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Preface

This lS Part I of the lecture notes: Introductjon to Affjne
Differential Geometry. It is fntended as abrief lntroduct1on to

classical affine differential geometry, namely, geometry of

nondegenerate hypersurfaces in an affine space for wh1ch the

fundamental group (;n the sense of the Erlangen Program of F.

Klein) is the group of equiaffine (= special affine)

transformations.

When I became interested in the subject, my first aim was to

understand just what lt was basically all about. In these notes, I

present my way of understanding this geometry from the point of

view prevalent in differential geometry today. Though concise, I
hope they will give the reader a self-contained comprehensible
introduction. It is my intention to continue to Part II and possibly
Part III in wh1ch I would l1ke to present more results within the
framework of class1cal affine different1al geometry as well as
developments made 1n a more general approach to the geometry of

afflne immerslons.

I started the study of the sUbject at Max-Planck-Institut für

Mathematik, Bonn, 1n 1982, and continued the subsequent research

in collaborat10n wlth Ulrich Plnkall, currently at Technische

Universltät Ber11n,through my several vislts to Bonn and Berlin

dur1ng the last several years. These notes, Part I, are based on
my lectures and discussions at MPI, TU Berlin, Brown University
and the University of Granada.

Bonn

July 4, 1988 Katsumi Nomizu
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1. Equ1aff1ne structure on a nondegenerate hypersurface

Let f: Mn ---7 Rn+ 1 be a hypersurface immersed in the affine

space Rn+l. To develop the equiaffine theory for Mn we assume

that Rn+l is prov1ded with an equlafflne structure, that is, it has a

fixed volume element w Wh1Ch lS parallel relative to the usual flat

affine connection 0 in Rn+ 1.

We are interested in introduc1ng 1n Mn an equiaffine structure

('V,8), where 'V ls a tors1on-free affine connection and 8 is a

volume element such that 'V8 = O. We shall henceforth assume

that Rn+l 1s oriented so that w > 0 and that Mn 1s also oriented.

We first develop a local theory. We choose an arbitrary

t' r ansver s a 1 v ector f i e1d ~ i n a ne19 hbor h0 0 d U i n Mn s 0 t hat weh ave

(1.1) Tf(x)(M)= f*(Tx(M))+ Span(~x) ateach xEU

in such a way that the or1entat1on of Mn followed by ~ coinc1des with

the orientatlon of Rn+ 1. Let X and Y be vector fields 1n U. We may

deeompose DXf*(Y) aecording to (1,1) and wrHe

(1.2) DXf*(Y) = f*(Tx(M)) + h(X,Y)~ at each point xE U.

Just as in the classieal theory of hypersurfaees 1n Eue11dean space,

we can verify that 'V ls a torsion-free affine connection in U, h is a

tensor fjeld wh1eh defines asymmetrie bil1near form on each

tangent space Tx( M).

We call 'V the jnduced affjne conneet1on and h the affine

fundamental form eorresponding to~.

We also deeompose DX~ as follows:

( 1 . 3) DX ~ = - f *(SX) + T ( X ) ~ ,

where S is a tensor field of type (1,1), called the shape operator,

and T 1s a ]-form, called the transversal connectjon form.
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Now we define the induced volume element S in U by setting

(1.4) S(X" ... ,X n ) = w(Xl"" ,Xn'~)

and hope to achieve the property 9 e = 0. We have

Lemma '.1. 9XS = T(X)S for eyery X ETX(M).

proof. We have

(9XS)(X 1,X2"" ,X n )

= X S( Xl ,X 2 , ... ,Xn) - S(VXX, ,X 2 , .•. ,Xn) - ....

-S(X" ... ,Xn-l,vXXn )

=Xw( X"X2, .. ·,Xn,~) - w(VXX1,X2, ... ,Xn,~) - ...

- W(Xl,···,Xn-l,9xXn'~)

= X w ( X, , X2' . . . ,X n , ~) - w ( DXXl' X2 ' . . . , Xn, ~) - . . .

- w (X, , ••• , Xn - 1, DxX n , ~)

= (DXw) (X, ,X 2 ' ,X n, ~) + W (X, ,X2 ' ... ,X n, DX ~ )

= S(X)S(X 1,X2 , ,Xn),

where we have used Dw = ° and DXw = T(X)W. 0

Thus the property T = 0, that 1s, DX~ lS tangent to Mn, 1s

crucial. We shall see that under a certain nondegeneracy condition

on Mn we may choose ~ w1th this property and, 1ndeed, wlth an

additional property, WhlCh w1ll make lts choice un1que. For th1s

purpose, we have

Lemma 1.2. If we cboose anotber transversal vector fjeld

1:=Z+Cf~, where Cf>O,

tbeo for tbe corresDondjnq ob1ects we bave

(1) h=Cfh

(11) VXY = ~XY + h(X,Y)Z

( i 11) T = T - d 1n Cf - h ( . , Z ) /Cf ,

wbere h(. ,Z) ll.....a l-focm whose yaJue 00 X i.a h(X,Z).
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proof. Straightforward verificatlon. 0

It follows from (0 that h lS determined up to a scalar function <f

> O. In partlcular, whether h ls degenerate or nondegenerate

depends only on Mn and not on the ch01ce of ~. If h i8

nondegenerate at every point, we say that Mn is oondeoenerate.

Lemma 1.3 . .ui Mn be ooodeoenerate. II ~ 1s a transversal

yector fjeld and ~ an arbjtrary scalar functjoo > 0, theo there js a

yector fjeld 2 00 MO such that for ~ = Z + <p ~ the transversal

coooectjon form T ~ O.

Proof. Since h is nondegeoerate, we can find Z io each Tx(M)

such that

h(X,Z) = - <pT(X) - (d <p)(X)

for every XE Tx(M). By (11i) of Lemma 1.2, we have T= O. 0

Remark. If two transversal yector fjelds ~.a.D..!11: are such that

T = T.alli19 = S,~ ~ ="f. In faet, 9 = S implies <f = 1. (lii) of

Lemma 1.2 implies that Z = O.

In order to determine ~ uniquely for nODdegenerate Mn, we

eonsider ODe more eonditlon. Let v be the volume element

assoeiated to the metrie h: If {Xl" .. ,X o} is ao oriented

orthonormal bas1s 1n Tx(M) for the nondegenerate metrie h, theo

v(X 1,···,X n )=1.

The condition we now wish to lmpose ls that two volume elements

9 and v determined by a ehoice of ~ eoineide. To study this

eond1tioD, we deflne a funet10n H~ as follows.

Choase a basis {Xl'." ,X n } sueh that 9(Xl" .. ,X n ) = 1 and set

h ij = h(Xi,Xj )

and

H~ = determinant of the matrix [hij].

It 1S easlly verifled that H~ is independent of the cholce of
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{Xl"" ,X n } subject to 8(X 1, ... ,X n ) = 1.

Lemma 1.4. 8 = v jf and ooly jf the absolute yalue of H~ js egual

iQ. 1•

pro 0 f. eh 00 s e {X 1' • • • ,X n} as ab ov e . Suppos e Xl = La j 1 Xj ,

l.i i .in, are orthonormal relat1ve to h, say, h (Xl' Xi) = €i oij'

whereci=-l for l.ii.s..P, €i=- 1 forp+l.ij.s..n.

