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Abstract

We study the interplay between noncommutative tori and noncommutative elliptic curves
through a category of equivariant differential modules on C∗. We functorially relate this cate-
gory to the category of holomorphic vector bundles on noncommutative tori as introduced by
Polishchuk and Schwarz and study the induced map between the corresponding K-theories. In
addition, there is a forgetful functor to the category of noncommutative elliptic curves of Soibel-
man and Vologodsky, as well as the forgetful functor to the category of vector bundles on C∗

with regular singular connections.
The category that we consider has the nice property of being a Tannakian category, hence

it is equivalent to the category of representations of an affine group scheme. Via an equivariant
version of the Riemann–Hilbert correspondence we determine this group scheme to be (the
algebraic hull of) Z2.

Introduction

Noncommutative geometry in its various forms has come to the forefront of mathematical
research lately and noncommutative tori constitute perhaps the most extensively studied class
of examples of noncommutative differentiable manifolds. They were introduced by Connes during
the early eighties [5] and were systematically studied by Connes [5], Rieffel [30, 31] and others.
Recently Polishchuk and Schwarz have provided a new perspective on them which is quite amenable
to techniques in algebraic geometry [27, 26]. At the same time Soibelman and Vologodsky have
introduced noncommutative elliptic curves as certain equivariant categories of coherent sheaves [33].
The guiding principle behind both constructions is replacing a mathematical object by its category
of appropriately defined representations, viz., vector bundles with connections in the former case,
denoted by Vect(Tτθ), and coherent sheaves in the latter, denoted by Bq, where q = e2πiθ and θ is
an irrational number.

In this article we try to connect the above two constructions by introducing an intermediate
category Bτq . Besides the existence of a forgetful functor from Bτq to Bq (as the notation might
suggest), we construct a faithful and exact functor from Bτq to Vect(Tτθ). It turns out to be well-
adapted to the Tannakian formalism. In fact, our main result is that it is a Tannakian category and
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via an equivariant version of the Riemann–Hilbert correspondence we show that it is equivalent to
the category of finite dimensional representations of (the algebraic hull of) Z2 (see Theorem 19).
This allows us to describe the K-theory of Bτq as the free abelian group generated by two copies of
C∗ (see Corollary 21). This paper is organized as follows.

In the first section we briefly review the main results of [27], including the basic definitions
and examples. We also discuss the rudiments of noncommutative tori, which are relevant for our
purposes as it is known that there are several ways of looking at them. We also show that there is
a certain modularity property satisfied by the categories Vect(Tτ

θ) (see Proposition 2).
In the second section we first provide a motivation for the definition of the categories B τ

q and
then construct a faithful and exact functor from Bτq into Vect(Tτθ). We also give a description of the
image of our functor and discuss the induced map on the K-theories of the corresponding categories.
There is a canonical forgetful functor from Bτq to Bq.

In the third section we start by briefly recalling some preliminaries of Tannakian categories.
We explain the structure of a Tannakian category on the category Bτq and prove an equivariant
version of the Riemann–Hilbert correspondence on C∗. Via this correspondence, we find that Bτq
is equivalent to the category of finite dimensional representations of Z2. As a consequence we are
able to compute the K-theory of Bτq .

We conclude with a motivation for a possible notion of the fundamental group of noncommu-
tative tori (see Remark 22) and with a discussion on the degeneration of the complex structure on
noncommutative tori (see Remark 23).

Convention. In this article, unless otherwise stated, θ is always assumed to be irrational and τ
in the lower half plane as in [27]. The ground field is also assumed to be C.
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1 Preliminaries

Let E be an elliptic curve and Coh(E) denote the category of coherent sheaves on it. We start
by recalling some basic facts about Coh(E) and the t-structures on its derived category. We also
briefly review the rudiments of noncommutative tori and holomorphic bundles on them.

1.1 Coherent sheaves on elliptic curves

For F ∈ Coh(E) we write rk(F) for the generic rank and χ(F) for the Euler characteristic of F .
Since E has genus 1, by the Riemann-Roch Theorem the degree of F is the same as its Euler
characteristic χ(F) := dimCHom(OE ,F) − dimCExt1(OE ,F). Thus the slope of a coherent sheaf

µ(F) := deg(F)
rk(F) is the rational number χ(F)

rk(F) or infinity, when its rank is zero.
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One extends the notion of slope to the objects in the derived category by defining rank (resp.
Euler characteristic) of a complex as the alternating sum of the ranks (resp. Euler characteristics)
of the individual terms of the corresponding cohomology complex. A coherent sheaf F is called
semistable (resp. stable) if for any non-trivial exact sequence 0 −→ F ′ −→ F −→ F ′′ −→ 0 one
has µ(F ′) 6 µ(F) (resp. µ(F ′) < µ(F)) or equivalently µ(F) 6 µ(F ′′) (resp. µ(F) < µ(F ′′)).

It is well-known that every coherent sheaf on E splits as the direct sum of its torsion and torsion
free parts. Since E is smooth, projective and of dimension 1, every torsion free coherent sheaf is
locally free. The following result from [16] gives us a good understanding of the indecomposable
objects of Coh(E), which can be shown to be semistable.
Let X be a projective curve. Then for any F ∈ Coh(E) there exists a unique filtration:

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ Fn+1 = F (1)

such that,

• Ai := Fi+1/Fi for 0 6 i 6 n are semistable and

• µ(A0) > µ(A1) > · · · > µ(An).

The filtration above is called the Harder–Narasimhan filtration of F and the graded quotients Ai

of the Harder–Narasimhan Filtration are called the semistable factors of F .

Remark 1. Over an elliptic curve, every coherent sheaf is isomorphic to the direct sum of its
semistable factors, which is a consequence of the special Calabi–Yau property. A C-linear abelian
category of dimension 1 is said to have the Calabi–Yau property if the Ext1 sets are isomorphic to
the dual Hom sets as vector spaces.

1.2 Torsion pairs and t-structures

We now recall the definition of a torsion pair in an abelian category and its associated t-structure as
in [15]. The notations employed here are local and should not be confused with their appearances
in different forms elsewhere. Let (T ,F) be a pair of full subcategories of an abelian category A.
We say that (T ,F) is a torsion pair in A if the following conditions are satisfied:

1. Hom(T, F ) = 0 for all T ∈ T and F ∈ F .

2. For all X ∈ A there exists t(X) ∈ T and a short exact sequence in A

0 −→ t(X) −→ X −→ X/t(X) −→ 0

such that X/t(X) ∈ F .

Due to condition 1 the exact sequence in condition 2 is unique up to isomorphism. Let C be a
triangulated category. Following [2] a t-structure (C60, C>0) on C is a pair of full subcategories of
C such that the following conditions are satisfied:

Define C6n := C60[−n] and C>n := C>0[−n] for all n ∈ N.
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1. Hom(X,Y ) = 0 for all X ∈ C60 and Y ∈ C>1.

2. C60 ⊂ C61 and C>1 ⊂ C>0.

3. For all X ∈ C there exist X ′ ∈ C60 and X ′′ ∈ C>1 such that

X ′ −→ X −→ X ′′ −→ X ′[1]

is a distinguished triangle in C.

Given a t-structure (C60, C>0) on C we denote by H the full subcategory C60 ∩C>0 of C and call it
the heart of the t-structure. Let (T ,F) be a torsion pair in an abelian category A. Then

D60 = {X• ∈ Db(A) |H i(X•) = 0, i > 0,H0(X•) ∈ T }

D>0 = {X• ∈ Db(A) |H i(X•) = 0, i < −1,H−1(X•) ∈ F}

defines a t-structure on Db(A).

