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BURNSIDE RINGS FOR REAL 2-REPRESENTATION THEORY:
THE LINEAR THEORY

DMITRIY RUMYNIN AND MATTHEW B. YOUNG

Abstract. This paper is a fundamental study of the Real 2-representation theory
of 2-groups. It also contains many new results in the ordinary (non-Real) case. Our
framework relies on a 2-equivariant Morita bicategory, where a novel construction of
induction is introduced. We identify the Grothendieck ring of Real 2-representations
as a Real variant of the Burnside ring of the fundamental group of the 2-group and
study the Real categorical character theory. This paper unifies two previous lines
of inquiry, the approach to 2-representation theory via Morita theory and Burnside
rings, initiated by the first author and Wendland, and the Real 2-representation
theory of 2-groups, as studied by the second author.
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Introduction

The notion of a 2-representation of a 2-group is introduced and studied by Barrett
and Mackaay [5], Crane and Yetter [13] and Elgueta [14], amongst many others. In this
setting, a 2-group acts coherently by autoequivalences of a category or, more gener-
ally, of an object of a target bicategory. An important target bicategory is 2VectK, the
bicategory of Kapranov–Voevodsky 2-vector spaces over a field K, a natural categorifi-
cation of the category of finite dimensional vector spaces. In this example, or in more
general linear settings, there is a character theory of 2-representations, discovered in-
dependently by Bartlett [6] and Ganter and Kapranov [16]. This character theory can
be seen as a concrete instance of the theory of secondary traces, as studied by Töen
and Vezzosi [34, 35] and Ben-Zvi and Nadler [8]. The theory of 2-representations,
with its character theory, appears naturally in many areas of mathematics, including
topological gauge theory [6, 36] and equivariant elliptic cohomology [21, 16, 25]. It is
indispensable in traditional representation theory, for example, through its relation to
conjectures of Lusztig [10] and McKay [22], as explained in [31], or via the topological
field theoretic approach to representations of algebraic groups [7].

One weakness of 2-character theory is that, in general, it cannot distinguish equiv-
alence classes of 2-representations. This issue is resolved by Rumynin and Wendland
[31] who, under mild assumptions, describe the Grothendieck ring of 2-representations
of an essentially finite 2-group on 2VectK in terms of a generalized Burnside ring
[18]. The mark homomorphisms of this Burnside ring not only distinguish equivalence
classes of 2-representations but also recover the 2-characters. The perspective taken
in [31] is that of Morita theory, so that 2-groups are represented on the Morita bicat-
egory of algebras, bimodules and intertwiners, instead of on 2VectK. This perspective
is amenable to explicit calculations and constructions.

In this paper we develop a Morita-theoretic approach to Real 2-representation
theory. A number of our results are new and interesting already for ordinary 2-
representations. The word Real is capitalized, following Atiyah [3, 1], where he distin-
guishes “real” (objects defined over R) and “Real” (objects with an involution). For
instance, a Real vector space is a complex vector space together with an anti-linear
involution.

The Real 2-representation theory of 2-groups is introduced and investigated in [37]
as a categorification of the Real representation theory of groups, as studied by Atiyah
and Segal [2] and Karoubi [23] in the form of equivariant KR-theory. There are two
distinct notions of a Real 2-representation. In this paper we focus on linear Real 2-
representations, in which the target bicategory is endowed with an involution which is
contravariant on 2-morphisms. A second notion of an anti-linear Real 2-representation,
related to Hermitian Morita theory [20], requires the target bicategory to be linear and
endowed with an involution which is fully covariant but anti-linear on 2-morphisms.
We hope to treat the anti-linear theory in consequent work. The character theory
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of (projective) Real 2-representations of finite groups is also studied in [37]. Real 2-
representations, and their characters, appear naturally in unoriented topological field
theory and orientifold string and M -theory [38] and, conjecturally, in Real variants of
equivariant elliptic cohomology [37].

Let us now describe assiduously the content of the present paper, stating concisely
the main theorems.

In Chapter 1 we introduce notation and set out our vision of the subject. Let G =

(G2
∂−→ G1) be a crossed module with a Z2-grading, that is, a group homomorphism

π : G1 → Z2 which satisfies im(∂) ≤ ker(π). We allow π to be trivial: in this case
our results belong to the ordinary (non-Real) theory. Associated to G is a Z2-graded

2-group G̃ whose action on bicategories is our primary interest. For the introduction
we assume that G1 is finite since our results are cleanest under this assumption.

We start Chapter 2 by defining weak G-algebras, the central notion of this paper.
This is an associative K-algebra A together with a projective action of G1 by algebra
automorphisms and anti-automorphisms, according to the grading π, and a projec-
tive group homomorphism G2 → A× which satisfy a number of coherence conditions.
Compactly, it is an instance of Noohi’s weak crossed module homomorphisms [27], spe-
cial cases of which play a key role in [31]. A weak G-algebra in which the projective
homomorphisms are, in fact, genuine homomorphisms is called strict. In Section 2.3

we construct various Morita bicategories which are 2-equivariant for G̃ and fit into the
following diagram of subbicategories:

G-AlgK G-RWAlgK G-NAlgK

G-Algfd
K G-RWAlgfd

K G-NAlgfd
K .

The strictness of the G-algebras decreases from left to right and the superscript “fd”
indicated the fully dualizable subbicategory. A key technical notion, realizability of
a twisted 2-cocycle for the group G1, is introduced in Section 2.4. The following
strictification theorem is the main result of Chapter 2.

Theorem (Theorem 2.4 and Proposition 2.5). Let A ∈ G-NAlgK be an N-weak G-
algebra.

(i) If A is split semisimple, then there exists a strict (split semisimple) G-algebra
B ∈ G-Algfd

K which is G-Morita equivalent to A.
(ii) In general, there exist a Z2-graded crossed module H and a strict H-algebra B ∈

H-AlgK such that H̃ ' G̃ as Z2-graded 2-groups and B is H-Morita equivalent
to A.

In Chapter 3 we define and study induction pseudofunctors. Given a crossed sub-
module H of G, it is natural to expect the existence of an induction pseudofunctor

IndG
H : H-NAlgK → G-NAlgK.

Using our strictification result, it suffices to construct IndG
H on the subbicategories

H-AlgK and G-AlgK of strict algebras. There are three flavours of IndG
H , depending on

the Z2-gradings of H and G. We can now state the main result of Chapter 3.

Theorem (Theorems 3.4 and 3.6).

(i) There exists an induction pseudofunctor IndG
H : H-AlgK → G-AlgK.
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(ii) If the index |G2 : H2| is finite and the characteristic of K does not divide
|G2 : H2|, then the above pseudofunctor restricts to a pseudofunctor IndG

H :

H-Algfd
K → G-Algfd

K .

Our construction of IndG
H is direct and explicit, illustrating the power of the Morita-

theoretic approach to 2-representation theory. An important technical result is a
Maschke-type theorem for induced G-algebras, Proposition 3.3, asserting that IndG

H

preserves separability. When G is trivially graded, we prove that, under certain as-
sumptions, IndG

H is both left and right biadjoint to the restriction pseudofunctor ResGH
(Proposition 3.5). The analogous question in the Z2-graded setting is more subtle
(Problem 3.7). In Section 3.4 we describe the monoidal behaviour of IndG

H .
In Chapter 4 we return to Real 2-representations on 2VectK. We construct a local

biequivalence G-Algfd
K → RRep2VectK

(G̃) (Proposition 4.2) that enables us to prove the
first of the two main results of the paper.

Theorem (Theorem 4.6). If K is separably closed, then RRep2VectK
(G̃) is biequivalent

to G-Algfd
K .

As a consequence, we give a Morita-theoretic classification of Real 2-representations

of G̃ (Corollary 4.7). The resulting structure theorem for Real 2-representations (The-
orem 4.8) yields a Real generalization of known results [29, 14, 16].

In Chapter 5 we describe the Grothendieck ring of RRep2VectK
(G̃), proving the second

main result of the paper.

Theorem (Theorem 5.1). The Grothendieck ring K0(RRep2VectK
(G̃)) is isomorphic to

the generalized Burnside ring BΦ
Z(G), where Φ is the functor of “Real one dimensional

2-representations”.

The isomorphism is explicit and compatible with the corresponding ordinary result
[31].

Finally, in Chapter 6 we turn to the character theory of Real 2-representations. We
define the categorical character and 2-character of a Real 2-representation of an arbi-

trary Z2-graded 2-group G̃. Our approach is geometric, being formulated in terms of
various kinds of loop spaces of G. One feature of our approach is that it works directly
with the 2-group (or its crossed module model) and applies uniformly to the ordinary
and Real cases. Moreover, its form immediately suggests a generalization to the n-
categorical and projective cases. In the finite case, we relate Real 2-characters to mark
homomorphisms of the generalized Burnside ring in Corollary 6.4. At its core, this is
a result about 2-characters of certain induced Real 2-representations (cf. Theorem 6.2
and Corollary 6.3). This provides a 2-group generalization of the corresponding result
for (Real projective) 2-representations of finite groups [16, 37]. We expect these results
to be representation theoretic analogues of Hopkins–Kuhn–Ravenel character theory
[21, 26] of 2-equivariant elliptic cohomology (see Problem 6.5).

Acknowledgements. Both authors are grateful to the Max Planck Institute for
Mathematics where they met and started this project. The first author would like
to thank the University of Zurich, whose hospitality he enjoyed. The second author
would like to thank Catharina Stroppel for discussions. The first author was partially
supported by the Russian Academic Excellence Project ‘5–100’.
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1. Crossed modules and 2-groups

1.1. Z2-graded crossed modules. A crossed module G = (G2
∂−→ G1) consists of

groups G1 and G2, an action G1 × G2 → G2, (g, x) 7→ gx, of G1 on G2 by group
automorphisms and a homomorphism ∂ : G2 → G1. This data is required to satisfy

∂(gx) = g∂(x)g−1, ∂(y)x = yxy−1

for all g, x, y. Here, and for the rest of the paper, we use letters f, g, h for elements of
G1, x, y, z for elements of G2 and a, b, c for elements of some algebra A.

A group G defines a crossed module ({e} e−→ G), which we continue to denote by G.
Denote by Z2 the multiplicative group {+1,−1}.

Definition. A Z2-graded crossed module is a crossed module morphism π : G→ Z2.

Explicitly, π is the data of a group homomorphism π : G1 → Z2 which satisfies

im(∂) ≤ ker(π). The kernel of π : G→ Z2 is the crossed submodule G0 = (G2
∂−→ G0),

where G0 = ker(π : G1 → Z2). We call G0 the ungraded crossed module of G. We say
that G is trivially graded if G0 = G.

1.2. Crossed modules of generalized automorphisms. Fix a ground field K. Let
A be a K-algebra, always assumed to be associative and unital. The group of units of A
is A×. The centre of A is Z(A). The assignment of an algebra to its opposite extends to
an involution (−)op : ALGK → ALGK of the category of K-algebras and unital algebra
morphisms. Given ε ∈ Z2, define ε(−) : ALGK → ALGK so that +1(−) = idALGK and
−1(−) = (−)op.

Let Autgen(A) be the set of all algebra isomorphisms of the form A→ A or Aop → A.
Define π : Autgen(A) → Z2 so that g ∈ Autgen(A) is an algebra homomorphism
π(g)A→ A. We consider Autgen(A) as a group with multiplication

g · h = g ◦ π(g)h.

Since (−)op acts trivially on morphisms (viewed as set maps), this is the usual com-
position of morphisms. The map π makes Autgen(A) into a Z2-graded group with
ungraded subgroup Aut(A).

Definition. The crossed module of generalized automorphisms of A is

AUTgen(A) =
(
A×

∂−→ Autgen(A)
)
,

where Autgen(A) acts on A× by gx = g(xπ(g)) and ∂(x) is the inner automorphism
a 7→ xax−1.

To see that, for example, the first axiom of a crossed module holds, note that
∂(gx)(a) = g(xπ(g))ag(x−π(g)) while

(g∂(x)g−1)(a) = g(xπ(g)g−1(a)x−π(g)) = g(xπ(g))ag(x−π(g)),

as required. The Z2-grading of Autgen(A) induces a Z2-grading of AUTgen(A), the

ungraded crossed module of which is AUT(A) := (A×
∂−→ Aut(A)).

1.3. 2-groups. For categorical background, we refer the reader to Bénabou [9]. For a
detailed introduction to 2-groups, see Baez and Lauda [4].

In this paper, we use the term 2-group for what is called a weak 2-group in [4],
namely, a bicategory G with a single object in which all 1-morphisms are equivalences
and all 2-morphisms are isomorphisms. Morphisms of 2-groups are pseudofunctors.
Note that G can be seen as a monoidal groupoid in which each endofunctor g ⊗ − :
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G → G, g ∈ G, is an equivalence. We switch freely between these two perspectives.
A 2-group is called strict if its underlying bicategory is a (strict) 2-category. Every
2-group is equivalent to a strict 2-group. A group can be thought of as a groupoid
and, hence, as a 2-group in a canonical way.

There is a well-known equivalence (̃−) from the category of crossed modules and
strict crossed module morphisms to the category of strict, small 2-groups and 2-
functors [12], [27, §3.3]. This functor assigns to a crossed module G the 2-group

G̃ with object ?, with 1-morphisms 1EndG̃(?) = G1 and 2-morphisms

2HomG̃(g1, g2) = {x ∈ G2 | ∂(x)g1 = g2}.

The vertical composition law in G̃ is illustrated by the diagram

(g2
x2=⇒ g3) ◦ (g1

x1=⇒ g2) = ? ?

g3

g2

g1

x2

x1

= ? ?.

g3

g1

x2x1

The horizontal composition law is illustrated by

(g1
x

=⇒ g2) � (g′1
x′
=⇒ g′2) = ? ? ?

g2

g1

g′2

g′1

x x′ = ? ?.

g2g′2

g1g′1

x · g1x′

The equivalence class of the 2-group G̃ is determined by the quadruple (π1(G), π2(G), α, [θ])
where α is an action of π1(G) := coker(∂) on π2(G) := ker(∂) and [θ] ∈ H3(π1(G), π2(G))
is the Sinh cohomology class [4, Theorem 8.3.7] (cf. [14, 30]).

A Z2-graded 2-group is a 2-group morphism π : G → Z2. The ungraded 2-group of

G is the locally full subbicategory G0 on 1-morphisms in ker(π). We also write (̃−)
for the induced equivalence between the categories of Z2-graded crossed modules and
Z2-graded groups.

1.4. Generalized automorphism 2-groups. Given a bicategory V , denote by Vco

the bicategory obtained from V by reversing its 2-cells.
We recall a construction of [37, §3.3]. Let V be a bicategory with weak duality

involution, in the sense of Shulman [32, §2]. This is the data of a pseudofunctor
(−)◦ : Vco → V , a pseudonatural adjoint equivalence µ : 1V ⇒ (−)◦ ◦ ((−)◦)co and
additional higher coherence data which we do not recall here. Let V ∈ V . The
collection of all equivalences of the form V → V or V ◦ → V , together with the
2-isomorphisms between them, assembles to a Z2-graded 2-group 1Autgen

V (V ), called
the generalized automorphism 2-group of V . The monoidal structure ⊗ is defined on
objects by

f2 ⊗ f1 = f2 ◦ (π(f2)f1 ◦ µ
δπ(f2),π(f1),−1

V ),

where π(f) ∈ Z2 is such that f : π(f)V → V , the symbol π(f)(−) determines the
application of (−)◦ and

δπ(f2),π(f1),−1 =

{
+1 if π(f2) = π(f1) = −1,

0 otherwise,

while µ0
V means that the map µV is omitted. The definition of ⊗ on morphisms is

similar. We omit the definition of the associator, which uses the higher coherence data.
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The ungraded 2-group of 1Autgen
V (V ) is 1AutV(V ), the weak automorphism 2-group of

V , as defined in [4, §8].

1.5. Real 2-representation theory. Following [37, §3], we recall the basic definitions
of the Real 2-representation theory of 2-groups.