Then we have

t - 1/2
AHA = [~> 0"] so that det A = I Htl (assumlng det A > 0)., 1) y.

From

1 = v (Xl' ... , X n ) = (det A) v (X 1 ' ... ,X o )

we get

1/2
v (X 1' ••• ,X n ) = 1I (det A) = I H~ I .

Thus v(X 1 , ... ,X n )= 1, thatls, v:;::;8 1faodonly1f IH~I= 1. 0

Lemma t. S.Por a change of traosyersal yector fjelds -r:;::; z + q>~

as 10 Lemma 2, write H = H~ , H:;::; H-r. ~

(1) H = HI er o+2

(i1) h/IHjl/(O+2) = h/iHl 1/(0+2)

proof. We know h = er 11. Choose {Xl"" ,X o} with 8(Xl,··' ,X n)

= 1 so that H = det [h(X1,Xj )]. We have

8( Xl' ... ,X n) :;::; W (X 1 ' ••• , Xn' r) = er 8 (X 1 ' ••• ,X n) .

Write Xl:;::; Xlier, X2 = X
2

, ... , Xn = Xn · Since eCx1,···, Xn ) = 1,

we have

H:;::; det [11( Xi ' Xj )] = er - n det [h ( Xl ' Xj )] = er - ( 0 +2) H,

wh1chproves(i). (11) followsfrom h=erh aod(i). 0

From (li) in Lemma 1.5 we have a unfquely def1ned form n=

1/(0+2)
h/]HI , which 1s called the affjoe metrjc .
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We now have

Theorem 1.1 . .l...tl Mn be a nondegenerate hyoersurfaee. Then

there js a unjgue transversal veetor fjeld ~ sueh that

(1) the transversal eonneetjon form js 0;

(i1) the jndueed volume element eojne1des with the yolume

element for the affine fundamental form.

We may also replaee (i1) by

(li a) the affjne fundamental form eojnejdes wjth the affjne

metrje.

or

( 1i b) t he 1ndu eed v 01 um e e1e m eot e0 j 0 ej des w jt h t he y 01 um e

element of the affjne metrie.

proof. Start with any transversal veetor field ~ and eompute H =

H~.

With ~ = IHI 1/ (n+2) let ~=<f ~ + Z. By Lemma 1.3 we ean ehoose

Z so that the transversal eonneetlon form for -r 1S O. By Lemma

1.5, (i), we have H= H/IHI so that IHl = 1, whieh means that the

indueed volume element e eOlneldes with the volume element V for

the fundamental form h for I.
Sy lemma 1.5, (li), we see that heoineides with the affine

metrie h. Henee V eOlneides w1th the volume element V for the

affine metrie.

We have shown the existenee of a transversal veetor f1eld whieh

satlsfles (1), (11), (ii a), and (i1 b).

To show the un1queness part of the theorem, let ~ be a

transversal veetor field satisfy1ng 1) and i1). Then,by Lemma 1.4,

IH~I = 1. Thus h = hand e = v = V . Thus any two transversal

veetor flelds satlsfYlng ;i) must have the same 1ndueed volume

elements. If they both satlsfy (1), they must eolnelde as we know

from the Remark following Lemma 1.3.
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The uniqueness of a transversal vector fie1d satisfying (i) and

(11a), or (i) and (1ib), is also obvious from what we said 1n the

above. 0

The unique transversal vector fie1d 1n Theorem 1.1 is called the

affjne normal. For this unique choice, we have the induced

connection 9 and the induced volume element e (equal to the

vo1ume element V of the affine metrie h), whieh together defines a

natural equlaffine strueture on Mn. The affine fundamental form 1s

the same as the affine metrle. The approach 1n this seetion was

sketched in [N].

2.Fundamenta1 equations

Let Mn be a nondegenerate hypersurfaee immersed 1n Rn+l and

let ~ be the affine normal (whose un1que existence we have

estab11shed in Theorem 1.1). Für this ehoice, we have the induced

eonnection 9, the affine fundamental form h, whieh eoinc1des with

the affine metrie 'h, the shape operator S, the indueed volume

element e whieh eoincides with the volume element of the affine

I

We have the fo1lowlng set of fundamental equatlons for these

objeets:

Eauatjoo of Gauss: The eurvature tensor R of 9 is glven by

(2 . 1 ) R(X, Y) Z = h (Y , Z) SX - h(X, Z ) SY .

Eauatjon of Codazz; for h:

(2.2) (9Xh)(Y,Z) = (9yh)(X,Z).

Thus we get a symmetric tr1l1near form C(X,Y,Z) =

('VXh)(Y,Z), whieh is called the eub1c form for Mn.

EguatjoD of Codazzj for S:

(2.3) (9XS)(Y) = (9y S)(X)

Eguat100 of Rjccj:
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We make some observations.

1. 11 R = 0, .th..e..n S = 0. The converse is obvious.

In fact, let X ~ 0. If h(X,X) ~ 0, we may assume I h(X,X) I = 1

and take Z such that I h(Z,Z) 1=1 and h(X,Z) = O. Now take Y = Z

in the equation of Gauss:

o = h(Z,Z)SX - h(X,Z)SY = h(Z,Z)SX thus sx = O.

If h(X,X) = 0, take Y such that h(X, Y) = 1 and h(Y, Y) = 0, Setting Z

= X In the equation of Gauss we get h(Y ,X)SX = 0 so SX = 0 again.

2. More generally, S 18 determined uniquely by hand R. This

can be proved by simllar arguments as 1 (or assuming there is

another S' satisfying the equat10n of Gauss, apply the argument in

to S - S').

3. If S = 0, the affine normals are parallel to each other in

Rn+ 1. Mn 1s called an jmproper affjne hypersphere.

4. Suppose S = A. I, where A. lS a function and I the 1dentity

transformatl~n. (We say that Mn is affine umbi11cal) Then Codazzi's

equatlon for S imp11es that A. lS a constant function. If A. ~ 0, Mn ls

called a proper affjne byperspbere. All the lines from the points of

Mn in tbe dlrection of ~ meet at one point, the center of the proper

affine bypersphere.

5. The RlcCl tensor for 9 lS given by

Ri c (Y , Z) = (t ra ceS) h(Y , Z) - h ( SY , Z) .

If Ric = 0, this equatlon implies S =°and, consequentlY,R = 0 by 1.

H = trace S/n ls called the affine mean curyature. K = det S is

called the affine (Gauss-Kronecker) curyature.

6. Let dirn M 2 3. Then the equation of Gauss and the equatlon of

Codazzi for h imply the equatlon of Codazzl for S. To prove thlS,

take 9W of both sides of the equatlon of Gauss and write down the
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second Bianchi identlty:

('VWR)(X,Y) + ('VxR)(Y,W) + ('VyR)(W,X) == O.

After some cancellatlon by using Codazzfs equat10n for h we get

h(Z,X){('VyS)(W) - ('VWS)(Y)}

+ h(Z,Y){('VWS)X - ('VXS)W)

+ h(Z,W){(1;7XS)Y - ('VyS)X) = O.