Example 1. The most obvious t-structure on Db(A) is the standard one, which is

D60 = {X• ∈ Db(A) |H i(X•) = 0, i > 0}

D>0 = {X• ∈ Db(A) |H i(X•) = 0, i < 0}

The heart is clearly equivalent to A.

Example 2. As some interesting examples, we provide the t-structures considered by Polishchuk
in [26]. Let A = Coh(Xτ ), where Xτ = C/(Z + τZ) and set Db(Xτ ) = Db(A). First we recall the
definition of a torsion pair (Coh>θ,Coh6θ) in Coh(Xτ ), where θ ∈ (R \ Q) ∩ [0, 1).

Coh>θ = {F ∈ Coh(Xτ ) | all semistable factors of F have slope > θ}

Coh6θ = {F ∈ Coh(Xτ ) | all semistable factors of F have slope 6 θ}

Note that the torsion sheaves, having slope = ∞, belong to Coh>θ. The associated t-structure is
given by

Dθ,60 = {K• ∈ Db(Xτ ) | H
>0(K•) = 0,H0(K•) ∈ Coh>θ}

Dθ,>0 = {K• ∈ Db(Xτ ) | H
<−1(K•) = 0,H−1(K•) ∈ Coh6θ}

whose heart is denoted by Cθ,τ . It is shown in [26] that Cθ,τ has cohomological dimension 1 and that
it is derived equivalent to Coh(Xτ ). The latter assertion follows from the fact that the torsion pairs
under consideration are cotilting, which is sufficient due to Proposition 5.4.3 of [3]. At θ = ∞ one
puts the standard t-structure on Db(Xτ ), whose heart is just Coh(Xτ ).
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1.3 Holomorphic bundles on noncommutative tori

The noncommutative torus is a particular case of a transformation group C ∗-algebra, with Z acting
continuously on the C∗-algebra C(S1) of continuous functions on the circle. Pimsner and Voiculescu
[23] and separately Rieffel [30] studied their K-theory, while Connes analysed their differential
structure [5]. We will work with the smooth noncommutative torus, which is a dense Fréchet
subalgebra of this transformation group C∗-algebra.

Let θ be an irrational real number. The algebra of smooth functions Aθ on the noncommutative
torus Tθ consists of elements of the form

∑

(n1,n2)∈Z2 an1,n2
Un1

1 Un2

2 with (n1, n2) −→ an1,n2
rapidly

decreasing and U1, U2 are unitaries satisfying the commutation relation

U2U1 = exp(2πiθ)U1U2 (2)

A less ad hoc definition of Aθ is given as a smooth crossed product. This is the smooth analogue
of the aforementioned transformation group C ∗-algebra. Let C∞(S1) be the Fréchet ∗-algebra of
smooth functions on the circle with the family of seminorms given by

‖f‖α = sup
s∈S1

|∂αs f(s)| .

We equip this algebra with a smooth action α of Z by automorphisms given by αn(f)(s) = f(s−nθ).
We consider the vector space S(Z, C∞(S1)) of sequences on Z of rapid decay that take values in
C∞(S1). In other words, S(Z, C∞(S1)) consists of C∞(S1)-valued sequences {fn}n∈Z such that

‖f‖α,β = sup
n

(1 + |n|β)‖fn‖α,

is finite for all α and β. We introduce the following convolution product and involution on
S(Z, C∞(S1)),

(f ∗ g)n =
∑

m∈Z

fmαm (gn−m) ,

(f∗)n = αn
(

f∗−n
)

.

(3)

The Fréchet ∗-algebra (S(Z, C∞(S1)), ∗, ∗) is denoted by C∞(S1) oθ Z and is called the smooth
crossed product of C∞(S1) by Z.

It is well-known that the Fourier transform maps an element in S(Z) isomorphically to an
element in C∞(S1). Under this identification, we have the isomorphism S(Z, C∞(S1)) ' C∞(S1 ×
S1) as vector spaces. The above convolution product on the generating unitaries U1 and U2 of
C∞(S1 × S1) translates to the defining relation of Eqn. (2) of Aθ. Hence, Aθ ' C∞(S1) oθ Z.

The two basic derivations δ1 and δ2 acting on Aθ are as follows,

δj





∑

(n1,n2)∈Z2

an1,n2
Un1

1 Un2

2



 = 2πi
∑

(n1 ,n2)∈Z2

njan1,n2
Un1

1 Un2

2 ; (j = 1, 2).

Equivalently, one can define δ1 and δ2 by δj(Ui) = 2πiδijUi which is then extended to the whole of
Aθ by applying the Leibniz rule.
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The derivations δ1 and δ2 are the infinitesimal generators of the action of a commutative torus
T2 on Aθ by automorphisms. Inside the complexified Lie algebra generated by δ1 and δ2, we are
interested in the vector parametrized by two complex numbers ω1 and ω2. We denote

δω = ω1δ1 + ω2δ2.

If ω = (τ, 1) we also set δτ = δω, which is the so-called complex structure on Aθ already present in
[9].

1.3.1 The category of holomorphic bundles on Tθ

The Serre-Swan Theorem [34] establishes an equivalence between the category of vector bundles over
a topological space M and finitely generated projective modules (henceforth, for brevity, referred
to as finite projective modules) over C(M) (for the smooth analogue of the Serre-Swan Theorem
we refer the readers to Chapter 2 of [14]). In this spirit, it makes sense to define vector bundles
over the noncommutative torus Tθ as finite projective right Aθ-modules.

In [5], Connes has constructed finite projective modules over Aθ that are labelled by a tuple
(c, d) ∈ Z2. Later, in [30] Rieffel has shown that this set, in fact, exhausts the complete set of finite
projective modules over Aθ (up to isomorphism).

We generalise the category considered by Polishchuk and Schwarz slightly by defining the objects
of the category Vect(Tωθ ) to be finite projective right Aθ-modules carrying a holomorphic structure
which is a lifting of δω. More precisely, a holomorphic structure on a finite projective Aθ-module
E is given by a C-linear connection ∇ : E −→ E satisfying the Leibniz rule,

∇(ea) = ∇(e)a+ eδω(a); (∀e ∈ E, a ∈ Aθ). (4)

A morphism h : E −→ E ′ is said to be holomorphic if it commutes with the connection, i.e.,
∇E′(he) = h∇E(e). These are the morphisms of the category.

One defines the cohomology groups H0 (resp. H1) of Aθ with respect to a holomorphic bundle
E, equipped with a connection ∇, as the kernel (resp. cokernel) of ∇.

If ω = (τ, 1), then Vect(Tωθ ) reduces to the category of holomorphic bundles Vect(Tτ
θ) as intro-

duced in [27].

Proposition 2. (a) If g is an element in SL(2,Z), then Vect(Tgω
θ ) ' Vect(Tωθ ).

(b) If ω2 6= 0 and τ = ω1

ω2
, then Vect(Tωθ ) ' Vect(Tτθ).

Proof. (a) Given a g ∈ SL(2,Z), we construct a ∗-automorphism σ of Aθ such that σ−1δωσ = δgω.
Evidently, it is enough to do this for the generators of SL(2,Z), i.e., g1 = ( 1 1

0 1 ) and g2 =
(

0 −1
1 0

)

.
For g1, δg1ω = (ω1 + ω2)δ1 + δ2. We define σ1 : Aθ −→ Aθ as σ1(U1) = U1U2, σ1(U2) = U2. One
may easily check that σ1(U1) and σ1(U2) satisfy the commutation relation of Aθ as in Eqn. (2) and
also that
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σ−1
1 δωσ1(U1) = σ−1

1 δω(U1U2)

= σ1(ω1δ1 + ω2δ2)(U1U2)

= σ1(2πiω1U1U2 + 2πiω2U1U2)

= 2πi(ω1 + ω2)σ
1
1(U1U2)

= 2πi(ω1 + ω2)U1

= ((ω1 + ω2)δ1 + δ2)U1

= δg1ω(U1).

