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Abstract

We design the first polynomial time (for an arbitrary and fixed field GF[q]) (€, 8)­

approximation algorithm for the number of zeros of arbitrary polynomial f(x1, . .. , x n )

over GF[q]. The algorithm is based on the estimation of the number of zeros of an

arbitrary polynomial f(xt, ... , x n ) over GF[q] in the function on the number m of its

terms. The bounding ratio number is proved to be m(q-l)logq which is the main technical

contribution of this paper and could be of independent algebraic interest.
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1 Introduction

Recently there has been a progress in design of efficient approximation algoritbms for

algebraic counting problems. The first polynomial time (f, c5')-approximation algorithm

for the number of zeros of a polynomial f(xt, ... , xn ) over tbe field GF[2] has been

designed recently by Karpinski and Luby ([KL 91a]) and this result was extended to

arbitrary multilinear polynomials over GF[q] by Karpinski and Lhotzky ([KL 91 b]).

In this paper we construct the first (f, c5')-approximation algorithm for the number

of zeros of an arbitrary polynomial f(Xl'" ., x n ) with m terms over an arbitrary (but

fixed) finite field GF[q] working in polynomial time in the size of the input, tbe ratio
m(q-l) logq, and ~, log(l).

2 Approximation Algorithm

We refer to [KL 91a], [KL 91b] and [KLM 89] for the more detailed discussion of the

abstract structure of the general Monte-Carlo method for estimating cardinalities of

finite sets.

Given / E GF[q][x), ... ,xn ], and cE GF[q]. Denote

Our (f, c5')-approximation algorithm .w~ll have the follow~ng overall structure:

MONTE CARLO ApPROXIMATION ALGORITHM

Input f E GF[q][Xl" .. , X n ], C E GF[q], f > 0, c5' > 0, (/ ~ 0)

Output Y(such that Pr[(1 - f)#c/ ~ y ~ (1 +f)#c/l ;::: 1 - 0 )

1. Construct a universe set V (the size lVI of V must be efficiently computable.)

2. Choose randomly with the uniform probability distribution N members Uj from

U, Uj E V, i = 1,2, .. . ,N.

3. Construct now from a polynomial f a fünction j
such that Ij-t (1)1 = #c/.

1

U --t {0,1}



4. Compute the number N = ~ 41o~~216) for ß ~ IUI/#ef.

5. Compute for all i, 1 ~ i ~ N, the :values j(ud and set l'i +- IUli(Ui)'

N
_ L: Yj

6. Compute Y +- i.~ •

7. OUTPUT: Y.

Correctness of the above algorithm is guaranteed by the following Theorem.

Theorem 1 (Zero-One Estimator Theorem [KLM 89])

Let Jl = W. Let f ~ 2. 1/ N ~ ;; 41o~~2/6), then the above Monte Carlo Algorithm is an

(f, tS)-approximation algorithm for #ef.

We shall distinguish two (technically different) cases:

Case 1. Polynomial f(Xl, •.. ,xn) over GF[q] is constant free and c = O.

Case 2. Polynomial f(Xl'" ., x n ) over GF[q] is arbitrary and c =1= O.

The corresponding universes will be U1 = GF(q]n and U2 = GU-c)q-l-l =
{(s, i) I there is a term ti of (f - C)q-l - 1 such that ti(8) =1= 0

and there is no j, j < i such tbat tj(s) # O}
and the corresponding bounds ßi ~ ~jj will be proven to satisfy

ßI ::; (m +1)(q-l) logq and

ß2 ::; m(m + 1)(q-l) logq •

The rest of the paper will be devoted to the proofs of these two bounds.

We shall denote tbe corresponding algoritbms by Al and A2 •

Let us analyze the bit complexity of both algorithms.