Now g1ven X and Y, choose Z such that h(X,Z) = h(Y,Z) = 0 and

h(Z,Z) =±1 and let W = Z in the above equation. We get ('VXS)(Y)

- ('VyS)(X) = o.

3 Graph of a funct10n

Let x n+ 1 = F(x 1, ••• ,xn ) be a funct10n on a domain G in Rn and

consider the graph immersion

(3.1) f:(x 1 , ... ,xn ) EG ~ (xl, ... ,xn , F(x', ... ,xn )) ERn+'.

We want to find the affine normal for this hypersurface under the

c ondition

(3.2) det[Fij]~O,

wh e re F1j == 02 F1axi 0xj •

We start with an obvious choice of a transversal field ~ ==

(0, ... ,0,1). Wehave

f*(01axj ) = (0, ... , 1 , ... , Fj ) ,

where 1 appears as the j-th component and Fj = oF/axj . Thus

Do1oxi f*(oloxj ) = F 1j ~,

that 1S,

( 3 . 3 ) 'V 01 ox i (0 I oxj ) = °
Also,

and

DoIOXi~=O so 'r=O.

We see that f defines a nondegenerate hypersurface if and only if

det [F ij ] ~ O. We now find H = H~ as follows. Since we have
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8(%x', ... ,%xn ) = w(f*(%x 1 ), ... ,f*(%xn),~) = 1,

we get

hij = h ( 0/0 x1, 0/0 Xj ) = Fi j

sothat

(3.4) H = det (h1j) i. e. Hesslan of F.

We now want to find a vector field Z such that

o lHI 1/(n+Z)/oxi + h(X,Z) = ° for all vector fields X.

Wr1te Z =L: Zi(%xj ) and take X = %xi . Then

oIHI' / ( n+ 2 ) /0 xi + L: h1j Zj = O.

Let [Fij] be the inverse matrix of [Fij]. Then we get

Zk = - L: Fk1 (0 IHI 1/(n+2)/oxi )

The affine normalls then

(3.5) -r = - Lk,i (Fki 0 IH]1/(n+2))/oxi )(0, ... , 1, ... ,F k )

+ IHI'/(n+2) (0, ... ,0,1).

Example. For the graph of x n+ 1 = L: aU xixj , where [aU] is a

constant matrix with nonzero determlnant H, we have l' =
IHI-Cn+z)~. Thus the shape operator S is zero and the lnduced

connection'V 15 flat.

Rem a r k . It 15 a t he0 rem 0 f Jö r gen s [J] t hat iLF ( x ' , . . . ,xn) iL.Q

d1fferentjabJe functjon on the whole Rn such that det [F ij ] li...a

positjye constant. then F js a quadratjc functjon. This theorem

has 1nteresting appl1catlons in the theory of surfaces (cf. [Sp]

p. 165, p. 390).

There is a genera11zatlon of this result from the point ef view of

affine differential geometry by Calabi in [Ca 1J. See also [Sp] for

ether appllcations of Jörgens' theorem.
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4. Cub1c form and apolar1ty

Let M be a nondegenerate hypersurfaee;n Rn+l. We now

eonsider tHe Levi-eivita eonneeUon ~ for the affine metrie hand

study the dlfferenee between ~ and the indueed eonneetlon 'V. We

denote the dlfferenee tensor by K:

(4.1) K(X,Y)='VX Y - ~xY

and also write

(4.2) KX (Y) =: K(X, Y) , KX = fJX - ~X

whieh 1s symmetrie in X and Y.

propositioo 4.1. KX corresponds to -( 1/2) (fJXh) relatjye to

the metrje h, that js,

(4.3) h(KXY'Z) = - (1/2) (fJXh)(Y,Z).

proof. We apply the derivation fJX =: ~X + KX on hand obtain

fJXh = KXh. Thus we have

(4.4) (fJXh)(Y,Z) =: (KXh)(Y,Z) = - h(KXY'Z) - h(Y,KXZ).

Here (fJXh)(Y,Z) 1s symmetrie in X, Y and Z as we know, and

h(KXY'Z) is symmetrie io X and Y. It follows that h(Y,KxZ) 1S

symmetrie 1n X and Y, as well as in X and Z, namely, in X, Y and Z.

Fr 0 m (1) we 9 et

(Y'Xh)(Y,Z) = -2 h(KXY'Z). 0

Co r 011 a r y . T he jod ue ed co n ne ct j 00 fJ a 0 d t heL ev i - Cjy it a

eonneetjon "9 for tbe affine metrie eojoejde wjth eacb ether jf and

onlylfK=O, thatfs. jfandonlytf Y'h=O.

We'll see .1ater that tbis 1s tbe ease if and only 1f M 18 a quadratic

hypersurfaee.

propositioo 4.2. (apolar1ty)

(4.5) traee KX = 0 for eyery tangent yeetor X.

proof. ApplYlng the derivation fJX = ~X + KX to the volume

element 8 = v we obtain

°= fJX8 = (~X + KX ) v = Kxv ,
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wh1eh lmplles traee KX ;;;; O. 0

Remark. In terms of the index notation for tensors, we write h

= (hlj)' (hij);;;; (h ij )-l , and V'h = (hijk)' Then traee KX ;;;; 0 ean be

written as

l'2:1,j h J h1jk ;;;; O.

s. Some more equat10ns

We may further lnvestigate the relationship between the

eurvature tensor R of the indueed eonneetion ~ and the eurvature

tensor R' of the Levi-Civita eonneetion 9 for the affine metrie h.

proposition 5.1.

(5.1) R(X,Y);;;; R'(X,Y) + (~XK)y - (9y K )X + [KX,Ky ]

= R'(X,Y) + (VXK)y - (V'yK)X'

(5.2) R'(X,y)Z = (1/2){h(y,Z)SX - h(X,Z)SY + h(SY,Z)X

- h ( SX , Z ) Y} - [KX ' KY]z
proof. Tc obtain (5.1) we eompute R(X,Y) = [V'X,Vy] - V'[X,Y]

by using (4.2) and note

(9X K )y;;;; 9 XKy - Ky 9 X - K
9X

Y

as well as

(V'XK)y;;;; CvX)y + (KX· K)y = (9X K )y + KX Ky - KKXY .

From (5.2) and the equation of Gauss we have

h ( R(X, Y ) Z , W) ;;;; h ( Y , Z ) h ( SX , W) - h ( X , Z ) h ( SY , W )

+ h«~yK)XZ,W) - h«9XK)yZ,W)

- h([KX,Ky]Z,W).

