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Note on lifting group actions
in fiber bundles

Kaoru ONO

1 Introduction.

Lifting problem of group actions in fiber bundles is discussed by several au-
thors. In the case of torus bundles, Hattori and Yoshida [H-Y] gave a suffi-
cient and necessary condition and classified such liftings in terms of equiv-
arinat cohomology. Lashof, May and Segal [L-M-S] extended their result to
the case of pricipal bundles with compact abelian structure groups (see also
[M]). Roughly speaking, the problem is summarized as follows:

What is the relation between G-equivariant objects over a G-space X and
objects over Xg := EG x¢g X?

Their answer is the following

Theorem([H-Y},[L-M-S]). Let G be a compact Lie group acting on X
and H a compact abelian Lie group. There is a one-to-one correspondence
between the set of equivalence classes of G-equivariant principal H-bundles
over X and the set of equivalence classes of principal H-bundles over Xg.

The purpose of this paper is to give an another approach to this problem
and consider a similar question for Galois coverings. Lifting the G-action on
X to a principal bundle is equivalent to find a splitting homomorphism of a
certain extension of G and the problem is reduced to Theorem (2.1). In the
course of this reduction, we shall show the existence of a fixed point in the
moduli space of all connections on S'-bundles under the above assumption
(see Lemma (3.2)). This lemma is valid certainly only in smooth category,
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but there is another way due to Jean Lannes, which is also valid in contin-
uous category. The author is grateful to Professor Jean Lannes for helpful
discussion.

2 Preliminaries and Statement of Results.

First of all, we recall some facts on classifying spaces. Suppose we have an
exact sequence of topological (or Lie) groups

1-H—-G-G—1.
Then we have a principé,l G-bundle
G — BH — BG.

Thus G acts on BH and (EG x BH)/G is homotopically equivalent to B G.
Hence we have a fibration BH — BG — BG. We can generalize this
construction as follows. G acts on EG factoring through the homomorphism
G — G. For any G-action on EH which is an extension of the principal
H-action, the diagonal action of G on EG x EH is free and we get BG =
(EG x EH)/G = (EG x BH)/G and the fibration BH — BG — BG.

We shall show the following theorem in §6.

Theorem (2.1). (1). Let H be a finite group. The following two conditions
are equivalent.
(i) 1—» H — G — G — 1 has a splitting.
(ii) BH — BG — BG has a cross section.
(2). Let H be a circle group S and G a compact Lie group. The following
two conditions are equivalent.
(1) A central extension 0 — H — G — G — 1 is a split exact sequence.
(i) BH — BG — BG has a cross section.

More precisely, there is a ono-to-one correspondence between splittings
in (1) and homotopy classes of cross sections in (ii).

Next we recall the following

Fact (2.2)({A-B1]). Let P — X be a principal H-bundle, and G(P) the
gauge transformation group of P. Then BG(P) = Mapp(X, BH), where
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Mapp(X, BH) denotes the space of classifying mappings of P — X. More
precisely, we have a universal principal fibration

G(P) — Map® (P, EH) — Mapp(X, BH).

Here Map™ (P, EH) denotes the space of H-equivariant mappings from P to
EH.

Remark. In this result, H need not be a finite group or S*.

Let P — X be an S'-bundle, and G a compact Lie group acting on X.
If the G-action lifts to P commuting with the principal S'-action, we get an
S1.bundle over X by the Borel construction

Po:=EG xg P — Xg:= EG x¢g X.
The problem is the converse. Actually there is a theorem.

Theorem (2.3)([H-Y],[L-M-S]). There is a one-to-one correspondence be-
tween the following two objects.

(1) isomorphism classes of G-equivariant S'-bundles over X.

(2) isomorphism classes of S'-bundles over Xg.

Remark. Hattori and Yoshida treated the case of principal torus bundles and
Lashof, May and Segal treated the case of principal bundles with compact
abelian groups.

In the case of Galois covering spaces, we shall show the following

Theorem (2.4). Let I' be a discrete group. There is a one-to-one corre-
spondence between the following two objects.

(1) equivalence classes of G-equivariant [-bundles over X.

(2) equivalence classes of I'-bundles over Xg.

