
IRRATIONALITY OF TUE
MODULI SPACES OF POLARIZED

ABELIAN SURFACES

Valeri Gritsenko

-""4

...

St. Petersburg Department Steklov

Mathematical Institute

Fontanka 27

191011 St. Petersburg

Russia

MPI/94-26

Max-Planck-Institut fUr Mathematik

Gottfried-Claren-Straße 26

53225 Bann

Germany





IRRATIONALITY OF THE MODULI SPACES

OF POLARIZED ABELIAN SURFACES

VALERI GRITSENKO

ABSTRACT. The moduli space of abelian Burfaces with non-principal polarization of
type (1, t) is a three dimensional quasi-projective variety. In the paper we construet
holomorphic seetions of the canonical line bundle on a smooth compact model of it
using the theory of Siegel and Jacobi modular forms. It is proved that the moduli
spaces of abelian surfaces with polarization of type (1, t), where t is a natural number
more than or equal to 13 and t #- 14, 15, 16, 20, 24, 30, 36, are not unirationaL

§1. MODULI SPACES OF ABELIAN SURFACES.

Let 5 = Cl /L be an abelian surface, where L is a free Z-module of rank 4, and
let L be a ample line bundle on it (i.e., a line bundle for which the sections of some
power embed the surface in a projective space). The integral alternating bilinear
form W representing the first ehern dass of the line bundle L may be reduced to
the following normal form

where t 1 , t2 E N and t1 is a divisor of t2 . The pair (S,.c) is called a polarized
abelian surface. The pair (tl, t2) uniquely determined by L is called the type of
polarization. The period matrix Sls of 5, which is the matrix whose rows are the
basis vectors of L, may be written as

where Zs belongs to the Siegel upper half space of degree two

EI2 = {Z = tz E M 2 (C), Im (Z) > O}.

The point Zs is defined up to the action of the group of linear isomorphisms of L
preserving the alternating form WT. Let us define the integral symplectic group of
this form
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2 VALERI GRITSENKO

This group is conjugate to the following subgroup of the usual rational symplectic
group Sp4(Q) (the case of T = 12 )

(
12

where IT = 0

(The index m means "moduli" .) For example, if T = diag(l, t) (i.e., t l = 1, t 2 = t)
this group consists of the following elements

(1.1 )

where all * denote integral numbers. The real symplectic group acts on the Siegel
upper-half space as the group of fractional-linear transformations

M < Z >= (AZ + B)(CZ + D)-l,

The quotient space
AT = r<m)[T] \ Eh

is the coarse moduli space of abelian surfaces with polarization of type (tl, t 2 ) (see
[I], [H1(W1]). Without loss of generality we shall consider only the case of the
polarizations of type (1, t) and we put instead of T the index t in all our notation
like Wt, It , r(m) [t], At.

It is known, that Al (the moduli space of abelian surfaces with principal polar
ization), A2 , A3 , At, As , A7 , Ag are rational or unirational (see [I], [O'G], [BL]).
For t = 5 a finite covering of As is connected with the famous Horrocks-Mumford
vector bundle (see [HKW1]). In this paper we prove the following main theorem,
which is quite opposite to these examples.

Theorem 1. Let At be a non-singular model 0/ a compactijication 0/ the moduli
space At 0/ abelian sur/aces with polarization 0/ type (1, t). The variety At is not
unirational i/ t ~ 13 and t =/:14, 15, 16, 18, 20, 24, 30, 36.

To pr~ve this result we shall construct sections of the canonicalline bundle of the
variety At using the theory of Siegel modular forms. It will give us an estinlation
from below of the geometrical genus of the variety.

Theorem 2. Let Pg(t) = dirncH3,O(At) be the geometrical genus 0/ a smooth

compactijication At 0/ the moduli space 0/ abelian sur/aces with polarization 0/ type
(1, t). The /ollowing inequality is va'lid

t-l '2

Pg(t) 2:: L {2j + 2}12 - l~t J,
;=1

where

{} { l~J
m 12= l~J-1

i/ m =t 2 mod 12,

i/ m =2 mod 12,
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and lxJ is the integral part 01 x.

For instance pg(13) 2: 1, pg(29) 2: 2, pg(37) ? 4, pg(53) 2: 5. Theorem 1 is a
corollary of Theorem 2. The genus Pg (t) could be zero only for the special values
of t mentioned in Theorem 1. The estimation of Theorem 2 gives us even more.