Alternating this equation in Z and Wand observ;ng that KX and

("'QyK)X = 9y(Kx) - K"9 X are symmetrle operators relative to h,
y

we obtaln

2 h(R(X,Y)Z,W)

= h (y , Z ) h ( SX , W) - h ( X , Z ) h ( SY , W )

+ h(X,W)h(SY,Z) - h(Y,W)h(SX,Z) - 2h([KX ,Ky]Z,W).
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This leads to (5.2). o

Remark. (5.2) 1S the same equation as (13), p. 136 in [Sch].

proposition 5.2. The Rjccj tensor for the affine metrjc h js Qjyen

Rlc (Y,Z) == (1/2){h(Y,Z) trace S + (n-2)h(SY,Z) }

+ trace (KyK Z ),'

( in ne r pro ductext e 0 di 0 g h tot hewhere trace(KyKZ) = h(Ky,KZ)

tensor space of type (1,1)).

proof. Take trace {X -7 R"(X, y)Z } uSlng (5.1) and noting

trace {X -7 h(X,Z)SY} = h(SY,Z)

trace {X -7 h(SX,Z)Y = h(X,SZ)Y} = h(Y,SZ) = h(SY,Z)

trace {X -7 [Ky , Kxl Z} = trace {X --7 KyKXZ} - trace{X -7 KXKyZ}

=: trace (KyKX)'

.b.:L
(5.3)

because

KXKyZ = KK ZX aod trace KK Z = 0 (by apolarlty).
Y Y

Remark. Gur formula (5.3) is the same as (2.22) io Schneider's

paper [Schn] aod formula (3.18) 10 Calabl's paper [Ca 2].

proposition 5.3. Tbe scalar curyature p = L hijR"ij cf tbe affjne

metrjc js gjyeo by

(5.4) P= (0-1) trace S + h(K,K) = 0(0-1)H + J

proof. Immediate from (5.3). o

Remark. H = trace S/n 18 the affioe meao curvature,as already

defioed. J =: h(K,K) ls called the Pick inyarjant. (5.4) is the same

as Sehoelder's formula on 110e 2, p.404 of [Sehn] aod Calabi's

(3.19) 10 [Ca 2]. Also see Blasehke's book [61a], p.158.

Für 0 =2, Rfc(Y,Z) = X h(Y,Z), where X is the curvature for h.
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Thus we get

(5.5) X= 2H+J,

which lS essentlally the same as (14), p.136 of [Sch].

We derlve one more equation.

Let L be the bilinear symmetr1c form deflned by

(5.6) L(X,Z) = trace {Y ~ C~yK)(X,Z)}.

We want to prove

proposition 5.4.

(5.7) L(X,Z) = (n/2){h(X,Z)H - h(SX,Z)} ..

proof. Go back to the equation 1n the proof of Proposition 5.1:

h ( R" (X , Y ) Z , W) = h (Y , Z ) h ( SX , W) - h ( X , Z ) h ( SY , W )

+h«9yK)XZ,W) - h«9X K )y Z ,W)

- h([KX,Ky]Z,W) .

Adding th1s equation and the equation obtained by interchanging Z

and W, we obtain

o = 2h«9yK)XZ,W) - 2h(9XK)yZ,W)

+ h (Y , Z) h (SX ,.W) - h (X, Z) h (SY , W )

+ h (y , W ) h ( SX , Z) - h ( X , W ) h ( SY , Z ) .

El1m1nating W we write

2 (9y K)XZ + h(Y,Z)SX + h(SX,Z)Y

= 2 (~XK)yZ + h(X,Z)SY + h(SY,Z)X.

Now by taking the trace of the mapplng Y ~ the above, we get (5.7)

by virtue of trace{Y ~ (9XK)yZ} = 0, which can be established as

follows.

From KyZ = KZY we have (9X K )yZ = (9XK)ZY .. Hence

traee {Y ~ (9xK)yZ} = traee (~XK)Z

= trace( 9XK)Z - traee K"9
x

Z = X (traee KZ) = 0

uslng apolarity twlce. 0

Remark. (5.7) is the same as (2.24) in [Sehn]. The tensor L is

the same as cij = 'V sTSij in (15), p.136, 1n [Seh]. Observe that
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(5.4) determlnes H unlquely from hand K, and (5.7) determ1nes S.

Thus hand C = 'Vh determine Hand S uniquely.

6. Theorem of Pick and Berwald

We now prove the follow1ng class1cal result [Ber] for a

nondegenerate hypersurface .

Theorem 6. J • .Lti f: Mn ~ Rn+l be a nondegenerate

hypersurface. Assume that the cubjc form is identjcally zero .

.I...b..m f(M n ) lies in a guadratic hypersurface.

proof. We first show that fis umbllical, that is, S = P I, where p

ls a constant. Since 'Vh = 0, we get R(X,Y)· h::; °for any X,Y E

Tx(M), where R(X, Y) acts as a derlvation. Thus h(R(X, Y)Y, Y) = 0.

Using the equation of Gauss we obtaln

h ( Y , Y ) h ( SX , Y) = h ( X, Y ) h ( SY , Y) .

Let {Xl, ... ,X n } be an orthonormal basis for the affine metric in

TX(M): h(XiJXj ) = €;oij , where €1 = ±l. Then

h(Xj,Xj)h(SX1,Xj) = h(X1,Xj)h(SXjXj) = 0

and h(SX 1,Xj )=0 for l~j.

It follows tat there are scalars Pi such that SX i = PiX1 .i 1 .s..n.,
We now show that a11 Pi's are equal. Let i ~ j. Then Xi + ZXj is

non-null relatlve to h. We may normallze it and extend it to an

orthonormal basis in Tx(M). From what we have shown, we have

52 = P 2 for some scalar p. On the other hand, we have S2 =

S(X i + ZXj) = Pi Xi + ZPjXj = P(Xi + 2Xj)' From llnear independence

we 9 et Pi = Pj·

Now we can write 5 = P I on Mn, where P is a scalar functlon.

From Codazzl's equat10n for S, we conclude that p is a constant

functlon.

We now define a tensor field goftype (0,2) along the immersion
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f as follows. For eaeh x E Mn, gx ls a bi11near symmetrie funetlon

on T f (x)(Rn+l) determ1ned by

g(f*X, f*Y) = heX, Y) for X, Y E Tx(M n )

(6.1) g(f*X,~) = 0, where ~ is the affine normal

g(~,~)=p.

We now prove that 9 15 parallel in Rn+l, that i5,

(6.2) X g(U,V) = g(DXU,V) + g(U,DXV)

(6.3)

for any X E Tx(M n ) and for any veetor fields U and V along f.

Conslder three eases:

.c....a..s..e. (l): U = f*Y, V= f*Z, where Y and Z are veetor fields on Mn.

Then

Xg(U,V) = X h(Y,Z) = h(~XY'Z) + h(YJ~XZ)

9 ( DXU , V) = 9 ( DXf* Y , f * Z) = 9 ( f * ( ~ XY ) + h (X, Y ) ~ , f * Z )

= h(~XY'Z)

and

9 (U , DXV) = h (Y , V'xZ)

so (6.2) 1S valid.

Case (11): U = f*(Y), V =~. Then Xg(U,V) = 0,

g(DxU,~) = g(f*(V'XY) + heX, Y)~,~) = heX, Y)p

and

9 ( U , DX ~) = 9 ( U, - f * ( sx ) ) = - 9 ( f * (Y ) , f * (pX ») = - p h (Y , X )

so that (6.2) is valid.

Case (111): U = V = ~. We have

X 9 ( U, V) = X P = 0 an d 9 ( DX ~ , ~) = 9 ( - f *(SX ) , ~) = O.

Next we define al-form>... along f by setting

>...(f*X) = g(f*X,f(x)) for XE Tx(M n )

A.(~) = g(~,f(x)) + 1,

where fex) denotes the position veetor of the image point fex).