Theorem (2.5). Let I be a discrete group and X — X a I'-covering space.
There is a one-to-one correspondence between the following two objects.
(1) G-actions on X which covers the G-action on X.



(2)_isomorphism classes of covering spaces over Xg whose restriction to X
is X — X.

Remark. In Theorem (2.5), G-actions on X need not to commute with
I'-action and covering spaces over X need not be Galois I'-covering spaces.

Theorem (2.3) and Theorem (2.4) imply the theorem for compact abelian
structure groups (Theorem in Introduction).

3 Proof of Theorem (2.3).

If P — X is a G-equivariant S'-bundle, we get P; — Xs by the Borel
construction. We will show the following

Claim (3.1). If P — X extends to an S!-bundle P — Xg, then the
G-action on X lifts to P.

We assume that X is a manifold and P — X is a smooth principal S!-
bundle. In fact, we can get an exact sequence (3.3) for P — X in topological
category (due to Jean Lannes), and the rest of the proof continues in the same
way. Let B(P) be the set of gauge equivalence classes of all connections on
P. Then G acts on B(P). We shall show the following lemma in §5.

Lemma (3.2). If P — X extends to an S'-bundle P — Xg, then the
fixed point set B(P)C is not empty.

Fixing a connection V which represents a fixed point in B(P)%, we get
the following extension of G by S!

(3.3) 0-S8'-G—-G—1,

where G consists of all bundle automorphisms of P which covers some g € G
action on X and preserve the connection V. The exact sequence (3.3) is split
exact if and only if the G-action lifts to P as bundle automorphisms.



By Theorem (2.1), it is sufficient to show Claim (3.1) that the correspond-
ing fibration ~
BS' — BG — BG

has a cross section. Since S! is a subgroup of G(P) consisting of gauge trans-
formations which preserve the connection V, BS! is considered as EG(P)/S?,
namely we have a universal S!-fibration

St — Ma.pSJ(P, ESY) — Mapsl(P,ESl)/Sl.

G acts on P from the left, hence G acts on Ma.pSI P, ES") from the right.
E

This action decends to a G-action on MapS’ (P,ES')/S'. Thus BG is rep-
resented by

{EG x Map®' (P, ES")}/G = {EG x (Map®' (P, ES")/S")}/G.

Since P — X is an S'-bundle, we have a classifying mapping

P %5 ES?
! !
X; % BS!

P defines a cross section of
BG = {EG x (Map®' (P, ES")/S5"}/G — BG.

Hence Theorem (2.1) yields the conclusion.

Next, we proceed to the one-to-one correspondence . If P and P’ are dis-
tinct S'-bundles over Xg, then their classifying mappings are not homotopic.
Hence again the conclusion follows from Theorem (2.1).

4 Proof of Theorem (2.4) and (2.5).

Proof of Theorem (2.4). For a G-equivariant I'-bundle, we get a [-bundle
Y over X by the Borel construction. We shall show the converse.



Let A be the center of the opposite group I'°? of T, then A is identified
with the gauge transformation group of the I-bundle X — X. Thus we get
the following exact sequence

1-A—=G=G—1,

where G is the group consisting of all bundle automorphisms of X - X
which cover some g € G action on X. By Fact (2.2), BA is represented
by Mapg(X, BT') and G acts on Mapg(X, BT') from the right through the
G-action on X from the left. Thus we get BG = {EG x Mapg(X, BI')}/G.

The classifying mapping of ¥ — X defines a cross section of BG — BG.
The rest of the proof continues as in the one of Theorem (2.3).

Proof of Theorem (2.5). If the G-action lifts to X, which may not
commute with covering transformations, we get a covering space Y over Xg,
which may not be a I'-Galois covering space, by the Borel construction. We
shall show the converse.

As in the proof of Theorem (2.4), there is the following exact sequence

1—>I‘°p—>6'—vG—>l,

where @ is the group consisting of all self mappings of X which cover some
g € G action on X and I'°P is the group of covering transformations, the
multiplication of which is composition of mappings.

Claim (4.1). BT*P is represented by Mapz(X, BT')/(I'°P/A).