Similarly, for U2 one may check that the actions of δω and δg1ω agree. For g2, δg2ω = −ω2δ1 +ω1δ2
and we define σ2(U1) = U−1

2 , σ2(U2) = U1. Once again one can easily check that the new generators
satisfy Eqn. (2) and that the actions of δω and δg2ω agree on U1 and U2. Explicitly, the functor sends
(Aθ, δω) to (Aθ, δgiω), i = 1, 2, and twists the module structure by σi, i = 1, 2, i.e., e · a := eσi(a),
i = 1, 2 and e ∈ E. One verifies that ∇ on E is compatible with δgiω, i = 1, 2, with respect to the
twisted module structure. Indeed,

∇(e · a) = ∇(eσi(a))

= ∇(e)σi(a) + eδω(σi(a))

= ∇(e)a+ eσi(δgiω(a))

= ∇(e) · a+ e · δgiω(a)

where e ∈ E, a ∈ Aθ and i = 1, 2.
(b) In our notation, δτ = δω

ω2
. Sending each ∇ to ∇′ := ∇

ω2
makes ∇′ automatically compatible

with δτ . More precisely, the functor sends (Aθ, δω) to (Aθ, δτ ) and (E,∇) to (E,∇′).

1.3.2 The derived category

This discussion is included just for the sake of completeness. The readers may easily ignore it and
skip to Remark 3.

The derived category of holomorphic bundles is defined as the cohomology category of a DG cat-
egory (or a differential graded category), which is a category with the Hom sets carrying a structure
of a differential graded complex of C-vector spaces (see [17] for more details). The corresponding
cohomology category is obtained by replacing the Hom complexes by their cohomologies. The DG
category in consideration, denoted by C(θ, τ), consists of objects of Vect(Tτ

θ), labelled by an integer
indicating its translation degree. The Hom’s in C(θ, τ) are given by a differential complex conjured
up from the connection on the Hom’s in Vect(Tτ

θ). Note that the Hom’s in Vect(Tτθ ) also carry a
module structure over some noncommutative torus (not necessarily Tθ).

Polishchuk and Schwarz construct a functor from the DG category C(θ, τ) to Db(Xτ ) and show
that the induced functor on the cohomology category is fully faithful and that the image of Vect(Tτ

θ)
lies in the heart of the t-structure corresponding to θ (cf. Example 2). Then Polishchuk shows that
this functor actually induces an equivalence between Vect(Tτ

θ) and the heart [25], whose derived
category is again equivalent to Db(Xτ ) [26]. This implies that Vect(Tτθ) is abelian and its derived
category is equivalent toDb(Xτ ) via the Polishchuk–Schwarz functor, denoted by Sτ : H0C(θ, τ) −→
Db(Xτ ).
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Remark 3. The functor Sτ actually induces an equivalence between Vect(Tτ
θ ) and C−θ−1,τ . Observe

that
(

0 1
−1 0

)

θ = −θ−1 says that A−θ−1 is Morita equivalent to Aθ.

Summarising, one has

Vect(Tτθ)
∼= Vect(Tτ−θ−1) ∼= Cθ,τ and Db(Cθ,τ ) ∼= Db(Xτ ). (5)

2 Equivariant coherent sheaves and Vect(Tτ
θ)

At this point, we would like to adopt the philosophy of Manin as explained in [19]. Heuristically,
one considers the quotient C/(Z+τZ+θZ), with θ ∈ R\Q and τ ∈ H−. On one side, this space can
be regarded as Tθ = C/(Z + θZ) modulo an infinitesimal action of τZ described by the derivation
δτ on Tθ. More precisely, one considers the category Vect(Tτ

θ) defined above; it consists of finite
projective modules over C∞(Tθ) equipped with a connection ∇ covering δτ . Taking the quotient in
the other order, one obtains Xτ = C/(Z+ τZ) with an analogue of the infinitesimal action of θZ on
it which amounts to putting a t-structure on Db(Xτ ) that depends on θ (see Example 2) and taking
its heart Cθ,τ . The equivalence between the two categories Vect(Tτ

θ) and Cθ,τ is the agreement of
the two quotient spaces by looking at the category of representations of the two objects.

Let us now describe another way of obtaining a quotient, based on the observation that there
is an honest action of θZ on Xτ and hence on Coh(Xτ ). Indeed, the point θmod (Z + τZ) on Xτ

lies on the real axis of the fundamental domain of the torus and its action is restricted to the circle
obtained by folding this axis. In fact, the action given by translations of θ on Xτ transforms to the
action of multiplication by powers of q = e2πiθ under the Jacobi uniformisation, i.e., z 7−→ qz on
C∗/q̃Z, q̃ = e2πiτ . Once again we are confronted with a double quotient problem, where the actions
commute. Namely, it is the improper action of the group qZ on Xτ , which is itself obtained by
the free and proper action of the group q̃Z on C∗ (both actions are by multiplication). Soibelman
and Vologodsky have described the quotient space C∗/qZ in terms of their noncommutative elliptic
curves Bq in [33] (strictly speaking, our definition differs from theirs by an exchange q ↔ q−1). In
the formal case when |q| < 1 analogues of such objects have been investigated in [1]. The category
Bq is nothing but the category of qZ-equivariant (analytic) coherent sheaves on C∗ (or equivalently,
the category of modules over the crossed product algebra O(C∗)oqZ, which are finitely presentable
over O(C∗)). It follows from Lemma 3.2 of [33] that for any M ∈ Bq the underlying O(C∗)-module
is free. However, there are interesting actions of θZ or qZ on the free modules with respect to which
they are equivariant. Let us denote by α the induced action by automorphisms of θZ on O(C∗):

α(f)(z) = f(q−1z); (z ∈ C∗, q = e2πiθ).

Here, we have understood the notation α := α(1) for the generator of Z, so that α(n) = αn. What
is lacking in this picture is an nfinitesimal action in terms of δτ and compatible connections, which
accounts for the remaining τZ quotient operation. To this end, we define a derivation on O(C∗) by
δ = τz d

dz . It is this infinitesimal action by δ that will turn out to be the appropriate replacement
for the infinitesimal action of the group τZ.

2.1 The category Bτq

Our goal in this section is to define a category alluded to before, which is somehow ‘in between’ the
categories Vect(Tτθ) introduced by Polishchuk and Schwarz and Bq by Soibelman and Vologodsky.
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More precisely, we would like to construct a category Bτq that is functorially related to both of
these categories. At the same time, we would like to stay as close as possible to the setting of
the Riemann–Hilbert correspondence. The discussion above motivates us to define the following
category as a description of the quotient of Bq by the infinitesimal action of τZ.

Definition 4. The category Bτq consists of triples (M,σ,∇), where

• M is a finitely presentable O(C∗)-module, i.e., there is an exact sequence,

O(C∗)m −→ O(C∗)n −→M −→ 0.

• σ is a representation of θZ on M covering the action α of θZ on O(C∗), i.e.,

σ(m · f) = σ(m) · α(f); (m ∈M,f ∈ O(C∗)).

• ∇ is a θZ-equivariant connection on M covering the derivation δ = τz d
dz on O(C∗), i.e., it

satisfies,

∇(m · f) = ∇(m) · f +m · δ(f),

∇(σ(m)) = σ(∇(m)),

for all m ∈M,f ∈ O(C∗).

In addition, we impose that the connection ∇ is a regular singular connection on M , that is, there
exists a module basis {e1, . . . , en} of M for which the holomorphic functions z−1Aij (i, j = 1, . . . , n)
defined by Aijej = ∇(ei) have simple poles at 0. We call A = (Aij) the matrix of the connection
with respect to that module basis.

