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Abstract

We design the first polynomial time (for an arbitrary and fixed field GF[q]) (e, é)-
approximation algorithm for the number of zeros of arbitrary polynomial f(zi,...,z,)
over GF|g]. The algorithm is based on the estimation of the number of zeros of an
arbitrary polynomial f(z1,...,z,) over GF[g] in the function on the number m of its
terms. The bounding ratio number is proved to be m(@=1198¢ which is the main technical

contribution of this paper and could be of independent algebraic interest.
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1 Introduction

Recently there has been a progress in design of efficient approximation algorithms for
algebraic counting problems. The first polynomial time (¢, §)-approximation algorithm
for the number of zeros of a polynomial f(zy,...,z,) over the field GF[2] has been
designed recently by Karpinski and Luby ([KL 91a]) and this result was extended to
arbitrary multilinear polynomials over GF'[q] by Karpinski and Lhotzky ([KL 91b}).

In this paper we construct the first (¢, 6)-approximation algorithm for the number
of zeros of an arbitrary polynomial f(z,,...,z,) with m terms over an arbitrary (but
fixed) finite field GF[q] working in polynomial time in the size of the input, the ratio
m(e-D1e8¢ and 1 Jog(}). )

2 Approximation Algorithm

We refer to [KL 91a], [KL 91b] and [KLM 89] for the more detailed discussion of the
abstract structure of the general Monte-Carlo method for estimating cardinalities of
finite sets.

Given f € GFlq][z1,:*,Zn), and ¢ € GF][g]. Denote

#Cf= H(wla--'sxn) € GF[Q']ﬂ | f(:':l:---amﬂ) =C}| .

Our (e, §)-approximation algorithm will have the following overall structure:

MONTE CARLO APPROXIMATION ALGORITHM

Input f € GFlg]{z1,- -,2n],c € GFlgl,e>0,6 >0, (f #0)

Output Y (such that Pr[(1 ~ €)#.f <Y < (1 + e)#.f]>1-6 )

1. Construct a universe set U (the size |U| of U must be efficiently computable.)

2. Choose randomly with the uniform probability distribution N members u; from
UyuelU,i=1,2,...,N.

3. Construct now from a polynomial f a function f : U — {0,1}
such that |/~1(1)| = #.f.



4. Compute the number N = %&E&Z@ for B > |U|/#.f

5. Compute for all i, 1 < i < N, the values f(u;) and set Y; — |U|f(u;).

6. Compute Y « =—

7. QUTPUT: Y.

Correctness of the above algorithm is guaranteed by the following Theorem.

Theorem 1  (Zero-One Estimator Theorem [KLM 89])
Let u = %‘IL Lete <2, IfN > iﬁi-(}@, then the above Monte Carlo Algorithm is an
(¢,6)-approzimation algorithm for #.f.

We shall distinguish two (technically different) cases:

Case 1. Polynomial f(zy,...,z,) over GF|g| is constant free and ¢ = 0.

Case 2. Polynomial f(zy,...,z,) over GF|q] is arbitrary and c # 0.

The corresponding universes will be Uy = GF[q]* and U = G(f_,c)q—l_,_l =
{(s,7) | thereis aterm ¢; of (f —¢)?! — 1 such that t;(s) # 0
and there is no j, y <1 such that ¢;(s) # 0}
and the corresponding bounds f; > %‘} will be proven to satisfy

f <(m+ 1)("'1)1"""r and
B: <m(m+ 1)(q-1)losq i
The rest of the paper will be devoted to the proofs of these two bounds.

We shall denote the corresponding algorithms by A; and A,.
Let us analyze the bit complexity of both algorithms.

Denote by P(g) the bit costs of multiplication and powering over GF[q], P(q) =
O(log® qlog log glog log log q) (cf. [We 87]). The evaluation of the polynomial takes time
O(nmP(q)) and the overall complexity of the algorithm A; is

O(nm(m + 1)~ 67 P(q) log(1/6)/<*)



and of the algorithm Aj

O(nm(m + 1)l0~D0Hee) g o0 0 P(q)log(1/6)/€?) .

For the fixed finite field GF[q] the running time of both algorithms is bounded by a
polynomial of the degree depending on the order of the ground field. The bounds for 3,
and f; which are proven polynomial in m only are the main technical contribution of
this paper.

Please note that the condition whether f = 0 can be checked deterministically for

arbitrary polynomial f € GFlq][z),...,z.] within the bounds stated above because of
the following

Proposition 1. Let f € GFg|[z1, -,z and ¢ € GFlq], the equation f = ¢ is
satisfiable if and only if ¢ = (f — ¢)?~! — 1 has at least one nonconstant term.

Proof. f = c is satisfiable iff (f — ¢)*"! = 0 is satisfiable iff the inequality
(f =€) — 1 # 0 is satisfiable. The inequality (f — ¢)?"! — 1 # 0 is satisfiable iff

there exists in (f — ¢)?~! — 1 at least one nonconstant term. O

3 Main Theorem

Given an arbitrary polynomial f € GF[¢][Xy, -+, X,], degx, f < ¢ — 1, denote
G =Gy ={(z1,",2a) | f(m1,-++,2.) # 0}, G = éf = {(z1,"+,za) [ i € f
ti(z1,---,zn) # 0} (For notational reasons from now on, variables will be written in
capital (e.g. X;) and values in small (e.g. z;)).