The bicategory of 2-representations of a 2-group G on a bicategory V is

RepV(G) = 1HomBicat(G,V),

consisting of pseudofunctors, pseudonatural transformations and modifications. A 2-
representation of G is, thus, the datum of an object V ∈ V and a 2-group morphism
G → 1AutV(V ). For detailed studies of 2-representation theory, the reader is referred
to [5, 14, 6].

Now let G be a Z2-graded 2-group. Let V be a bicategory with weak duality invo-
lution. The bicategory of Real 2-representations of G on V is

RRepV(G) = 1HomBicatcon(G,V).

Here Bicatcon is the tricategory of bicategories with contravariance. We regard G and
V as bicategories with contravariance [37, §§1.2, 3.3]. The ingredients of RRepV(G) are
as introduced in [32, §4]:

• objects – contravariance preserving pseudofunctors,
• 1-morphisms – pseudonatural transformations respecting contravariance,
• 2-morphisms – modifications respecting contravariance.

In particular, all 2-morphisms are isomorphisms. In concrete terms, a Real 2-representation
of G on V ∈ V is a morphism G → 1Autgen

V (V ) of Z2-graded 2-groups.
A symmetric monoidal structure on V (which commutes with the weak duality

involution) induces symmetric monoidal structures on RepV(G) and RRepV(G). These
monoidal structures are compatible in the sense that the restriction pseudofunctor

ResGG0 : RRepV(G)→ RepV(G0)

is monoidal.

Example. Let Cat be the 2-category of small categories. The assignment of a category
to its opposite extends to a strict duality involution (−)op : Catco → Cat. A Real 2-
representation of a Z2-graded group G is the data of a category C, equivalences

ρ(g) : π(g)C → C, g ∈ G

and composition natural isomorphisms

ρg2,g1 : ρ(g2) ◦ π(g2)ρ(g1) =⇒ ρ(g2g1), gi ∈ G.

This data is required to satisfy the associativity constraints

ρg3g2,g1 �
(
ρg3,g2 ◦

π(g3g2)ρ(g1)
)

= ρg3,g2g1 �
(
ρ(g3) ◦ π(g3)ρπ(g3)

g2,g1

)
, gi ∈ G.

/

Example. Let 2VectK be the bicategory of finite dimensional Kapranov–Voevodsky
2-vector spaces over K. We use the semi-skeletal model [16, §2.2], [31, §1]. Objects
are [n], n ∈ Z≥0. A 1-morphism [n] → [m] is an m × n matrix A = (Aij) of finite
dimensional vector spaces over K. A 2-morphism u : A ⇒ B is a collection of K-
linear maps (uij : Aij → Bij). We omit the definition of the various compositions.
The bicategory 2VectK has a natural symmetric monoidal structure. A weak duality
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involution on 2VectK is defined as follows. The pseudofunctor (−)◦ : 2Vectco
K → 2VectK

is given on objects, 1-morphisms and 2-morphisms by

[n]◦ = [n], (Aij)
◦ = (A∨ij), (uij)

◦ = (u∨ij),

respectively, where (−)∨ is the K-linear duality functor on the category VectK of finite
dimensional vector spaces. The remaining data for the duality involution is induced
from the evaluation isomorphism 1VectK ' (−)∨ ◦ ((−)∨)op. Equivalence classes of Real
2-representations of finite groups on 2VectK are classified in [37, §5.3]. /

1.6. Real 2-modules. Let 2ModK be the 2-category of 2-modules over K, as defined
in [31, §1] (where it is denoted 2-ModK). Objects are VectK-module categories that
are VectK-module equivalent to A-Mod for some K-algebra A. We do not recall the
definitions of 1- and 2-morphisms. A 2-representation of a 2-group G on 2ModK is
called a 2-module over G.

In this paper we use a variation of this set-up. Let ALGK be the Morita bicategory:

• objects – K-algebras,
• 1-morphisms A→ B – B-A-bimodules,
• 2-morphisms – bimodule intertwiners.

The composition of 1-morphisms is the tensor product of bimodules. Let AlgK be the
subbicategory of finite dimensional algebras, finite dimensional bimodules and inter-
twiners. Let also Algfd

K be the fully dualizable subbicategory of ALGK or, equivalently,
the full subbicategory of AlgK spanned by separable algebras. Tensor product of alge-
bras over K induces symmetric monoidal structures on ALGK, AlgK and Algfd

K .
The 2-representation theories of G on 2ModK and ALGK are equivalent. This follows

from the fact that, by Morita theory, equivalences in 2ModK can be represented by
bimodules. The 2-representation theories of G on AlgK and Algfd

K can therefore be
thought of as the finite dimensional and separable 2-module theories of G, respectively.

Recall that each K-algebra morphism φ : A → B defines restriction functors from
B-modules to A-modules. If M is a right B-module, then Mφ is a right A-module,
equal to M as an abelian group and with right A-module structure

m · a = mφ(a), m ∈Mφ, a ∈ A.
Similarly, a left B-module N determines a left A-module φN . Starting with the identity
bimodule BBB, we get a representable B-A-bimodule Bφ. We use the representable
bimodules to embed ALGK as a locally discrete subbicategory of ALGK. Also relevant
is the locally full subbicategory ALGrep

K of ALGK on representable 1-morphisms. We
record the following result for later use.

Lemma 1.1. Let φ and ψ be K-algebra isomorphisms A→ B. Then the map

Υψ
φ : {b ∈ B× | φ = ∂(b)ψ} → 2HomALGK(Bφ, Bψ)

which sends an element b ∈ B× to the map given by right multiplication by b is a
bijection onto the subset of 2-isomorphisms.

As explicated in [24, Theorem 5.1], the bicategory Algfd
K admits a weak duality

involution. The pseudofunctor (−)◦ : (Algfd
K )co → Algfd

K is defined on objects by
A◦ = Aop, on a 1-morphism M : A → B by M◦ = HomMod-A(M,A) (viewing the
A-B-bimodule on the right hand side as a Bop-Aop-bimodule), and on a 2-morphism
φ : M ⇒ N by φ◦ = (−) ◦ φ. The additional coherence data for (−)◦ and its lift to
a weak duality involution are constructed using the separability of algebras and the
finite dimensionality of bimodules involved.
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Definition. A Real 2-module over a Z2-graded 2-group G is a Real 2-representation
of G on Algfd

K .

There is a canonical pseudofunctor 2VectK → Algfd
K which sends the object [n] to

the algebra Kn. If K is separably closed, then this is a monoidal biequivalence which,
with 2VectK equipped with the weak duality involution of Section 1.5, lifts to a duality
biequivalence. An explicit construction of this lifting is given in [24, Theorem 6.3]. In
particular, this allows us to conclude that the bicategories of Real 2-representations of
G on 2VectK and Algfd

K are monoidally biequivalent.

2. Actions of crossed modules on algebras

2.1. Weak G-algebras. Let H be a crossed module. A weak H-algebra is a K-algebra
A together with a weak morphism of crossed modules ωA : H → AUT(A). There
are (at least) two different notions of a weak morphism of crossed modules in the
literature, namely those introduced by Noohi1 [28, Definition 8.4] (N-weak for short)
and Rumynin–Wendland [31, §2] (RW-weak). The latter is a particular case of the
former.

Let now G be a Z2-graded crossed module. Influenced by the ordinary case, we
introduce the following definition.

Definition. An N-weak G-algebra is a K-algebra A together with a weak morphism of
Z2-graded crossed modules ωA : G→ AUTgen(A). Explicitly, ωA is the data of

(i) a function ω3 : G1 ×G1 → A× that restricts to the identity on G1 × {eG1} and
{eG1} ×G1,

(ii) a unital ∂∗ω3-projective Z2-graded group homomorphism ω1 : G1 → Autgen(A),
that is, a pointed map over Z2 which satisfies

ω1(g2g1) = ∂(ω3(g2, g1))ω1(g2)ω1(g1), gi ∈ G1 (1)

and
(iii) a unital ∂∗ω3-projective group homomorphism ω2 : G2 → A×, that is, a pointed

map which satisfies

ω2(x2x1) = ω3(∂x2, ∂x1)ω2(x2)ω2(x1), xi ∈ G2. (2)

This data is required to satisfy

ω1 ◦ ∂ = ∂ ◦ ω2, (3)

the non-abelian 2-cocycle condition

ω3(g3g2, g1)ω3(g3, g2) = ω3(g3, g2g1) · ω1(g3)ω3(g2, g1), gi ∈ G1 (4)

and the equivariance condition

ω2(gx) = ω3(g∂x, g−1)ω3(g, ∂x) · ω1(g)ω2(x)ω3(g, g−1)−1, g ∈ G1, x ∈ G2. (5)

We write Z2(G1, A
×
π ) for the set of normalized functions ω3 which satisfy equa-

tion (4). The subscript π indicates that the action of G1 \G0 on A× involves inversion.
We utilize the following (partial) strictifications of the previous definition.

Definition. (i) An RW-weak G-algebra is an N-weak G-algebra A in which ω3

factors through Z(A)× ≤ A×.
(ii) A (strict) G-algebra is an N-weak G-algebra with trivial ω3.

1An unrelated definition appears in [27, Definition 8.4], which was later revised in [28, Definition 8.4].
The revised definition also seems to contain a typo; compare with equation (1).
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Said differently, an RW-weak G-algebra is an N-weak G-algebra in which ω1 is a
Z2-graded group homomorphism.

The ungraded and graded notions of weak algebras are compatible in the sense that
the restriction of an N-weak (resp. RW-weak, strict) G-algebra ωA to G0 is an N-weak
(resp. RW-weak, strict) G0-algebra ωA : G0 → AUT(A).

Definition. A strict morphism of N-weak G-algebras φ : A → B is a unital algebra
morphism which makes the diagrams

π(g)A π(g)B

A B

ωA,1(g)

π(g)φ

ωB,1(g)

φ

,

G2

A× B×

ωA,2 ωB,2

φ|A×

commute for all g ∈ G1.

It follows directly from the definition that the equality φ∗ωA,3 = ωB,3 holds.
Let H and K be crossed modules. Noohi’s weak crossed module morphisms are

defined so that there is a biequivalence

HomCM(H,K) ' HomBicat(H̃, K̃),

where the left-hand side is the bicategory of weak crossed module morphisms, trans-
formations and modifications. Strictly speaking, the above biequivalence is not proved
in [27] and so we do not use it in the remainder of the paper; see, however [27, Propo-
sition 8.1] and Proposition 4.1 below. Under the above biequivalence, strict crossed
module morphisms correspond to strict 2-functors. This, together with the following
lemma, explains the categorical meaning of weak and strict H-algebras.

Lemma 2.1. For any K-algebra A, there is a biequivalence ˜AUT(A) ' 1AutALGrep
K

(A).

Proof. This can be proved in the same way as [31, Proposition 2.2]. �

Similarly, if A is separable, then one can show that AUTgen(A) models the Z2-graded
2-group 1Autgen

Algfd,repK
(A). We therefore obtain an analogous categorical interpretation

of (weak) G-algebras.

2.2. Equivariant objects. We introduce the notion of an equivariant object of a
Real 2-representation on Cat. This clarify some of the constructions which follow.

Let ρ be a Real 2-representation of a Z2-graded group G on a category C. An
equivariant object of ρ is a pair (t, α) consisting of an object t ∈ C and isomorphisms
αg : ρ(g)(t)→ t, g ∈ G, which make the diagrams2

ρ(g2g1)(t) ρ(g2)(ρ(g1)(t))

t ρ(g2)(t)

αg2g1

ρg2,g1,t

ρ(g2)(α
π(g2)
g1

)

αg2

, gi ∈ G

2For notational simplicity, we omit the symbol (−)op in this diagram.
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commute. A morphism of equivariant objects φ : (t, α) → (s, β) is an isomorphism
φ : t→ s which makes the diagrams

ρ(g)(t) ρ(g)(s)

t s

αg

ρ(g)(φπ(g))

βg

φ

, g ∈ G

commute. This defines a groupoid of equivariant objects of ρ.
When G is trivially graded, there are two possible definitions. We need not require

the map φ to be an isomorphism. In this case the definition reduces to the standard
category of equivariant objects of ρ.

2.3. Morita bicategories of weak G-algebras. In this section we introduce a more
flexible notion of a morphism of N-weak G-algebras. We begin with some preliminary
material. We use left and right twists of bimodules by (anti-)automorphisms; see
Section 1.6. Note that (−)◦ is defined with the separability assumption.

Lemma 2.2. Let A and B be K-algebras. For each B-A-bimodule M and ψ ∈ Aut(A),
φ ∈ Aut(B), there is a Bop-Aop-bimodule isomorphism

(φMψ)◦
∼−→ φop(M◦)ψop , m 7→

(
m 7→ ψ(m(m))

)
.

Let G be a Z2-graded crossed module. Let A and B be separable N-weak G-algebras.
The category 1HomAlgfdK (A,B) of 1-morphisms of the underlying K-algebras inherits
the structure of a Real 2-representation λ of G1. Explicitly, an element g ∈ G1 acts
by the functor λ(g) which sends a B-A-bimodule M to3

λ(g)(M) = ωB,1(g)−1

(
π(g)M

)
ωA,1(g)−1 .

On morphisms λ(g) acts as π(g)(−); the (anti-)automorphism twists ω?,1(g)−1 act triv-
ially. In particular, λ(g) is contravariant precisely when π(g) = −1. The component
at M of the coherence natural transformation

λg2,g1 : λ(g2) ◦ π(g2)λ(g1) =⇒ λ(g2g1), gi ∈ G,

when viewed as a K-linear map λg2,g1,M : π(g2g1)M →M , is given by left multiplication

by ωB,1(g2g1)−1
ωB,3(g2, g1)−1 and right multiplication by ωA,1(g2g1)−1

ωA,3(g2, g1), which we

write as ∂(ω?,1(g2g1)−1
ω?,3(g2, g1)−1). Implicit in this description of λg2,g1,M is, when

π(g2) = −1, the use of Lemma 2.2 and, when π(g1) = π(g2) = −1, the use of the
evaluation isomorphism evM : M →M◦◦.

Let us unpack the datum of an equivariant object (M,ωM) of 1HomAlgfdK (A,B).
First, we have a B-A-bimodule M . Second, for each g ∈ G1, we have a K-linear
isomorphism ωM(g) : π(g)M →M which satisfies

ωM(g)(bma) = ωB,1(g)(b)ωM(g)(m)ωA,1(g)(a), a ∈ π(g)A, m ∈ π(g)M, b ∈ π(g)B.
(6)

Moreover, these isomorphisms are required to satisfy

ωM(g2g1) = ∂(ω?,3(g2, g1)) ◦ ωM(g2) ◦ π(g2)ωM(g1)π(g2), gi ∈ G. (7)

3For readability (and unlike Lemma 2.2), we henceforth omit the notation (−)op on morphisms.
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A 1-morphism φ : (M,ωM) → (N,ωN) is a B-A-bimodule isomorphism which is G1-
equivariant, in the sense that the diagrams

λ(g)(M) λ(g)(N)

M N

ωM (g)

π(g)φπ(g)

ωN (g)

φ

, g ∈ G1

commute.
Using the above notation, we define a bicategory G-NAlgfd

K :

• objects – separable N-weak G-algebras,
• 1-morphism category 1HomG-NAlgfdK

(A,B) – the full subcategory of the equivari-

ant objects of 1HomAlgfdK (A,B) spanned by pairs (M,ωM) which, in addition,

satisfy ωM(eG1) = idM and

ωM(∂x) = ∂(ω?,2(x)), x ∈ G2. (8)

The horizontal composition of 1-morphisms and the associativity data of Algfd
K extend

naturally to G-NAlgfd
K .

Denote by G-RWAlgfd
K and G-Algfd

K the full subbicategories of G-NAlgfd
K spanned

by RW-weak and strict G-algebras, respectively.