The morphisms in this category are equivariant O(C∗)-module maps that are compatible with the
connections. We will also write M = (M,σ,∇) when no confusion can arise. For two objects M

and N we denote by HomθZ,δ
O(C∗)(M,N) the C-linear vector space of morphisms between them.

The uniqueness of the matrix A = Aij (after the choice of a module basis {ei} for M) is due to
the fact that the modules M in Bτq turn out to be free as O(C∗)-modules. This was observed in [33,
Lemma 2] and used the fact that the sheaf M ⊗C OC∗ must be torsion free due to θZ-equivariance.
Hence it is locally free on C∗ and thus a trivial vector bundle. The O(C∗)-module of its global
sections is then clearly free. This freeness as O(C∗)-modules can be translated into freeness as
θZ-equivariant O(C∗)-modules as follows. Suppose that M ' V ⊗C O(C∗) as O(C∗)-modules with
V a complex vector space. Via this identification there is an induced action of θZ on V ⊗C O(C∗)
making this an isomorphism of θZ-equivariant O(C∗)-modules.

Let Bτ denote the category of pairs (V,∇) with V a vector bundle on C∗ and ∇ a regular
singular connection on V associated to δ = τz d

dz . By the above remarks on the modules M in
Bτq , there is a functor from Bτq to Bτ which forgets the action of θZ. Thanks to Deligne [10] (see
also, for instance, Theorem 1.1 and the paragraph after Remark 1.2 of [18]), we know that the
category Bτ is equivalent to the category of finite dimensional representations of the fundamental
group π1(C

∗, z′) ' Z with a base point z′. This result motivates the regular singularity condition
we have imposed on the connections in Definition 4.

In Section 3 we will enhance this Riemann–Hilbert correspondence to an equivariant version and
show that a similar statement holds for Bτq . Let us first proceed to examine some of the properties
of Bτq and its relation with the other two categories, viz., Bq and Vect(Tτθ).
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Proposition 5. The category Bτq is an abelian category.

Proof. It is proven in Proposition 3.3 of [33] that the category Bq is abelian. One observes readily
that there is a faithful functor (forgetting the connection) from Bτq to Bq. Suppose that f : M → N
is a morphism in Bτq . Since it is also a morphism in Bq, both ker f and cokerf are equivariant
O(C∗)-modules. Moreover, the map f intertwines the connections on M and N and hence induces
compatible connections on ker f and cokerf making them objects in Bτq .

We now view Aθ as a module over O(C∗) via the homomorphism

ψ : O(C∗) → Aθ
∑

n∈Z

fnz
n 7→

∑

n∈Z

fnU
n
1 .

This is well-defined since a sequence fn of exponential decay is certainly a Schwartz sequence.

Remark 6. The map is essentially restricting a holomorphic function on C∗ to the unit circle. In
fact, it is injective since, if a holomorphic function vanishes on the unit circle, it must vanish on
the whole of C∗. Note that Aθ is not finitely generated over O(C∗) and hence not an element of Bq
or Bτq .

Proposition 7. The following association defines a right exact functor, denoted ψ∗, from Bτq to

Vect(Tτθ). For an object (M,σ,∇) in Bτq we define an object (M̃, ∇̃) in Vect(Tτθ ) by

M̃ = M ⊗O(C∗) Aθ

∇̃ = 2πi ∇⊗ 1 + 1 ⊗ (τδ1 + δ2)

= 2πi ∇⊗ 1 + 1 ⊗ δτ .

Proof. Observe that ψ(2πiδf) = τδ1(ψ(f)) as follows from the definitions of δ and δ1. Moreover,
the image of O(C∗) under the map ψ lies in the kernel of the derivation δ2 on the noncommutative
torus (since δ2(U1) is vanishing). Hence one can add δ2 to τδ1 making ∇̃ a connection on M̃
covering δτ .

Note that by a simple adjustification one can actually define a right exact functor from Bω1

q to
Vect(Tωθ ). We also claim that, in fact,

Proposition 8. The module Aθ over O(C∗) via the map ψ is flat.

Proof. The algebra O(C∗) is a commutative integral domain, since holomorphic functions cannot
have disjoint support. Further, from Corollary 3.2 of [24] one concludes that the global Ext di-
mension of O(C∗) is 1. Hence it is a Prüfer domain, i.e., a domain in which all finitely generated
non-zero ideals are invertible. Indeed, Theorem 6.1 of [13] says that a (fractional) ideal in a domain
is invertible if and only if it is projective and, since O(C∗) has Ext dimension 1, given any finitely
generated ideal I, applying Hom(−,M) to the exact sequence 0 −→ I −→ R −→ R/I −→ 0 for an
arbitrary M , one finds that Ext1(I,M) = 0, i.e., I is projective. It is known that a module over
a Prüfer domain is flat if and only if it is torsion free (see, e.g., Theorem 1.4 ibid.). So we only
need to check torsion freeness. We identify Aθ as a module over O(C∗) with S(Z, C∞(S1)) and
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represent each element as a sequence {gn}n∈Z, gn ∈ C∞(S1), refer to the discussion before (3). The
image of the map ψ clearly lies in C∞(S1), which is identified with the functions supported at the
identity element of Z. In other words, for all f ∈ O(C∗), ψ(f) is of the form {fn}, where fn = 0
unless n = 0. Now consider any g = {gn} ∈ Aθ and suppose that some non-zero f ∈ Ann({gn}),
i.e., g ∗ ψ(f) = {gnαn(f0)} = 0. This implies that gn(z)f0(q

−nz) = 0 for all n, |z| = 1. Being the
restriction of a holomorphic function on C∗, f0(q

−nz) has a discrete zero set on the unit circle. A
smooth function on S1 cannot have a discrete set of points as support and hence each gn(z) must
be identically zero. Thus, whenever an element in Aθ has a non-zero element in its annihilator
ideal, the element is itself zero. Hence Aθ is torsion free from which the result follows.

Corollary 9. The base change functor ψ∗ induced by the homomorphism ψ is exact and faithful.

Proof. From the previous Proposition we conclude that the functor sends an exact sequence of
O(C∗)-modules to an exact sequence of Aθ-modules. However, the fact that ψ∗ is a functor from Bτq
to Vect(Tτθ) says that the induced morphisms respect the induced connections. For the faithfulness,
identify each object M ∈ Bτq with V ⊗O(C∗) with V a vector space; similarly write M = V ⊗O(C∗).
A morphism in Bτq from M to M ′ is then given by an element in HomC(V, V ′) ⊗C O(C∗), whereas

a morphism in Vect(Tτθ) between M̃ and M̃ ′ is given by an element in HomC(V, V ′) ⊗C Aθ. The
functor ψ∗ acts on these element by 1⊗ψ and since ψ is injective, it follows that ψ∗ is injective on
morphisms.

Remark 10. However, the functor is not full. It is certainly not essentially surjective as the under-
lying Aθ-modules of the objects in the image are all free, whilst Vect(Tτ

θ) has modules which are
not free.

The main Theorem of [25] says that the category generated by succesive extensions of all standard
holomorphic bundles, as defined in [27], over Tτ

θ (Tθ equipped with the derivation δτ ) is already all
of Vect(Tτθ). Let us recall the definition of a standard holomorphic bundle (or as standard module)
in the special case when the underlying module is just Aθ. Given any fixed z′ ∈ C, the connection
∇z′ is defined by

∇z′(a) = δτ (a) + 2πiz′ · a, (a ∈ Aθ).

The tuple Ez′
1 := (Aθ,∇z′) is by definition a standard module. Let us denote the full subcategory

of Vect(Tτθ ) generated by successive extensions of standard modules of the form E z′
1 , z′ ∈ C by

FrVect(Tτθ). Since the extension of two free modules is again free, it is clear that the underlying
Aθ-module of all objects of FrVect(Tτθ) is free.

