right multiplication X — X -y = 3, a; T'(gi7). For
any two elements of this space X =37, a;Th; and Y =3 ;b;T'g; their product
is defined by X -V = 3, - a;b; T'(hig;). The product is independent of the choice
of representatives g;, h; and H(I', G) is an associative ring.

It is evident that the elements T'gl' = . T'g; (g € G) form a basis of the vector
space H (T, G).
Let us define two Hecke rings

H(T) = Ho(Spa(Z),GSps(Q))  and  H(le) = Ho(Teo, GT(Q)),

where

GSps(Q) = {g € My(Q) : *gWig = pu(g)W1, pulg) € Q*}

is the group of rational symplectic similitudes and GT o (Q) its parabolic subgroup
of type I'o. If X € H(T'), then according to the elementary divisors theorem one
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can represent X in the form X = )", a;T'gi, where g; € GI'wo(Q) and a; € Q. It
easy to see that the map

Im: X = Z a;Lgi — Z: a;T oo gi (2.3)

is a homomorphic embedding of the Hecke ring H(T') into H(T'w) (see [G3], [G4]
for more general constructions) and we shall identify the ring H(I") with its image
in H(T'w). Thus the Hecke ring of the parabolic group might be viewed as its
non-commutative extension.

The ring H(I'« ) contains also a subring isomorphic to the Hecke ring H(SL,(Z)):

H(T) —I1™ H(To) o H(SLy(Z)). (2.4)
It is enough to define the embedding j_ for the generators
T(p) = SLy(Z)diag(1,p)SLe(Z) and T(p,p) = SL2(Z)diag(p,p)SL2(Z)

of the ring H(SLz(Z), M (Z)), where M, (Z) is the semigroup of integral matrices
with positive determinant. By definition we have

T_(p) := j_(T(p)) = Feodiag(l, p, p, 1)T oo,
T_(p,p) := j—(T(p,p)) = Poodiag(p, p’,p, 1)Teo.

The statement that the mapping j- is a homomorphic embedding is clear, because
there is a one-to-one correspondence between the left cosets in the decomposition
of the double cosets T(p), T(p,p) and T_(p), A_(p) (see the proof of Lemma 2.1
below).

Our point of view of the ring H(I's) is as an extension of the given Hecke
ring of Spy connected with some arithmetical properties of local L-functions of the
symplectic group. For instance, the local L-function of Sp4 splits in factors over
the ring H(Cw ), which correspond to the local L-function of SL,(see [G2], [G3]).

We have the following representation of the ring H(I' ) on the space of functions,
which are invariant with respect to |g -action of the parabolic subgroup I'e:

Fo F X = Z#(gi)“_sa-' J(gi, 2)"*F(9: < Z >), (2.5)

for any X = Z!- a;l'0gi € H(T). We keep the same normalizing factor as for the
Hecke operators for Sps(Z).

Lemma 2.1. Let ¢(r,2) € E'IR,{‘: be a Jacobi modular form of weight k and indez
t. Let us denote by T_(m) the j_-image in H(T'«) of the standard Hecke element

T54(m) = Y SLy(Z)diag(e, f)SLa(Z).

ef=m

elf
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Then
¢lx T-(m) := (¢lx T-(m))(Z) ezp(—2mimtw) € M{ .. (2.6)

Proof. The holomorphic function on Hj, (Iﬂk T_(m))(Z) is invariant with respect

to the action of I'e. Let us take the standard decomposition of the Hecke element
T(m) into the sum of the left cosets

T (m) = ) SLy(Z (0 3)

ad=m
bmodd
thus
a 0 b 0O
0 m 0 O
;PmOOdO
bmodd 0 0 01
By the definition
a 0 b 0
0m00<1'z>_“—’;"—baz
0 0 4 0 z w) 7\ az mw )’
0 0 0 1

therefore the function

(Bl T-(m)(2) =m**=* 3~ akg(=
ad=m
bmodd

,az)exp (2mi miw)

(compare with the definition (2), §4 in [EZ]) corresponds to a Jacobi form of index
mt.

There are two other types of commutative rings of Hecke operators acting on the
space of Jacobi forms. They keep the index of Jacobi invariant or divide it by m
(see [EZ], [G3], [G4]).