Example. A strict morphism φ : A→ B of separable N-weak G-algebras defines in a
canonical way a 1-morphism Bφ : A→ B in G-NAlgfd

K . /

Remarks. (i) A more conceptual definition of 1HomG-NAlgfdK
(A,B) is as the equi-

variant groupoid of 1HomAlgfdK (A,B), viewed as a Real 2-representation of G̃.
We opt to avoid defining equivariant objects for 2-groups.

(ii) When G is trivially graded, we do not require the existence of evaluation iso-
morphisms. We can therefore define a larger bicategory G-NALGK. In this
way we connect with the G-equivariant Morita contexts of [31, §2].

Definition. Equivalence in the bicategory G-NAlgfd
K is called G-Morita equivalence.

We describe some additional structures on G-NAlgfd
K . Let A and B be N-weak

G-algebras. Then the direct sum A ⊕ B has an obvious N-weak G-algebra structure
A � B. Similarly, the tensor product A ⊗K B is an N-weak G-algebra A � B with
structure maps ωA�B,i = ωA,i⊗ωB,i, i = 1, 2, 3. This extends to a symmetric monoidal

structure � on G-NAlgfd
K . Both � and � restrict to G-RWAlgfd

K and G-Algfd
K .

Finally, given a strict G-algebra A, its dual G-algebra A∨ (see [31, §3]) is defined so
that its underlying K-algebra is Aop and its structure maps are

ωA∨,1(g) = ωA,1(g)op, ωA∨,2(x) = ωA,2(x)−1.

An interested reader can generalize the construction of A∨ to the case of an N-weak
G-algebra A.

2.4. Realizability of twisted 2-cocycles. Let G be a Z2-graded group. Fix an
integer t ≥ 1 and let A = Kt with RW-weak G-algebra structure ωA. Then ωA,1 : G→
Autgen(A) ∼= St × Z2 is a group homomorphism. The datum ωA determines a Real
2-representation λ of G on A-Modfd, the category of finite dimensional left A-modules,
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considered as an object of the 2-category Cat with duality involution (−)op. The action
functors are defined on objects by

λ(g)(M) = ωA,1(g)−1

(
π(g)M

)
, g ∈ G

and the coherence natural isomorphisms

λg2,g1 : λ(g2) ◦ π(g2)λ(g1) =⇒ λ(g2g1), gi ∈ G

are left multiplication by ωA,1(g2g1)−1
ωA,3(g2, g1)−1 (cf. Section 2.3).

Definition. A realization of ωA,3 ∈ Z2(G,A×π ) is an equivariant object (M,α) of λ
whose underlying A-module M is faithful.

It is convenient to interpret the equivariant object (M,α) as the pair (M, pM), where
pM(g) := αg(ω1(g)M). Then, for each g ∈ G, the K-linear map pM(g) : π(g)M → M
is required to satisfy pM(g)(am) = ωA,1(g)(a)pM(g)(m). The coherence constraints on
pM read

pM(g2g1) = ωA,3(g2, g1)pM(g2) ◦ π(g2)pM(g1)π(g2) ◦ ev
δπ(g2),π(g1),−1

M , gi ∈ G.

In particular, for trivially graded G, we recover realizability as introduced in [31, §3].
When G is trivially graded, (M, pM) is simply a module over the skew group algebra

A]ωAG. Using this perspective, we see that if G is finite, then ωA,3 ∈ Z2(G,A×π ) is
realizable. For example, we can take M to be the left regular representation of A]ωAG.
We can then conclude realizability in the Z2-graded case by taking the hyperbolic
representation on the left regular representation of A]ωAG0.

The following result is used repeatedly in the remainder of the paper.

Proposition 2.3. A realization (M, pM) of ωA,3 ∈ Z2(G,A×π ) determines a Z2-graded
group homomorphism a : G→ Autgen(EndA(M)), g 7→ ag, by the formula

ag(φ) = pM(g) ◦ π(g)φ ◦ pM(g)−1, g ∈ G, φ ∈ EndA(M)

where π(g)(−) determines the application of A-linear duality (−)◦.

Proof. Since pM(g)−1(am) = ωA,1(g)−1(a)pM(g)−1(m), the map ag(φ) : M → M is
again A-linear. It is clear that ag ∈ Aut(EndA(M)) when π(g) = 1. If π(g) = −1,
then

ag(φ2 ◦ φ1) = pM(g) ◦ (φ2 ◦ φ1)◦ ◦ pM(g)−1 = ag(φ1) ◦ ag(φ2).

Hence, we indeed have a map a : G→ Autgen(EndA(M)). To verify that a is a group
homomorphism, suppose, for instance, that π(g1) = π(g2) = −1. We compute

ag2(ag1(φ)) = pM(g2) ◦ pM(g1)−◦ ◦ φ◦◦ ◦ pM(g1)◦ ◦ pM(g2)−1

= ωA,3(g2, g1)−1pM(g2g1) ◦ ev−1
M ◦ φ

◦◦ ◦ evM ◦ pM(g2g1)−1ωA,3(g2, g1)

= pM(g2g1) ◦ φ ◦ pM(g2g1)−1 = ag2g1(φ).

The other cases are similar. �

Remark. This section can be retold for N-weak G-algebras, but we do not require
that level of generality.
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2.5. Strictification of weak G-algebras. In this section we prove that, subject to a
realizability condition, every split semisimple N-weak G-algebra is G-Morita equivalent
to a strict G-algebra. When the Z2-grading of G is trivial this result is known [31,
Corollary 3.3], although the proof there contains a gap. We provide a complete proof
in this section, which covers also the Z2-graded generalization. Our proof is more
conceptual and is different from the proof in [31], even in the ordinary case.

Let A be a split semisimple N-weak G-algebra. The Artin–Wedderburn theorem
asserts that there is a K-algebra decomposition

A '
⊕
n≥1

Mn(K)⊕tn .

Each summand An := Mn(K)⊕tn is an N-weak G-subalgebra and A ' �n≥1An. Let us
consider the case A = Mn(K)⊕t. There are isomorphisms

Aut(A) ' PGLn(K)×t o St, Autgen(A) ' Aut(A) o Z2.

There is a canonical choice of a generator s ∈ Z2 ≤ Autgen(A): the transposition
s(a1, . . . , at) = (aT1 , . . . , a

T
t ). Its action on Aut(A) is the inverse transpose:

s
(
(a1, . . . , at), τ

)
=
(
(a−1

1 )T , . . . , (a−1
t )T ), τ

)
.

The composition

σ : G1

ωA,1−−→ Autgen(A)� St
is a group homomorphism. Indeed, ωA,1 fails to be a homomorphism by conjugation
by elements of GLn(K)×t, which is not seen at the level of permutations. Choose a lift
Λ of ωA,1 along the quotient GLn(K)×t o St → PGLn(K)×t o St. This determines a
function µΛ : G1 ×G1 → (K×)t via the equation

Λ(g2g1) = µΛ(g2, g1)ωA,3(g2, g1)Λ(g2)(π(g2)Λ(g1)π(g2)).

Using the 2-cocycle condition on ωA,3, we find that µΛ ∈ Z2(G1, (K×)tπ), where Kt

is viewed as a G1-algebra via σ. It is straightforward to verify that different choices
of Λ lead to cohomologous 2-cocycles. In this way, we attach a cohomology class
[µn] ∈ H2(G1, (K×)tnπ ) to Mn(K)⊕tn E A.

Theorem 2.4. Let G be a Z2-graded crossed module, A a split semisimple N-weak
G-algebra. If each cohomology class [µn] ∈ H2(G1, (K×)tnπ ), n ≥ 1, is realizable, then
there exists a G-algebra B which is G-Morita equivalent to A.

Proof. By the discussion preceding the theorem, it suffices to consider the case A =
Mn(K)⊕t. Fix a lift Λ of ωA,1 with associated cocycle µ = µΛ ∈ Z2(G1, (K×)tπ). The
definition of Λ implies the equality

ωA,1(g)(a) = Λ(g)(π(g)a)Λ(g)−1, g ∈ G1, a ∈ A.
Equation (3) implies that ωA,2 satisfies

Λ(∂x) ◦ a ◦ Λ(∂x)−1 = ωA,2(x)aωA,2(x)−1, x ∈ G2, a ∈ A.
Hence, there exists a function γ : G2 → (K×)t such that

ωA,2(x) = γ(x)Λ(∂x), x ∈ G2

which, by equation (2), satisfies

γ(x2x1) = µ(∂x2, ∂x1)−1γ(x2)γ(x1). (9)

By the realizability assumption, there exists a µ−1-projective Real representation
(U, ηU) of G1. Put B = EndKt(U) with the G1-action of Proposition 2.3. Define
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ωB,2 : G2 → AutKt(U) by ωB,2(x) = γ(x)−1ηU(∂x). Equation (9) implies that this
makes B into a G-algebra.

Let V = (Kn)⊕t, viewed as a Real representation of G1 via Λ. Let M = V ⊗K U
with A-B∨-bimodule structure a · v ⊗ u · b = av ⊗ bu. Here B∨ denotes the G-algebra
dual to B; see Section 2.3. For each g ∈ G1, define a K-linear map ωM : π(g)M → M
by

ωM(g)(v ⊗ u) = Λ(g)(v)⊗ ηU(g)(u).

Then we have

ωM(g)(a · v ⊗ u · b) = Λ(g)(π(g)av)⊗ ηU(g)(π(g)bu)

= Λ(g)(π(g)a)Λ(g)−1Λ(g)(v)⊗ ηU(g)(π(g)a)ηU(g)−1ηU(g)(u)

= ωA,1(g)(a) · ωM(g)(v ⊗ u) · ωB,1(g)(b),

so that equation (6) is satisfied. Moreover, since ωB,3 is trivial,

∂(ω?,3(g2, g1))ωM(g2)(π(g2)ωM(g1)π(g2)(v ⊗ u))

is equal to

ωA,3(g2, g1)Λ(g2)(π(g2)Λ(g1)π(g2)(v))⊗ ηU(g2)(π(g2)ηU(g1)π(g2)(u))

= µ(g2, g1)−1Λ(g2g1)(v)⊗ µ(g2, g1)ηU(g2g1)(u)

= Λ(g2g1)(v)⊗ ηU(g2g1)(u) = ωM(g2g1)(v ⊗ u),

so that equation (7) is satisfied. Finally, we have

ωM(∂x)(v ⊗ u) = Λ(∂x)(v)⊗ ηU(∂x)(u) = γ(x)−1ωA,2(x)(v)⊗ ηU(∂x)(u),

so that equation (8) is satisfied. Hence (M,ωM) : B∨ → A is a 1-morphism in
G-NAlgfd

K . The bimodule M is clearly an equivalence in Algfd
K . This implies that

(M,ωM) is also an equivalence. �

2.6. Strictification of 2-groups. The following proposition is an alternative version
of Theorem 2.4, where the strictification alters the crossed module representing the
2-group, instead of altering the algebra.

Proposition 2.5. Let G be a Z2-graded crossed module and (A, ω) an N-weak G-
algebra. There exists a Z2-graded crossed module H, a strict homomorphism of Z2-
graded crossed modules ϕ : H→ G and a strict H-algebra structure ψ : H→ AUTgen(A)
such that

(i) the induced homomorphism of 2-groups ϕ̃ : H̃→ G̃ is an equivalence, and
(ii) the N-weak H-algebra (A, ωϕ) and the strict H-algebra (A,ψ) are H-Morita

equivalent.

Proof. Define constituents Hi, i = 1, 2 of the crossed module H as extensions of Gi by
the multiplicative group A×, using the systems of factors that arise from the N-weak
structure:

1→ A× → Hi
ϕi−→ Gi → 1.

The homomorphism ϕ is (ϕ1, ϕ2), i.e., ϕ|Hi = ϕi. Writing Hi = A× × Gi as sets, we
can express the homomorphism ψ = (ψ1, ψ2) as

ψ1(a, g) = AdA(a)ω1(g), ψ2(a, x) = aω2(x), (10)

where, as usual, a, b ∈ A×, g, h ∈ G1 and x, y ∈ G2. The rest of the proof is devoted
to verifying the technical details.
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1) Groups Hi: the multiplications for H1 and H2 are slight variations of the
standard product defined by the system of factors:

(a, g) · (b, h) := (aω1(g)(b)ω3(g, h)−1, gh), (a, x) · (b, y) := (a(ω2(x)b)ω3(∂x, ∂y)−1, xy).
(11)

Associativity follows from the cocycle condition. The inverses are

(a, g)−1 = (ω3(g−1, g)ω1(g−1)(a−1), g−1), (a, x)−1 = (ω3(∂x−1, ∂x)(ω2(x−1)(a−1)), x−1).

2) Action of H1 on H2: define the action by

(a,g)(b, x) := (aω1(g)(b)ω3(g, ∂x)−1ω1(g∂x)(ω3(g−1, g))ω3(g∂x, g−1)−1(ω2(gx)(a−1)), gx).
(12)

We have derived this formula by assuming that G2 is a normal subgroup of G1 and
computing ((a, g)·(b, x))·(a, g)−1. Observe that the evaluation of (a, g)·((b, x)·(a, g)−1)
produces the same formula (after a longer calculation, utilizing the cocycle condition).
For clarity we simplify the notation by ω = ω3 and dropping ω1 and ω2:

(a,g)(b, x) = (a (gb)ω(g, ∂x)−1 (g∂xω(g−1, g))ω(g∂x, g−1)−1 (
gx(a−1)), gx).

We need to verify that each element of H1 acts by a group endomorphism. It suffices
to verify this for elements of Gi and A× separately. Eight separate verifications are
required but it is easier due to the complexity of equation (12). Here we show one of
them, leaving the remainder to an interested reader:

(a,e)(1, x) · (a,e)(b, e) = (a(x(a−1)), x)(aba−1, e) = (a(x(a−1))x(aba−1), x) =

(a(x(b))x(a−1), x) =(a,e)(xb, x) = (a,e)((1, x) · (b, e)).
Further we need to verify that it is actually an action. Again, verifying this for the
elements of Gi and A× separately requires eight separate verifications. We perform
just one of them as an illustration. We need to show that

(1,g)((a,e)(1, x)) = (ga g(x(a−1))ω(g, ∂x)−1 g∂xω(g−1, g)ω(g∂x, g−1)−1, gx)

is equal to

(1,g)(a,e)(1, x) = (ga,g)(1, x) = (gaω(g, ∂x)−1 g∂xω(g−1, g)ω(g∂x, g−1)−1 gx(g(a−1)), gx).

Using g(ha) = ω(g, h)−1 ghaω(g, h) (equation (2)), we are left to verify that

ω(g, ∂x)−1g∂x(a−1)ω(g, ∂x)ω(g, ∂x)−1g∂xω(g−1, g)ω(g∂x, g−1)−1

is equal to

ω(g, ∂x)−1 g∂xω(g−1, g)ω(g∂x, g−1)−1ω(g∂(x)g−1, g)−1g∂x(a−1)ω(g∂(x)g−1, g).

We can cancel all underlined parts, for instance, the three terms in the second expres-
sion is equation (4) with g3 = g∂(x), g2 = g−1 and g1 = g. Hence, we need to see that
the equality

g∂x(a−1)g∂xω(g−1, g)ω(g∂x, g−1)−1 ?
= g∂x(a−1)ω(g∂(x)g−1, g)

holds. Again this follows from equation (4) with g3 = g∂(x), g2 = g−1 and g1 = g.
3) Differential for H and the Peiffer identity: define the differential by

∂(a, x) := (a, ∂x).

The similarities in the definitions of the products in H1 and H2 (formula (11)) ensure
that ∂ is a group homomorphism. The Peiffer identity holds automatically, due to the
way we have derived formula (12) in 2).
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4) Homomorphism ϕ: define ϕi : Hi → Gi by

ϕ1(a, g) = g, ϕ2(a, x) = x.

It is easy to see that ϕ = (ϕ1, ϕ2) is a strict homomorphism of crossed modules. Notice
that πi(H) = {e} × πi(G), i = 1, 2, and πi(ϕ) : πi(H)→ πi(G) are identities.

5) Grading: if π : G1 → Z2 is the grading on G, a grading on H is given by
π ◦ ϕ1 : (a, g) 7→ π(g). Clearly, ϕ = (ϕ1, ϕ2) is a homomorphism of graded crossed
modules.