Corollary 1. The geometrical genus 01 At tends to infinity as t ~ 00. More

exactly, Pg(t) > C as t ~ 00, where the constant C does not depend on t.
t

For any smooth compact variety X one may define the Kodaira dimension of X
through the transcendence degree of its canonical ring

00

K(X) = tr. deg EB HO(X, nKx) - 1.
n=O

The Kodaira dimension is abirational invariant of X. If the geometrical genus of
X is strictly greater than one, then the I(odaira dimension of X is positive. The
estimation of Theorem 2 gives us the following

Corollary 2. The Kodaira dimension 01 At is positive il t 2: 29 and t =1= 30, 32,
35, 36, 40, 42, 48, 60.

U is known that the I(odaira dimension K(X) is not more than the dimension of
the variety X. H K (X) = dirn X, then X is said to be of general type.

The Kodaira dimension is known for some moduli spaces of abelian surfaces for
which the moduli group is a subgroup of the Siegel modular group Sp4(Z), The
group r( m) [ t] is conjugate to a subgroup of SP4 (Z) only in the case of perfect
squares. If t = cf2, then

*
(compare with (1.1)). Thus the moduli space Ad2 is a finite covering of the ra
tional variety Al of abelian sUlfaces with principal polarization. Using this fact
K. O'Grady proved, that A p 2 is of general type for any prime p 2: 17 (see [O'G]).

The geometrical type of the moduli space A~ev of abelian sUlfaces with poladza
tion of type (1, p) (p is a prime) and with an additionallevel structure is investigated
by K. Hulek and G. K. Sankaran in [HS]. A~ev is isomorphie to r~ev \ IHI2 , where

The moduli space A;ev is a ramified covering of the moduli spaee Ap of degree

P(P~-l) and a ramified covering of the rational moduli space Al of degree P(P:-l).

In [HS] they proved that for P ~ 41 the variety A~ev is of general type, using
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the classification of singularities of a toroidal compactification of r p \ IHh glven In
[HKW2].

In this paper we shall construct examples of cusp forms of weight 3 with respect
to the paramodular group r(m) [t], which give us canonical differential forms on

At. Dur method does not depend on the resolution of singularities of a compact
ification of the moduli space. Moreover, using our result it is possible to improve
the mentioned results of [O'G] and [HS]. We shall come back to these questions in
a future paper.

The statement of Theorem 1 for a square-free t was proved in [Gl] using a
reduction to a very particular case of moduli spaces of polarized K3 surfaces. In
this paper we follow a more direct method.

The author is indebted to D. Zagier and G. K. Sankaran for helpful conversations.
I am grateful to the Max-Planck-Institut für Mathematik in Bonn for hospitality
and excellent working conditions.

§2 SIEGEL MODULAR FROMS AND JACOBI LIFTING

We remind the definition of modular forms with respect to Sp4(Z).

Definition. A holomorphic Junction F(Z) on the Siegel upper halJ-space IHI2 is
called a Siegel modular form oJ weight k with respect to Sp4(Z) iJ the Jollowing
condition is satisfied

Flk g(Z) := J(g, Z)-k F(g < Z » = F(Z), J(9, Z) = det (CZ +D),

foranyg=(~ ~)ESP4(Z).

Analogously one cau define the space DJh(r) of all modular forms of weight k
with respect to an arithmetic subgroup r of Sp4(Q). In this chapter we construct
modular forms with respect to the group

where all * denote integral numbers and t means the transposition.

Let us take the decomposition of the matrix Z = (: ~) E 1lI2 , where T, w E ilI)

He in the usual upper half-plane. The Fourier-Jacobi expansion of F is its Fourier
expansion with respect to the variable w

F(r,z,w) = /o(r) + L /m(r,z)exp(21rimw))
m~l

where r E Eh and z E C. The fUllction / m (r, z) being S L2-modular form in r for a
fixed z and a Jacobi function in z is an example of Jacobi modular forms of index
m. We shall construct a lifting from the space of Jacobi modular forms of index t to
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the spaee of modular forms with respeet to the grotlp r[ t] on the Siegel upper-half
spaee IHb.

To define this lifting we need the notions of Jacobi forms and eorresponding
Hecke rings.

The Satake eompactifieation of the quotient space Sp4(Z) \ IHb has two boundary
components: the eurve S L2(Z) \ EIl and the point 00. The funetion 10 (T) is equal
to the restrietion of the modular form F(Z) to the boundary eurve. The Fourier
Jacobi expansion, deseribing the behaviour of the form F near the boundary eurve,
corresponds to the Fourier expansion with respeet to the maximal parabolie sub
group defining the boundary eurve (see [BB]). From this point of view the funetion
j(Z) = Im(T, z)exp (21Tiw) is nothing else hut a modular form with respeet to the
parabolie subgroup

consisting of the elements whieh preserve an isotropie line:

(!Ik ,)(Z) = !(Z) for, E r 00.