First of all, we define the (I°P/A)-action on Map z(X, BT'). By the Milnor
construction, we can consider ET as the infinite join of I' and BT as the
quotient of ET by the diagonal I'-action from the right. In this model, we
have a natural homomorphsim B : Aut(I') — Homeo(BT'). More precisely,
for a homomorphism « : I' — I, we have the following commutative diagram

ET % EI
l !
BT 28 Br

and
Ea(z-v)= Ea(z)-a(y) for y€T, z € ET.
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Ad(~) denotes the inner automorphism of I' by v, and we get the following
commutative diagram

ET B4 pr BQ pr
1 Lol
Br 24 pr 4 pr

where R(y) is the v-action from the right.

Remark. R :T — T'°Pis an anti-isomorphism.

Subclaim (4.2). () := R(y) o EAd(7) is [-equivariant.
Proof.

Y(7)(R(7')z) = R(y)o EAd(v)o R(y')(z)
= R(y)o R(Ad(7)7') o EAd(7)(z)
= R(v') o R(v) 0o EAd(v)(z)
R(7) o ¢(7)(z). O

Thus we have the I'-action on ET from the left, hence the I**P-action on ET
from the right, which induces the ['*P-action on Map® (X, ET) from the right.

Subclaim (4.3). A acts on Mapg(X, BT) trivially.
Proof. 1t is obvious, since A is the center of ['*P. O

Proof of Claim (4.1).  Since I'°" acts on Map(X, ET) freely, we get a

universal I'P-bundle

[°® — Map" (X, ET') — Mapg(X, BT)/(T°P/A). O

We proceed to the definition of the G-action on Mapg(X, BT)/(I°P/A).
G acts on TP by conjugation, which we denote p: G — Aut(I'°P). Through
conjugation by the anti-isomorphism R : [' — [°P; we also have a homo-
morphsim p* : @ — Aut(l'). We define the G-action from the right as
follows:



X 4 Er
! !
X 5 BTr
to
X 4 X 4 gr P8 pr
! ! 1 !
X % x 4 pr 274 pr.

Claim (4.4). Ep*(¢~ Yo fo§:X — ET is I-equivariant.

Proof. Since G acts on I'°P by conjugation, we have

g0 R(7)(z) = R(p*(§)7) 0 §(z) for z € X.

Thus we get
Ep*(§7) o fodoR(M(z) = Ep(g7")ofoR(p"(§)7)0 (=)
= Ep"(§T) o R(p"(§))0 fog(z)
= R(p"(§7) 0 p"(g)() 0 Ep*(§7") 0 fo §(z)
R(y)o Ep*(§7") o fog(z). O

Claim (4.5). The above G-action is an extension of the principal [*P-action
on Map® (X, ET).

Proof. It is easy to see that
P(R(Y)R(E) = R(v' - £+ 7)
and by the definition
P (§)(€) = R™ 0 p(g) o R(¢).
Therefore we get Ad(y) = p*(R(y7!)), hence
Ep*(R(v)™")o foR(y) = EAd(7)o foR()

= EAd(y)oR(z)o f
i

= R(7)oEAd(y)o f .0



Since the diagonal action of G on EG x Map®(X, ET) is free, we have a
universal G-bundle

G — EG x Map" (X, ET) — {EG x Map" (X, ET)}/G.

Since { EG x Map™ (X, EI‘)}/G = {EG x Mapg(X, BT)/(T°?/A)}/G, we get
a fiber bundle

Mapg(X, BL)/(T°®/A) — {EG x Mapg(X, B)/(I"*/A)}/G — BG
! ] I
BTop — BG — BG.

Although Y — X is not a Galois I'-covering space, we can get a “family of
classifying mappings” to a certain BI-bundle over BG.

F(I') — BG denotes the bundle of covering transformation groups of a
family of covering spaces Y — X parametrized by BG, namely F(T')|, is
the covering transformation group of Y|, — X¢|, for p € BG. Then we have
a family of universal bundles F(ET) — F(Bl')(— BG). By the standard
obstruction theoretical argument, we get a family of classifying mappings

Y — F(ET)
! l
X¢ — F(BI)
l !
BG = BG.

Remark that the ambiguity of identification between the covering transfor-
mation group of X — X and I’ is inner automorphisms of I'. Thus the family
of classifying mappings determines a cross section of

BG = {EG x Mapg(X, BT)/(T°?/A)}G — BG.