Lemma 11. With respect to a suitable basis each object of FrVect(Tτ
θ) is of the form (An

θ , δ +A),
where A is an n× n upper triangular matrix in Mn(Aθ) with diagonal entries in C.

Proof. It is known that given any finitely generated projective module M over Aθ and a fixed
connection ∇ compatible with δτ , all other compatible connections are of the form ∇ + φ, φ ∈
EndAθ

(M). This follows easily from the Leibniz rule (4). SinceM is of the form An
θ , φ is determined

by a matrix A ∈Mn(Aθ). Let

0 −→ (Aθ,∇z′)
ι

−→ (A2
θ, δ +A)

π
−→ (Aθ,∇z′′) −→ 0 (6)

be a holomorphic extension in Vect(Tτθ). Write A =
(

a b
c d

)

with entries a, b, c, d ∈ Aθ and ι(a) =
(a, 0) and π(a1, a2) = a2. One checks easily that the holomorphicity of ι and π (the fact that they
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commute with the connections) forces c = 0, a = z ′ and d = z′′. Now by induction it follows that
the connections obtained by successive extensions are of the desired form.

Conversely, by induction suppose that every connection of the desired form on An−1
θ can be

obtained as an iterated extension of modules of the form Ez′
1 . Let A be an upper triangular matrix

in Mn(Aθ) whose diagonal entries are in C, i.e., A is of the form











z′ b2 · · · bn
0
... A′

0











,

where A′ ∈ Mn−1(Aθ) is also of the prescribed type and b2, . . . , bn ∈ Aθ. A routine calculation
then shows that

0 −→ (Aθ,∇z′)
ι

−→ (An
θ , δ +A)

π
−→ (An−1

θ , δ +A′) −→ 0

with ι(a) = (a, 0, . . . , 0) and π(a1, a2, . . . , an) = (a2, . . . , an) is a holomorphic extension in Vect(Tτθ).
Hence (An

θ , δ +A) belongs to FrVect(Tτθ).

Remark 12. In the exact sequence in Eqn. (6), if b in A =
(

a b
c d

)

is non-zero and a, d ∈ C such that

a 6= d, then the matrix can be diagonalized by the change of basis matrix
(

1 −b

d−a

0 1

)

and hence the

sequence splits.

Remark 13. Given any matrix A ∈ Mn(C), with respect to a suitable basis one can reduce it
to its Jordan canonical form (it is also upper triangular with diagonal entries in C). Therefore,
FrVect(Tτθ) contains all objects of the form (An

θ , δ +A), where A ∈Mn(C) with respect to a basis.

As we will see later (Proposition 18), each object (M,σ,∇) in Bτq is isomorphic to an object,
whose matrix of the connection is a constant matrix. This can be accomplished via a change of
basis of M . Combining this with the above remark, we conclude that – at the level of objects – the
image of ψ∗ lies inside FrVect(Tτθ ).

2.2 The effect on K-theory

We infer from Eqn. (5) that the K-theory (by that we mean the Grothendieck group, i.e., the
free abelian group generated by the isomorphism classes of objects modulo the relations coming
from all exact sequences) of Vect(Tτθ) is isomorphic to that of Db(Xτ ) via the Polishchuk–Schwarz
equivalence Sτ . One knows that K0(D

b(Xτ )) ∼= K0(Coh(Xτ )) = K0(Xτ ) = Pic(Xτ ) ⊕ Z. The
composition of the functors ψ∗ followed by Sτ induces a homomorphism between K0(B

τ
q ) and

K0(Vect(Tτθ)) = Pic(Xτ )⊕Z. One observes that applying ψ∗ one obtains only elements in Vect(Tτθ)
whose underlying Aθ-modules are free. It is known that for E ∈ Vect(Tτ

θ), rkSτ (E) = −deg(E)
and degSτ (E) = rk(E). The degree of the modules, which are free, is known to be zero. Hence
the composition of the two functors sends every element in Bτq to a torsion sheaf on Xτ . One
can check that O(C∗) equipped with the connection δ + z ′, where z′ ∈ C, gets mapped to the
standard holomorphic bundle Ez′

1 as explained after Remark 10. From part (c) of Proposition 3.7
of [27] we know that Sτ (E

z′
1 ) is O−z′ (up to a shift in the derived category), which is the structure

sheaf of the point −z′ mod (Z + τZ) in Xτ . All modules of the form (O(C∗), σ, δ + z′) with
z′ ∈ C are endomorphism simple, i.e., End(O(C∗), σ, δ+z′) = C. Indeed, ignoring the equivariance
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condition and the connection, End(O(C∗)) = O(C∗) and the equivariance condition says that
σ(mf) = σ(m)f . However, by definition σ(mf) = σ(m)α(f) whence α(f) = f implying f ∈ C.
This module is mapped to (Aθ, δτ + 2πiz′) = Ez′

1 , which in turn is mapped to the endomorphism
simple object O−z′ in Cθ,τ . It is known that, in fact, the Grothendieck group of any nonsingular
curve C is isomorphic to Pic(C)⊕Z. In this identification the contribution to Z comes from the rank
of the coherent sheaf, whereas Pic(C) can be regarded as the contribution from the torsion part
(actually from the determinant bundle of the sheaf, which may be identified with a torsion sheaf
via a Fourier-Mukai transform). Since we obtain only torsion sheaves, the image of the induced
map on K-theory lies inside Pic(Xτ ).

Proposition 14. The map induced by Sτ ◦ ψ∗ between the K-theories of Bτq and Vect(Tτθ) gives a
surjection from K0(B

τ
q ) to Pic(Xτ ).

Proof. The divisor class group of Xτ is the free abelian group generated by the points of Xτ modulo
the principal divisors, which is also isomorphic to Pic(Xτ ). The class of each point z ′ ∈ Xτ of the
divisor class group can be identified with the class of the torsion sheaf Oz′ corresponding to the
line bundle O(z′) ∈ Pic1(Xτ ) and they generate Pic(Xτ ) as a group. By the above argument Oz′ is
obtained by applying the functor Sτ ◦ ψ∗ to the element (O(C∗), σ, δ − z′) of Bτq . Thus one obtains
a surjection onto the generating set of Pic(Xτ ) from which the assertion follows.

Remark 15. From Proposition 2.1 of [27] we know that the images of (O(C∗), σ, δ + z′1) and
(O(C∗), σ, δ + z′2) under ψ∗ are isomorphic if and only if z ′1 ≡ z′2 mod (Z + τZ). More gener-
ally, abbreviating the module (O(C∗), σ, δ+z′) by Mz′ , one can also rephrase the linear equivalence
relation of the divisor class group to conclude that an element of the form

∑

ni[M−z′
i
] maps to

zero at the level of K-theory whenever
∑

ni = 0 and
∑

niz
′
i ∈ (Z + τZ). However, some of them

actually represent the trivial class in the K-theory of Bτq , as we will see in the next section (see
Corollary 21).

Although the image of Bτq gives only the free modules in Vect(Tτθ), it has the interesting property
of being a Tannakian category, as we will explore in the next section. Let us end this section by
summarising the relations between Bτq and the categories Bτ , Bq, Vect(Tτθ):

Bτq

{{www
wwwwww

w

ψ∗

�� ##
HH

HHHHHHH
H

Bq Vect(Tτθ) Bτ

where the two diagonal arrows are the forgetful functors discussed before. All of these functors are
faithful and exact (but not injective on objects).

3 The Tannakian formalism and the equivariant Riemann–Hilbert

correspondence

We will now analyse further the structure of Bτq and define a tensor product on it. Our main result
is that this – together with a fibre functor – makes Bτq a Tannakian category. Via an equivariant
version of the Riemann–Hilbert correspondence on C∗, we determine the corresponding affine group
scheme.