In the next theorem we construct an injective map from the space of Jacobi forms
of index ¢t > 1 and weight k (i.e., from the space of modular forms on the parabolic
subgroup I's) into the space of modular forms with respect to the paramodular
group I'[t] of level ¢.

Theorem 3. Let ¢(7,z) be a Jacobi cusp form of weight k and indez t > 1 with

the Fourier ezpansion

$(r,z2)= > f(n,l)exp (2mi(nr +12)).
ni€Z n>0
4nt>3

Then the following function

(ry2,w) = z m2=* (¢ |x T-(m))(, z) exp (2mi tmw)
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is a cusp form of weight k with respect to the paramodular group T'[t].

Firstly we make some remarks about this theorem.

If index t = 1, the map ¢ - G4 coincides with the well-known Maass or Saito-
Kurokawa lifting (see [EZ)]). The theorem shows that the Maass lifting is only the
first member in the infinite series of liftings connected with Jacobi forms. Thus for
any Siegel modular form

F(r,z,w) = Z (7, 2) exp (2mimw)
m21

we can construct an infinite series of lifted functions Fy,_ , that define a “section”
of the following infinite product

F - (Gy,) € ]_[ M (T[m)).
meN

We may rewrite at least formally the definition of the form G4 using multiplicative
notation. Let ¢(Z) = ¢(7, z)exp (2mitw). Then formally

Go(Z) =k Y m**T_(m) = g1k [[O] p*T-(p%)) =

p d=1

¢l ] = T-(p)p*~* + T-(p,p)p* %), (2.7)

where the p-factor in the infinite product is the j_-image of the Hecke polynomial
QfL(X) = 1-T(p) X +pT(p,p)X? for SL,(Z). We cannot define the global operator
L-function j_(L5%2(k-2)) = I1, 7-(Qp(p*~*))71, but (2.7) shows us that the form
G4 has a multiplicative structure. From this point of view, the function G4(Z) is
a generalization of the classical even theta-function! To make this remark clear let
us define the theta-series in the same terms. Let H(®(SLy) = H(SL2(Z), SL:(Q))
be the “even” Hecke of SL; and H(T'o) = H(To(Z),[o(Q)) be the Hecke ring of
:*61 ::1 } As in the case of Spy(Z) (see (2.3))
we can define an embedding of the first Hecke ring into the second H(SL;) —
H(Ip). We may continue the comparison with (2.4) and define an embedding of
the multiplicative semigroup N™! or, more general, the formal group ring Q[N~!]
(we have to distinguish generators and coefficients!) into the Hecke ring H(I'g). By
definition

its parabolic subgroup T’y = {(

n~! :) [‘n-l] =T (8 n(.)..l) o =To (7(; n(ll) € H(lo).

The ring Q[N™!] is the Hecke ring H({1}, N™!) of the trivial group, consisting only
of the identity. Thus we have the full analogy with the situation described in (2.4).

We can interpret Z-periodic functions of the complex variable 7 as automorphic
functions with respect to the parabolic subgroup I'y C SL2(Z) (compare with the
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definition of the Jacobi forms). If we take the representation of the Hecke ring
H(T'o) on the space of Z-periodic functions (i.e., automorphic with respect to I'g)
we obtain, for instance, that exp (27:7)|[n™!] = exp (2rin®7). As a consequence,
we can represent the classical theta-function as a sum over a semigroup of the Hecke
operators {[n™!], n € N} instead of as a sum over the lattice Z. Namely,

6(r) = Z exp (2min®7t) =142 2 exp (2miT)| [n 7],
neZ [n—t]eH({1},N"1)

or using the same formal notation as above we have

6(t) =1+ 2exp (2mi 7)| H(l —p7 )7 = 14 2exp (27 7)| 5= (C(1)).

We see that the lifting (2.7) is a generalization of the last formal identity, where
we have taken the formal operator Hecke L-function j_(L52(k —2)) instead of the
operator Rieman zeta-function j_({(1)). (Note once more that these function do
not exist.) Using this analogy between the theta-series and the Jacobi lifting we
constructed a holomorphic analytic continuation of Spin-L-function of the Siegel
modular form for Sp(4) taking the Rankin-Selberg convolution of a Siegel modular
form with a lifted form (see [G2]).

We note that there exists a variant of the Jacobi lifting for Eisenstein series. In
this case we have to restrict ourselves with weights & > 4.