It is easy to see that

where H(Z) is the integral Heisenberg group, i.e., the eentral extension of the
abelian group Z x Z

o-+ Z -+ H(Z) -+ Z x Z -+ O.

We have the following realizations of these two groups as subgroups of r 00:

SL2(Z)~ { U0 b DE SP4(Z)} '
1 0
0 d
0 0

H(Z)~ { (1 0 0

~A) ESP4(Z)}.
1 1J (2.1)
0 1
0 0

The group r oo/{±12 } is ealled the Jacobi group in [EZ].

Definition. A holamorphie funetion

is called a Jaeobi form of index m E N and weight k if the function ;j(Z) 
4>(T, Z )exp(21Ti mw) on the Siegel upper half-spaee Eh is a modular form of weight
k with respect to the integml pambolie subgroup r 00:
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1. J'lk M = J' for any M E r 00;

2. The funetion has the Fourier eX]Xlnsion

tP(r, z) = L f(n, I) exp (2;rri (nr +1z)),
n,IEZ, n~O

4nm~l:l

(2.2)

i.e., J'(Z) is holamorphie at "00".

We call the function tP a Jacobi cusp form if we have the strict inequality N =
(1/2 1(;) > 0 in the last summation. We shall denote the space of all Jacobi

forms or all Jacobi cusp forms of index m and weight k by r;nf m or si m'

For generators of the group r 00 a J acobi form tP of weight k ~d index'm satisfies
the following functional equations

k 2;rricmz2 ar + b z
tP(r, z) = (cr + d)- exp( - d )tP( d' d)'

cr + cr + er +

tP(r, z) = exp (2;rri m().2 r +2).z))cP(r, z +).r + J-l)

for any (~ ~) E S L 2 (Z) and any 1', A E Z. This shows us that the definition is

equivalent to the definition given in [EZ].
The construction of the lifting will be described in terms of a Hecke ring of the

parabolic subgroup r 00' Note here, that r 00 is not reductive. We shall consider
this ring as a non-commutative extension of the Hecke ring of Sp4(Z), First of all
let us recall the definition of an abstract Hecke ring.

Definition. A pair (r, G), where r is a subgroup of a semigroup G, is called a
Hecke pair if any double coset rgr (g E G) is the union of a finite number of
left and right cosets relative to r. The Hecke ring 1i (r, G) of the pair (r, G) is
the r -invariant subspace of the ~vector space consisting of all formal finite linear
combinations X = L:i ai rgi (ai E Q, gi E G), where a representation of the group
r on this space is defined by the right multiplication X ~ X" = l:i ai r(gi')' For
auy two elements of this space X = L:i ai rh i and Y = L: j bj rgj their product
is defined by X . Y = L:i,j aibj r(hi9j). The product is independent of the choice
of representatives gi, h j and 1l(r 1 G) is an associative ring.

It is evident that the elements rgr = Ei rg i (g E G) form a basis of the vector
space 1i (r 1 G).

Let us deBne two Hecke rings

and

where
GSp4(Q) = {g E M 4 (Q): tgw1g = J-l(g)W1, J-l(g) E Q+}

ia the group of rational symplectic similitudes and Groo(Q) its parabolic subgroup
of type r 00' If X E 1l(r), then according to the elementary divisors theorem one
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can represent X in the form X = L:i aifgi, where 9i E Cfoo(Q) and ai E Q. It
easy to see that the map

(2.3)

is a homomorphic embedding of the Hecke ring 1-l(f) into 1-l(f(0) (see [G3], [G4]
for more general constructions) and we shall identify the ring 1-l(f) with its image
in 1-l(f(0)' Thus the Hecke ring of the parabolic group might be viewed as its
non-commutative extension.

The ring 1-l(f (0) contains also a subring isomorphie to the Hecke ring 1-l(SL 2 (Z )):

(2.4)

It is enough to define the embedding j_ for the generators

T(p) = SL2(Z)diag(1,p)SL 2(Z) and T(p,p) = SL2 (Z)diag(p,p)SL 2 (Z)

of the ring 1-l(SL2 (Z), Mi(Z)), where Mi(Z) is the semigroup of integral matrices
with positive determinant. By definition we have

T_(p) := j_(T(p)) = f oodiag(l,p,p, l)f00,

T_(p,p) := j_(T(p,p)) = f oodiag(p,p2 ,p, l)f00'

The statement that the mapping j_ is a homomorphic embedding is dear, because
there is a one-to-one correspondence between the left cosets in the decomposition
of the double cosets T(p), T(p,p) and T_(p), A_(p) (see the proof of Lemma 2.1
beIow).