13



3.1 Preliminaries on Tannakian categories

We briefly recall the notion of a Tannakian category. For more details, we refer the reader to the
original works [32, 11, 12] (see also Appendix B of [29]).

Let C be an k-linear abelian category, for a field k. Then C is a neutral Tannakian category
over k if

1. The category C is a tensor category. In other words, there is a tensor product: for every pair of
objects X,Y there is an object X⊗Y . The tensor product is commutative (X⊗Y ' Y ⊗X)
and associative (X ⊗ (Y ⊗ Z) ' (X ⊗ Y ) ⊗ Z) and there is a unit object 1 (such that
X ⊗ 1 ' 1 ⊗X ' X). The above isomorphisms are supposed to be functorial.

2. C is a rigid tensor category: there exists a duality ∨ : C → Cop, satisfying

• For any object X in C, the functor − ⊗ X∨ is left adjoint to − ⊗ X, and the functor
X∨⊗− is right adjoint to X⊗−.

• There is an evaluation morphism ε : X ⊗X∨ → 1 and a unit morphism η : 1 → X∨ ⊗X
such that (ε⊗ 1) ◦ (1 ⊗ η) = 1X and (1 ⊗ ε) ◦ (η ⊗ 1) = 1X∨ .

3. An isomorphism between End(1) and k is given.

4. There is a fibre functor ω : C → Vectk to the category of k-vector spaces: this is a k-linear,
faithful, exact functor that commutes with tensor products.

An important result is that every Tannakian category is equivalent to the category of finite dimen-
sional linear representations of an affine group scheme H over k. This equivalence is established by
ω and the group scheme H is given as the functor of automorphisms of the fibre functor ω which
is defined as follows.

Definition 16. Let (C, ω) be a Tannakian category. The affine group scheme of automorphisms
Aut⊗(ω) of the fibre functor ω is determined as a functor from the category of k-algebras to the
category of groups as follows. If R is a k-algebra, then an element σ of Aut⊗(ω)(R) is given by a
collection of elements {σ(X)}X with X running over the collection of all objects of X ∈ C. Each
σ(X) is an R-linear automorphism of ω(X) ⊗k R such that the following hold:

1. σ(1) = idR.

2. For every morphism f : X → Y we have that (idR ⊗ ω(f) ◦ σ(X) = σ(Y ) ◦ (idR ⊗ ω(f)).

3. σ(X ⊗ Y ) = σ(X) ⊗ σ(Y ).

3.2 The Tannakian category structure on Bτq

In order not to lose the reader in notational complexities, we generalize a little and let (R, δ) be a
differential (commutative) ring that carries an action σ of a group G. Let ModG,δ(R) denote the
category consisting of free G-equivariant differential R-modules. Recall that a differential R-module
is an R-module equipped with a map ∇ : M →M – a connection – that satisfies the Leibniz rule:

∇(m · r) = ∇(m) · r +m · δ(r).
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Moreover, G-equivariance means that there is an action σ of G such that

σg(m · r) = σg(m) · αg(r),

∇(σg(m)) = σg(∇(m)).

We will group the objects in the category ModG,δ(R) into a triple (M,σ,∇) and denote the mor-

phisms that respect all the structures by HomG,δ
R (M,N).

Proposition 17. The category ModG,δ(R) is a rigid tensor category with the tensor product given
by

(M,σ,∇) ⊗ (N,σ′,∇′) = (M ⊗O(C∗) N, σ ⊗ σ′, ∇⊗ 1 + 1 ⊗∇′)

for any two objects (M,σ,∇) and (N,σ ′,∇′) in ModG,δ(R).

Proof. We start by checking that the tensor product is commutative. First of all, since R is a
commutative ring, the ‘tensor flip’ that maps M ⊗C N → N ⊗C M factorizes to a bijective map of
R-modules from M ⊗R N to N ⊗RM . One also checks that it intertwines the actions σ ⊗ σ ′ and
σ′ ⊗ σ and the two connections.

The duality is given as follows, for an object (M = V ⊗ R, σ,∇), V a vector space, we define
its dual object (M∨, σ∨,∇∨) as follows. Define an R-module by,

M∨ := HomR(M,R),

with r ∈ R acting on f ∈M∨ by (f · r)(m) = f(m) · r = f(m · r). It can be equipped with a dual
action σ∨ of G by setting for f ∈M∨,

σ∨(f) = α ◦ f ◦ σ−1.

One can check that σ∨(f) is again R-linear:

σ∨(f)(m · r) = α ◦ f
(

σ−1(m) · α−1(r)
)

= α ◦ f ◦ σ−1(m) · r =
(

σ∨(f) · r
)

(m)

Moreover, the action of R on M∨ is equivariant with respect to σ∨:

σ∨(f · r)(m) = α ◦ (f · r)
(

σ−1(m)
)

= α
(

f(σ−1(m)) · r
)

= α ◦ f ◦ σ−1(m) · α(r).

A dual connection ∇∨ is defined by

∇∨(f) = δ ◦ f − f ◦ ∇,

which indeed satisfies the Leibniz rule

∇∨(f · r)(m) = δ(f(m)) · r + f(m) · δ(r) − f(∇(m)) · r =
(

∇∨(f) · r
)

(m) + (f · δ(r))(m),

and is σ∨-invariant:

σ∨
(

∇∨(f)
)

= α ◦ (δ ◦ f) ◦ σ−1 − α ◦ (f ◦ ∇) ◦ σ−1 = δ ◦ (α ◦ f ◦ σ−1) − (α ◦ f ◦ σ−1) ◦ ∇,

since α and σ commute with δ and ∇, respectively.
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Note that since M = V ⊗R, we can identify,

M∨ ' HomR(V ⊗R,R) ' HomC(V,C) ⊗R ' V ∗ ⊗R,

from which it follows that M∨∨ 'M . Indeed, one checks that the induced map respects the extra
(G, δ)-structure:

σ∨∨(m)(f) = α ◦m ◦
(

σ∨
)−1

(f) = α ◦m ◦ (α−1 ◦ f ◦ σ) = f (σ(m))

∇∨∨(m)(f) = (δ ◦m)(f) −m ◦ ∇∨(f) = δ (f(m)) −m ◦ (δ ◦ f) + f (∇(m)) = f(∇(m)).

for all m ∈M,f ∈M∨. In addition, it allows one to prove that the association

φ ∈ HomG,δ
R (N1, N2 ⊗RM

∨) 7→ φ̃ ∈ HomG,δ
R (N1 ⊗RM,N2)

φ̃(n1 ⊗m) := φ(n1)(m) ∈ N2.

induces an isomorphism. Again, it is enough to show that this map is both G-equivariant and
δ-invariant, which is left as an exercise.
In a similar way, one proves that

HomG,δ
R (N1 ⊗RM

∨, N2) ' HomG,δ
R (N1, N2 ⊗RM).

Finally, there is an evaluation morphism and a unit morphism given in terms of a basis {ei} of V
and its dual {êi} of V ∗ by

ε(m⊗ f) = f(m), η(1R) = êi ⊗ ei,

that satisfy the required properties.

Let us now return to the category Bτq of Definition 4. It is not difficult to see that the above
tensor product respects the regular singularity condition in the definition of Bτ

q . Hence this becomes
a rigid tensor category as well. We would like to show that it is in fact a Tannakian category by
constructing a fibre functor to VectC. The following observations turn out to be essential in what
follows.