Denot.e by P(q) the bit costs of multiplication and powering over GF[q], P(q) =

O(log2 q log log q log log log q) (cf. [We 87]). The evaluation of the polynomial" takes time

O(nmP(q)) and the overall complexity of the algoritbm Al is

O(nm(m + l)(q-I)logq P(q) log(1/tS)/f2)
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and of the algorithm A2

O(nm(m + l)(q-l)(l+logq)q log qP(q)10g(1/6)/f2 ) •

For the fixed finite field GF[q] the running time of both algorithms is bounded by a

polynomial of the degree depending on the order of the ground field. The bounds for ßl
and ß2 which are proven polynomial in m only are the main technical contribution of

this paper.

Please note that the condition whether / =O.can be checked deterministically for

arbitrary polynomial / E GF[q][xI, .. . , xn ] within the bounds stated above because of

the following

Proposition 1. Let / E GF[q][xI,"', xn ] and c E GF[q], the equatioD 1 = c is

satisfiable if and only if 9 = (/ - C)q-l - 1 has at least one nonconstant term.

Proof. / = c is satisfiable Hf (I - C)9-
1 = 0 is satisfiable Hf the inequality

(/ - C)q-l - 1 =I- 0 is satisfiable. The inequality (/ - C)9-1 - 1 =I- 0 is satisfiable iff

there exists in (I - C)q-l - 1 at least one nonconstant term. 0

3 Main Theorem

Given an arbitrary polynomiallE GF[q][XI,"', X n ], degxi / ~ q - 1, denote

G = GJ = {(Xl,''',xn ) I /(Xl,''',x n ) #- O}, G = GJ = {(xt,""xn ) 13ti E / :

ti(XI,' ", x n ) #- O} (For notational reasons from now on, variables will be written in

capital (e.g. Xi) and values in small (e.g. Xi))'

Denote by ffi == ffiJ the number of terms in I.

By the support of a term t we mean the set of indices of variables occurring in t.

Theorem 2

REMARK.

@ < mlog2Q
TGJ-

This bound is sharp. Example: for 0 :5 k :5 n
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Proof. For any subset J c {I"", n} define an elementary cylinder C(J) =
{(XI," . ,xn) E GF(q]n 1 Xi f= 0 for j E J and Xi = 0 for i f1. J}. Observe that for

J1 =1= J2 C(J1 ) n C(J2 ) = 0. Define the cone of J

CON(J) = {(XI,'" ,xn) E GF(q]n I Xi f= 0 for j E J} = U C(J1).

J 12J

By fJ E GF(q][{Xi}iEJ] we denote the polynomial obtained from f in the following way:

mutiply f by the term X J = rr Xi, replace each appeared power XJ by X" make
iEJ

necessary cancellation, denote this intermediate result by f . X J and finally, substitute

zeroes instead of Xi for all i ~ J. Remark that each for term of /J its support coincides

with J, moreover mJJ ~ mJ'XJ ~ mJ.

Lemma 1 For every J ~ {I,"', n}

a) G n C(J) = GJJ (here under equality we mean a canonical isomorphism);

b) G n CON(J) = GJ.x )"

Proof. Observe that for any point (x},",, x n ) E C(J) (respectively CON(J))

f(xI,"', xn) f= 0 Hf fJ( {Xi}jEJ) # 0 (respectively fXJ(xI,"', xn) f= 0), this proves

lemma 1.

Lemma 2 a) G n C(J) f= 0 iff fJ :t 0,-

b) G n CON (J) f= 0 iJJ f . X J :t 0;

c) if !i :t 0 then G~ C(J) = GJJ and G~ CON(J) = GJ.Xj'

Praof. a) (respectively b)) follows from lemma 1a) (respectively 1b)).

c) follows from the statement that if /J :t 0 then / contains a term with a support being

a subset of J.

We call J active if !J ~ O.

Lemma 3 A J . t' Th 1°1/1 -..lQ0L < log2Q-1« log2Q)ssume IS ac lve. en IGIJI =~ _ mJJ _ mJJ '

NOTE. This lemma states the theorem for the case of the polynomial !J.

Praaf. We ~onduct by induction on IJI. Remark that IGJJI = IG(J)I = (q - 1)1J1.