Gur point of view of the ring 1-l(f(0) is as an extension of the given Hecke
ring of SP4 connected with some arithmetical properties of Iocal L-functions of the
symplectic group. For instance, the loeal L-function of SP4 splits in factors over
the ring 1-l(f(0)' which correspond to the Ioeal L-function of SL2 (see [G2], [G3]).

We have the following representation of the ring 1-l(f(0) on the spaee offunctions,
which are invariant with respect to lk -action of the parabolic subgroup f 00:

for any X = L:i aifoogi E 1-l(f(0)' We keep the same normalizing factor as for the
Hecke operators for Sp4(Z),

Lemma 2.1. Let 4>(T, z) E fJJtt t be a Jacob i modular form 0 f weight k and index
t. Let 'Us denot e by T _ (m) the j_-image in 11.(f(0) 0 f th e standard Heeke element

TSL(m) = L SL2 (Z)diag(e, j)SL2 (Z).
e/=m

elf
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Proof. The holomorphic function on EI2 , (~Ik T_(m))(Z) is invariant with respect
to the action of r 00' Let us take the standard decomposition of the Hecke element
T( m) into the sum of the left cosets

TSL(m) = .t=m SL2(Z) (~ ~) 1

bmodd

thus

L(m) = a~m r", (~
0 b

D·
m 0
0 d

b mod d 0 0 0

By the definition

(!
0 b

~)«T z»=(~m 0 az )
0 d o z w az mw '
0 0 1

therefore the function

- k "'" k ar + b .(c,6lk T_(m))(Z) = m 2
-3 LJ d- 4;( d ,az)exp (21rt mtw)

ad=m
bmodd

(compare with the definition (2), §4 in [EZ]) corresponds to a Jacobi form of index
mt.

There are two other types of commutative rings of Hecke operators acting on the
space of Jacobi fonns. They keep the index of Jacobi invariant or divide it by m

(see [EZ], [G3], [G4]).
In the next theorem we construct an injective map fram the space of Jacobi farms

of index t ~ 1 and weight k (i.e., from the space of lnodular forms on the parabolic
subgroup r 00) into the space of modular forms with respect to the paramodular
group r[ t] of level t.

Theorem 3. Let c,6(r, z) be a Jacobi cusp form 0/ weight k and index t ~ 1 with
the Fourier eX]Xlnsion

c,6( r, z) = L f(n, 1) exp (2rri (nr + lz)).
n,IEZ, n>O
4nt>l~

Then the /ollowing /unction

00

Gq.(r,z,w) = L m2
-

k (4; Ik T_(m))(r,z) exp (2rritmw)
m=l
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is a c'Usp form 0/ weight k with respect to the paramodular group r[ t].

Firstly we make some remarks about this theorem.
H index t = 1, the map 4> --+ G,p coincides with the well-known Maass 01' Saito

Kurokawa lifting (see [EZ]). The theorem shows that the Maass lifting is only the
first member in the infinite series of liftings connected with Jacohi fonlls. Thus for
any Siegel modular form

F(T,z,w) = :L: fm(T,z)exp (21Timw)
m~l

we can construct an infinite series of lifted functions Firn' that define a "section"
of the following infinite product

F--+ (Glm) E II 9Jlk(r[m]).
mEN

We may rewrite at least formally the definition of the form GtjJ using multiplicative
notation. Let 1(Z) = 4>(T, Z )exp (2rri tw). Then formally

00 00

G,p(Z) = 11k :L: m 2- k T_(m) = ~Ik II(:L:p(2-k)oT_(pO)) =
m=l p 0=1

~Ik II(l - T_(p)p2-k + T_(p,p)p3-2k)-1,
p

(2.7)

where the p-factor in the infinite product is the j_-image of the Hecke polynomial
Q;L(X) = 1-T(p)X+pT(p, p)X2 for SL2 (Z). We cannot define the global operator
L-function j_(LSL2(k_2)) = TI pj_(Qp(p2-k))-1, hut (2.7) shows us that the form
GtjJ has a multiplicative structure. From this point of view, the function G<p(Z) is
a generalization of the classical even theta·function! To make this remark clear let
us define the theta-series in the same terms. Let 1-l(0

) ( S L2) = 1-l(S L 2(Z ), S L2(Q))
be the "even" Hecke of 8L2 and 1-l(ro) = 1-l(ro(Z), fo(Q)) be the Hecke ring of

its parabolic subgroup r o = { (~1 :1)}' As in the case of Sp4(Z) (see (2.3))

we can define an embedding of the first Hecke ring into the second 1-l(8 L 2 ) --+
1-l(ro). We may continue the comparison with (2.4) and define an emhedding of
the multiplicative semigroup N-1

01', more general, the formal group ring Q[N-1 ]

(we have to distinguish generators and coefficients!) into the Hecke ring 1-l(ro). By
definition

The ring Q[N-1 ] is the Hecke ring 1-l({I}, N-1 ) of the trivial group, consisting only
of the identity. Thus we have the fuH analogy with the situation described in (2.4).