6) Homomorphism ψ: it is defined above (formula (10)). Let us verify that ψ2 is
a homomorphism:

ψ2((a, x)(b, y)) = ψ2((a xbω1(∂x, ∂y)−1, xy)) = a xbω1(∂x, ∂y)−1ω2(xy) =

aω2(x)bω2(x)−1ω2(x)ω2(y) =aω2(x)bω2(y) = ψ2(a, x)ψ2(b, y).

The verification for ψ1 is similar. If π(g) = 1, it is identical. If π(g) = −1, we denote
◦−1 by •. The key observation is ω1(g) • ω1(g) = idA so that

ψ1((a, g)(b, h)) = Ad(a) ◦ Ad(gb) ◦ Ad(ω1(g, h)−1) ◦ ω1(gh) = Ad(a)◦
ω1(g) • Ad(b) ◦ ω1(g−1) • ω1(g) • ω1(h) = Ad(a) ◦ ω1(g) • Ad(b) ◦ ω1(h),

which is equal to ψ1(a, g)ψ1(b, h).
7) Morita-equivalence: It suffices to observe that the identity bimodule (M =

AAA, θM) with
θM(a, g)(m) = aω1(g)(m)

yields the Morita equivalence of H-algebras (A, ωϕ) → (A,ψ). Let us carry out the
necessary verifications:

θM(a, g)(bmc) = aω1(g)(bmc) = aω1(g)(b)ω1(g)(m)ω1(g)(c) =

AdA(a)(ω1(g)(b))aω1(g)(m)ω1(g)(c) =ψ1(a, g)(b)θM(a, g)(m)ω1(ϕ1(a, g))(c)

and

θM
(
(a, g)(b, h)

)
(m) = a gbω3(g, h)−1ω1(gh)(m) =

a gbω3(g, h)−1Ad
(
ω3(g, h)

)(
ω1(g)(ω1(h)(m))

)
= a gbω1(g)

(
ω1(h)(m)

)
ω3(g, h)−1

= ∂
(
ω?,3((a, g), (b, h))

)(
θM(a, g)

(
θM(b, h)(m)

))
.

�

Proposition 2.5 reduces all computations with Real 2-modules of a 2-group G to ma-
nipulations with strict G-algebras, albeit for different crossed modules. For instance,
take two 2-modules V and W . A straightforward variation of Proposition 2.5 yields a
crossed module G and strict G-algebras A and B that realize V and W . This allows
us to define V ∨, V �W and V �W as in the end of Section 2.3.

Problem 2.6. Characterize those crossed modules G such that any N-weak G-algebra
is G-Morita-equivalent to a strict G-algebra. Characterize those 2-groups G which

admit a crossed module realization G ∼= G̃ such that G satisfies the property in the
previous sentence.

3. Induction of G-algebras

In this section we define and study induction for G-algebras, in both the ordinary and
Z2-graded settings. In view of Theorem 2.4, Proposition 2.5 and our later applications
to Real 2-representation theory, we restrict our attention to strict algebras.
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3.1. The ordinary case. Let G be a crossed module with a crossed submodule H.
There is an associated restriction pseudofunctor ResGH : G-ALGK → H-ALGK. The goal

of this section is to define an induction pseudofunctor IndG
H : H-ALGK → G-ALGK.

The Z2-graded case is treated in Section 3.4. We work under the following finiteness
assumption:

each G2-orbit on G1/H1 is finite.

Our construction generalizes the known definition (at the level of objects) in the case
H2 = G2 and |G1 : H1| <∞ [31, §3].

Let A be an H-algebra. We define a G-algebra Ã = IndG
HA as follows. Fix a left

transversal T to H1 in G1. For each t ∈ T , denote by KG2,t the group algebra of G2

with right KH2-module structure

x · z = x(tz), x ∈ G2, z ∈ H2.

As a vector space, set

Ã =
∏
t∈T

KG2,t ⊗KH2 A.

Explicitly, the tensor relations in Ã read

[x(tz)⊗ a]t = [x⊗ ωA,2(z)a]t, x ∈ G2, z ∈ H2, a ∈ A

where [−]t denotes an element of the tth factor of Ã. Let δg2,g1 be the H1-coset delta
function: given g1, g2 ∈ G1,

δg2,g1 =

{
1 if g1H1 = g2H1,

0 otherwise.

Lemma 3.1. The formula

[x2 ⊗ a2]t2 · [x1 ⊗ a1]t1 = δ∂(x−1
1 )t2,t1

[x2x1 ⊗ ωA,1(t−1
1 ∂(x−1

1 )t2)(a2)a1]t1 (13)

defines an associative algebra structure on Ã with identity 1Ã = ([eG2 ⊗ 1A]t)t∈T .

Proof. To begin, observe that if δ∂(x−1
1 )t2,t1

is non-zero, then the argument t−1
1 ∂(x−1

1 )t2
of ωA,1 lies in H1. The right hand side of equation (13) is therefore well-defined. Our
finiteness assumption ensures that, for each t1 ∈ T , the function δ∂(x−1

1 )t2,t1
is non-zero

for only finitely many t2 ∈ T . Hence, only finite sums appear in the calculation of the

product of two arbitrary elements of Ã.

To be well-defined, equation (13) must respect the tensor relations in Ã. For z ∈ H2,
we have

[x2 · z ⊗ a2]t2 · [x1 ⊗ a1]t1 = δ∂(x−1
1 )t2,t1

[x2(t2z)x1 ⊗ ωA,1(t−1
1 ∂(x−1

1 )t2)(a2)a1]t1 . (14)

The crossed module axioms for G give x2(t2z)x1 = x2x1(∂(x−1
1 )t2z). Write ∂(x−1

1 )t2 = t′h
for t′ ∈ T and h ∈ H1. If the product (14) is non-zero, then t′ = t1. In this case,
∂(x−1

1 )t2z = t1(hz) and, since H is a crossed submodule of G, we have hz ∈ H2. Noting
that t−1

1 ∂(x−1
1 )t2 = h, the product (14) becomes

δ∂(x−1
1 )t2,t1

[x2x1 ⊗ ωA,2(hz)ωA,1(h)(a2)a1]t1 .

The axiom (5) gives ωA,2(hz) = ωA,1(h)(ωA,2(z)), so that (14) can be written as

δ∂(x−1
1 )t2,t1

[x2x1 ⊗ ωA,1(h)(ωA,2(z)a2)a1]t1 .

This is plainly equal to [x2 ⊗ ωA,2(z)a2]t2 · [x1 ⊗ a1]t1 , as required.



REAL BURNSIDE RINGS 19

Similarly, for each z ∈ H2, we have

[x2 ⊗ a2]t2 · [x1(t1z)⊗ a1]t1 = δ∂((t1z)−1x−1
1 )t2,t1

[x2x1(t1z)⊗ ωA,1(t−1
1 ∂(x−1

1 )t2)(a2)a1]t1

and

[x2 ⊗ a2]t2 · [x1 ⊗ ωA,2(z)a1]t1 = δ∂(x−1
1 )t2,t1

[x2x1 ⊗ ωA,1(t−1
1 ∂(x−1

1 )t2)(a2)ωA,2(z)a1]t1 .

Using that ∂((t1z)−1x−1
1 ) = t1∂(z−1)t−1

1 ∂(x−1
1 ), a short calculation shows that the δ-

functions appearing in the two products are equal. Since

[x2x1(t1z)⊗ ωA,1(t−1
1 ∂(x−1

1 )t2)(a2)a1]t1 = [x2x1 ⊗ ωA,2(z)ωA,1(t−1
1 ∂(x−1

1 )t2)(a2)a1]t1 ,

we see that the products are indeed equal.
We omit the verification of associativity and the identity property. �

Next, we define a G-algebra structure on Ã.

Proposition 3.2. The maps

ωÃ,1(g)([x⊗ a]t) = [gx⊗ ωA,1(h)(a)]t′ , g ∈ G1

where gt = t′h for t′ ∈ T and h ∈ H2, and

ωÃ,2(x) = ( [x⊗ 1A]t )t∈T , x ∈ G2

supply Ã with the structure of a G-algebra.

Proof. To begin, we verify that ωÃ,1(g) is an algebra homomorphism:

ωÃ,1(g) ([x2 ⊗ a2]t2 · [x1 ⊗ a1]t1) = δ∂(x−1
1 )t2,t1

ωÃ,1(g)[x2x1 ⊗ ωA,1(h)(a2)a1]t1

= δ∂(x−1
1 )t2,t1

[g(x2x1)⊗ ωA,1(h1h)(a2)ωA,1(h1)(a1)]t′1 .

Here gti = t′ihi for t′i ∈ T and hi ∈ H1 and we have written h for t−1
1 ∂(x−1

1 )t2. On the
other hand, ωÃ,1(g)([x2 ⊗ a2]t2) · (ωÃ,1(g)[x1 ⊗ a1]t1) is equal to

δ∂(gx−1
1 )gt2,gt1

[gx2
gx1 ⊗ ωA,1(t′−1

1 ∂(gx−1
1 )t′2h2)(a2)ωA,1(h1)(a1)]t′1

= δ∂(x−1
1 )t2,t1

[g(x2x1)⊗ ωA,1(h1hh
−1
2 )(ωA,1(h2)(a2)ωA,1(h1)(a1)]t′1

= δ∂(x−1
1 )t2,t1

[g(x2x1)⊗ ωA,1(h1h)(a2)ωA,1(h1)(a1)]t′1 ,

as required. To verify that ωÃ,1 is a group homomorphism, we compute

ωÃ,1(g2)
(
ωÃ,1(g1)( [x⊗ a]t )

)
= [g2(g1x)⊗ ωA,1(h2)(ωA,1(h1)(a))]t′2 = ωÃ,1(g2g1)[x⊗ a]t.

To verify that ωÃ,2 is a group homomorphism, we compute

ωÃ,2(x2) · ωÃ,2(x1) = ( δ∂(x−1
1 )t2,t1

[x2x1 ⊗ 1A]t1 )t1∈T = ( [x2x1 ⊗ 1A]t1 )t1∈T = ωÃ,2(x2x1).

To verify equation (3), we compute

ωÃ,1(g)(ωÃ,2(x)) = ωÃ,1(g)( [x⊗ 1A]t )t∈T = ( [gx⊗ 1A]t )t∈T = ωÃ,2(gx).

Finally, to verify equation (5), we compute

ωÃ,1(∂x2)([x1 ⊗ a1]t1) = [∂x2x1 ⊗ ωA,1(h)(a1)]t′1 ,

where ∂(x2)t1 = t′1h, while

ωÃ,2(x2) · [x1 ⊗ a1]t1 · ωÃ,2(x2)−1 = ( [x2 ⊗ 1A]t )t∈T · (x1 ⊗ a1)t1 · ( [x−1
2 ⊗ 1A]t )t∈T

= ( δ∂(x2)t1,t[x2x1 ⊗ ωA,1(t−1∂(x2)t)(a)]t )t∈T = [x2x1x
−1
2 ⊗ ωA,1(t−1∂(x2)t1)(a1)]t′1 .

It follows that t = t′1 and hence t−1∂(x2)t1 = h. This completes the proof. �

We complete the construction of IndG
H as a pseudofunctor in the following section.
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3.2. A Maschke-type theorem for induced G-algebras. In order to ensure that
induction transforms 2-representations into 2-representations, we need the following

version of Maschke’s Theorem for the K-algebra Ã.

Proposition 3.3. Let A be an H-algebra. Assume that both indices |G1 : H1| and
|G2 : H2| are finite.

(i) If A is finite dimensional over K, then so too is Ã.
(ii) Assume that |G2 : H2| is not divisible by the characteristic of K. If A is

separable, then so too is Ã.

Proof. The first statement follows immediately from the definition of Ã.
Turning to the second statement, let w =

∑
j aj ⊗ bj ∈ A ⊗K A

op be a separability
idempotent for A. Pick left transversals T to H1 in G1 and X to H2 in G2. For each
x ∈ X and t ∈ T , there exists a unique tx ∈ T such that δt∂x,tx = 1. Consider the
element

w =
∑

x∈X ,t∈T ,j

[tx⊗ aj]t ⊗ [e⊗ bj]t[tx−1 ⊗ 1]tx ∈ Ã⊗K Ã
op,

where the multiplication is in Ã. We claim that w̃ = |G2 : H2|−1w is a separability

idempotent for Ã. First, we show that w̃ is sent to 1Ã under the multiplication map

Ã⊗K Ã
op → Ã:

∑
x,t,j

[tx⊗ aj]t[e⊗ bj]t[tx−1 ⊗ 1]tx =
∑
x,t,j

[tx⊗ ajbj]t[tx−1 ⊗ 1]tx =∑
x,t

[tx⊗ 1]t[
tx−1 ⊗ 1]tx =|G2 : H2|

∑
t

δ∂(tx)t,tx [e⊗ 1]tx = |G2 : H2|1Ã.

In the final equality we used that ∂(tx)t = t∂(x). To verify that w̃ is Ã-central, it is
useful to write

w =
∑
x,t,j

[tx⊗ 1]t[eG2 ⊗ aj]t ⊗ [e⊗ bj]t[tx−1 ⊗ 1]tx =
∑
x,t

[tx⊗ 1]twt[
tx−1 ⊗ 1]tx ,

where wt denotes w considered as an element of A⊗K A
op in degree t ∈ T . It suffices

to check that aw̃ = w̃a when a ∈ Ã is of one of the following two forms:

a = [e⊗ γ]s or a = [y ⊗ 1]s.
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In the first case, pick q = q(x, s) ∈ T such that s = qx. Observe that for each t ∈ T ,
the equalities δt∂x,s = δ∂(tx−1)s,t = 1 hold if and only if t = q. We compute

[e⊗ γ]sw =
∑
x,t

[e⊗ γ]s[
tx⊗ 1]twt[

tx−1 ⊗ 1]tx

=
∑
x,t

δ∂(tx−1)s,t[
tx⊗ ωA,1(t−1∂(tx−1)s)(γ)]twt[

tx−1 ⊗ 1]tx

=
∑
x

[qx⊗ ωA,1(∂(x−1)q−1s)(γ)]qwq[
qx−1 ⊗ 1]qx

=
∑
x

[qx⊗ 1]q[e⊗ ωA,1(∂(x−1)q−1s)(γ)]qwq[
qx−1 ⊗ 1]qx

=
∑
x

[qx⊗ 1]qwq[e⊗ ωA,1(∂(x−1)q−1s)(γ)]q[
qx−1 ⊗ 1]qx

=
∑
x

[qx⊗ 1]qwq[
qx−1 ⊗ γ]qx =

∑
x

[qx⊗ 1]qwq[
qx−1 ⊗ 1]qx [e⊗ γ]qx

=
∑
x,t

δ∂(tx−1)s,t[
tx⊗ 1]twt[

tx−1 ⊗ 1]tx [e⊗ γ]s = w[e⊗ γ]s.

For the second case, we rewrite y tx = txy
thy with xy = xy(t) ∈ X and hy = hy(t) ∈ H2

and compute

[y ⊗ 1]sw =
∑
x,t

[y ⊗ 1]s[
tx⊗ 1]twt[

tx−1 ⊗ 1]tx

=
∑
x,t

δ∂(tx−1)s,t[y
tx⊗ 1]twt[

tx−1 ⊗ 1]tx =
∑
x

[ qxy ⊗ ωA,1(hy)]qwq[
qx−1 ⊗ 1]s

=
∑
x

[ qxy ⊗ 1]q[e⊗ ωA,1(hy)]qwq[
qx−1 ⊗ 1]s =

∑
x

[ qxy ⊗ 1]qwq[
qhy ⊗ 1]q[

qx−1 ⊗ 1]s

=
∑
x

δ∂(qx)q,s[
qxy ⊗ 1]qwq[

qhy
qx−1 ⊗ 1]s =

∑
x

[ qxy ⊗ 1]qwq[
qx−1

y y ⊗ 1]s.