Proof of Theorem 8. The convergence of the series defining G4 follows from the
estimation of Jacobi cusp forms of weight k¥ and index t on H; x C:

|6(r, 2)] < Cv™¥ exp(2mty? [v),

where v =Im7 > 0, y = Im z and the constant C does not depend on 7 and 2. To
prove the last inequality we take the function

$*(1,2) = viexp(=2ty%/v)|¢(r, 2)!.

The function ¢* is I'p-invariant and is bounded on any compact subset in H; x C.
We may take the following realization of the fundamental domain of I'o, on H; x C

D={(r,ar+0): -1<a,8<1, 7€ SLy(Z)\ H, }.

The function ¢* is bounded on the set {r € D,Im7 > C} since ¢*(r,z) — 0 as
v — oo for any cusp form.

The function G4(Z) is given by its Fourier-Jacobi expansion. The Jacobi forms
in the summation have indexes divided by t (see Lemma 2.1). Thus G is invariant
with respect to the parabolic subgroup I'[t] = T'o(Q) NT'[t], which is generated
by the integral parabolic subgroup I'e, and the element

100 0
0 1 0 t1
V=19 01 o |
000 1
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which belongs to the center of the rational Heisenberg group (see (2.1)) Let us
calculate the Fourier expansion of G4 at infinity. In accordance with the proof of
Lemma 2.1

ar + b

Bk T—(m) = m?*3 Z d=* Z Z f(n,Dexp(2ri(n + laz)).
ad=m n,d b modd
atn>03

Taking the sum over b mod d and over all m we get

G4(2) = Z Z ak? Z f(dny, D) exp (271 (n1ar + alz + adtw))

m>1ad=m n,!
4tdn, >3

= Z Z: a"_lf(’:l—,:,é)exp(%ri(nr+lz-|-mtw)).

n,l a|(n,l,m)
4tmn>1?

This expansion shows us that G4(7, z,w) is invariant under the change of the vari-
ables {r = tw, z =+ z, w = t~!7}. The element

_[('U: 0 _ (0o Vi
Vtu-(o U;)’ where U'_(\/f 0 ,

realizes this transformation. Hence
Gals Vi = (-1)*Gy. (2.8)

Moreover we have G| J; = G, where

0 0 1 0
0 o0 o0 ¢!
=11 0 0 o0
0 -t 0 O
is the element from the group I'[t], since
0 010
0 1 00
VIV I = Jy, where [ = 100 0 €.
0 0 0 1

We finish the proof that G4 is a modular form with the next lemma.
Lemma 2.2. The group ['x[t] and the element J, generate I'[t].

Proof. It is more natural to prove this lemma in terms of the integral paramodular
group. We have to show that

1 0 b =zt
- 0 1 - -y 1
J=It ]JII1= (_12 02)’ Ii IPOO[t]If={g= Oy 0 :; ;t }1 (29)
0 0 0 1
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where z,y, z € Z, generate the group
TO[t):= I7'T[t]] = {g € Ma(Z): ‘gWig = W,}.
(The index () means “integral”.) Note that we consider here the transposition

of the paramodular group Sp(W;,Z) from §1. For the elements of I; ' Too[t]1; we
have

1 yt 0 0

- 0 1 0 0
JgJ1 = 0 -zt 1 0 (2.10)

-z -z -y 1

0 1 1 1
< Teoft], J > contains two copies of SLy(Z). The first copy is a subgroup of
I7'Too[t]1; defined in (2.1) and the second is the group of elements of type

The group SL;(Z) is generated by the elements (1 1) and (1 0) , thus

(2.11)

oo O e
O ©oRr O
O = OO
RO o O

The skew-symmetric form W, defines the following scalar product on Z*;

<X,Y>,=det($l $3)+tdet(I2 ""‘),
Vi y3 Y2 Y4

where X = *(x1,z2,23,%4)-

For any X € Z* we denote by div(X) the natural number generates the ideal
{< X,Y >,, Y € Z*}. The integral paramodular group leaves the linear form
< +,+ > invariant, therefore

div(gX) =div(X) for geTO[¢).

This is a divisor of the level of the group t.