We can interpret Z~periodicfunctions of the complex variable T as automorphic
functions with respect to the parabolic subgroup r o c SL2 (Z) (compare with the
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definition of the Jacobi fonus). If we take the representation of the Hecke ring
1l(ro) on the space of Z-periodic functions (Le., automorphic with respect to r o)
we obtain, for instance, that exp (2rri 7)1 [n- l ] = exp (2rri n27). As a consequence,
we can represent the classical theta-function as a surn over a sernigroup of the Hecke
operators {[n-l], n E N} instead of as a surn over the lattice Z. Namely,

8(T) = L exp (2rri n 2 T) = 1 + 2 L exp (2rri 7)1 [n- l
],

nEZ (n- 1]E1l({I},N-l)

01' using the same formal notation as above we have

8(7) = 1 + 2exp (2rri 7)1 II(1 - [P-l])-l = 1 + 2exp (2rri 7)1 )_(((1)).
p

We see that the lifting (2.7) is a generalization of the last formal identity, where
we have taken the formal operator Hecke L-function j _ (LSL

2 (k - 2)) instead of the
operator llieman zeta-function j_(((1)). (Note once more that these function do
not exist.) Using this analogy between the theta-series and the J acobi lifting we
constructed a holomorphic analytic continuation of Spin-L-function of the Siegel
modular form for Sp(4) taking the Rankin-Selberg convolution of a Siegel modular
form with a lifted form (see [G2]).

We note that there exists a variant of the J acobi lifting for Eisenstein series. In
this case we have to restrict ourselves with weights k 2:: 4.

Proo/ 0/ Theorem 9. The convergence of the series defining Gr/> follows from the
estimation of J acobi cusp forms of weight k and index t on IfII xe:

where v = Im T > 0, Y = Im z and the constant C does not depend on 7 and z. To
prove the last inequality we take the function

4>·(7, z) = v!exp( -2ty2 /V)I4>(T, z)].

The function 4>* is r oo-invariant and is bounded on any compact subset in Eh x C.
We may take the following realization of the fundamental domain of r 00 on EIl xe

The function 4>* is bounded on the set {7 E 'D, Im 7 > C} since 4>. (7, z) -+ 0 as
v -+ 00 for any cusp form.

The function Gr/>(Z) is given by its Fourier-Jacobi expansion. The Jacobi forms
in the summation have indexes divided by t (see Lemma 2.1). Thus Gr/> is invariant
with respect to the parabolic subgroup r oo[ t] = r oo(Q) n r[ t], which is generated
by the integral parabolic subgroup r 00 and the element

\7(t) = (~ ~ ~ t~l)o 0 1 0 '
000 1
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which belongs to the center of the rational Heisenberg group (see (2.1)) Let us
calculate the Fourier expansion of G~ at infinity. In accordance with the proof of
Lemma 2.1

A.lk T_ (m) = m 2k - 3 ~ d- k ~ """ f( 1) (2' ( aT + b 1 ))0/ L....J w LJ n, exp 1rt n d + az .
ad=m n,l bmodd

<ttn>l~

Taking the sum over b fiod d and over all m we get

G~(Z) = L L a k
-

1 L f(dnl' 1) exp (21ri (nI aT + alz + adtw))
m'2::1 ad=m n,l

4tdnl >l~

""' ak
-

1 f( nn; , ~) exp (21ri (nT + lz + mtw)).w a a
nIl a[(n,l,m)

4tmn>l~

This expansion shows us that G~(T, z,w) is invariant under the change of the vari
ables {T -+ tw, z -+ z, w -+ t-1T}. The element

t ft __ (tU
a
t UOt) , h U (a Vi-I)"j w ere t = Vi 0 '

realizes this transformation. Hence

(2.8)

Moreover we have G~lk J t = G~, where

(

' 0

J t = a
-1
o

is the element from the group r[ t], since

VtlViI = J t ,

We finish the proof that G~ is a modular form with the next lemma.

Lemma 2.2. The group r oo( t] and the element J t generate r[ t].