Notice that we have used the equality δ∂(qx)q,s = 1. Similarly, we have

w[y ⊗ 1]s =
∑
z,t

[tz ⊗ 1]twt[
tz−1 ⊗ 1]tz [y ⊗ 1]s =

∑
z,t

δ∂(y−1)tz ,s[
tz ⊗ 1]twt[

tz−1y ⊗ 1]s .

Since both z and xy run over the set X , it remains to put z = xy and verify that the
δ-function in the final sum is non-zero if (and hence only if) q = t:

δ∂(y−1)qz ,s = δ∂(y−1)q∂z,q∂x = δq∂(z)q−1qhy ,∂(y)q∂(x)q−1q = δ∂(qz qhy)q,∂(y qx)q = 1.

This completes the proof. �

We can now complete the construction of IndG
H .

Theorem 3.4. (i) The assignment A 7→ IndG
HA extends to a pseudofunctor IndG

H :
H-ALGK → G-ALGK.

(ii) If both indices |G1 : H1| and |G2 : H2| are finite, then IndG
H restricts to a

pseudofunctor H-AlgK → G-AlgK. If, moreover, |G2 : H2| is not divisible by the
characteristic of K, then IndG

H restricts to a pseudofunctor H-Algfd
K → G-Algfd

K .
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Proof. Let M : A→ B be a 1-morphism in H-ALGK. Define M̃ = IndG
HM to be

M̃ =
∏
t∈T

KG2,t ⊗KH2 M,

where the tensor relations read

[x(tz)⊗m]t = [x⊗ ωM(∂z)(m)]t, x ∈ G2, z ∈ H2, m ∈M.

The left B̃-Ã-bimodule structure of M̃ is defined by

[x2 ⊗ b]t2 · [x1 ⊗m]t1 = δ∂(x−1
1 )t2,t1

[x2x1 ⊗ ωB,1(t−1
1 ∂(x−1

1 )t2)(b)m]t1

and
[x2 ⊗m]t2 · [x1 ⊗ a]t1 = δ∂(x−1

1 )t2,t1
[x2x1 ⊗ ωM(t−1

1 ∂(x−1
1 )t2)(m)a]t1 .

The structure maps for M̃ are defined by

ωM̃(g)([x⊗m]t)t∈T = ([gx⊗ ωM(h)(m)]t′)t′∈T ,

where gt = t′h for h ∈ H1. To verify equation (8), we note that

ωM̃(x2)([x1 ⊗m]t) = [∂(x2)x1 ⊗ ωM(h)(m)]t′ ,

where ∂(x2)t = t′h, while

ωB̃,2(x2)·[x1⊗m]t·ωÃ,2(x2)−1 = [x2x1⊗m]t·ωÃ,2(x2)−1 = [x2x1x
−1
2 ⊗ωM(t′

−1

∂(x2)t)(m)]t.

Given a 2-morphism φ : M ⇒ N in H-ALGK, define φ̃ = IndG
Hφ by

φ̃([x⊗m]t) = [x⊗ φ(m)]t.

This is left B̃-linear because

φ̃([x2 ⊗ b]t2 · [x1 ⊗m]t1) = δ∂(x−1
1 )t2,t1

[x2x1 ⊗ φ(ωB,1(t−1
1 ∂(x−1

1 )t2)(b)m)]t1

= δ∂(x−1
1 )t2,t1

[x2x1 ⊗ ωB,1(t−1
1 ∂(x−1

1 )t2)(b)φ(m)]t1 ,

which is clearly equal to [x2 ⊗ b]t2 · [x1 ⊗ φ(m)]t1 . Similarly, it is right Ã-linear. The

H1-equivariance of φ implies the G1-equivariance of φ̃.
The 2-isomorphisms relating compositions of 1-morphisms are induced by those of
ALGK. It follows directly from the definitions that IndG

H strictly preserves identity

1-morphisms. This completes the construction of IndG
H .

The second statement now follows from Proposition 3.3 and the observation that M̃
is finite dimensional if M is so. �

3.3. Induction as a biadjunction. In this section, we prove the biadjointness of
ResGH and IndG

H in two, in a sense, opposite situations. For the notion of a (left or
right) biadjunction between pseudofunctors, see [19, Definition 2.1].

Proposition 3.5. If either H2 = G2 or H1 = G1, then IndG
H is right biadjoint to ResGH.

This statement holds for pseudofunctors between ?-ALGK or, with the assumptions of
Theorem 3.4(ii), between ?-AlgK or ?-Algfd

K .

Proof. Suppose that H2 = G2. To begin, we need to define pseudonatural transforma-
tions

ε : ResGH ◦ IndG
H =⇒ idH-ALGK , η : idG-ALGK =⇒ IndG

H ◦ ResGH .

Write te ∈ T for the representative of the identity coset. Given an H-algebra A, we
claim that the K-linear map

εA : ResGHIndG
HA→ A, [a]t 7→ δt,teωA,1(t)(a)
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is a strict H-algebra morphism. Firstly, εA is a K-algebra morphism:

εA([a2]t2 · [a1]t1) = δt2,t1εA([a2a1]t1) = δt2,t1δt1,teωA,1(t1)(a2a1)

is equal to

εA([a2]t2) · εA([a1]t1) = δt2,teδt1,teωA,1(t2)(a2)ωA,1(t1)(a1).

Clearly εA preserves multiplicative identities. Moreover, εA is H1-equivariant:

εA
(
ωÃ,1(h)([a]t)

)
= εA ([ωA,1(h′)(a)]t′) = δt′,teωA,1(t′h′)(a),

where ht = t′h′, is equal to

ωA,1(h)(εA([a]t)) = δt,teωA,1(hte)(a).

Finally, εA is ω?,2-compatible: for each z ∈ H2, we have

εA(ωÃ,2(z)) = εA(([ωA,2(t
−1

z)]t)t∈T ) = ωA,1(te)(ωA,2(t
−1
e z)) = ωA,2(z).

We henceforth interpret εA as a representable 1-morphism ResGHIndG
HA→ A in H-ALGK.

Given a 1-morphism M : A→ B in H-ALGK, define

εM : B ⊗B̃ M̃ =⇒M ⊗A AεA 'MεA , b⊗ [m]t 7→ δt,tebωM(t)(m).

Calculations similar to those above show that εM is indeed a 2-morphism in H-ALGK
and that {εA}A and {εM}M satisfy the coherence conditions required to define the
pseudonatural transformation ε.

Similarly, given a G-algebra B, we claim that the K-linear map

ηB : B → IndG
HResGHB, b 7→ ([ωB,1(t−1)(b)]t)t∈T

is a strict G-algebra morphism. First, ηB is multiplicative:

ηB(b2) · ηB(b1) = ([ωB,1(t−1
2 )(b2)]t2)t2∈T · ([ωB,1(t−1

1 )(b1)]t1)t1∈T

= (δt2,t1 [ωB,1(t−1
1 t2)(ωB,1(t−1

2 )(b2))ωB,1(t−1
1 )(b1)]t1)t1∈T

= ([ωB,1(t−1)(b2b1)]t)t∈T = ηB(b2b1).

Clearly, ηB is unital. Moreover, ηB is G1-equivariant:

ηB(ωB,1(g)(b)) = ([ωB,1(t−1g)(b)]t)t∈T

while

ωB̃,1(g)(ηB(b)) = ωB̃,1(g)([ωB,1(t−1)(b)]t)t∈T = ([ωB,1(ht−1)(b)]t′)t′∈T

where gt = t′h. Finally, ηB is ω?,2-compatible: for x ∈ G2, we have

ηB(ωB,2(x)) = ([ωB,1(t−1)(ωB,2(x))]t)t∈T = ([ωB,2(t
−1

x)]t)t∈T = ωB̃,2(x).

We interpret ηB as a 1-morphism B → IndG
HResGHB in G-ALGK. Given a 1-morphism

N : A→ B in G-ALGK, define the required 2-morphism by

ηB : B̃ηB ⊗B N =⇒ Ñ ⊗Ã ÃηA ' ÑηA , [b]t ⊗ n 7→ [bωN(t−1)(n)]t.

This data defines the pseudonatural transformation η.
It remains to define invertible zig-zag modifications

Γ : (IndG
H � ε) ◦ (η � IndG

H) ≡≡V 1Ind, Λ : 1Res ≡≡V (ε � ResGH) ◦ (ResGH � η).

Hence, for each A ∈ H-ALGK we need to define a 2-isomorphism

ΓA : IndG
HεA ⊗IndResIndA ηIndA =⇒ IndG

HA.
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Since ι := IndεA ◦ ηIndA is the identity map, the domain bimodule (IndG
HA)ι of ΓA is

the identity bimodule. After making this identification, we take ΓA to be the identity
map. For B ∈ G-ALGK, we define a 2-isomorphism

ΛB : ResGHB =⇒ εResB ⊗ResIndResB ResGHηB.

The codomain bimodule is isomorphic to (ResGHB)εResB◦ResηB ' ResGHB, and we use this
isomorphism to define ΛB. It is straightforward to verify that the above data satisfies
the required coherence conditions, proving the proposition in the case H2 = G2.

The case in which H1 = G1 is similar, so we are brief. Define an algebra homomor-
phism

ε′A : A→ ResGHIndG
HA, a 7→ eG2 ⊗ a.

The G1-equivariance of ε′A is clear and it is ω?,2-compatible because

ε′A(ωA,2(z)) = eG2 ⊗ ε′A(ωA,2(z)) = z ⊗ 1A.

We henceforth interpret ε′A as the 1-morphism

εA = ε′A
Ã : ResGHIndG

HA→ A

in H-ALGK. Given a 1-morphism M : A→ B in H-ALGK, define a 2-morphism

εM : ε′BB̃ ⊗B̃ M̃ ' ε′B
M̃ =⇒M ⊗A (ε′AÃ), x⊗m 7→ m⊗ (x⊗ 1A).

This defines the pseudonatural transformation ε.
Let

η′B : IndG
HResGHB → B, x⊗ b 7→ ωB,2(x)b.

This map is well-defined because

x · z ⊗ b 7→ ωB,2(xz)b = ωB,2(x)ωB,2(z)b

and x ⊗ ωB,2(z)b 7→ ωB,2(x)ωB,2(z)b. Moreover, η′B is clearly a G1-equivariant unital
K-algebra homomorphism and is ω?,2-compatible:

η′B(ωB̃,2(x)) = η′B(x⊗ 1B) = η′B,2(x).

We interpret η′B as the 1-morphism

ηB = η′B
B : B → IndG

HResGHB

in G-ALGK. Given a 1-morphism N : A→ B in G-ALGK, define a 2-morphism

ηN : η′BB ⊗B N ' η′B
N =⇒ Ñ ⊗Ã (η′AA), n 7→ (eG2 ⊗ n)⊗ 1A.

Similar to the case H2 = G2, after suitable identifications, we can take the 2-
isomorphisms ΓA and ΛB to be the respective identities. �

Remarks. (i) In the setting of Proposition 3.5, one can also prove that IndG
H is

left biadjoint to ResGH . When H2 = G2, for example, this is done by interpreting

εA as a 1-morphism A→ ResGHIndG
HA in H-ALGK, and similarly for ηB. This is

analogous to what was done in the proof of Proposition 3.5 in the case H1 = G1.
(ii) We expect that IndG

H is in fact left and right biadjoint to ResGH without the
assumption H1 = G1 or H2 = G2. This would categorify the left and right
adjunctions between induction and restriction in the representation theory of
finite groups.
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3.4. The Real case. We extend the constructions of Sections 3.1 and 3.2 to the
Z2-graded setting. Since the calculations are similar, we are occasionally brief.

Crossed submodules H of a Z2-graded crossed module G come in two flavours:

(i) non-trivially graded: H1 is a non-trivially Z2-graded subgroup of G1,
(ii) trivially graded: H1 is a trivially Z2-graded subgroup of G1.

There is a restriction pseudofunctor ResGH : G-Algfd
K → H-Algfd

K . We define a pseudo-

functor IndG
H : H-Algfd

K → G-Algfd
K . To avoid confusion, we sometimes denote IndG

H by

RIndG
HA and HIndG

HA in the case of non-trivially and trivially graded H, respectively,
matching the notation for the Real and hyperbolic induction of [37, §7]. We work
under the finiteness assumption and notation of Section 3.1.

Let A be an H-algebra. Define

Ã =
∏
t∈T

KG2,t ⊗KH2

π(t)A,

where π(t)A is A or A∨, depending on π(t) ∈ Z2. The K-algebra structure of Ã is again
defined by equation (13), keeping in mind that we use the multiplication of π(t)A in
the tth factor. Define ωÃ,1 and ωÃ,2 by

ωÃ,1(g)([x⊗ a]t) = [gx⊗ π(t′)ωA,1(h)(a)]t′ , ωÃ,2(x) = ( [x⊗ 1A]t )t∈T ,

where gt = t′h for t′ ∈ T and h ∈ H1.
Let us make explicit the trivially graded case. Since the morphism H ↪→ G factors

through G0 ↪→ G, it suffices to consider the case H = G0. The general case can then
obtained as the composition

HIndG
H = HIndG

G0
◦ IndG0

H ,

where IndG0
H is as in Theorem 3.4. Fix an element h ∈ G1 \ G0 and take T = {e, h}.

Then Ã = [A]e ⊕ [Aop]h with

ωÃ,1(g)([a]t) = [ωA,1(g′)(a)]t′ , ωÃ,2(x) = [ωA,2(x)]e + [ωA,2(h
−1

x)−1]h,

where gt = t′g′ with g′ ∈ G0. For example, g ∈ G0 acts on [Aop]h by h−1gh.

Theorem 3.6. The above constructions define a G-algebra Ã.

Proof. The proof in the non-trivially graded case is similar to that of Theorem 3.6, so
we focus on the trivially graded case. Let us check that ωÃ,1 is a generalized algebra
automorphism. When π(g) = −1, for example, we have

ωÃ,1(g) ([a2]e · [a1]e) = ωÃ,1(g)([a2a1]e)

= [ωA,1(h−1g)(a1)]h • [ωA,1(h−1g)(a2)]h

= ωA,1(g)([a1]e) • ωA,1(g)([a2]e),

where • indicates multiplication in Aop, and

ωÃ,1(g) ([a2]h · [a1]h) = [ωA,1(gh)(a1a2)]e = ωÃ,1(g)([a1]h) • ωÃ,1(g)([a2]h).

We omit the proof that ωÃ,1 is a group homomorphism. To see that ωÃ,2 is a group
homomorphism, we compute

ωÃ,2(x2x1) = [ωA,2(x2x1)]e + [ωA,2(h
−1

(x2x1))−1]h

= [ωA,2(x2)ωA,2(x1)]e + [ωA,2(h
−1

x1)−1ωA,2(h
−1

x2)−1]h
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while

ωÃ,2(x2)ωÃ,2(x1) = [ωA,2(x2)]e · [ωA,2(x1)]e + [ωA,2(h
−1

x2)−1]h · [ωA,2(h
−1

x1)−1]h

= [ωA,2(x2)ωA,2(x1)]e + [ωA,2(h
−1

x1)−1ωA,2(h
−1

x2)−1]h,

as required. To verify equation (3), fix x ∈ G2 and compute

ωÃ,1(∂x)([a]h) = [a]∂(x)h = [a]h∂(h−1x) = [ωA,2(h
−1

x)−1 • a • ωA,2(h
−1

x)]h,

which is equal to ∂(ωÃ,2(x))([a]h). The computation with e in place of h is similar.
Turning to equation (5), consider, for example, the case π(g) = −1. We have

ωÃ,1(g)(ωÃ,2(x)−1) = ωÃ,1(g)([ωA,2(x)−1]e) + ωÃ,1(g)([ωA,2(h
−1

x)]h)

= [ωA,1(h−1g)(ωA,2(x)−1)]h + [ωA,1(gh)(ωA,2(h
−1

x))]e

= [ωA,2(h
−1gx)−1]h + [ωA,2(gx)]e,

which is plainly equal to ωÃ,2(gx). �

There is an extension of Proposition 3.5 to the Z2-graded setting. We briefly indicate
the construction in the hyperbolic setting; the construction for RIndG

H is similar. More

precisely, the assignment A 7→ HIndG
G0

extends to a pseudofunctor

HIndG
G0

: G0-Algfd,2-'
K → G-Algfd

K

with domain the maximal locally groupoidal subbicategory of G0-Algfd
K . Given a 1-

morphism M : A → B in G0-Algfd
K , define M̃ = HIndG

G0
M as follows. As a B̃-Ã-

bimodule, M̃ is simply M ⊕M◦. The structure maps of M̃ are defined by

ωM̃(g) =

(
ωM(g) 0

0 ωM◦(h
−1gh)

)
, ωM̃(f) =

(
0 ωM◦(fh)

evM ◦ ωM(h−1f) 0

)
where g ∈ G0 and f ∈ G1 \G0 and

ωM◦(h
−1gh)(m)(m) = ωA,1(h−1gh)

[
m(ωM(h−1gh)−1(m))

]
, m ∈M◦, m ∈M.