Again we show that >... is parallel in Rn+l. If Y 1S a veetor f1eld on
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Mn, then

X (A ( f * Y » =X (g ( f * Y , f ( x) )

= g(Dx(f*Y), f(x» + g( f*Y, f*X)

= g(f*('VXY),f(x» + h(X,Y)g(~,f(x» +h(X,Y)

A( DX ( f * Y » = >.. ( f * ( ry XY » + h ( X , Y ) ~ )

=g(f*(VXY),f(x» + h(X,Y){g(~,f(x» + 1}

so

(DX>..)(f*Y) = X(>..(f*Y,f(x» - >..(Dx(f*Y» = O.

Similarly,

(DXA)(~) =X(>..(~» - >..(DX~) =X(g(~,f(x» + 1) - >..(-f*(SX»

= g(Dx~,f(x» + g(~,f*X) + g(f*(SX),f(x»

= - 9 (pX , f ( x» + g (pf* (X ) , f ( x» = O.

Thus>... 1s parallel in ~n+l. Th1s means that >... 1s glven by a

covector a (in the dual space Rn+ 1 of the vector space Rn+l) , that

is, >..(U) = <U,a> for any vector in Rn+1. We may find an affine

function lf on Rn+ 1 such that d7" = >... We may also assume that

7"(f(xO» = ~(f(xO» at a point Xo in Mn, where 'f is defined by

~(p) = g(f(p),f(p»/2, pE Rn+1.

Now

(d ~)(X) = X g(f(x),f(x»/2 = g(f*X,f(x»::; >..(f*X) = (dy.)(f*X)

s 0 d~ = d lf • He nc e ~ 0 f = lf 0 fon Mn. T his m eans t hat f ( Mn) 1i e s

in a quadratic hypersurface.

Remark 1. For any affine coordinate system we may write

~ ( u)::; l: . . a.. u i uj 7" ( u) = 2 l: a· ui + b1, J 1J' l'
so 'f = 7" 1s an equation for a quadratic hypersurface.

Remark 2. Theorem 6.1 is genera11zed in [NP 2].

o
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7. Conormal immersions

Let f: M ---? Rn+l be a nondegenerate hypersurface with affine

normal ~. We denote by Rn+ 1 the vector space dual to the vector

space Rn+ 1 underlying the affine space Rn+l. We define a mapping

v: M ---? Rn+ 1 - {o} as follows.

For each xE M, V x lS an element of Rn+ 1 naturally identlfied

wlth an element in the dual space cf Tx(Rn+l) such that

(7.1) v x ( f*Y) = 0 for Y E Tx(M) and V x (~x) = 1.

We call v the affjne conormal. Denoting by D the usual flat affine

connection 10 Rn+ 1, we have

(7.2) (Dyv)(~) = 0 and (Dyv)(f*X) = - h(Y,X)

fo r all x, Y E Tx (M ) •

Indeed, from v(~) = 1 we get

o = Y( v ( ~ )) = (Dyv) ( ~) + v ( Dy ~) = (Dyv) ( ~) + v ( - f * ( Sy ) )

= (Dyv)(~) .

Also, from v(f*(X)) = 0 , where X is any vector field, we get

°= y (v ( f * (X)) = (Dyv) ( f * (X)) + v ( Dy f * (X) )

= (Dyv)(f*(X)) + v(f*(~yX) + h(Y,X)~)

= (Dyv) ( f *(X)) + h( Y , X ) .

Lemma. The conormal mapojng v js an immersjon of M 1.o..tQ. Rn+ 1

- {O}.

proof. Note that v*(y) = Dy(v) for any Y ETx(M). Thus if v*(Y)

=0, thenby(7.2) wehave h(y,X)=OforeveryxETx(M). S10ceh

is nondegeoerate, we get Y = O. 0

F 0 r ea C,h xE M , v xis t r a0sv e r salt 0 t he hy per s u r fa Ce v ( M ) ,

because vx(~x) = 1, but v*(X) = DXv (w1th XE Tx(M)) satisfles

DX(v)(~) = O. Thus we now consider v: M ---? Rn+ 1 - {o} a central

hypersurface by taking v as a transversal vector fjeld:
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T
f
(X)(Rn+1) = v*(Tx(M)) + {v x }' We write

(7.3) DX(v*(Y)) = v*(V'*xY) + h*(X,Y) v,

where V'* is the induced affine connecUon on M by v and h* is the

afflne fundamental form for v. (Here h* 1s al10wed to be

degenerate. )

propositjon 7.1. We haye

( 7 . 4 ) h*(X, Y) = h ( SX , Y) fo r all X, Y E Tx( M ) .

*(7.5) X h(Y, Z) = h( V'xY, Z) + h(Y, V' XZ) for any yector fjelds Y

.alli1 Z Qll M .an.d. X E Tx(M). (We express this property by saying that

9* is conjugate to V relative to h.)

(7.6) ~XY = 2(V'X Y + V'*X Y ) for all yector fjelds X.illli1....Y.Q.il M.

pro 0f. Fr 0 m (v* Y ) ( ~) = 0 we 0bt ain

o = X( (v*Y) ( ~ ) ) = (DX(v*Y) ) ( ~ ) + (v*Y) ( DX~ ) .

Since (v*Y)(DX~) = (v*Y)(-f*(SX)) = - h(Y,SX) by (7.2), we get

( DX (v*Y ) ) ( ~) = h (Y , SX ) •

On the ether hand, fram (7.3) and (7.2) we get

( Dx(v*Y) ) ( ~) = h*(X, Y) •

Thus we have (7.4)

To prove (7.5) we start with v*(Y)(f*Z) = -h(Y,Z) as 10 (7.2).

We get

X( v * (Y ) ( f * Z )) = (Dxv * ( Y ) ) ( f * Z) + v * ( Y ) ( DX ( f * Z ) ) .

Here

(OXv*(Y))(f*Z) =(v*(V*XY))(f*Z) + h*(X,Y)v(f*Z)

= - h(V'*XY'Z) by (7.2)

and

v*(Y)(OX(f*Z)) = (V*(Y))[f*(V'XZ) +h(X,Z)~] = - h(Y,'VXZ) .

From these we obtain X h(Y,Z) = h(V'*XY'Z) + h(9 Z V).
X '



19

Interchanging Y and Z we get (7.5).

Using (7.5) we get

(V'Xh)(Y,Z) = Xh(Y,Z) - h(V'XY'Z) - h(Y,V'XZ)

= h(Q*XY'Z) - h(\7 Y,Z).
X

On the other hand, we have

(\7X h )(Y,Z) = - Zh(KXY'Z) = -Zh(\7XY - ~xy,Z).

It follows that \7*xY - \7xY = - Z(\7x Y - "QxY), which implies

(7.6). 0

Remark. (7.5) and (7.6) appear as (21), p.127, and (28),

p.129 1n [Sch]. They call r; the afflne connection of the first kind

and \7* the afflne connection of the second kind. Q and \7* cOlnclde

Hand only if \7 ="Q, that 1s, lf and only 1f \7h = 0. We already

know that this imp11es that M ls a quadratlc hypersurface.

We now d1scuss a geometric applicat10n of affine conormal to the

question of shadow boundary. For the sake of simplicity we discuss

surfaces in R3.