Any primitive vector (the greatest common divisor of its entries has to be equal
to one) could be reduced by the multiplication by an element of type (2.9) to a
vector X with g.c.d.(z2, z4) = 1. Using the elements of SL.-types we may reduce
the vector X to the form X = *(z,1,0,0). Using an element (2.10) we redude z
mod . Consequently, we have proved the following

Lemma 2.3. For a primitive integral vector X € Z* the orbit T()[t]. X contains
an element of the form *(d,1,0,0), where d = div(X) is a divisor of t.

Let us take v € T)[t] and denote by X; the j-th column of the matrix v and
by X;; its i-th element. X, is a primitive vector of the lattice Z. According to the
definition of the group I‘(")[t] we have < X3,X; >=0, < X32,X3 >=0,
< X,,X4 >1=t. Reducing X, to the form *(d,1,0,0) and taking into account the
last three equalities one can see, that d = t (if not, then the third row of ~ is not
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primitive). Multiplying by an element of type (2.11) we can reduce X3 to the form
*(0,1,0,0). An element v € T()[t] with the such second column belongs to the
parabolic subgroup I} 'T's[#]1;. The lemma is proved.

Remark. The proof shows us that any v € I'"?[¢] has the form

*  tx kI
¥ k% x

T= ]« tx x tx € My(Z).
*  * ¥ Xk

This explain the particular form of the elements from the group I'[t], which is
conjugate to T9[¢].

To prove that the lifting of a Jacobi cusp form gives us a cusp form with respect
to the group I'[t] we need to describe the Satake compactification of the quotient
space ['[t]\H (see, for example, [HKW1}, where the case of prime t was considered,
or [BB], [N] for the general theory of the Satake compactification).

The Siegel upper-half plane Hj is isomorphic to a boundary domain

D = {W ='W € MQ(C), 1; — WW) 0}
This isomorphism is given by the Cayley transformation
Z - (Z —i13)(Z +1i15)7 1,

which one may use to define the corresponding action of Sps(R) on By. A maximal
connected complex analytic set in the boundary I, = D; \ D, is called a proper
boundary component of D,. If g € Sp,(R), then either g(F) = F or the intersection
of g(F) with F is empty.

There is a one-to-one correspondence between the sets of boundary components
and the sets of isotropic subspaces in the four dimensional vector space R* equipped

with the standard symplectic form J = 0 12) . For W € D, we denote by

-1, 0
Is (W) the real linear space dual to Ker ¥y, where

.4 2 - i1+ W)
Yw:R*=-C, XX (12_W .

One can prove, that Is (W) is isotropic with respect to the skew-symmetric form
J and does not depend on the point W, but only on the boundary component B
containing W. Moreover, Is (g(B)) = g(Is (B)), where g acts on R%, considered as a
set of column vectors. In the case of the group Sp, we have two types of the proper
boundary components: points and components of dimension one.

A boundary component B’ is said to be adjacent to another boundary component
B if B' C B. It is equivalent to say, that Is(B’) D Is(B).

For example, we have the following standard boundary components By = {1;}
with Is(Be) = ¥(1,0,0,0)R + ¥(0,1,0,0)R and B, = {(tg (1)), lw] < 1} with

Is(B;) =%0,1,0,0)R. It is clear, that By is adjacent to Bj.
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A boundary component B is called rational if the isotropic space Is ( B) or, equiv-
alently, its stabilizing subgroup

P(B) = {g € Sp4(R): ¢(B) = B}

is defined over Q. If B is an arbitrary rational boundary component of Dy, then
there are an index 1 = 0 or 1 and an element g € Sp,(Z) such that g(B;) = B.

We call the union
o = [[B]ID.
B

where B runs over the proper rational boundary components of D;, the rational
closure of ;.

There is a realization of D, as an unbounded Siegel domain of third kind D{B)
corresponding to a boundary component B. Let us consider Dy as a subset of its
compact dual %, which can be realized as the space of all two-dimensional isotropic
vector subspaces of C'. For any boundary component B there exists the “partial
Cayley transformation” with respect to B which transforms B into the variety at
infinity D§ \ Sym(2), where Sym(2) is isomorphic to the space of the complex (2 x 2)-
symmetric matrices, and I, onto the unbounded domain in Sym(2) (see [BB]). For
example, for the boundary component B

D(Bl)={2=(: :)EHQ, reH, NB]}

Let us take a cylindrical topology on ]Dgr). In this topology we have the following
notion of convergence:

H29Zn=(:" z")—}‘reﬁﬂl ~ B, asn—= o0

n wﬂ

iff 7, - 7 and Imw, — {Im7,)"'(Imz,)? = oco. It is known that the group
I'[t] acts on ]Dgr) properly discontinuously in the cylindrical topology, the quotient
I[¢] \]Dgr) with its quotient topology is compact and I'[¢] \ D; is an open dense
subset of it. I[¢] \Dgr) is called the Satake-Baily-Borel compactification.