Via a series of changes of basis, it is possible to bring the matrix A in the form of a constant
matrix with all eigenvalues in the same transversal of τZ. In other words, its eigenvalues never differ
by an integer multiple of τ . Before we explain how this can be achieved, recall that a transversal to
τZ in C is the image of a section of the projection map C → C/τZ (e.g., the strip 0 ≤ <(z/τ) < 1).
We follow the argument of Section 17 in [35]. Let A(z) = A0 + A1z + · · · be a matrix with
holomorphic entries. We first bring the constant term A0 in Jordan canonical form via a constant
change of basis matrix. Subsequently, we can bring all the eigenvalues of A0 in the same transversal
of τZ by the so-called shearing transformations. Let us consider the case of a 2 × 2 matrix A(z)
and write

A(z) =

(

λ1 0
0 λ2

)

+

(

a(z) b(z)
c(z) d(z)

)

,

with a = a1z + a2z
2 + · · · and similarly b, c and d. Let us suppose that λ1 − λ2 = kτ for some

positive integer k. The change of basis is given by the matrix D = diag{1, z} and transforms A to

A′ = D−1AD +D−1δD =

(

λ1 0
c1 λ2 + τ

)

+

(

a(z) zb(z)
c2z + c3z

2 + · · · d(z)

)

,
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and one readily observes that the constant term A′
0 of this matrix has eigenvalues that differ by

(k − 1)τ . Proceeding in this way, one can transform A to a matrix that has constant term with
eigenvalues in the same transversal. The generalisation to arbitrary dimensions is straightforward
and can be found in Section 17.1 of loc. cit.

Proposition 18. For each object in Bτq there is an isomorphic object (M ' V ⊗ O(C∗), σ,∇) in
Bτq with V a vector space and

1. ∇ = δ +A with A a constant matrix with all eigenvalues in the same transversal of τZ,

2. σ is given by σ(v ⊗ f) = Bv ⊗ α(f) for an invertible constant matrix B.

Proof. Since M is a free O(C∗)-module, there is a vector space V such that M ' V ⊗ O(C∗).
We show 1. by adopting an argument from Section 5 of [35]. By the above observations, we can
write the matrix of the connection as A = A0 +A1z + · · · , with A0 having eigenvalues that never
differ by an element of τZ. We construct a matrix P = I + P1z + · · · (Pk in Mn(C)) which solves
PA0 = AP − δP . Comparing the powers of z, we find

A0Pk − Pk(A0 + kI) = −(Ak +Ak−1P1 + · · · +A1Pk−1)

which can be solved recursively by our assumption on the eigenvalues of A0. This gives a formal
power series expansion and we would like to show that the entries of P are in fact holomorphic
functions on C∗.

Now by Theorem 5.4 of [35] one knows that the radius of convergence of the entries of P is the
same as that of the entries of A, which is infinity. Hence, P ∈Mn(O(C∗)).

Next, the action of σ can be written as σ(v ⊗ f) = Bv ⊗ α(f) for some invertible matrix
B ∈ Mn(O(C∗)) with n the dimension of V . Expressed in terms of A and B, the equivariance
condition σ ◦ ∇ = ∇ ◦ σ reads

δB + [A,B] = 0, (7)

and as observed above, we may assume that A has constant entries and with eigenvalues that are
all in the same transversal. We adopt the argument from the proof of Theorem 4.4 in [18] to show
that B is in fact constant. Writing B as a Laurent series B =

∑

k∈Z
Bkz

k we obtain the following
relations

(A− τkIn)Bk = BkA, k = 0, 1, . . .

This implies [35, Theorem 4.1] (see also Lemma 4.6 in [18]) that (A − τkIn) and A have at least
one common eigenvalue. But since the eigenvalues of A are all in a transversal of τZ in C, this is
impossible unless k = 0, and we conclude that Bk = 0 for all k 6= 0.

Our next task is to show that Bτq is in fact a Tannakian category and compute the corresponding
affine group scheme. For this, we use an equivariant version of the Riemann–Hilbert correspondence.

Theorem 19. 1. The category Bτq is a Tannakian category with the fibre functor given by

ω : Bτq −→ VectC

(M,σ,∇) 7−→ (ker∇)z,

mapping to the germs at a fixed point z ∈ C∗ of local solutions to the differential equation
δf +Af = 0, where ∇ = δ +A with respect to a suitable basis of M .
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2. The category Bτq is equivalent to the category Rep(Z+θZ) of finite dimensional representations
of Z + θZ ' Z2.

Proof. By the existence and uniqueness of local solutions of linear differential equations, there are
n local solutions to the system of differential equations δU = −AU once we have fixed the initial
conditions, so that (ker∇)z is an n-dimensional complex vector space. That the functor ω is faithful
can be seen as follows. Suppose φ is a morphism between two objects (M,σ,∇) and (M ′, σ′,∇′)
and suppose that these objects are of the form as in Proposition 18, with the eigenvalues of A,A ′ in
the same transversal. We claim that φ is given by a constant matrix so that ω(φ) mapping (ker∇)z
to (ker∇′)z coincides with φ. The argument is very similar to that used in the second part of the
proof of Proposition 18 since compatibility of φ with the connections implies

(A′ − τkIn)φk = φkA, k = 0, 1, . . .

where we have written φ =
∑

k≥0 φkz
k. An application of Theorem 4.1 in [35] then implies that A

and A′ − τkIn have a common eigenvalue. This is impossible unless k = 0 since by assumption A
and A′ have eigenvalues in the same transversal. We conclude that φk = 0 for all k > 0.

The general case follows by observing that Proposition 18 implies that a morphism between two
objects in Bτq can always be written as D2 ◦ φ ◦D−1

1 with φ constant as above and with Di certain
(invertible) change of basis matrices.

For 2., fix a transversal T to τZ in C. We construct a tensor functor FT : Rep(Z2) → Bτq that
is full, faithful and essentially surjective. Let ρ1, ρ2 be two mutually commuting representations
of Z on a vector space V . Then we define A ∈ End(V ) via ρ1(1) = e2πiA/τ and B as ρ2(1). By
Lemma 4.5 in [18], there exists a unique matrix A such that ρ1(1) = e2πiA/τ with its eigenvalues
in the transversal T and a unique matrix B ′ such that B = e2πiB

′

. We set FT(V ) = (M,σ,∇) in
Bτq by setting M = V ⊗ O(C∗), σ(v ⊗ f) = Bv ⊗ α(f) and finally ∇(v ⊗ f) = Av ⊗ f + v ⊗ δf ;
for a morphism φ ∈ Hom(V, V ′) we simply set FT(φ) = φ⊗ 1. Once again by Lemma 4.5 ibid. the
matrices A and B ′ commute, whence A and B = e2πiB

′

commute. Thus the compatibility condition
between σ and ∇ given by Eqn. (7) is satisfied. Moreover, FT(φ) is compatible with σ and ∇ and
thus a morphism in Bτq .

We infer from Proposition 18 that the functor FT is essentially surjective, since any object in
Bτq is isomorphic to an object obtained from an element in Rep(Z2) by the above procedure.

Fullness and faithfulness of this functor can be seen as follows. Let V, V ′ be two vector spaces
with the action of Z2 given by e2πiA/τ , B and e2πiA

′/τ , B′ respectively. We can choose the square
matrices A and A′ such that their eigenvalues lie in the transversal T. It then follows by the
same reasoning as before that an element ρ ∈ HomθZ,δ

O(C∗)(M,M ′) is given by a constant matrix

that intertwines A,B and A′, B′, respectively. Hence, it is given by an element in Hom(V, V ′) that
commutes with ρ1 and ρ2 (i.e. a morphism in Rep(Z2)).