Let M be a non degen er ate s u r fa ce im be dded in R3. A cu rv e Xt 0 n

M is said to be a shadow boundary for a parallel lighting in the

d1rect1on of a vectoc a if the line through each polnt Xt 1n the

d1rection of a is tangent to M at Xt, so that the cylinder through the

curve Xt with generators parallel to a TS tangent to M a10ng X
t

. We

now p rove

proposition 7.1 . ...L.ll M be a nondegenerate surface jmbedded jn

R3. A curye Xt.Qll M js a shadow boundary if and only jf it is a pce­

geodesjc relatjye to the connection \7*.

pro 0 f . A cu' Cv e xt 1s a p ce - 9 e0 des j c f 0 r V' * if an don 1y if \7 * tx\
= <JltXt. (Geometcically, 1t means that the the tangent line field is

parallel aloog the curve. In thls case, we may reparametcize the

curve so that we have \7*tXt=O.)

Now uSlng the affine conormal v we set Vt = V(Xt) so that v*CXt)
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= dv/dt. Then we get

(d/dt)(dv/dt) = V*(V*t Xt) - h*Cx"t,Xt)Vt == <ft dv/dt + Y't Vt,

where Y't == - h*Cx\ x"t). Thus we get a second-order linear,
differential equation

(7.7) d2v/dt2 == <ft dv/dt + Y't Vt·

It fo11ows that

Vt == O't a + Pt ß,

where a and ß are certain constant covectors.

Ta k e ave ctor a E Rn+ 1 suc h t hat a ( a) = ß( a) = O. Si nce v t ( a) =

° for each t, 1t fo11ows that a is tangent to M at Xt.

Co nv er se 1y, suPP 0seXt isa sha d0w b0und a r y f 0rap ara 11 e1

lightlng in the direct10n of a. Then for Vt == v(Xt) we have vt(a) ==

0, since a is tangent to M at Xt. Then (dv/dt)(a) = (d2v/dt2 )(a) =

0. Thus the covectors Vt, dv/dt and d2v/dt2 are linearly

dependent. Thus we have equation (7.7), which implies that V*t Xt

= crt Xt that is, Xt is a pre-geodesic for v*. 0,

The followlng gives a characterization of a quadric 1n terms of

shadow boudaries, which we state w1thout a proof.

propositjon 7.3 . ....LJll M be a noodeQenerate surface jmbedded in

R3 • I f eve r y sha d 0 W b0und a r y ; s a p J a0 e cu r y e, illiill...M~

quadrjc.

We shall prove here the fo1lowiog version of a result (Satz 3.3,

(b)) due to Simon [Si 1].

We recall that two torslon-free affine connections v aod v' are

said to be projectlve1y equ1va1ent if there is al-form p such that

(7.8) V'XY = vXY + p(X)Y + p(Y)X for all vector fjelds X and Y.

It 1S koown (for examp1e, cf. [T]) that two affine connections are

project1vely equlvalent if and only 1f they have the same family of
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curves as pregeodesics.

proposition 7.4. UJ,Mn be a noodegeoerate hyDersurface jn

Rn+ 1 . If the affjne connectlons 'V~ 'V* are projectlyely

egujyaleot. then Mn js (part of) a quadrjc.

proof. From (7.5) aod (7.8) we obtain

X h(Y,Z) = h('VXY'Z) + h(Y,VxZ) + p(X)h(Y,Z) + p(Z)h(Y,X),

that is,

(7.9) ('Vxh)(Y,Z) = p(X)h(Y,Z) + p(Z)h(X,Z).

Since the 1eft-hand slde is symmetrie 1n X aod Y by Codazz1's

equatlon, we obtain p(X)h(Y,Z) = p(Y)h(X,Z). Sinee h is

nondegeoerate, this implles p(X)Y = p(Y)X. This belog valid for

aoy X and Y, we conelude that p = 0. Hanee v = v* and 'Vh = 0. 1t

follows that Mn is (part of) a quadratic hypersurface. 0

8. Homogeneous affine surfaces

A nondegeoerate surfaee M 1mbedded in R3 is S81d to be

homogeneous if there ls aLle subgroup G of the group of a11 special

affine transformations A(3) = SL(3,R)' R3 such that M lS the orbit

of a certain point by G. Homogeneous affine surfaees are

elassified, up to affine transformations, e.g. Chapter 12 of [G).

Here we shall describe a11 such surfaces together with the

correspondiog groups. An affine surface 1s e11iotic or hYDerbo1jc

aecordlng as whether the affine metric h 1s positive definite or not.

Example8.1. Quadrics.

1) elljpsoid: x 2 +y2+ z2=1, whiehistheorb1tof t(l,O,O)by

SO (3) .

1i) one-sheeted hyperbolo1d: x 2 + y2 - z2 = 1, which is the orbit
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of t ( 1, 0,0) bY SO+ ( 2 , 1) .

ili) two-sheeted hyperboloid: x 2 + yZ - z2 = -1, which is the orbit

of t (O,O,l) bySO+(2,1).

iv) elJjptjc parabolojd: z::;;: 1(XZ + yZ), which is the orbit of the

origin t(O,O,O) by the group of all matrices of the form

c os t - si n t ° a

si n t c os t ° b

a cost + b slnt - a si nt t + b co s t 1(aZ +b2 )

° ° ° 1

v) hyperboljc paraboloid: z ::;;:~(x2 - y2), which is the orbit of

the orlg1n by the group of all matrices similar to the one above,

where cos t and sin t are replaced by cosh t and sinh t and

~(aZ + bZ) by 1(a 2 - b2 ).

Ex am p1e 8 . 2 E Jl jot j c $ U r f ace s

1) Z = l/xy, x,y >°,which if the orbit of the point t( 1,1,1) by

the group of all matr1ce$ of the form

a, b >0

This is an affine sphere whose center is the origin.

i1) (z2 - 2x)3y 2 = -1, Y > 0, equivalently,

the graph x =-t(y-Z/3 + z2), y>O.

Thls 1$ the orbit of t(~, 1 ,0) by the group of all matrlces of the

form
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a- 2/ 3 0 ba - 1/3 b
2
/2

0 a 0 0

0 0 a 1/ 3 b

0 0 0

Example 8.3 Hyperboljc surfaces

1) z=1/(x2 +y2), x>O,y>O. Th1s1stheorbltof t (1,O,1)by

the group of all matrices of the form

[

c co s t - c si nt t 0 'J
c si nt t c co 8 t 0

o 0 c- 2

11) x =(z2 - y-2/3)/8, Y > O. This 18 the orbit of t(O, 1,1) by

the group of a11 matrices of th form
...

a2 0 ab/4 b 2 /8

o a- 3 0 0

o
o

o
o

a

o
b

Example 8.4. RuJed 8urface z = xy - y 3 /3, called a Cayley

surface, which i8 the orbit of the origin by the group of all

matrlces of the form

b 0 a

0 1 0 b

b a ab-b3/3

0 0 0

Th1s 1s an lmproper afflne sphere (so the induced connection '\l ;s

flat with x, y as flat affine coord1nates on the surface). By

computation, all hijk = 0 except h222 = -2. Thus Qh;e 0 but Q2 h
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= O. The line (t,O,O) lies on the surface as well as the lines

(t+ a , b, bt + ab - b313) .