The rest of the proof continues in a similar way as in Theorem (2.3).

Remark. A cross section of BG — BG is also given in the following way.
X — BG is a fiber bundle associated to the universal bundle EG — BG and
the principal bundle associated to Y — BG is a G bundle. The classifying
mapping of this G-bundle gives a cross section of BG — BG. This argument
also works for proof of Theorem (2.3) and (2.4).



5 Proof of Lemma (3.2).

Let w be a G-invariant 2-form representing the real first Chern class ¢,(P)r.
According to the de Rham model of the equivariant cohomology [A-B IIj,
a G-invariant closed 2-form n on X extends to a closed 2-form on Xg if
and only if i(g)y € N'(X;g")C is exact, where i(g) is the interior product
by fundamental vector fields of the G-action, i.e. there exists a g*-valued
G-equivariant function p : X — g* such that du + i(g)p = 0. Let 8 be a
connection on EG — BG and {Q its curvature form. Using the connection
8, we can extend 7 to a vertical 2-form 7ng. p extends to pg : EG xg X —
EG x4+ g Then it is easy to see that 7 := ng+ < pg,§2 > is a closed
2-form on Xg. Since H}(BG;R) — H*(Xg;R) — HX(X;R)% is an exact
sequence, the real cohomology class ¢;(P)R is represented by &' = & + ¢,
where £ is a horizontal 2-form commg from BG. We fix a connection ¥ on
P — X whose curvature is &’. Let V be the restriction of ¥V to X. We
shall show that the gauge equivalence class of V is a G-fixed point in B(P).

Connections V and V' are gauge equivalent if and only if the correspond-
ing holonomies for all loops are same. Let v be a loop in X. For each g € G,
there 1s a loop [ in BG whose holonomy with respect to 4 is g. The parallel
translation of « along [ defines a cylinder C in Xs whose boundaries are «
and g -+ in X. Then we get

hol(g-7) - hol(y)™ = exp 21ri]ctb'.

Since &' is a sum of a vertical 2-form and horizontal 2-forms, the integration
on the right hand side vanishes. Hence ¢*V and V are gauge equivalent.

6 Proof of Theorem (2.1).

It is obvious that the condition (i) implies the condition (ii). We will show
the converse and the one-to-one correspondence.

(1). The case that H is a discrete group.
If there is a cross section of BH — BG — BG, we have a splitting as H-
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spaces of BH — QBG' — QBG, which is homotopically equivalent to the
covering group H — G — G. Hence we have a homotopy left inverse s of
G — @G, which means that G consists of copies of G as a topological space.
Since s is a splitting as H-spaces, the image of s is a subgroup of G. Thus
we get a splitting. The one-to-one correspondence is clear from the above
argument.

(2). The case that H is S?.

First of all, we assume that G is connected. The following simplified argnu-
ment is due to Jean Lannes. ~

Note that BS! is a H-space and BS! — BG — BG@ is a principal BS!-
bundle. Existence of a cross section of this bundle is equivalent to existence
of a splitting BG — BS'. By applying the loop functor, we get a continuous
mapping G — S! which is a homotopic left inverse of the inclusion S! — G.
The conclusion follows from the following

Lemma (6.1). Let K be a compact connected Lie group. Then we have
roMap(K, 5') = Hom,(K, S'),

where Hom (K, S') = {f : K — S| continuous homomorphism }.

Proof. Since S' is a K(Z, 1) space, moMap (K, S?) is isomorphic to H( K, Z)
= Hom(m, K;Z). It is enough to show that Hom(m K;Z) = Hom.(K,S").
For any compact Lie group K, there is a finite covering group K which is
isomorphic to K, x T', where K, is a 1-connected compact semi-simple Lie
group and T" is a toral group. Let I" be the kernel of K — K. Then we have
the following commutative diagram.