If F is a modular form of weight k with respect to I'[t], then it extends to a modu-
lar form on a 1-dimensional boundary component B. We denote this form as & g(F).
This is the modular form of weight k with respect to the group I'(B) C SL,(Q)
which is the image of I'[t] N P(B) in P(B)/S(B), where S(B) is the subgroup of
the elements in P(B) acting trivially on B. We call the operator @5 the Siegel
operator corresponding to the boundary component B. For example,

8a,(F) = folr) = Jim P(§ )

v=—00 v

fo(7) is the modular form with respect to I'(B;) = SL2(Z) and is equal to the zeroth
coefficient of the Fourier-Jacobi expansion of F' with respect to w (i.e., the expansion
along B;). The following formal property follows directly from the definition

®,p(F)og= 2p(Flig)

for any g € Sp,(Q), where F|ig is the modular from of weight k with respect to
-1
9~ 'T[tlg.
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Definition. Let F be a modular form with respect to the paramodular group T'[t].
If ®p(F) = 0 for any 1-dimensional boundary component B, then F is called a
cusp form.

We have seen that to understand the structure of the Satake compactification
we need to define the action of the paramodular group I'{¢] on the set of rational
isotropic subspaces. In Lemma 2.3 we have described the I'[t]-orbits on the integral
lattice. A vector | = *(vy,va,v3,tvs) € L is called primitive, if vy, vy, va, v4 are
coprime. We may reformulate the statement of Lemma 2.3 in the following form

Lemma 2.3’. For any primitive vector | € L, the orbit T[t]l contains one and
only one element of the forms %(1,0,0,0), ¥(0,1,0,0) or *(d,1,0,0), where d is a
non-trivial (# 1,t) divisor of t.

Corollary 2.4. The number of the 1-dimensional components of the Satake com-
pactification of the quotient T'[t]\ Hy i3 equal to the number of divisors of t.

Corollary 2.5. For any l-dimensional boundary component B there ezist a "di-
agonal” element

M= (0 iy esn@

and v € I'[t] such that M~(B) = B,.
Let us finish the proof of Theorem 3.

Proof that G4 13 a cusp form. Let us take a 1-dimensional boundary component B.
In accordance with Corollary 2.5 there exists a diagonal element M and v € T'[t]
such that M~(B) = B;. In accordance with the definition of the Siegel operator

®p(Gg)o (My)™' =85, (Goley ™' M™') = &, (Gylx M)

The form G4 is defined by its Fourier-Jacobi expansion, corresponding to the stan-
dard boundary component By. The restriction ®5,(G4) = 0 and the Fourier ex-
pansion of G4 at Bg (this is the 0-cusp of the 1-dimensional boundary component

By)
Gy(Z) = Z a(N)exp (2mitr(NZ))
N>0

has no coefficients with degenerate N, because ¢ is a cusp form. The action of
any “diagonal” element M keeps the type of Fourier expansion, i.e., the function
G4l M has no Fourier coefficients with degenerate indices. Thus ® g, (G4|¢M) =0
and G¢(Z) is a cusp form. Theorem 3 is proved.

In the proof of the theorem we have seen that the lifting has an additional
invariant property (see (2.8)). The group

I*[] = T[¢] UT[¢]V; C Spa(R)

is a normal extension of the group I'[¢] of index 2. In the case of ¢t = d* this group
is conjugate to a subgroup of Sp4(Z).



16 VALERI GRITSENKO

Corollary 2.6. Let us assume that weight k of a Jacobi form ¢ is even. Then the
lifting G4, constructed in Theorem 8, 13 a modular form of weight k with respect to
the group T*[t].

Note that the group I'*[ p] is the maximal real normal extension of the paramod-
ular group I'[p] for a prime p.