For any p01nt p = (xo,YO,ZO) which 1s not on the surface, the

orbit by the same group ls the set of a11 points (u,y,w), where

u=xo+bYO+a, Y=YO+b, w=bxO+aYO+zO+ab-b3/3.

We get

w = u v - v 3 /3 + [zO - (xO YO - Yo3/3)).

Thus the orbit of p lS obtained from the original surface by a

translation z ~ z + c, where c = [zO - (xO YO - Y03/3)).

Arecent result shows that a nondegenerate affine surface in R3

which satisfies 'Vh ~ 0 and 'V 2 h = 0 is essential1y congruent to

(part of) the Cayley surface by a special affine transformation of

R3. See [NP 3].

9. Laplac1an of aff1ne d1stance and harmon1c1ty of the

conormal mapp1ng

Let M be a nondegenerate hypersurface imbedded in Rn+1 and

identlfy every point of Rn+l wit h its position vector (from a certain

fixed point 0).

Pick a point p in Rn+ 1. For any point x E M, wrlte

(9.1) x - p=Z +p(x) ~x' ZxETx(M), p(x) ER,
x

where ~ is the affine normal. If we use the affine conormal Y
I

introduced in section 7, we have from (9.1)

(9.2) p(x):::; Y(x - p).

Tbis number lS deflned as the affine dlstance from p to x. Fixing p

in Rn+l, conslder the aff1ne distance y(x - p) as a function on M.

prOQositjoo 9.1. For a gjyen pojnt p jn Rn+ 1, the functjon

Y(x - p) Q.O. M ha san ext rem um at u E M if an don1y jf th e ye ctor up
js jn the djrectjon of tbe affine normal ~u.
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proof. From (9.1) we get for any XE TX(M)

b X= DX(x - p) = DXZ + (Xp)~ + P DX~ = 'VXZ + h(X,Z)~ + (Xp)~ - pSX

and

(9.3) -X-pSX+ 'VXZ=O and h(X,Z)+Xp=O.

Assume that p = v(x - p) has an extremum at x = u. Then Xp = 0

for every XE Tx(M). From (9.3), we get h(X,Z) = O. This 1mp1ies

that Z = 0 so that u - y = p ~, that lS, up ls in the dlrectioo of ~.

Conversely, assume that up 1s in the direction of ~u' Eva1uating

( 9 . 3) at u, we co 0 cl ud e Z = 0 an d Xp = 0 f 0 r eve r y X E Tx ( M ). T hus

v ( x - p) h asan ext rem u m at x = u. 0

Now we consider the affine d1stance from the or1g10 0 to xE M,

WhlCh is expressed by Px = v(x). We also defioe a vector f1eld x ---?

Zx by

(9.4) x = Zx + Px~ x .

Recall that the Lap1ac1ao 6 er for any smooth funct10n er on M

relative to a noodegenerate metric (in our case, the affine metric

h) is defined by

6 er = dlV (grader),

wh e re 9 rad er isth e v ee tor f i e1d s u c h t hat d er ( Y) = h ( diver, Y) f 0 r

every vector field Y, and (dlV W)X = trace {X E Tx(M) ---? 9XW E

Tx(M)} . Note, however, that in thlS last eauation, 9X can be

replaced by 'VX by virtue of 'VX W = 9X W + KX W = 9XW + KWX

and the apolarHy: trace Kw = 0 .

propositjon 9.2. Fer the funct10n p defjned by (9.4) we haye

(9.5) Ö P = -0 (1 + Hp), where H js the affjne meao curyature.

proof. From the second equatioo in (9.3) we see that Z =

- grad p. From the first equation, we get div Z = n + p trace S =

n + n p H. Th us we 9et (9. 5) . 0
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Remark. If we deflne an (n-1 )-form ß = l(Z)e/n on M, that 1s,

ß(X 1 ,·.· ,Xn-l) = e(Z,x" ..• ,X n - 1 )/n

= w(x,X l ,· .. ,X n -l, ~ )/n,

th en

(9.6) dß = (1 + Hp)e.

Theorem 9.3. If a nondegenerate hypersurface M js compact,

then the affjne mean curyature cannot be jdentjcally 0.

proof. If H is identically 0, then 6p;;;;: -n or, equivalently, dß

= e. From the theorem of Stokes, we get J div Z e = 0, or

equivalently, Je = 0, leading to a contradietion. 0

This result 1s found in [eh]. For Stokes's theorem, see

[KN],pp.281-3. There 1s another geometr1e quantlty whieh is elosely

related to the affine mean eurvature. Let v: M ---7 Rn+ l be the

eooormal mapping for a nondegenerate hypersurfaee f: M ---7 Rn+l.

We want to ealeulate the tension field for the mapPlng v (relative

to the affine metrie h).

Let us reeall the definition of the tension f1eld for a mapping,

say, <}' from a manifold (M,g), where 9 1s an arbitrary riemannian

or pseudo-riemannian metrie (wHh Levi-Civita eonnection 9) into a

manifold M with a torsion-free affine eonneetion v. For veetor

fields X and Y on M, we consider

H<J> ( X , Y) = vX <}'* (Y) - <J>* ( 9 XY ) ,

whieh ean be easily verified to be tensortal , that 1S, the value (in

T<J> ( x ) ( M)) dep end s 0 n1y 0 n Xx and Yx. This H<J> istheHe s si an f 0 r <j'

relat1ve to (9, 'Q). Now the tension field T(<j') 1S defined as the

t ra ee 0 f H<}' re 1at i v e tot he met r i e g, na me 1y, 1f

{Xl, ... ,Xk,Xk+l, ... ,Xn} is an orthonormal basis relative to 9 in

Tx ( M) wH h 9 (X i , Xi) = €i = ± 1, t he n

T ( <J> ) x;;;;: 2: i €i H<J> ( Xi, Xi) E T<J> ( x) .

This is independent of the ehoiee of an orthonormal basis. If we
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take an arbitrary basls {Xl, ... ,X n } and the eomponents of gare

(9ij) , then

-r ( <f ) x = L 9ij H<f ( Xi, Xj ) ,

wh e r e [ g ij ] 1s t hel nver s e 0 f t.he mat r i x [g lj ].

The mapplng <f;s said to be harmonje lf -r(<f) van1shes

everywhere.

Now we go baek to the eonormal mapp1ng and prove the following

result.

prooositjon 9.4. The affine mean euryature of a nondegenerate

hyoersurfaee M in Rn+l k 0 jf and only jf the eonormal mapojng v:

M-)Rn+l js harmonie.

proof. From Seetions 4 and 7 we know 'VX - V x = KX = Vx -

'V*X,where 9 is the lndueed eonneetlon on M, 9* the eonjugate

eonneetion (lndueed by the eonormal mapping), and ~ the Levl­

Civlta eonneetion for the afflne metrlc h. For the eonormal mapp1ng

v the Hesslan (relative to the flat eonnection D ln Rn+l and the

conneetion v) is glven by

Hv(X,Y) == DX (v*(Y)) - v*(VXY) = DX (v*(Y)) - V*(9*XY + KXY)

= h*(X,Y) v - v*(K(X,Y)) = h(SX,Y) v - v*(K(X,Y))

by virtue of (7.3) and (7.4). To take the traee of Hv , let

{Xl, ... ,X n } be any basis and let [hij] and [h 1j] be the component

mat r ix f 0 r h an d 1t s i nv er se. The n

Li,]' hU h(SXi,Xj) v = L, , k hij Ski hkj v == Li k öik Ski v,,] , '
= L i Si 1 v = (t r aeeS) v.