Assume that for a certain jo E J the polynomial !J does not divide by (Xio - a) for

each a E GF(q]*. Then !J,a = !J(Xio = a) ~ O. Then by lemma 2a) we can apply
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inductive hypothesis to each of these polynomials !J,CJ' Since IGJJ I = L IGJJ,a1 and
CJEGF[q]·

mJJ (I ~ mJJ' we get by induction the statement of the lemma in this case.,

Assurne now that TI (Xj - Oj)I/J for some Oj E GF[q]·, j E J. We claim in this
JEJ

case that mJJ ~ 21J1 . By lemma Ia) this would prove lemma. 3. We prove the claim by

induction on IJI.
Fix some jo E J and write (uniquely) IJ = L hJ1 (Xjo )MJ1 where MJ1 are terms in the

variables {Xj }jE.T\{jo} and hJ1 (Xjo) E GF[q][Xjo ]' _Then (Xio - Qjo) IhJ1 (Xjo ) for each

MJu hence hJ1 (Xjo ) contains at least two terms.

Take a certain Xio E GF[q]· such that 0 ~ !J(Xjo . Xjo) E GF[q][{Xj}jEJ\{jo}] and

apply inductive bypothesis of the claim to IJ(Xjo = x,io), taking into account that

mJJ 2:: 2mJJ(xjo=~jo)' Lemma 3 is proved.

Lemma 4 11 J ~ {I,···, n} is a minimal (w.r.t. inclusion relation) support 01 the

terms in 1 then J is active.

Proof. Represent (uniquely) 1 = 11 +12 where 11 is the SUffi of all terms occurring

in 1 with the support J. Then the polynomial IJ = X J !1 ~ 0 has tbe same number of

terms aß 11, this proves lemma 4.

Corollary 1 G coincides with the unton 01 the cones CON(J) lor all (minimal)

active J.

Now we consider the lattice ~ = 2{1,... ,n} a.nd for J E L we denote its cone con(J) ~ .c.
We'll construct a partition P of the union 9 of con(J) for all active J.

Take any linear ordering -< of the active elements with the only property that if J1 ~ J'l

for two active elements then J} >- J2 (e.g. a.s tbe first element one can take arbitrary

maximal Olle, then a maximal in tbe rest set etc.).

Correspond to any element J1 E 9 an active element J minimal w.r.t. ordering -< with

the property J ~ J1• Then a.s an element of the partition P which is attached to an

active element J (denote it by P(J)) consists of all such elements of gwhich correspond

to J.

For any J1 call a subset S c con(J}) a relative principal ideal with the generator J}

iffor any J2 ~ J3 ~ J1 and J2 E S we have J3 E S.

Lemma 5 a) Pisa partition 01 g,.
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b) For each active element J, P(J) is a relative principal ideal with the generator J

(with the unique active element J).

Proof. Part a) is dear. To prove part b) consider J1 E P(J) and J1 2 J2 2 J, then

J2 E 9 (since 9 is a union of the cones). We have to prove that J corresponds to J2 •

Assurne the contrary and let Jo ~ J2 for some active Jo such that Jo -< J, hence Jo ~ J1

and we get a contradiction with J1 E P(J) which proves lemma 5.

Lemma 6 For any active element J and each J1 E P(J) the sum MJ1 ' 0/ the terms

occurring in I X J with the support J1 equals to

Proof. We prove it by induction on IJ1 \ JI.
The base for J1 = J is dear. Take any J1 E P(J), then for each J1 "1 J2 ;2 J we

have J2 E P(J) by lemma 5 and by inductive hypothesis MJ'J = IJ(~J; )9-1(_l)lJ'J\JI.

Since J1 is not active we have IJl =O. Observe that fJ1 = ( L: MJ'J)11
• Therefore

JCJ'JCJ1 J

/J1= ~/; (-fJ(~J; )q-l(_1)IJ1 \Jj +MJ1) and we obtain --

MJ1 = !J( X J1 )9-1(-1 )lJ1\JI
X J

taking ioto account that each term in IJ has a support equal to J.

Induction and lemma 6 are proved.