Given a 2-isomorphism φ : M ⇒ N in G0-Algfd
K , the G1-equivariant intertwiner

HIndG
G0
φ is defined to be φ⊕ φ−◦, where

φ−◦(m)(n) = m(φ−1(n)), m ∈M◦, n ∈ N.
The Z2-graded analogue of Proposition 3.5 is more subtle.

Problem 3.7. Investigate the adjunction properties of IndG
H and ResGH when G is non-

trivially Z2-graded.

The difficulty stems from the fact that RIndG
H , for example, is defined only on 2-

isomorphisms of H-Algfd
K , while the 2-morphism components of ε (as in the proof of

Proposition 3.5) are not 2-isomorphisms. For this reason, we expect the biadjointness
properties to be more naturally formulated in the anti-linear approach to Real 2-
representations.

It is useful to decompose the assignment A 7→ HIndG
G0
A into two steps. If G is a

Z2-graded crossed module, h ∈ G1 \ G0 and A is a G0-algebra, denote by h · A the
G0-algebra with underlying K-algebra A and structure maps

ωh·A,1(g) = ωA,1(h−1gh), ωh·A,2(x) = ωA,2(h
−1

x).

It then follows immediately from the definitions that there is a G-algebra isomorphism

HIndG
G0
A ' A� h · A∨,
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where an element f ∈ G1 \G0 acts on A� h · A∨ by the matrix(
0 ωA,1(fh)

ωA,1(h−1f)op 0

)
.

This isomorphism generalizes as follows.

Lemma 3.8. Let G be a Z2-graded crossed module with trivially graded crossed sub-
module H. For each H-algebra A and h ∈ H1 \H0, there is a G-algebra isomorphism

HIndG
HA ' HIndG

h·H·h−1h · A∨.

While the pseudofunctor HIndG
G0

is not monoidal, it does admit a natural enhance-

ment to a G-Algfd
K -module pseudofunctor. We do not use the full strength of this

statement, only that for each G0-algebra A and G-algebra B, there is a G-algebra
isomorphism

B � HIndG
G0
A ' HIndG

G0

(
ResGG0

B � A
)
. (15)

Indeed, from the perspective described above Lemma 3.8, the left and right hand sides
of the desired isomorphism (15) are represented by(

(B � A)� (B � h · A∨),
(

0 ωB,1(h)⊗ ωA,1(h2)
ωB,1(h)⊗ idA 0

))
and (

(B � A)� (h ·B∨ � h · A∨),
(

0 ωB,1(h2)⊗ ωA,1(h2)
idB⊗A 0

))
,

respectively, where we have displayed the matrices giving the action of h in each case
(which, together with the underlying G0-algebra structure, determines the G-algebra

structure). These pairs are equivalent via the map
(

idB⊗A 0
0 ωB,1(h)⊗1A

)
.

4. The classification of Real 2-representations on 2VectK

We apply the results of the previous chapters to Real 2-representation theory.

4.1. From N-weak G-algebras to Real 2-modules. We begin by connecting N-
weak algebras to 2-representation theory. The proof of the following result can be seen
as justifying (or even deriving) the definition of an N-weak algebra.

Proposition 4.1. Let G be a Z2-graded crossed module. Every separable N-weak G-

algebra ωA : G→ AUTgen(A) induces a Real 2-module ΘA : G̃→ Algfd
K .

Proof. The proof is similar to that of [31, Proposition 2.3], which treats the ordinary
RW-weak case. The present setting is complicated by the fact that we work in the
non-abelian group A×, instead of Z(A)×.

Set ΘA(?) = A. For a 1-morphism g : ? → ?, let ΘA(g) be the A-π(g)A-bimodule
Aω1(g). For a 2-morphism x : g ⇒ ∂(x)g, set (in the notation of Lemma 1.1)

ΘA(g, x) = Υ
ω1(∂(x)g)
ω1(g)

(
(ω3(∂x, g)ω2(x))−1

)
.

Equations (1) and (3) imply that ΘA(g, x) is well-defined. For gi ∈ G1, define

ΘA(g2, g1) : ΘA(g2) �ΘA(g1) =⇒ ΘA(g2g1)

to be Υ
ω1(g2g1)
ω1(g2)◦ω1(g1)(ω3(g2, g1)−1). Equation (1) implies that ΘA(g2, g1) is well-defined.
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To see that ΘA is compatible with the vertical composition of 2-morphisms, note

that ΘA(∂(x1)g1, x2) ◦ΘA(g1, x1) is equal to Υ
ω1(∂(x2x1)g1)
ω1(g1) (♣−1), where

♣ = ω3(∂x2, ∂(x1)g1)ω2(x2)ω3(∂x1, g1)ω2(x1)

(3)
= ω3(∂x2, ∂(x1)g1) · ∂x2ω3(∂x1, g1)ω2(x2)ω2(x1)

(4)
= ω3(∂(x2x1), g1)ω3(∂x2, ∂x1)ω2(x2)ω2(x1)

(2)
= ω3(∂(x2x1), g1)ω2(x2x1).

By abuse of notation, we write ∂x2ω3(∂x1, g1) in place of ω1(∂x2)ω3(∂x1, g1). At each

stage of the calculation where we specify
(N)
= , this indicates that equation (N) is applied

to the underlined part of the previous expression. It follows that ΘA(∂(x1)g1, x2) ◦
ΘA(g1, x1) = ΘA(g1, x2x1).

Consider next the horizontal multiplicativity of ΘA. Let gi ∈ G1 and xi ∈ G2. Then4

ΘA(g2g1, x2 · g2x1) ◦ΘA(g2, g1) = Υ(♠−1), where

♠ = ω3(∂(x2 · g2x1), g2g1)ω2(x2 · g2x1)ω3(g2, g1)

(2)
= ω3(∂(x2 · g2x1), g2g1)ω3(∂x2, ∂(g2x1))ω2(x2)ω2(g2x1)ω3(g2, g1).

Two applications of the cocycle condition (4) give

ω3(∂(x2)g2∂(x1)g−1
2 , g2g1)ω3(∂x2, g2∂(x1)g−1

2 ) =

ω3(∂x2, g2∂(x1)g1) · ∂x2
[
ω3(g2∂(x1), g1)ω3(g2∂(x1)g−1

2 , g2) · ∂(g2x1)ω3(g2, g1)−1
]
.

Equation (3) implies that

∂x2
[
∂(g2x1)ω3(g2, g1)−1

]
ω2(x2)ω2(g2x1)ω3(g2, g1) = ω2(x2)ω2(g2x1)

so that

♠ = ω3(∂x2, g2∂(x1)g1) · ∂x2
[
ω3(g2∂x1, g1)ω3(g2∂(x1)g−1

2 , g2)
]
ω2(x2)ω2(g2x1)

(3)
= ω3(∂x2, g2∂(x1)g1)ω2(x2)ω3(g2∂x1, g1)ω3(g2∂(x1)g−1

2 , g2)ω2(g2x1)

(4)
= ω3(∂x2, g2∂(x1)g1)ω2(x2)ω3(g2∂x1, g1) · g2∂x1ω3(g−1

2 , g2)ω3(g2∂x1, g
−1
2 )−1ω2(g2x1).

Using equation (5) to rewrite ω2(g2x1) in terms of g2ω2(x1), and then using equation
(4), we find that

ω3(g2∂x1, g
−1
2 )−1ω2(g2x1) = ω3(g2, ∂x1) · g2ω2(x1)ω3(g2, g

−1
2 )−1.

4For notational simplicity, we omit the sub/superscripts of Υ for the remainder of the proof.
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Continuing, we have

♠ = ω3(∂(x2)g2, ∂(x1)g1)ω3(∂x2, g2) · ∂x2ω3(g2, ∂(x1)g1)−1·
∂x2ω3(g2∂x1, g1)ω2(x2) · g2∂x1ω3(g−1

2 , g2)ω3(g2, ∂x1) · g2ω2(x1)ω3(g2, g
−1
2 )−1

(4)
= ω3(∂(x2)g2, ∂(x1)g1)ω3(∂x2, g2) · ∂x2 (g2ω3(∂x1, g1))

·∂x2ω3(g2, ∂x1)−1ω2(x2) · g2∂x1ω3(g−1
2 , g2)ω3(g2, ∂x1) · g2ω2(x1)ω3(g2, g

−1
2 )−1

(1),(1)
= ω3(∂(x2)g2, ∂(x1)g1) · ∂(x2)g2ω3(∂x1, g1)ω3(∂x2, g2) ·

∂x2ω3(g2, ∂x1)−1ω2(x2)ω3(g2, ∂x1) · g2(∂x1ω3(g−1
2 , g2)) · g2ω2(x1)ω3(g2, g

−1
2 )−1

(3),(3)
= ω3(∂(x2)g2, ∂(x1)g1) · ∂(x2)g2ω3(∂x1, g1)ω3(∂x2, g2)ω2(x2)

ω3(g2, ∂x1)−1ω3(g2, ∂x1) · g2(ω2(x1)ω3(g−1
2 , g2))ω3(g2, g

−1
2 )−1

(3)
= ω3(∂(x2)g2, ∂(x1)g1) · ∂(x2)g2ω3(∂x1, g1)ω3(∂x2, g2)∂x2(g2(ω2(x1)))

ω2(x2) · g2ω3(g−1
2 , g2)ω3(g2, g

−1
2 )−1

(3),(4)
= ω3(∂(x2)g2, ∂(x1)g1) · ∂(x2)g2 [ω3(∂(x1), g1)ω2(x1)]ω3(∂(x2), g2)ω2(x2).

We need to show that Υ(♠−1) is equal to the composition

ΘA(∂(x2)g2, ∂(x1)g1) ◦ (ΘA(g2, x2) �ΘA(g1, x1)).

Since ΘA(g2, x2) �ΘA(g1, x1) is the result of applying Υ to the inverse of

∂(x2)g2 [ω3(∂x1, g1)ω2(x1)]ω3(∂x2, g2)ω2(x2),

the desired equality follows.
The pentagon identity holds by equation (4); details are left to the reader. �

Proposition 4.2. The assignment A 7→ ΘA of Proposition 4.1 extends to a locally

fully faithful pseudofunctor Θ : G-NAlgfd
K → HomBicatcon(G̃,Algfd

K ).

Proof. After writing out the explicit description of 1- and 2-morphisms in the bicate-

gory 1HomBicatcon(G̃,Algfd
K ) (see Section 1.5) and comparing them to the definition of

those of G-NAlgfd
K , the statement is clear. �

Remarks. (i) More conceptually, ΘA can be described as the composition of the

structure map ω̃A : G̃→ ˜AUTgen(A) (constructed as in the proof of Proposition
4.1) with

˜AUTgen(A) ' 1Autgen

Algfd,repK
(A) ↪→ 1Autgen

AlgfdK
(A).

(ii) When G is trivially graded, the proof of Proposition 4.1 yields a 2-module

ΘA : G̃ → ALGK without any separability assumption on A. Compare [31,
Proposition 2.3].

4.2. Morita bicategories and 2-representations on 2VectK. Permutation actions
are at the heart of Real 2-representations on 2VectK, as we now review.

Proposition 4.3. A Real 2-representation of G̃ on 2VectK of dimension t determines
a homomorphism σ : G1 → St which factors through the quotient G1 → π1(G) and a
cocycle µ ∈ Z2(G1, (K×)tπ), where Kt is considered as a G1-algebra via σ.
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Proof. Since G1 is a Z2-graded crossed submodule of G, each Real 2-representation of

G̃ restricts to a Real 2-representation of G1. The construction of σ and µ are then
given in the proof of [37, Theorem 5.7]. There it is assumed that G1 is finite, but
this is not used in this part of the proof. It is straightforward to show that σ factors
through G1 → π1(G). �

Lemma 4.4 (cf. [31, Lemma 2.4]). Let G be a Z2-graded crossed module and let ρ

be a Real 2-module over G̃ which restricts to a G1-algebra A. Then there exists an
RW-weak G-algebra structure extending the G1-structure of A such that ρ and ΘA are
equivalent.

Proof. In the ordinary case this is [31, Lemma 2.4]. The definition of the RW-weak G-
algebra and the verification of the required axioms extend verbatim to the Z2-graded
case:

ω2(x) := Υ−1(ρ(e
x

=⇒ ∂x)), ω3(f, g) := Υ−1(ρ(f, g)).

It follows from the definition of ΘA, given in the proof of Proposition 4.1, that ΘA is
equivalent to ρ. �

Proposition 4.5. Let ρ be a Real 2-representation of G̃ on 2VectK with induced mor-
phism σ : G1 → St and cocycle µ ∈ Z2(G1, (K×)tπ). If µ is realizable, then there exists
a split semisimple RW-weak G-algebra A such that ρ and ΘA are equivalent.

Proof. Write R for Kt, viewed as the target object of the Real 2-module associated
to ρ. Let M be a realization of µ−1 with Peirce decomposition M ' ⊕iMi. Then
A = EndR(M) ' ⊕iEndK(Mi) is a split semisimple K-algebra which, by Proposition
2.3, has a G1-algebra structure a.

We first define an equivalence F : ρ ⇒ ΘA of Real 2-modules over G1. Let F (?) :
R → A be the A-R-bimodule M , its right R-module structure defined via its left
R-module structure (recall that R is commutative). For each g ∈ G1, define an A-R-
bimodule intertwiner

F (g) : Aag ⊗π(g)A (π(g)M) =⇒M ⊗R ρ(g)

as follows. Identify M ⊗R ρ(g) with Mρ(g) and set F (g)(a ⊗m) = a(pM(g)(m)). The
map is well-defined because, for each b ∈ A, we have

F (aag(b)⊗m) = a(ag(b)(pM(g)(m))) = a(pM(g)(b(pM(g)−1(pM(g)(m))))

= a(pM(g)(b(m))) = F (a⊗ b(m)).

Left A-linearity of F (g) is clear. Right R-linearity follows from the computation

F (g)((a⊗m)r) = a(pM(g)(rm)) = (g · r)a(pM(g)(m)) = F (g)(a⊗m) ·ρ(g) r,

where − ·ρ(g) − indicates the ρ(g)-twisted right R-module structure of M .
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The coherence of the assignments g 7→ F (g) amounts to the commutativity of the
diagram

M ⊗ (ρ(g2) ◦ π(g2)ρ(g1)) M ⊗ ρ(g2g1)

(M ⊗ ρ(g2)) ◦ π(g2)ρ(g1) ΘA(g2g1)⊗ π(g2g1)M

(ΘA(g2)⊗ π(g2)M) ◦ π(g2)ρ(g1) (ΘA(g2) ◦ π(g2)ΘA(g1))⊗ π(g2g1)M

ΘA(g2) ◦ π(g2)(M ⊗ ρ(g1)) ΘA(g2) ◦ π(g2)(ΘA(g1)⊗ π(g1)M),

ρg2,g1

F (g2g1)

F (g2) ΘA(g2,g1)

π(g2)F (g1)

where all unlabelled arrows are associativity isomorphisms. By construction, the co-
cycle µ ∈ Z2(G1, R

×
π ) is determined by the 2-isomorphisms ρg2,g1 . Since A is a strict

G1-algebra, the map ΘA(g2, g1) is induced by the corresponding map in Algfd
K and,

in particular, does not involve a cocycle. On the other hand, “the composition” of
F (g2) with π(g2)F (g1) (indicated by the dashed arrow in the diagram above) is equal
to µ(g2, g1)−1F (g2g1). This gives the required commutativity.