Proof. It is more natural to prove this lemma in terms of the integral paramodular
group. We have to show that

(2.9)
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where x, y, z E Z, generate the group

(The index (i) means "integral".) Note that we consider here the transposition
of the paramodular group Sp(Wt ,Z) from §1. For the elements of lt-Iroc[ t )lt we
have

(2.10)JgJ- I
- ( ~- 0

-x ~~t I!)'
The group SL2 (Z) is generated by the elements (~ ~) and (~ ~), thus

< r oc[ t), J > contains two copies of SL2(Z). The first copy is a subgroup of
l;lroc[ t )lt defined in (2.1) and the second is the group of elements of type

(
1 0 0 0)o a 0 b

o ° 1 ° .° c ° d

(2.11 )

The skew-symmetric form W t defines the following scalar product on Z4;

(
Xl< X, Y >,= det
Yl

X3) + tdet (X2
Y3 Y2

where X = '(XI,X2,X3,X4).
For any X E Z4 we denote by div (X) the natural number generates the ideal

{< X, Y >t, Y E Z4}. The integral paramodular group leaves the linear form
< .,. >, invariant, therefore

div (gX) = div (X) for 9 E r(i)[ t).

This is a divisor of the level of the group t.
Any primitive vector (the greatest common divisor of its entries has to be equal

to one) could be reduced by the multiplication by an element of type (2.9) to a
vector X with g.c.d. (X2, X4) = 1. Using the elements of SL2-types we may reduce
the vector X to the form X = t(x, 1,0,0). Using an element (2.10) we redute X

mod t. Consequently, we have proved the following

Lemma 2.3. For a primitive integral vector X E Z4 the orbit r(i)[ t] . X contains
an element ofthe form '(d,l,O,O), rohere d= div(X) is a divisor oft.

Let us take "( E r( i) [ t) and denote by X j the j -th column of the matrix "( and
by Xij its i-th element. X 2 is a prinlitive vector of the lattice Z. According to the
definitionofthegroup r(i){t) wehave <X2 ,XI >t=O, <X2 ,X3 >,=0,
< X 2 ,X4 >t= t. Reducing X 2 to the form '(d, 1,0,0) and taking into account the
last three equalities one can see, that d = t (if not, then the third row of"( is not
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primitive). Multiplying by an element of type (2.11) we can reduce X 2 to the form
t (0, 1, 0, 0). An element I E r( i) [ t] with the such second column belongs to the
parabolic subgroup 1;lroo[ t ]1t . The lemma is proved.

Remark. The proof shows us that any I E r( i) [ t] has the form

This explain the partieular form of the elements from the group r[ t], which is
conjugate to r(i) [t ].

To prove that the lifting of a Jacobi cusp form gives us a cusp form with respect
to the group r[ tl we need to describe the Satake compactification of the quotient
space r [t ] \ JH[2 (see, for exampIe, [HKW1], where the case of priIne t was considered,
01' [BB], [N] for the general theory of the Satake compactification).

The Siegel upper-half plane lHI2 is isomorphie to a boundary domain

~ = {W = tw E M 2 (C); 12 - WW > O}.

This isomorphism is given by the Cayley transfonnation

which one may use to define the corresponding action of Sp4(R) on ~. A maximal
conneeted complex analytic set in the boundary 8JDl..l = [)2 \ ~ is called a proper
boundary component of~. If 9 E SP4 (R), then either g( F) = F 01' the intersection
of g(F) with F is empty.

There is a one-to-one correspondence between the sets of boundary components
and the sets of isotropie subspaces in the foul' dimensional vector spaee IR4 eqwpped

with the standard sympleetic form J = (-~2 ~2). For W E ][))2 we denote by

Is (W) the real linear space dual to I(er Ww, where

One ean prove, that Is (W) is isotropie with respect to the skew-symmetric form
J and does not depend on the point W, but ooly on the boundary component B
containing W. Moreover, Is (g(B)) = g(ls (B)), where 9 acts on IR4, considered as a
set of column vectors. In the case of the group SP4 we have two types of the proper
boundary components: points and components of dimension one.

A boundary component B' is said to be adjacent to another boundary component
B if B' C B. It is equivalent to say, that Is(B') :> Is(B).

For example, we have the following standard boundary components Ba = {12 }

with Is (Bo) = t(l, 0, 0, O)IR. + t(O, 1,0, O)IR. and BI = {(~ ni Iwl < I} with

Is (BI) = t(O, 1,0, O)IR. It is elear, that Ba is adjacent to BI.
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A boundary component B is called rational if the isotropie spaee Is (B) 01', equiv
alently, its stabilizing subgroup

P(B) = {g E SP4(IR): g(B) = B}

is defined over Q. If B is an arbitrary rational boundary eomponent of 102, then
there are an index i = 0 01' 1 and an element 9 E Sp4(Z) such that g(Bi) = B.