Denote by m = my the number of terms in f.

By the support of a term t we mean the set of indices of variables occurring in .

Theorem 2 % < mlos29

REMARK. This bound is sharp. Example: for 0 < k < n
ge =X XN - XD - (L= XY,

In this case |G| = (¢ — 1)*¢"*,|G| = (¢ —1)*,m = 2",



Proof. For any subset J C {l,---,n} define an elementary cylinder C(J) =
{(z1,-+,z,) € GF[g]* | z; # 0forj € Jand z; = Ofori ¢ J}. Observe that for
J1# J2 C(J1) N C(J;) =8. Define the cone of J

CON(J)={(z1, -, 2,) EGF[q]" |z; #0for je J} = |J C(J).
h2J
By f; € GF[q][{X;};es] we denote the polynomial obtained from f in the following way:
mutiply f by the term X; = [] Xj, replace each appeared power X7 by X;, make
jed

necessary cancellation, denote this intermediate result by f - X; and finally, substitute
zeroes instead of X; for all 2 ¢ J. Remark that each for term of f; its support coincides
with J, moreover my, < ms.x, < my.

Lemmal  For every J C {1,---,n}

a) GNC(J) = Gy, (here under equality we mean a canonical isomorphism);

b) GACON(J) = Gy.x,.

Proof. Observe that for any point (z1,:-:,z,) € C(J) (respectively CON(J))
flz1,- -+ z0) # 01ff fi({z;};es) # O (respectively fX (z1, -+,2,) # 0), this proves

lemma 1.

Lemma2 a)GNCJ)#Oiff f5£0;
b)) GNCON(J)#0 iff f- X, #£0;
C) iff_,'-;éﬂthenGQC(J)=Gj_, andGQCON(J)=G'f.xj.

Proof. a) (respectively b)) follows from lemma la) (respectively 1b)).
c) follows from the statement that if f; # 0 then f contains a term with a support being
a subset of J.

We call J active if f; #0.

. . G -
Lemma 3  Assume J is active. Then :GZ: = IGE("J:E‘J{)J)I < mpB i< mpRY),

NoTE. This lemma states the theorem for the case of the polynomial f;.

Proof. We conduct by induction on |J|. Remark that |Gy,| = |C(J)] = (¢ — 1)V
Assume that for a certain jo € J the polynomial f; does not divide by (Xj, — «) for
each o € GFlq]*. Then f;, = fi{(X; = a) £ 0. Then by lemma 2a) we can apply

4



inductive hypothesis to each of these polynomials fj,. Since |Gy,| = ¥ |Gy, | and
a€GF(q]*
my,, < my,, we get by induction the statement of the lemma in this case.

Assume now that [] (X; — a;)|fs for some a; € GF[q]*, j € J. We claim in this
jed

case that m;, > 2|, By lemma 1a) this would prove lemma 3. We prove the claim by
induction on |J|.

Fix some jp € J and write (uniquely) f;y = ¥ hy(X;, )M, where M, are terms in the
variables {X;};eni} and ks, (Xj,) € GF(q][Xj,]. Then (X;, — ajo)|hs,(Xj,) for each
Mj,,, hence hj, (X;,) contains at least two terms.

Take a certain z;, € GF[g]* such that 0 £ f,(X;, = z;,) € GF[q)l{X;}jenii}] and
apply inductive hypothesis of the claim to f;(X; = =z;), taking into account that

my, 2 2Mmy,(x,,=z;,)- Lemma 3 is proved.

Lemmad IfJ C {l,---,n} is a minimal (w.r.t. inclusion relation) support of the
terms in f then J is active.

Proof. Represent (uniquely) f = f; + f2 where f; is the sum of all terms occurring
in f with the support J. Then the polynomial f; = X;f; # 0 has the same number of
terms as f;, this proves lemma 4.

Corollary 1 G coincides with the union of the cones CON(J) for all (minimal)
active J.

Now we consider the lattice £ = 21"} and for J € £ we denote its cone con(J) C L.
We’ll construct a partition P of the union G of con(J) for all active J.
Take any linear ordering < of the active elements with the only property that if J; (?; J2
for two active elements then J; > J; (e.g. as the first element one can take arbitrary
maximal one, then a maximal in the rest set etc.).
Correspond to any element J, € G an active element J minimal w.r.t. ordering < with
the property J C J;. Then as an element of the partition P which is attached to an

active element J (denote it by P(J)) consists of all such elements of G which correspond
to J.

For any J; call a subset S C con(J;) a relative principal ideal with the generator J;
if for any J; 2 J3 2 J; and J; € § we have J; € S.