We can now apply Lemma 4.4 to conclude that we can extend the G1-algebra struc-
ture of A to an RW-weak G-algebra structure such that ρ ' ΘA as Real 2-modules. �

Denote by RRepr2VectK(G) the full subbicategory of RRep2VectK
(G) on realizable Real

2-representations of G. It is a monoidal subbicategory.

Theorem 4.6. Assume that K is separably closed. Let G be a Z2-graded crossed mod-

ule. Under the identification RRep2VectK
(G̃) ' 1HomBicatcon(G̃,Algfd

K ), the subbicategory

RRepr2VectK(G̃) is biequivalent to G-Algfd
K .

Proof. By Proposition 4.5, the biessential image of G-Algfd
K under the embedding of

Proposition 4.2 can be identified with RRepr2VectK(G̃). �

We can now describe equivalence classes of Real 2-representations of G̃ on 2VectK
in terms of G-algebras.

Corollary 4.7. Assume that K is separably closed and that G1 is finite. Then there
is a bijection

π0(RRep2VectK
(G̃)) ' {separable strict G-algebras}/G-Morita equivalence.

Proof. Since G1 is finite, each element of Z2(G1, (K×)tπ) is realizable and we have

RRepr2VectK(G̃) = RRep2VectK
(G̃). Theorem 4.6 then gives the desired bijection. �

Remarks. (i) Without the finiteness assumption on G1, the following version of
Corollary 4.7 still holds:

π0(RRepr2VectK(G̃)) ' {separable strict G-algebras}/G-Morita equivalence.

(ii) When G is trivially graded, we recover the finite dimensional results of [31, §3].
It is not clear, however, if the results involving semi-matrix algebras (used to
treat non-realizable cocycles) admit a Z2-graded generalization.
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Example. Suppose that G is a Z2-graded crossed module in which ∂ is trivial; this cor-
responds to so-called split Z2-graded 2-groups, that is, those with trivial Sinh 3-cocycle.
The set π0(G-Algfd

K ) appearing in Corollary 4.7 can be described as follows. Since ev-
ery G-algebra is G-Morita equivalent to an RW-weak G-algebra whose underlying
K-algebra is A = Kt for some t ≥ 1, it suffices to restrict attention to such A. We have
a homomorphism ωA,1 : G1 → St, a G1-invariant homomorphism ωA,2 : G2 → (K×)tπ
and a cocycle ωA,3 ∈ Z2(G1, (K×)tπ). However, different triples {ωA,i}i define G-Morita
equivalent RW-weak G-algebras. Recall that the generalized automorphism 2-group

of Kt ∈ Algfd
K is modelled by AUTgen(Kt) = ((K×)t

∂−→ St × Z2). Pulling back along
τ ∈ St × Z2 sends ωA to the G-Morita equivalent RW-weak G-algebra with structure
maps

(τωA,1(−)τ−1, τωA,2(−), τ∗ωA,3(−)).

The remaining ambiguity is due to non-trivial G1-module structures on the identity
Kt-bimodule, which are determined by maps µ : G1 → (K×)t. This gives a G-Morita
equivalence with the RW-weak G-algebra (ωA,1, ωA,2, ωA,3dµ). In this way, we obtain a
Z2-graded generalization of the split case of [14, Theorem 5.5]. See also [37, §5.3]. /

We use Theorem 4.6 to model direct sums, tensor products and duals of realizable
(Real) 2-modules in terms of the corresponding operations for G-algebras. We also
define various inductions of (Real) 2-modules in the same way. For example, if ΘA is a
realizable 2-module over an non-trivially graded crossed submodule H of G, then the
Real 2-module RIndG

HΘA is defined to be ΘRIndG
HA

.

4.3. A structure theorem for Real 2-modules. The next result plays an important
role in Section 5.2.

Theorem 4.8. Let G be a Z2-graded crossed module, ρ a realizable Real 2-module over

G̃. The following statements hold.

(i) There exist indecomposable Real 2-modules ρ1, . . . , ρn over G̃, unique up to
equivalence, such that ρ ' �ni=1ρi.

(ii) If ρ is indecomposable, then there exists a subgroup H of G1 such that GH :=

(G2
∂−→ H) is a crossed submodule of G and a one dimensional realizable 2-

module ν over G̃H , Real if H is non-trivially graded, such that ρ ' IndG̃
G̃H
ν.

Moreover, the pair (H, ν) is unique up to G1-conjugation, (H, ν) 7→ (gHg−1, g ·
π(g)ν), g ∈ G1, and equivalence in ν.

Proof. By Theorem 4.6, it suffices to prove the statement at the level of G-algebras.
Let A be a split semisimple G-algebra. Decompose the underlying K-algebra into

simple factors, A = ⊕ti=1Ai. Then G1 acts on the set {1, . . . , t}, giving an orbit decom-
position O1t· · ·tOn, so that each AOi := ⊕j∈OiAj, i = 1, . . . , n, is an indecomposable
G-algebra and A ' �ni=1AOi . The uniqueness statement is clear.

Turning to the second statement, if A is indecomposable, then it is necessarily of
the form Mn(K)⊕t and the G1-action on {1, . . . , t} is transitive. Let H ≤ G1 be the
stabilizer of 1 ∈ {1, . . . , t}; it is trivially graded if no element of G1 \ G0 fixes 1, and
is non-trivially graded otherwise. Set B = Mn(K), regarded as the first summand
of A. Then B inherits from A a GH-algebra structure. It follows immediately from
the definitions that IndG

GH
B ' A as G-algebras, where Ind denotes HInd or RInd as

appropriate. It is clear that we can replace B with any GH-Morita equivalent GH-
algebra. If we consider instead the stabilizer of a point other than 1, then H is replaced
with a G1-conjugate, say H ′ = gHg−1, and B is replaced g · π(g)B. �
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Remark. When G is trivially graded, variants of Theorem 4.8(ii) are well-known; see,
for example, [29, Theorem 3.2], [16, Proposition 7.3] and [31, Theorem 3.7].

5. The Grothendieck ring of Real 2-representations

In this section we describe the Grothendieck ring of RRep2VectK
(G̃) in terms of Real

generalized Burnside rings.

5.1. Generalized Burnside rings. We recall some basic material about generalized
Burnside rings. The reader is referred to [18, §1] and [31, §4] for details.

Given a finite group G, let S(G) be the category whose objects are subgroups of G
and whose morphisms are conjugations,

HomS(G)(H1, H2) = {γg | g ∈ G, gH1g
−1 ≤ H2}.

Morphisms are composed using the multiplication in G. We emphasize that, even
if e 6= g1g

−1
2 is in the centralizer of H1, the morphisms γg1 , γg2 : H1 → H2 are not

identified. This is as in [31] and is in contrast to [18].
Suppose now that G is Z2-graded. The degree π(H) of H ∈ S(G) is defined to be

+1 if H is trivially graded and −1 otherwise. There are no morphisms in S(G) from
an object of degree −1 to an object of degree +1.

Fix a functor Φ : S(G)op → SGrp to the category of semigroups. A Φ-decorated
G-set is a G-set X together with frills fx ∈ Φ(StabG(x)), x ∈ X, which satisfy
Φ(γg)(fx) = fgx for each g ∈ G. The generalized Burnside ring BΦ(G) is defined
to be the Grothendieck group of the category of finite Φ-decorated G-sets. An ex-
plicit description of BΦ(G) in our case of interest is given in Section 5.2. Given a
commutative ring A, we write BΦ

A(G) for BΦ(G)⊗Z A.

5.2. The Grothendieck ring of Real 2-representations. Let K be a Z2-graded

crossed module. Denote by π0(RRep[1](K̃)) the abelian group of equivalence classes of

Real 2-representations of K̃ on [1] ∈ 2VectK. If K is trivially graded, then this is simply

π0(Rep[1](K̃)). The group operation is the tensor product � of (Real) 2-representations.
Let G be a Z2-graded crossed module with G1 finite. The group π1(G) inherits a

Z2-grading from that of G1. Given a subgroup P ≤ π1(G), denote by P its pre-image

under the quotient map G1 → π1(G). The crossed module GP := (G2
∂−→ P ) is a

Z2-graded crossed submodule of G; the grading trivial if and only if P ≤ π1(G)0.
Define a functor Φ : S(π1(G))op → Ab to the category of abelian groups as follows.

At the level of objects, set

Φ(P ) = π0(RRep[1](G̃P )).

Let γg : P1 → P2 be a morphism in S(π1(G)). The choice of a lift ġ ∈ G1 of g ∈ π1(G)
induces a strict Z2-graded crossed module homomorphism γġ : GP1 → GP2 by

P 1 3 p 7→ ġpġ−1, G2 3 x 7→ ġx.

The associated Z2-graded 2-group homomorphism is γġ : G̃P1 → G̃P2 . With this
notation, define Φ(γg) by

Φ(γg)(ρ) =

{
π(g)ρ ◦ γġ if π(P1) = π(P2),

F(ρ) ◦ γġ otherwise.

Here F : π0(RRep[1](G̃P )) → π0(Rep[1](G̃P0)) is the forgetful map. Well-definedness of
Φ, that is, independence of the lift ġ of g, can be verified as in [31, Lemma 4.1].
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Definition. The Real Burnside ring of G is BΦ
A(G) := BΦ

A(π1(G)).

It follows from the general theory of generalized Burnside rings that BΦ
A(G) is gen-

erated as an A-module by pairs 〈ρ, P 〉, where P ≤ π1(G) and ρ ∈ π0(RRep[1](G̃P )).

The ring structure of BΦ
A(G) is determined by the formula

〈ρ, P 〉 · 〈θ,Q〉 =∑
PgQ∈P\π1(G)/Q

〈Φ(γe : P ∩gQg−1 → P )(ρ)�Φ(γg−1 : P ∩gQg−1 → Q)(θ), P ∩gQg−1〉.

Example. We consider three illustrative cases of the product.

(i) Let h ∈ π1(G)\π1(G)0 with lift ḣ ∈ G1 \G0 and identify π1(G)0\π1(G)/π1(G)0

with {e, h}. Then we have

〈ρ, π1(G)0〉 · 〈θ, π1(G)0〉 = 〈ρ� θ, π1(G)0〉+ 〈ρ� ḣ · θ∨, π1(G)0〉,

where the notation ḣ · θ∨ is as in Section 3.4.
(ii) Similarly, we can identify π1(G)\π1(G)/π1(G)0 with {e}, so that

〈ρ, π1(G)〉 · 〈θ, π1(G)0〉 = 〈ResG̃
G̃0

(ρ)� θ, π1(G)0〉.

(iii) Finally, identifying π1(G)\π1(G)/π1(G) with {e}, we have

〈ρ, π1(G)〉 · 〈θ, π1(G)〉 = 〈ρ� θ, π1(G)〉.
/

More generally, we can define the symbol 〈ρ, P 〉 without the assumption that ρ is
one dimensional. To do so, set 〈ρ1 � ρ2, P 〉 := 〈ρ1, P 〉 + 〈ρ2, P 〉 for any two (Real)

2-representations ρ1, ρ2. Set also 〈Ind
G̃Q

G̃P
ρ,Q〉 := 〈ρ, P 〉 for subgroups P ≤ Q ≤ π1(G).

Here Ind
G̃Q

G̃P
has one of three meanings, depending on the Z2-gradings of P and Q.

Theorem 4.8 implies that these definitions are unambiguous.
For any subgroup P ≤ π1(G) and g ∈ π1(G), the relation

〈ρ, P 〉 = 〈Φ(γg)(ρ), g−1Pg〉

holds. In particular, when P is trivially graded and π(g) = −1, this relation becomes
that of Lemma 3.8. Note that there is no reason for this relation to hold in BΦ

A(G0).
The Grothendieck group K0(V) of a bicategory V is defined to be the free abelian

group generated by equivalence classes of objects of V . If V is symmetric monoidal,
then K0(V) has the structure of a commutative ring.

The (ungraded) Burnside ring of G0, defined to be BΦ
A(G0) := BΦ

A(π1(G0)), is shown

in [31, Proposition 4.2] to be isomorphic to K0(Rep2VectK
(G̃0)) ⊗Z A. The next result

gives a Real generalization.

Theorem 5.1. Assume that G1 is finite. Then the assignment 〈ρ, P 〉 7→ IndG̃
G̃P
ρ

extends to an A-algebra isomorphism I : BΦ
A(G)

∼−→ K0(RRep2VectK
(G̃))⊗Z A.

Proof. It follows from Theorem 4.8 that I is an A-module isomorphism. We need to
show that I is also a map of algebras.

As a first case, suppose that P,Q ≤ π1(G) are trivially graded. Let h ∈ π1(G) \
π1(G)0. Fix a complete set T ⊂ π1(G)0 of representatives of P\π1(G)0/Q. Then
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T t T · h is a complete set of representatives of P\π1(G)/Q and we can write

〈ρ, P 〉 · 〈θ,Q〉 =∑
g∈T

〈Φ(γe : P ∩ gQg−1 → P )(ρ)� Φ(γg−1 : P ∩ gQg−1 → Q)(θ), P ∩ gQg−1〉+

∑
g∈T

〈Φ(γe : P∩ghQ(gh)−1 → P )(ρ)�Φ(γ(gh)−1 : P∩ghQ(gh)−1 → Q)(θ), P∩ghQ(gh)−1〉.

Let us first interpret the right hand side as an element of the (ungraded) ring BΦ
A(G0)

with product −·0−. The first and second lines are then 〈ρ, P 〉 ·0 〈θ,Q〉 and 〈ρ, P 〉 ·0 〈ḣ ·
θ∨, hQh−1〉, respectively. Under the isomorphism BΦ

A(G0) ' K0(Rep2VectK
(G̃0)) ⊗Z A,

the right hand side is thus(
IndG̃0

G̃P
(ρ)�IndG̃0

G̃Q
(θ)
)
�
(
IndG̃0

G̃P
(ρ)�IndG̃0

G̃hQh−1
(ḣ·θ∨)

)
' IndG̃0

G̃P
(ρ)�ResG̃

G̃0

(
HIndG̃

G̃Q
(θ)
)
.

Applying the map I then corresponds to applying hyperbolic induction. Doing so

gives HIndG̃
G̃P

(ρ)� HIndG̃
G̃Q

(θ), as required.

If instead P is non-trivially graded and Q is trivially graded, then we can choose a
complete set of representatives of P\π1(G)/Q of the form T ⊂ π1(G)0 and

〈ρ, P 〉 · 〈θ,Q〉 =∑
g∈T

〈Φ(γe : P ∩ gQg−1 → P )(ρ)� Φ(γg−1 : P ∩ gQg−1 → Q)(θ), P ∩ gQg−1〉.

Interpreted as an element of BΦ
A(G0), the right hand side is 〈ρ, P0〉 ·0 〈θ,Q〉, which

corresponds to

IndG̃0

G̃P0

(
ResG̃P

G̃P0
(ρ)
)
� IndG̃0

G̃Q
(θ) ' ResG̃

G̃0

(
RIndG̃

G̃P
(ρ)
)
� IndG̃0

G̃Q
(θ)

in BΦ
A(G0). Applying HIndG̃

G̃0
and using the equivalence (15) then gives RIndG̃

G̃P
(ρ) �

HIndG̃
G̃Q

(θ), as required.

The case in which both P and Q are non-trivially Z2-graded is similar. �

6. Real categorical character theory

The categorical character theory of 2-representations was developed by Bartlett [6,
§3] and Ganter and Kapranov [16, §4] in the case of finite groups and extended to
essentially finite 2-groups by Rumynin and Wendland [31, §5]. A Real generalization
for finite groups was introduced in [37, §5]. In each of these settings, there are two
levels of characters, reflecting to the higher categorical nature of the representations
involved. Motivated by work of Willerton [36], in this section we give a geometric
formulation of this theory, simultaneously generalizing it to Real 2-representations of
essentially finite 2-groups.