0 — Hom(K,S") — Hom(K,S') — Hom(T,S?)
| l !
0 — Hom(mK,Z) — Hom(mK,Z) — Ext}(I',Z)

where the first two column homomorphisms are induced homomorphisms
between fundamental groups, the last one is an isomorphism by definition,
and the lower exact sequence is a consequence of the exact sequence 0 —
mK — m K - T — 0. Since Hom.(K,, S!) is a singleton consisting of the
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trivial homomorphism, the middle column homomorphism is an isomorphism.
Therefore we get Hom (K, S') & Hom(m K,Z). O

Since the set of homotopy classes of cross sections of BG — BG is isomor-
phic to moMap(BG, BS'), Lemma (6.1) yields the one-to-one correspondence.
Next we prove Theorem (2.1) in case that G is a finite group. Let n be the
order of G and G' = {z € G|z™ = 1}. Then we have a principal $!-bundle
§' — BG — BG. Pulling back this $!-bundle by the section s : BG — BG,
we get a principal S'-bundle over BG and denote it E — BG. Since G is a
finite group, H?(BG; Z) is a finite module. Hence there is an positive integer
k such that k-¢;(E) = 0, i.e. the k-th tensor product E®* of the S!-bundle E
is trivial. It is easy to see that the k-th tensor product of S$' - BG — BG is
isomorphic to §' — BG*® — BG, where G® = {z € Glz™ = 1}. Therefore
the pull back of S* — BG® — B@ by the section s : BG — BG is trivial,
which yields that there is a homotopic left inverse of BG® — BG. G® is
a central extension of G by Z/nkZ and we get a splitting homomorphism
G — G®. (In fact, its image is contained in G.) The composition of this
homomorphism with the inclusion mapping G*) — G is a desired splitting
homomorphism G — G. The one-to-one correspondence 18 reduced to the
case that H is a finite group. O

We proceed to the case of a general compact Lie group G. Let Go and
Go denote the identity component of G and G respectively and T' = G/Gp.
We have the following commutative diagram.

0 = S = Gy = Go —» 1

oLl
0 - ' - G - G =1
! !
r = T
Pulling back the section s : BG — BG by the bundle mapping
BS'! = BS!
L 1
BGO — BG
l |
BG() s BG 3
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we get a section of BGy — BGy. Hence there is a splitting homomorphism
¢:Go— Goof 0 > S = Gy — Gy — 1. We shall show the following

lemma later.
Lemma (6.2). Im(¢) is a normal subgroup of G.
Let T be G/Im(¢). Then we can show the following

Claim (6.3). BS' — BT — BT admits a section, hence 0 — S! — [ —
' — 1 is sphit exact.

Proof. We have the following diagram

BG, - BG - BT

| ITs !
BG, — BG — BI.

Since BGy is 1-connected, we have a section ¢ : B['® — BG of BG — BT
over the 2-skeleton BT'(3). _Composing s ot with the mapping BG — BT,
we have a section s’ of BI' — BI. Since the restriction of s to BG is
homotopic to the mapping BG, — BGO induced by the homomorphlsrn @
and the composition of ¢ with Gy — G — T is trivial, s’ extends over the

3-skeleton. Meanwhile 7;(BS') vanishes for k > 3, therefore s' extends over
Br. O

Recall the following diagram

éo - é -+ f‘
l l !
Go - G = T.

The pull back of the splitting homomorphism ' — I by the homomorphism
G — T gives a splitting homomorphism G — G. O

Proof of Lemma (6.2). ¢ corresponds to a section sg of BG, — BG, which
is the restriction of s : BG — BG.
BG = {ET x BG}/T
! l
BG = {ET x BG,}/T
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In the above diagram, I action on BG, and BGy is the action of ' = G / Go =
G/Go on BG, = (EG)/Go and BGo = (EG)/Go, and 9 and 1 denote these
actions respectively. Since sq is the restriction of s, s is equivariant under 1,1)
and v, i.e. 5o is invariant under I action on Map(BGo, BG,). On the other
hand, G’ and G act on G and G by conjugation, which induces the action
on BG, and BG, (see §4), and @ and ¢ denote these actions respectively.
Then the following two commutative diagrams

BG, "9 BG,
l l
BG, 9 BG,

and -

BG, %) BG,

! !
-1

BG, %7 BG,
are homotopically equivalent if § and g are lifts of 4 with respect to homomor-
phisms G — T'and G — T respectively. Hence the one-to-one correspondence
statement for the connected Lie group Gy yields that ¢ = Ad(§)odo Ad(g)™*
Hence Im(#) is a normal subgroup of G. The one-to-one correspondence fol-
lows from the one for Gy and the one for I'. O
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