Lemma 5 a) P is a partition of G;



b) For each active element J, P(J) is a relative principal ideal with the generator J
(with the unique active element J ). '

Proof. Part a) is clear. To prove part b) consider J; € P(J) and J; 2 J; 2 J, then
Jz € G (since G is a union of the cones). We have to prove that J corresponds to J,.
Assume the contrary and let Jo C J; for some active Jy such that Jo < J, hence Jy, C J;
and we get a contradiction with J; € P(J) which proves lemma 5.

Lemma 6  For any active element J and each J, € P(J) the sum M, of the terms
occurring in fX; with the support J, equals to

Sy

Proof. We prove it by induction on |J; \ J|.

The base for J, = J is clear. Take any J; € P(J), then for each J1 Jo 2 J we
have J; € P(J) by lemma 5 and by inductive hypothesis M, = fJ( )"‘1( 1)\,
Since J; is not active we have f; = 0. Observe that f; = (JCJE ;s MJ,)T-JL. Therefore

fn ( f( L) (= )M\ 4 M ) and we obtain .

Xy,

= LRI )P

taking into account that each term in f; has a support equal to J.
Induction and lemma 6 are proved.

Corollary 2 For any active element J

my > mypx, > myg, - |P(J)|.

Lemma 7  For any relative principal ideal S C con(J) with the generator J we have

K=3(¢- 1)Vl < | S[losae
s€S



Proof. We prove by induction on n — |J|.

The base for n = |J| (then |S| = 1) is obvious. For the inductive step take some index
io ¢ J. Consider a partition of S = Sy U S; where S; (respectively Sp) consists of all
elements containing (respectively not containing) io. Then Sy can be considered as a
relatively principal ideal with the generator J in the lattice 2{1~mH\{ic} By §! denote
a subset of 20-mN\ie} gbtained from S; by deleting iy from each element. Then S} is
also a relative principal ideal (may be empty) with the generator J and §7 C S, in
particular | 5] < |So|.

According to this partition represent K = Ko+(¢—1)K; where Ko = ¥ (g—1)l*VI]

HESy
Ky = Y (g - 1)V By inductive hypothesis
8,ES,

K <S8 + (g — 1)|S1[°% 7 < (|So] + |5 ])'%

the latter inequality follows from the convexity of the function X — X629 (on the ray
IR, of nonnegative reals), namely rewrite this inequality in the form

ISollogzc + (2|Sl|)losgq < |Slll<352t1 + (ISOI + |Sl|)log,q )

This completes the proof of the induction and lemma 7.

Corollary 3  For any active element J

Gn U CUIS16nCI)Imx,) "5 <G NCW)|(m) 5.
LEeP(J)

Proof. |GN U C(h)|=(g-1)V. ¥ (¢-1)"V. Bylemma3 (¢~ 1)V <
JLEP(J) LEPJ)

|G N C(J)|(my,)°% 9, By lemma 5b) P(J) is a relative principal ideal, hence ¥ (g—
JIEP(JT)

DMV < |P(J)[°%9 by lemma 7. Therefore we get the corollary 3 applying corollary 2.

Finally, we complete the proof of the theorem summing left and right sides of the
inequalities from corollary 3 ranging over all active elements J, taking into account
corollary 1, lemma 5a) and lemma 2a).

4 Bounds for 8, and 5,

We shall apply now Theorem 2 to derive upper bounds for 8; and S,.
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Theorem 3  Given any polynomial f € GF[q|[z1,: -, 2z, with m terms and without
constant terms. Then

n

g <p = (mq—l + 1)101;«: <(m+ 1)(q—l)l°sq .

#of
Proof. Consider the polynomial g = f9~1.
For s € GF[q", f(s) = 0 & (f*' — 1)(s) # 0. Apply Theorem 2
to the polynomial f¢' — 1 € GFlqllz1,---,2a), |G| = ¢ |G| = #of,

and the number of terms of f2~! — 1 is m%~! 4 1. So the exact bound is (m?~! + 1)89.
0

Theorem 4  Given any polynomial f € GFlq][z1,--,zs] with m terms and ¢ # 0.
Then

|G!f;/:c!}-1—1| < ﬁ?/m — ((m + l)q-l _ 1)logq < (m + 1){q—1)logq .
Proof. Forse GF[q]*, f(s)=c& (f-¢)?!(s)=0& (f—c)*"!(s)—1 # 0. Observe
that (f — ¢)?~! — 1 polynomial is constant free. Apply Theorem 2 to the polynomial

(f—¢)?71—1 with |G| = #.f and m9~1—1 terms which results in 8 = ((m+1)771—1)l89,
O

Observe that in Theorem 4, taking the set G’( f-c)s-1-1 18 neccesary as the set Gy does
not have a polynomial bound for the ratio % Take for example the polynomial

(g=2)ef™ 2T gl = -1,

jgjl = (7;1:—;1? tends to infinity with growing n and does not satisfy the inequality < ¢771.

The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90}]).

5 Open Problem

Our method yields the first polynomial time (¢, §)-approximation algorithm for the num-
ber of zeros of arbitrary polynomials f € GF|g][zy,...,z,] for the fixed field GF[q].

Degree of the polynomial bounding the running time of the algorithm depend on the
order of the ground field.

Is it possible to remove dependence of the degree on ¢ in the approximation algo-
rithm?
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