Weh av·e als 0

Ll , j h1j (K (X i , Xj ) ) = Lk ( Li, j h lj Kk lj) Xk

= Lk( L i,j h1j Lm (- ~)hkm hm1j )X
k

== Lk (Lm (--t)h km (Li,j hij hijm))Xk == 0

by using Proposltions 4.1 and 4.2 (see the remark following
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Proposition 4.2, namely, Li,j hij h1jm = 0). Hence

L1,j h1j v*(K(Xi,Xj) =v*( L 1,j hU (K(X1,Xj))) = o.
The tension fleld of v 1S

T ( v) = t r ace Hv = ( t r ace S) v,

from which the assertion of Proposition 9.4 is ObV10US. 0

We may also obtain Theorem 9.3 from Proposition 9.4 using the

fa ct t hat 1f M 1s c 0 mpact, t hen t he harm 0n1 c. m appi n9 v: M -7 Rn+ 1

must be a constant, contrary to the fact that v is an immersion.

Remark. Proposition 9.4 1s 1n [Ca 3] for 10ca11y strictly convex

aff1ne surfaces.

10. An example: SL(n,R)/SO(n).

We denote by sen) the vector space of a11 real symmetric

matrlces of degree n. We define a mapp1ng f: GL(n,R) ----7 sen) by

( 10. 1) f( A) = 1A t A

and an action cr cf GL(n,R) on sen) by

(10.2) cr(A)X=AXtA for AEGL(n,R) and XEs(n).

The mapPlng f 1S equivariant in the sense that

(10.3) f(AB)=cr(A)f(B) for A,BEGL(n,R).

It is easy to verify that the image f(GL(n,R)) coincides with the

set p(n) of all positive-definite matrices in sen). p(n) lS a

conneeted open subset of sen). It is also known that the

exponential mapping X -7 exp X gives a diffeomorphism of sen) onto

p(n).

We now restr1ct fand cr to the subgroup SL(n,R) of GL(n,R). The

image f(SL(n,R)) eolneides with Pl(n) = {X E p(n); det X = 1},

whieh is also equal to the orbit of the identlty matrix I by the action

cr(SL(n,R)). The fsotropy group at I equals SO(n) so that Pl(n) =

SL(n,R)/SO(n). It 1S known that this 1S asymmetrie homogeneous
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space where the lnvolut1ve automorphlsm of SL( n,R) is A ~ t A -1.

Now con51der s(n) as a vector space or a centro-affine space.

It has a volume element invarlant by SL(n,R) act1ng on lt by cr in

(10.2). For the imbedded hypersurface f: SL(n,R)/SO(n) ~ Pl c

s(n), we take the position vectors as transversal vectors: for

each pE SL(n,R)/SO(n), choose A E SL(n,R) such that p = 11(A),

where 11 ls the projection of SL(n,R) -7 SL(n,R)/SO(n), and let ~p

= 2A t A , regarded as position vector, whlch depends only on p.

For SL(n,R)/SO(n), 1ts tangent space at PO = 11(1) may be

represented by the subspace mO = {X E sl(n,R), tx = X}, such that

sl(n,R) = mO + o(n), where o(n) 15 the Lie algebra of SO(n). For

each X E mO we have f*(X) = X, as tangent vector at I to s(n).,
Now let as = exp (sX) and define the vector fleld X along 11(a s ) by

~s = as(X). Then f*(~) = as X tas and

[Dsf*(~)]s=O = 2 X2 .

From th1s we get

(10.4) h(X,X) = trace X2/n so h(X, Y) = trace XY/n

and

(10.5) \lXX = 2 X2 - 2 trace X2 /n so \JXY = 2 (XY - trace (XY)/n).

Since ~, hand \J are invariant by the actlon of SL(n,R), it follows

that ~ lS the aff1ne normal, h in (10.4) lS the expression on mO of

the affine metric lnvariant by SL(n,R), and 'V in (10.5) 1s the

expression on mO of the induced affine connect1on which 1s also

invariant by SL(n,R). It also follows that our hypersurface is

lndeed an afflne hypersphere. See [Sa].

Slnce the llnear 1sotropy group Ad(SO(n)) on mO is lrreduclble,

it fo1lows that the natural invariant Riemannian metrlc for the

symmetrie space SL(n,R)/SO(n) colncides with the invariant affine

metric up to a sca1ar factor. In fact, the former is the restriction

to mO of the Ki111ng-Cartan form of the Lle algebra sl(n,R),
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namely, 2n traee XY. This means that by adjusting the ehoiee of ~

by a eonstant faetor, we ean make the affine metrie to eoineide with

the natural invariant Riemannlan metrie on SL(n,R)/SO(n).

The Levi-Civita eonneetion of this metrie 1s expressed on mO by

VXY = [X, Y]/2. In partieular, VXX = 0.

For n::;;; 2, we see that rv = v. In this ease, SL(2,R)/SO(2)

(hyperbolie plane) is 1mbedded in 8(2) c R3 as one eomponent of

the two- sheeted hyperboloid (thus a quadrle).

Remark 1. We may write p(n) as the homogeneous spaee

GL+(n,R)/SO(n), whieh ean be provided with an invariant

Riemannian metrie. The natural imbeddlng of SL(n,R)/SO(n) into

GL+(n,R)/SO(n) ls equ1variant and isometrie. If we eonslder the

former as an affine hypersurfaee in the latter, what properties

does 1t have?

Rem a r k 2. The s pa ee p ( n ) m ay be deeo· m pos ed 1nt 0 t heu ni 0 n 0 f

hypersurfaees p>..(n) eonsisting of positive-definite symmerie

matrlees of determinant >.. > O.

11. Affine loeally symmetrie hypersurfaees.

In the example of SL(n,R)/SO(n) as an affine hypersurfaee the

affine metrie, whfch coincides with the standard invariant

Riemannian metrie is loeally symmetrie, that is, VR= O. The

following theorem eoneerning an affine hypersurfaee sueh that rvR =

o has been proved in [VV].

Theorem 11.1 . .Lei M be a oondegeoerate hyoersurfaee jn Rn+ 1,

n 2. 3. I.lliill. M js affine loeally symmetrje. that js, rvR = 0, jf and

ooly jf M 18 an jmproper affjne hypersphere oe a non-degenerate

guadratic hypersurface.

The essenee of the proof is to show the following. A

nondegenerate hypersueface M in Rn+1 satisfies R(X, V)· R = 0
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(namely, the derivation R(X, y) maps R into 0 for any tangent

vectors X, Y) if and only if M is an affine hypersphere. Once th1s ls

established, then 'VR = 0, wh1ch implies R(X, y). R;;;;: 0, wlll glve S =

r I, where r ls a constant. Then the equation of Gauss and 'VB = 0

impl1es 'Vh = O.

Remark. Every surface M in 83 satisfies R(X, Y).R;;;;: 0.
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