Finally, we show that FT is a tensor functor. Suppose that (V, ρ1, ρ2) and (V ′, ρ′1, ρ
′
2) are two

objects in Rep(Z2); we need to show that there are natural isomorphisms cV,V ′ : F (V ) ⊗ F (V ′) →
F (V ⊗V ′). As before, we define the connection matrix A by setting e2πiA/τ = ρ1(1) and B = ρ2(1);
in the same manner we define A′ and B′ from ρ′1 and ρ′2. We then have

F (V, ρ1, ρ2) ⊗ F (V ′, ρ′1, ρ
′
2) =

(

(V ⊗O(C∗)) ⊗O(C∗) (V ′ ⊗O(C∗)), σ ⊗ σ′, δ +A⊗ 1 + 1 ⊗A′
)

.
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One observes that the eigenvalues of the matrix A⊗ 1 + 1 ⊗A′ lie possibly outside the transversal
T. However, there is a unique matrix Ã with all its eigenvalues in T such that

e2πiÃ/τ := e2πi(A⊗1+1⊗A′)/τ = e2πiA/τ ⊗ e2πiA
′/τ ≡ ρ1(1) ⊗ ρ′1(1). (8)

The procedure of associating to A⊗ 1 + 1 ⊗ A′ the matrix Ã defines the required map cV,V ′ since
Ã is the connection matrix that one would have obtained (via FT) from ρ1 ⊗ ρ′1. In fact, it follows
that if A⊗ 1 + 1 ⊗A′ commutes with B ⊗B ′ ≡ ρ2(1) ⊗ ρ′2(1) then so does Ã. This map is natural
in V and V ′ and the usual diagrams expressing associativity and commutativity (cf. for instance
[12, Definition 1.8]) are satisfied. Moreover, it is bijective since an inverse can be constructed from
Eqn. (8) by using the identification EndC(V ⊗V ′) = EndC(V )⊗EndC(V ′) to obtain A and A′ back
from Ã.

Note that the choice of the transversal T is irrelevant since two functors FT and FT′ associated
to two different transversals T and T′ to τZ are related via a natural transformation that is given
explicitly by a shearing transformation as discussed before Proposition 18.

We observe that it is also possible to prove the above equivalence directly by means of the
fibre functor ω. For this we consider the full subcategory of Bτq such that the connection matrices
have all eigenvalues in the same transversal T. It follows from Proposition 18 that this category
is equivalent to Bτq . By constructing the maps cM,M ′ very similar to those appearing in the above
proof, one can show that this is an equivalence of rigid tensor categories. Moreover, the restriction
of the fibre functor gives it the structure of a Tannakian category. The fibre functor induces an
equivalence with Rep(Z2) by defining the action of Z2 on (ker∇)z to be given by the matrices
e2πiA/τ and B. Clearly, the functor FT from the proof of Theorem 19 is the inverse to this fibre
functor.

Remark 20. For any group H the category of its finite dimensional representations over C forms
a neutral Tannakian category, which should be equivalent to the category of representations of
some affine group scheme, say Ĥ. The group scheme Ĥ is called the algebraic hull of H. Strictly
speaking, the affine group scheme underlying Bτq is the algebraic hull of Z2. We refer the readers
to [28] for an explicit computation of the algebraic hull of Z, which is Hom(C/Z,C∗) × Ga.

As a consequence we are able to conclude that the K-theory of Bτq is the same as that of Rep(Z2).
An object of Rep(Z2) is a vector space V equipped with two commuting linear invertible en-
domorphisms. Using the fact that the two endomorphisms commute, i.e., respect each oth-
ers eigenspaces, one can always find a common eigenvector w. This gives an exact sequence
0 −→ 〈w〉 −→ V −→ V/〈w〉 −→ 0 in Rep(Z2). Therefore, the K-theory of Rep(Z2) is the free
abelian group generated by the simple objects, which are one dimensional representations with two
actions a and b, with a, b ∈ C∗ (the actions are given by multiplication by a and b respectively).
The fibre functor sends the isomorphism class of (O(C∗), b, δ + z′) with z′ ∈ C to the simple object
(C, b, e2πiz

′/τ ) in Rep(Z2). Note that (O(C∗), b, δ + z′) and (O(C∗), b, δ + (z′ + nτ)) are isomorphic
via the shearing transformation by zn. Indeed,

(δ + z′)znf = nτznf + znδf + z′znf = zn
(

δ + (z′ + nτ)
)

f

and their images also get identified via the exponentiation. Summarising, we obtain
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Corollary 21. The K-theory of Bτq is the free abelian group generated by the isomorphism classes
of the objects (O(C∗), b, δ + z′) with b ∈ C∗ and z′ ∈ C/τZ. Under this identification, one finds
that the map on K-theory induced by the functor Sτ ◦ ψ∗ sends the class of (O(C∗), b, δ + z′) to the
divisor class of the point −z ′ ∈ Xτ and their linear combinations accordingly.

Remark 22. One possible perspective of our work is the notion of a fundamental group of noncom-
mutative tori. Given a noncommutative space described by its category of representations in the
appropriate sense, e.g., coherent sheaves, vector bundles with connections, etc., it is conceivable
that a description of its fundamental group can be obtained by finding a suitably defined Tan-
nakian subcategory inside it. This philosophy stems from the original work of Nori [21, 22] in the
commutative case. For a classical complex torus Xτ = C/(Z + τZ) the fundamental group is just
the lattice Z + τZ. The category Bτq describes the quotient C/(Z + θZ) with the infinitesimal τZ

action providing the complex structure. Our construction proposes Z + θZ as a candidate for the
fundamental group in a Tannakian setting.

Remark 23. Invoking Manin’s point of view again, we may disregard the order in which the quotients
are performed. Ideally one would like to perform the double quotient operation in two different
orders and show that they agree even at infinity. Consider first Xτ = C/(Z+ τZ) and the infinites-
imal action of θZ on it. It is described by the category Cθ,τ , which is the heart of the t-structure
of Example 2 on Db(Xτ ). If g ∈ SL(2,Z) and g acts on τ by fractional linear transformation
then Cθ,gτ ∼= Cθ,τ . There is a unique cusp corresponding to the orbit of the rational numbers with
respect to the modular group SL(2,Z). This point corresponds to the nodal Weierstraß cubic E.
One may consider a similar infinitesimal action of θZ in terms of t-structures on D b(E) depending
on θ and their hearts as studied in [4]. On the other hand from Proposition 2 one finds that the
SL(2,Z) invariance of the categories Vect(Tτ

θ) can be proven without referring to the equivalence
with Cθ,τ . In fact, it is possible to substitute any real value (in particular rational number) for τ
in δτ . However, δτ does not remain injective for rational values of τ . In fact, one can check that
for each rational number p/q, the kernel of δp/q is a *-subalgebra of Aθ generated by U−q

1 Up2 .
It is still plausible that the categories Vect(Tτ

θ), with τ ∈ Q will be related to the hearts of
the t-structures on Db(E) by functors similar to Sτ . The following observation might be a useful
summary.

The action of SL(2,Z) extends to the whole lower half plane H−. When adjoined with P1(R), the
quotient space contains the usual modular curve with an invisible stratum arising from the action
of SL(2,Z) on the irrationals, which has been investigated by Connes, Douglas and Schwarz in [6]
and separately by Manin and Marcolli in [20]. On one hand, for a fixed θ, the action of SL(2,Z)
on H− is encoded in the isomorphism Sτ ∼= Sgτ of Polishchuk–Schwarz functors. In particular,
Db(Xτ ) ∼= Db(Xgτ ) inducing Cθ,τ ∼= Cθ,gτ . On the other hand, for a fixed τ , the action of SL(2,Z)
on P1(R) manifests itself by the action induced by the twist functors TO,Tk(p0) ∈ Aut(Db(Xτ )) on

the t-structures, (Dθ,60, Dθ,>0) 7→ (Dgθ,60, Dgθ,>0) up to a shift (see Proposition 2.6 [26]).
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