We eall the union
~r) = II B II~,

B

where B runs over the proper rational boundary eomponents of Dl , the rational
closure of~ .

There is a realization of D:z as an unbounded Siegel domain of third kind D(B)
eorresponding to a boundary component B. Let us consider 102 as a subset of its
eompaet dual ~, which ean be realized as the spaee of all two-dimensioual isotropie
vector subspaees of et. For any boundary eomponent B there exists the "partial
Cayley transformation" with respeet to B whieh transforms B into the variety at
infinity D2 \Sym(2), where Sym(2) is isomorphie to the space of the eomplex (2 x 2)
symmetrie matriees, and~ outo the unbounded domain in Sym(2) (see [BB]). For
example, for the boundary eomponent BI

JD( B Jl = {Z = (: ~) E 1112 , T E 1lI1 :::; B tl.

Let us take a cylindrieal topology on [)l~r). In this topology we have the following
notion of eonvergenee:

Eh 3 Zn = (Tn zn) --t 7 E JH[I ::::::; BI as n --t 00
Zn W n

iff T n --t T aod Imwn - (ImTn )-I(Imzn )2 --t 00. It is known that the group

r[ t] aets on [)l~r) properly diseontinuously in the eylindrieal topology, the quotient

r[ t] \ [)l~r) with its quotient topology is compaet and r[ t] \ Dz is an open dense

subset of it. r[ t] \ D~r) is ealled the Satake-Baily-Borel eompaetification.
If F is a modular form of weight k with respect to r [t ], then itextends to a ITIodu

lar form on al-dimensional boundary eomponent B. We denote this form as <P B (F).
This is the modular form of weight k with respeet to the group r(B) c SL2 (Q)
which is the image of r[t] n P(B) in P(B)jS(B), where S(B) is the subgroup of
the elements in P(B) aeting triviallyon B. We eall the operator <I- B the Siegel
operator eorresponding to the boundary component B. For example,

<PB1(F) = 10(7) = lim F((07 .0 )).
V-+OCl tV

Jo(T) is the modular form with respect to r(BI ) = SL2 (Z) and is equal to the zeroth
coefficient of the Fourier-Jaeobi expansion of F wi th respeet to W (i .e., the expansion
along BI)' The following formal property follows directly from the definition

ilJgB(F) 0 9 = ilJB(Flkg)

for any 9 E SP4(Q), where FL~g is the modular from of weight k with respect to
g-Ir[ t ]g.
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Definition. Let F be a modular form with respect to the paramooular group r[ t].
If cI> B{F) = 0 for any l·dimensional boundary component B, then F is called a
cusp form.

We have seen that to understand the structure of the Satake compactification
we need to define the action of the paramodular group r[ t] on the set of rational
isotropie subspaces. In Lemma 2.3 we have described the r[ t ]-orbits on the integral
lattice. A vector I = t (VI, V2, V3, tV4) E L t is called primitive, if VI, V2, V3, V4 are
coprime. We may reformulate the statement of Lemma 2.3 in the following form

Lemma 2.3'. For any primitive vector I E L t the orbit r[ t)1 contains one and
only one element of the forms t(l,O,O,O), t(O,l,O,O) or t(d,l,O,O)J where d i8 a

non-trivial (# 1, t) divisor 0/ t.

Corollary 2.4. The number of the I-dimensional components of the Satake com·
pactification of the quotient r[ t ] \ IFn2 is equal to the number of divisors of t.

Corollary 2.5. For any I·dimensional boundanJ component B there ezist a "di·
agonal" element

M=(~ ';-1) ESp4(Q)

and, E r[ t] such that M,(B) = B}.

Let us finish the proof of Theorem 3.

Proof that G,p is a CtLSp form. Let us take al-dimensional boundary component B.
In accordance with Corollary 2.5 there exists a diagonal element M and 1 E r[ t]
such that M,{B) = B}. In accordance with the definition of the Siegel operator

The form G,p is defined by its Fourier-Jacobi expansion, corresponding to the stan
dard boundary component B}. The restrietion ~B} (G,p) =°and the Fourier ex
pansion of G,p at Bo (this is the O-cusp of the I-dimensional boundary component
BI)

G,p(Z) = L a(N) exp (21ri tr(N Z))
N>O

has uo coefficients with degenerate N, because <p is a cusp form. The action of
any "diagonal" element M keeps the type of Fourier expansion, Le., the functiou
G,plkM has uo Fourier coefficients with degenerate indices. Thus cI» B} (G4JlkM) - 0
and G,p(Z) is a cusp form. Theorem 3 is proved.