Corollary 2 For any active element J

Lemma 7 For any relative principal ideal S c con(J) with the generator J we have

K = L:(q - l)IS\JI ~ IS11og'J q •

$ES
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Proof. We prove by induction on n -IJI.
The base for n = IJI (then ISl = 1) is obvious. For the inductive step take some index

i o ~ J. Consider a partition of S = So U SI where SI (respectively So) consists of all

elements containing (respectively not containing) io. Then So can be considered a.s a
relatively principal ideal with the generator J in the lattice 2{l, ... ,n}\{io}. By S~ denote

a subset of 2{1, ...,n}\{io} obtained from SI by deleting i o from each element. Then S~ is

also a relative principal ideal (may be empty) with the generator J and S~ c So, in

particular ISll ::; ISol·

According to this partition represent K = K o+(q-1)Kl where K o = 2: (q_1)I.o\JI,
.oESo

K l = 2: (q - 1)161 \Jl. By inductive hypothesis
61E SI

the latter inequality follows from the convexity of the function X ~ x1og2 q (on the ray

IR+ of nonnegative reals), namely rewrite this inequality in the form

This completes the proof of the induction and lemma 7.

Corollary 3 For any active element J

10 n U C(Jdl::; IG n C(J)I(mjxJ1og2 q ::; IG n C(J)I(mj)log2Q .
J1 E'P(J)

Proof. 10 n U C(Jl )1 = (q _1)IJl. L: (q - 1)lJl\JI. By lemma 3 (q - 1)IJI ::;
J1 E'P(J) J1 EP(J) .

IG n C(J)1(m jJ )lo~ q. By lemma 5b) P(J) is a rela.tive principal ideal, hence 2: (q­
J 1 E'P(J)

l)lJl\JI ::; IP(J)IIO~q by lemma 7. Therefore we get the corollary 3 applying corollary 2.

Finally, we complete the proof of the theorem summing left and right sides of the

inequalities from corollary 3 ranging over all active elements J, takiog iota account

corollary 1, lemma 5a) and lemma 2a).

4 Bounds far ßl and ß2

We shall apply now Theorem 2 to derive upper bounds for ßl and ß2.
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Theorem 3 Given any polynomiallE GF[q][xt,"" Xn] with m terms and without

constant tenns. Then

fl
;01 ~ PI = (mO-

1 + 1)logq ~ (m + 1)(o-I)log0 .

Proof. Consider the polynomial 9 = /q-1.
For s E GF[q]fl, I(s) - 0 {::} (lq-1 - 1)(s) i= O. Apply Theorem 2

to the polynomial jq-1 - 1 E GF[q][xt,··· ,xn], IGI qfl, IG] - #0/,
and the number of terms of jq-1 -1 is mq- 1+1. So the exact bound is (mq- 1+ l)logq.

o

Theorem 4 Given any polynomial f E GF[q][xt,"" Xn] with m tenns and c i= O.

Then

IGU;!j'-1 I ~ P2/m = ((m + 1)0-1 - 1)log0 ~ (m + 1)(q-l)log0 •

Praaf. Fors E GF[q]n,j(s) = c{::} (f-C)q-1(S) = 0 {::} (I-C)q-1(S)-1 i= O. Ohserve

that (I - c)q-1 - 1 polynamial is constant free. Apply Theorem 2 to the polynomial

(/ -c)q-1-l with IGI = #cf and mq-1-l terms which results in ß2 = ((m+1)q-1_l )log q.

o

ohserve that in Theorem 4, taking the set G(f -c),-l -1 is neccesary as the set Gf does

not have a polynomial bound for the ratio ~}). Take for example the polynomial

(q - 2)x!-1 ... x~:'~ +X~-l == -1 .

~el) = (::~)n tends to infinity with growing n and does not satisfy the inequality ~ qq-1.

The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90]).

5 Open Problem

Our method yields the first polynomial time (f, 8)-approximation algorithm for the nUffi­

her of zeros of arbitrary polynomials f E GF[q][X1"'" xn ] for the fixed field GF[q].
Degree of the polynomial bounding the running time of the algorithm depend on the

order of the ground field.

Is it possible to remove dependence of the degree on q in the approximation algo­
rithm?
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