6.1. Loop spaces of crossed modules. Let G be a finite group. It is well-known
(see, for example, [36]) that the loop groupoid of BG is equivalent to action groupoid
G//G, with G acting by conjugation, while the double loop groupoid is equivalent to
the action groupoid associated to the simultaneous conjugation of commuting pairs in
G. In this section we describe crossed module generalizations of these statements.

Let G be a crossed module. We do not impose any finiteness conditions on G. Denote
by |G| the geometric realization of G. The homotopy 2-type of the free loop space



36 D. RUMYNIN AND M.B. YOUNG

Maps(S1, |G|) can be modelled by a crossed module in groupoids, which we denote by
LG. A result of Brown [11, Theorem 2.1] gives the following explicit description of
LG. The base groupoid L≤1G = (L1G→→ L0G) has objects L0G = G1 and morphisms
g1 → g2 given by pairs (f, x) ∈ G1 × G2 which satisfy g2 = f∂(x)g1f

−1. Morphisms
are composed according to the rule(

g2
(f2,x2)−−−−→ g3

)
◦
(
g1

(f1,x1)−−−−→ g2

)
= g1

(f2f1,
f−1
1 x2x1)−−−−−−−−→ g3.

The groupoid L2G is totally disconnected. The group L2G(g) sitting over g ∈ L0G is
G2 and the restriction of the boundary functor ∂ : L2G → L≤1G to L2G(g) is given
on morphisms by

∂g(z) = (∂z, z−1(gz)), z ∈ G2.

The action of (g1
(f,x)−−→ g2) ∈ L≤1G on z ∈ L2G(g) is defined only when g = g1, in

which case it is equal to fz ∈ L2G(g2).
The fundamental groupoid π≤1(LG) of LG is defined to be the quotient of L≤1G

by the totally disconnected normal subgroupoid ∂(L2G). Similarly, the loop groupoid
Λπ≤1(LG) is defined to be the groupoid of functors BZ → π≤1(LG). Concretely, ob-
jects of Λπ≤1(LG) are pairs (g, γ), where g ∈ G1 and γ ∈ Endπ≤1(LG)(g) ' EndL≤1G(g)/
im(∂g). A morphism µ : (g1, γ1) → (g2, γ2) is a morphism µ : g1 → g2 in π≤1(LG)
which satisfies µγ1 = γ2µ.

Reflection of the circle S1 defines a weak involution i : LG → LG. Following the
proof of [11, Theorem 2.1], we find that i is given on L0G by i(g) = g−1, on L1G by

i(g1
(f,x)−−→ g2) = g−1

1

(f,g
−1
1 x−1)−−−−−−→ g−1

2

and on L2G by i(z) = z.
Suppose now that we are given a Z2-grading π : G→ Z2. At the level of classifying

spaces, π determines an equivalence class of double covers of G which, as is easy
to verify, is represented by the canonical map G0 → G. By choosing an element
h ∈ G1 \G0, the non-trivial deck transformation of G0 can be realized as

G1 3 g 7→ hgh−1, G2 3 x 7→ hx.

Note that this squares to the inner automorphism determined by h2 ∈ G0 and, hence,
is homotopic to the identity.

Similarly, π induces a grading LG → Z2. The associated double cover is realized
by the canonical map L(G0)→ LG together with the non-trivial deck transformation
σh : L(G0)→ L(G0) given on L0(G0) by σh(g) = hgh−1, on L1(G0) by

σh(g1
(f,x)−−→ g2) = hg1h

−1 (hfh−1,hx)−−−−−−→ hg2h
−1

and on L2(G0) by σh(z) = hz.
In the setting of Real representation theory, an unoriented version LrefG of the free

loop space L(G0) arises in a natural way; the superscript “ref” stands for reflection.
This is now a Z2-graded crossed module in groupoids. The base groupoid Lref

≤1G has

objects Lref
0 G = G0 and morphisms g1 → g2 given by pairs (f, x) ∈ G1×G2 which sat-

isfy g2 = f∂(x)g
π(f)
1 f−1. The composition law is (f2, x2) ◦ (f1, x1) = (f2f1, (

f−1
1 x2)x̃1),

where

x̃1 =

{
x1 if π(f2) = +1,
(g
−π(f1)
1 )x−1

1 if π(f2) = −1.
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Each group Lref
2 G(g) is again G2 and ∂g(z) = (∂z, z−1(gz)). The action of Lref

≤1G on

Lref
2 G is as for LG. There is an induced Z2-grading π : LrefG→ BZ2 which records the

degree of morphisms in Lref
≤1G. The associated double cover is the canonical morphism

L(G0) → LrefG with the non-trivial deck transformation ih := i ◦ σh = σh ◦ i, that is,
the diagonal Z2-action induced by loop reflection and the deck transformation of G0.

For later convenience, if G is trivially graded, we take LrefG to mean LG.

6.2. Real categorical characters and 2-characters. Let G be a Z2-graded crossed

module. Let ρ be a Real 2-representation of G̃ on a object V of a K-linear bicategory
V with weak duality involution (−)◦. The Real categorical character of ρ is defined as
follows. For each g ∈ G0, define a vector space

Trρ(g) := 2HomV(idV , ρ(g)).

We assume that Trρ(g) is finite dimensional over K. We do not assign a value of Trρ
to elements of G1 \G0. For each (f, x) ∈ G1 ×G2, define a linear map

Trρ(g; f, x) : Trρ(g)→ Trρ(f∂(x)(gπ(f))f−1)

so that its value on (idV
u

=⇒ ρ(g)) ∈ Trρ(g) is the composition

idV ⇒ ρ(f)◦ρ(f−1)
u

=⇒ ρ(f)◦ρ(g)◦ρ(f−1)
ρ(x)
==⇒ ρ(f)◦ρ(∂(x)g)◦ρ(f−1)⇒ ρ(f∂(x)gf−1)

when π(f) = +1, as in [16, 31], and

idV ⇒ ρ(f) ◦ ρ(f−1)◦ ⇒ ρ(f) ◦ ρ(g)◦ ◦ ρ(g−1)◦ ◦ ρ(f−1)◦
u◦
=⇒

ρ(f) ◦ ρ(g−1)◦ ◦ ρ(f−1)◦
(ρ(x)−1)◦

=====⇒ ρ(f) ◦ ρ(∂(x)g−1)◦ ◦ ρ(f−1)◦ ⇒ ρ(f∂(x)g−1f−1)

when π(f) = −1. The unlabelled maps appearing in the previous compositions are
2-isomorphisms constructed from the composition 2-isomorphisms of ρ. In the second
composition ρ(x) is a 2-morphism ρ(g−1)⇒ ρ(∂(x)g−1), so that ρ(x)◦ : ρ(∂(x)g−1)◦ ⇒
ρ(g−1)◦.

Proposition 6.1. The Real categorical character of ρ is a functor Trρ : LrefG →
VectK.

Proof. Because VectK is a 1-category, this statement is equivalent to Trρ defining a
functor π≤1(LrefG)→ VectK. It is straightforward to verify that, as defined above, the
structure maps assemble to a functor Trρ : Lref

≤1G→ VectK; see [16, Proposition 4.10],

[31, §5]. We need to show that this functor factors through π≤1(LrefG), that is, for
each z ∈ G2, the linear maps

Trρ(g; f, x) , Trρ(g; (f, x) ◦ ∂g(z)) : Trρ(g)→ Trρ(f∂(x)(gπ(f))f−1)
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are equal. To do so, it suffices to show that Trρ(g; ∂z, z−1(gz)) is the identity endo-
morphism of Trρ(g). This endomorphism is given by the diagram

V V V V.

ρ(∂z)

ρ(∂z)

idV

ρ(g)

ρ(g)

idV

ρ(∂(x)g)

ρ(∂z−1)

ρ(∂z−1)

id

u

ρ(x)

id

ρ−1
∂z,e,∂z−1

ρ∂z,∂(x)g,∂z−1

(16)

The composition rules in G̃ give

V V

ρ(∂(x)g)

ρ(g)

ρ(x) = V V V V

ρ(∂z−1)

idV

ρ(z−1)

ρ(g)

ρ(g)

∂z

idV

id ρ(z)

so that the diagram (16) can be rewritten as

V V V V.

ρ(∂z)

idV

idV

ρ(g)

ρ(z−1)

idV

ρ(g)

u

ρ(∂z−1)

idV

ρ(z)

ρ−1
∂z,e,∂z−1

ρe,g,e

Since the diagram

V V V V

ρ(∂z)

idV

idV

ρ(z−1)
idV

ρ(∂z−1)

idV

ρ(z)

ρ−1
∂z,e,∂z−1

is the identity 2-morphism of idV , we conclude that (16) is equal to u : idV ⇒ ρ(g). �

Working in this geometric set-up, we define the Real 2-character χρ of ρ to be
the holonomy of Trρ : LrefG → VectK. It is therefore a locally constant function
χρ : LLrefG → K, or equivalently, χρ : Λπ≤1(LrefG) → K. Using either of these
interpretations, we find that χρ is function on the set

G = {(g; f, x) ∈ G0 ×G1 ×G2 | f∂(x)(gπ(f))f−1 = g}

which is invariant under the action of im(∂g), g ∈ G0 and the conjugation action
of morphisms in π≤1(LG). When G1 is trivially graded this gives a more precise
description of the symmetries of 2-characters than previously available. For example,
it refines the G0-conjugation invariance of χρ proved in [31, Proposition 5.1].
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The space of locally constant functions LLrefG→ K, that is, Real 2-class functions
for G, is a direct sum of elliptic 2-class functions, which are supported on G ∩ (G0 ×
G0×G2) and Klein 2-class functions, which are supported on G∩(G0×(G1\G0)×G2).
The nomenclature stems from the appearance, modulo im(∂), of the relations for the
fundamental groups of the 2-torus and Klein bottle in the definition of G. This leads

to an interpretation of LLrefG in terms of moduli spaces of principal G̃-bundles over
the torus or Klein bottle, where in the latter case a compatibility condition with the
orientation double cover is imposed, cf. [38, Section 3.2]. The 2-character of the
underlying 2-representation of ρ is in the elliptic sector. The Real nature of ρ is
reflected in the Klein sector of χρ as well as the invariance of the elliptic sector of χρ
under the conjugation action of odd elements of π≤1(LG).

6.3. Induced categorical characters. In this section we determine the form of in-
duced Real categorical and 2-characters.

Theorem 6.2. Let G be a Z2-graded crossed module with crossed submodule H. As-

sume that G1 is finite and H2 = G2. Let ρ be a 2-representation of H̃ on 2VectK, which
is Real if H is non-trivially graded. Then there is a canonical isomorphism

Tr
IndG̃

H̃
ρ
' IndL

refG
LrefHTrρ

of vector bundles LrefG→ VectK.

Proof. The proof is similar to those of [16, Theorem 7.5], [37, Theorems 7.3, 7.7], which
treat the cases in which G is a group, possibly Z2-graded. We focus on the differences.

Arguing as in the beginning of the proof of Proposition 6.1, it suffices to prove the
statement at the level of vector bundles Lref

≤1G → VectK. A choice of representatives

of the connected components of Lref
≤1G induces an equivalence of groupoids

Lref
≤1G '

⊔
g∈π0(Lref≤1G)

BZG(g),

where ZG(g) ≤ G2 oG1 is the stabilizer {(f, x) ∈ G1×G2 | f∂(x)(gπ(f))f−1 = g}. Fix
g ∈ G0. We have a vector space isomorphism

TrIndG
Hρ

(g) '
⊕
t∈T

t−1gt∈H1

Trρ(t
−1gt),

where T ⊆ G1 is a left transversal to H1. We need to describe the action of ZG(g) on
TrIndG

Hρ
(g). Write

[g]G ∩H1 =
n⊔
i=1

[hi]H,

where [g]G denotes the G2 o G1-orbit of g, and similarly for [hi]H. Let Ti = {t ∈ T |
t−1gt ∈ [hi]H}. For each i ∈ {1, . . . , n}, fix an element ti ∈ Ti and put hi = t−1

i gti. The
assumption H2 = G2 implies that there is a canonical bijection

ZG(hi)/ZH(hi) ' ZG1(hi)/ZH1(hi).

We can therefore choose adapted representatives of Ti ⊂ T , as in [16, Lemma 7.7] (see
also [37, Lemma 7.4]). Consider the composition

φi : ZH(hi) ↪→ ZG(hi)
(f,x)7→(tift

−1
i ,tix)

−−−−−−−−−−→ ZH(g).
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Then we can verify that TrIndG
Hρ

(g) is isomorphic to
⊕n

i=1 IndφiTrρ(hi), exactly as in

the case G2 = {e}. �

Corollary 6.3. In the setting of Theorem 6.2, the Real 2-character of IndG
Hρ is

χ
IndG̃

H̃
ρ
(g; f, x) =

1

c|H1|
∑
t∈G1

t−1(g,f)t∈H0×H1

χρ(t
−1gπ(t)t; t−1ft, t

−1

x),

where c = 1 if H is trivially graded and c = 2 otherwise.

Proof. By Theorem 6.2, it suffices to compute the character of IndL
refG
LrefHTrρ. This can

be done using [16, Proposition 6.11], giving the claimed result. �

Considered as locally constant functions, Real 2-characters are multiplicative:

χρ1�ρ2 = χρ1χρ2 .

This can be proved in the same way as [31, Proposition 5.1]. See also [15, Corollary
4.2]. In particular, using the identification of Theorem 5.1, we find that each tuple
(g; f, x) ∈ G defines a ring homomorphism

χ(g; f, x) : BΦ
Z(G)→ K, 〈ρ, P 〉 7→ χ

IndG̃
G̃P

ρ
(g; f, x).

Motivated by [31, Theorem 5.2], we would like to understand this homomorphism in
terms of marks. This can be done as follows.

Let R be a K-algebra. Assume that the cardinality of π1(G) is invertible in K.
Given Q ∈ S(G) and a semigroup homomorphism α : Φ(Q) → R×, the associated
mark homomorphism is the K-linear map fαQ : BΦ

K(G)→ R defined by

fαQ(〈ρ, P 〉) =
1

|P |
∑
g∈G1

gQg−1⊂P

α(Φ(γg : Q→ P )(ρ)). (17)

This is in fact a morphism of R-algebras [18, §1].

Corollary 6.4. Assume that the cardinality of π1(G) is invertible in K. Let (g; f, x) ∈
G and let P be the subgroup of π1(G) generated by the images of g and f . Then
χ(g; f, x) is the mark homomorphism BΦ

Z(G)→ K determined via equation (17) by the
restriction χ(g; f, x)|P : Φ(P )→ K×.

Proof. This follows by comparing equation (17) with the result of Corollary 6.3. �

The analogy between 2-character theory and Hopkins–Kuhn–Ravenel character the-
ory [21] of Borel equivariant elliptic cohomology, as developed by Ganter and Kapranov
[16], suggests the following problem.

Problem 6.5. Interpret the results of Sections 6.2 and 6.3 in terms of (transchro-
matic) Hopkins–Kuhn–Ravenel character theory [21, 33, 26] of 2-equivariant elliptic
cohomology. In particular, relate Theorem 6.2 and Corollary 6.3 to the relevant trans-
fer maps.

Remark. A 3-cocycle α ∈ Z3(BG̃,K×π ) on the classifying space determines a Z2-

graded central extension αG̃ of G̃ by K×. An α-twisted Real 2-representation of G̃ is

then by definition a Real 2-representation of αG̃ whose restriction to K× is scalar mul-
tiplication. When G is a finite group, the character theory of twisted representations is
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studied in [17] and [37]. Together with the results of this section, this suggests an ob-
vious candidate for the categorical character theory of twisted Real 2-representations
of finite 2-groups in terms of vector bundles over LrefG which are twisted by the gerbe
represented by the loop transgression of α.
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