In the proof of the theorem we have seen that the lifting has an additional
invariant property (see (2.8)). The group

r*[t] = r[t]ur[t]vt C Sp4(IR)

is a normal extension of the group r[ t] of index 2. In the case of t = eP this group
is conjugate to a subgroup of Sp4(Z).
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CoroUary 2.6. Let 11.8 a8sume that weight k of a Jacobi form rjJ i8 even. Then the
lifting G4J' constructed in Theorem 9, is a modular form of weight k with respect to
the group r* [t ].

Note that the group r* [p] is the maximal real normal extension of the paramod
war grüup r[p] für a prime p.

§3 THE QUOTIENTS OF SYMMETRIe DOMAINS

Basie to the geometrie applications of the theory of automorphic forms is the
fact that automorphic forms of special weights correspond to sections of canonieal
or pluricanonicalline hundles on algebraic varieties.

Let HO(A t , n3 (A t )) be the space of holomorphic 3-forms on the moduli space
At = rem) [t] \ IfI2 . For auy w E HO(At, 113 (A,)) we may write it in the form

w = F(Z)dZ, dZ = dr 1\ dz 1\ dw,

where F E 9'Jh(r(m) [t]) is a modular form of weight 3 with respect to rem) [t].
The complex variety At is not compact and has a lot of singularities. We have

the foIlowing nice criterion, due to E. Freitag, about continuation of canonical
differential forms on a singular variety to its non-singular model. This criterion is
quite general, hut we formulate it only for the case of At.

Criterion. (Freitag) An element w E HO(At , fhiA,)) can be extended to a canon

ical differential form on a non-singular model At of a compactification of At if
and only if the differential form w is square integrable.

Proof. See [F], Hilfsatz 3.2.1.

It is weIl known that WF = F(Z)dZ is square-integrable for the cusp for~ F.
Thus we have the foIlowing identity for the geometrical genus of the variety At:

Lemma 3.1. For any k and t the following identity is valid:

Proof. Let us define

Ct = (~ ~ ~ ~).
o 0 0 t- I

It is easy to see, that r(m)[ t] = Ct-Ir[ t let. Thus Flk Ct is a cusp fonn with respect
to r( m) [t], iff F is a eusp form with respect to r( m) [t ].

Now we may prove Theorelu 2. The lifting of Theorem 3 is injective, heeause
the first Fourier-Jacobi coefficient of the lifted form G4J does not vanish identically.
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Consequently, we have the following estimation for the geometrical genus of the
moduli variety

..... J
pg(Ad 2:: dirne 6 3 ,t·

In accordance with results of [EZ], [SZ], the dimension of the space of the Jacobi
cusp forms is given by the following formula

k is even,

k is odd,

with

{ } _ { l~ J if m ~ 2 mod 12,
m 12 - m •l12J- 1 If m =2 moel 12.

This gives us the estimation of Theorem 2. It is evident that dimc 6f t = O(t) as
I

t ~ 00.

The same formulae show us that there exist cusp forms of weight 2 with respect
to the paramodular group. Using this fact we may prove the following

Theorem 4. Let r be a subgroup 01 the paramooular group r(m) [t] which has no
element 01 the finite order. 11 the dimension 01 the space 01 Jacobi cUSl' lorms 01
weight 2 and index t is positive, then the quotient space M = r \ Eh is 01 geneml
type.

Proof. Let M be a toroidal compactification of M. Since the group r is torsion
free, then according to Tai's criterion (see [SC]) a pluricanonical differential fonn

where F(Z) is a modular form of weight 3n, could be extencled to the compactifica
tion Nt if F(Z) vanishes on the boundary with order n. Let G E 9Jt~CU.!lp)(r(m) [t l)
be a cusp form G(Z) of weight 2 which is the lifting of a J acobi cusp form of weight
2 and index t. For any modular form F E VJhn(r) of weight 3n we have that the
form (G(Z))3n F(Z) E VJ19n (r) vanishes on the boundary with order 3n. Thus

dimcHO(M, 113 (M)0 n
) 2:: dirncmt3n(r).

The last dimension could be easily estiInated by Mumford's extension of the Hirze
bruch's proportionality principal (see [M] and [Tl). At the end we have that

dimcHO(M, 113 (M)0 n
) 2:: Cn3

,

where the constant C does not depend on n. Therefore the variety Nt is of general
type.

We may formulate a natural conjecture

Conjecture. The moouli space At 01 abelian surlaces with a polarization 01 type
(1, t) is 01 general type il the dimension 01 the SIJace 01 the Jacobi cusp lorms 01
weight 2 and index t is positive.

The first such value of t is 37. The maximal t for which dime 6' t = 0 is t = 180.,
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