§3 THE QUOTIENTS OF SYMMETRIC DOMAINS

Basic to the geometric applications of the theory of automorphic forms is the
fact that automorphic forms of special weights correspond to sections of canonical
or pluricanonical line bundles on algebraic varieties.

Let H%( Ay, Q3(A;)) be the space of holomorphic 3-forms on the moduli space
Ay =T [¢]\ H. For any w € H°(A,, Q3(A;)) we may write it in the form

w=F(Z)dZ, dZ =dr Adz A dw,

where F € M3 (T'(™)[¢]) is a modular form of weight 3 with respect to T'(™)[¢].

The complex variety A, is not compact and has a lot of singularities. We have
the following nice criterion, due to E. Freitag, about continuation of canonical
differential forms on a singular variety to its non-singular model. This criterion is
quite general, but we formulate it only for the case of A,.

Criterion. (Freitag) An element w € H°( Ay, Q3(A¢)) can be eztended to a canon-
ical differential form on a non-singular model A, of a compactification of Ay if
and only if the differential form w is square integrable.

Proof. See [F], Hilfsatz 3.2.1.

It is well known that wp = F(Z)dZ is square-integrable for the cusp form F.
Thus we have the following identity for the geometrical genus of the variety A;:

Po(Ar) = B*°(A,) = dime M P(T]1]).
Lemma 3.1. For any k and t the following tdentity is valid:

dime P (T [8]) = dime MG*P(T[¢]).

Proof. Let us define

= oo

0
0
Cy= 0
-1

SO O -
OO =+ O

0 ¢

It is easy to see, that T(™)[t] = C;'T[t]C;. Thus F|y C; is a cusp form with respect
to T(™)[¢], iff F is a cusp form with respect to I'("™)[¢].

Now we may prove Theorem 2. The lifting of Theorem 3 is injective, because
the first Fourier-Jacobi coefficient of the lifted form G4 does not vanish identically.
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Consequently, we have the following estimation for the geometrical genus of the
moduli variety

Pg(-zt) > dimc 6:{,1-

In accordance with results of [EZ)], [SZ], the dimension of the space of the Jacobi
cusp forms is given by the following formula

-2
. Y {k + 252 — | 5, k is even,
dimc G{,t = { j_ll . t 3 _
2iolk+25 -1} — 5], k is odd,

with m|if m#2 mod12
= { 1B 2 i
(] -1 if m=2 mod 12.
This gives us the estimation of Theorem 2. It is evident that dimg¢ 6,{', = O(t) as
t — oo.
The same formulae show us that there exist cusp forms of weight 2 with respect
to the paramodular group. Using this fact we may prove the following

Theorem 4. Let T be a subgroup of the paramodular group T(™)[¢] which has no
element of the finite order. If the dimension of the space of Jacobi cusp forms of
weight 2 and indez t is positive, then the quotient space M =T\ H, i3 of general
type.

Proof. Let M be a toroidal compactification of M. Since the group T is torsion
free, then according to Tai’s criterion (see [SC]) a pluricanonical differential form

wr = F(2)(d2)®" € HO(M, Q3(M)®"),

where F(Z) is a modular form of weight 3n, could be extended to the compactifica-

tion M if F(Z) vanishes on the boundary with order n. Let G € Qﬂgcuap)(l"("‘)[t])
be a cusp form G(Z) of weight 2 which is the lifting of a Jacobi cusp form of weight
2 and index ¢. For any modular form F € 93,(I") of weight 3n we have that the
form (G(Z))}"F(Z) € My, () vanishes on the boundary with order 3n. Thus

dimc HO(M, Q3(M)®™) > dimeMN, (7).

The last dimension could be easily estimated by Mumford’s extension of the Hirze-
bruch’s proportionality principal (see [M] and [T]). At the end we have that

dimcHO(M, Q5(M)®™) > Cn?,

where the constant C' does not depend on n. Therefore the variety M is of general
type.

We may formulate a natural conjecture

Conjecture. The modult space Ay of abelian surfaces with a polarization of type
(1,) 1s of general type if the dimension of the space of the Jacobi cusp forms of
weight 2 and tndez t 1s positive.

The first such value of ¢ is 37. The maximal ¢ for which dimg¢ 62{1 =01ist = 180.
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