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Preface

This is Part I of the Tecture notes: Iniroduction to Affine
Differential Geometry. It is intended as a brief introduction to
classical affine differential geometry, namely, geometry of
nondegenerate hypersurfaces in an affine space for which the
fundamental group (in the sense of the Erlangen Program of F.
Kiein) is the group of equiaffine (= special affine)
transformations,

When I became interested in the subject, my first aim was to
understand just what it was basically all about. Inthese notes, I
present my way of understanding this geometry from the point of
view prevalent in differential geometry today. Though concise, I
hope they will give the reader a self-contained comprehensible
introduction. It is my intention to continue to Part Il and possibly
Part III in which I woutld like to present more results within the
framework of classical affine differential geometry as well as
developments made in @ more general approach to the geometry of
affine immersions.

I started the study of the subject at Max-Planck-Institut fir
Mathematik, Bonn, in 1982, and continued the subsequent research
in collaboration with Ulrich Pinkall, currently at Technische
Universitat Berlin,through my several visits to Bonn and Berlin
during the last several years. These notes, Part I, are based on
my lectures and discussions at MPI, TU Berlin, Brown University
and the University of Granada.

Bonn
July 4, 1988 Katsumi Nomizu
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1.Equiaffine structure on a nondegenerate hypersurface

Let f: MM > RN*1 be a hypersurface immersed in the affine
space RNT1, To develop the equiaffine theory for MN we assume
that RN lis provided with an equiaffine structure, that is, it has a
fixed volume element w which is parallel relative to the usual flat
affine connection D in RN*1,

We are interested in introducing in MM an equiaffine structure
(v,0), where Vv is atorsion-free affine connection and 8 is a
volume element such that ve=0. We shall henceforth assume
that R" 1 is oriented so that w > 0 and that MM is also oriented.

We first develop a local theory. We choose an arbitrary
transversal vector field t in a neighborhood U in MM 5o that we have
(1.1) Tex)(M) = (T (M) + Span (&) at each x €U
in such a way that the orientation of MD followed by t coincides with
the orientation of RM*1. Let X and Y be vector fields in U. We may
decompose Dyfy(Y) according to (1,1) and write
(1.2)  Dyfa(Y) = fu(Ty(M)) +h(X,Y)E at each point x € U.
Just as in the classical theory of hypersurfaces in Euclidean space,
we can verify that v is a torsion-free affine connectionin U, his a
tensor field which defines a symmetric bilinear form on each

tangent space T (M).

We call ¥V the jnduced affine connection and h the affine
fundamental form corresponding to £.
We also decompose DX!; as follows:

(1.3) Dyk = - f4(SX) + =(X)E,

where S is a tensor field of type (1,1), called the shape operator,
and T is al-form, called the transversal connection form.




Now we define the induced volume element 6 in U by setting
(1.4) B (X1, .y X)) =w(Xyyeey Xy, £)
and hope to achieve the property v 8 =0. We have
Lemma 1.1. vye= 7(X)6 for every X €Ty(M).
Proof. We have
(Vy0)(Xq,X2,...,Xp)
=X 80 X|,Xp, ..., Xn) = 8(TyXq,Xp,...,Xn) = 0o
-6(Xq, ..., Xn-1,9yXp)
=X w( Xy,Xp,...,Xn, &) - w(9yX(,Xo, ..., Xn,E) - -+
- w(X e, Xn- 1, 9y Xy, 8)
=X w( Xy, Xp,...,Xn, &) - w(DyXy,Xp,...,Xn, E) - -+

-w(x],---,xn'l,DXXn,f;)
= (Dxw) (X1,X2, ..., Xn, &) + w(Xy,X5,...,Xn,DxE)
=8(X)e(Xy,Xp,...,Xn),
where we have used Dw =0 and Dyw = 7(X)w. o

Thus the property = =0, that is, Dxt-, is tangent to MM, is
crucial. We shall see that under a certain nondegeneracy condition
on MM we may choose & with this property and, indeed, with an
additional property, which will make its choice unigque. For this
purpose, we have

Lemma 1.2. If we choose another transversal vector field

$=2+9¢%, where 9>0,
then for the corresponding objects we have
(1) h=9 h
(i1) VY = UyY + h(X,Y)Z
(iii) =7 -dIn9 - h(.,2)/9,
where h(.,Z) Is a 1-form whose value on X is h(X,Z).



Proof. Straightforward verification. O
It follows from (i) that h is determined up to a scalar function ¢

>0. Inparticular, whether h is degenerate or nondegenerate
depends only on M" and not on the choice of £. Ifhis
nondegenerate at every point, we say that M" is nondegenerate.
Lemma 1.3. Let M" be nondegenerate. If ¢ is atrapnsversal
vector field and ¢ anarbitrary scalar function > 0, thenthereisa
vector field Z on M™ such that for T=2+¢ t the transversal

conpection form * is O.

Proof. Since h is nondegenerate, we can find Z in each Tx(M)
such that
h(X,Z) =-97(X) - (d 9)(X)

for every X € Tx(M). By (iii) of Lemma 1.2, we have T =0. o

Remark. If twotransversalvector fields ¢ and ¥ are such that
T=7and6=796, thent =T. Infact, ©=19 implies9 = 1. (ifi) of
Lemma 1.2 implies that Z = 0.

In order to determine £ uniquely for nondegenerate MM, we
consider one more condition. Let v be the volume element
associated to the metric h: If {X,...,X,} is an oriented
orthonormal basis in TX(M) for the nondegenerate metric h, then
v(Xy, .o, X)) =1,

The condition we now wish to impose is that two volume elements
® and v determined by a choice of £ coincide. To study this
condition, we define a function H& as follows.,

Choose a basis {Xy,...,X} such that 6(Xy,...,X,) =1 and set

hij =h(Xi,Xj)
and
He = determinant of the matrix [hij]-

It is easily verified that H£ is independent of the choice of



{Xy,...,X,} subject to 8(Xy,...,X ) =1.

Lkemma1.4. 6=v ifandonlyifthe absolute value of H& js equa
fo 1.

Proof. Choose {X,...,X,} as above.Suppose X; =zaJ,Xj,
1<1i<n, are orthonormal relative to h, say, h(Xj,Xj) = € 8,
where ¢; = -1 for1s1‘sp, € =-1 forp+l.‘<.j_an.

Then we have

LAHAS= (e; 51‘)‘] so that det A = IHU—”2 (assuming det A > 0).

From
P=v(Xy,...,Xp) = (det A) v(Xy,...,X,)
we get
v (Xy, .o 0 Xp) = 1/(det A) = [ He| /2.
Thus v(X],...,Xn)=l;thatis, v =6 if and only if |H&|=I. a

Lemma t.5.Eor a change of transversal vector fields € =2 + ¢t
asinlemma 2, write H=H; ,H=Hy . Ihen
(i) H =H/ g2

(ii) h/IH]1/(n+2)=T-.‘/|H]]/(n+2).

Proof. We know h=¢ h. Choose {Xy,...,Xp} with 6(Xy,...,Xp)
=1 so that H= det [h(xi,Xo)]. We have

O(X 1, o Xp) =w(Xy, .o, X, ) =9 6(Xy,...,Xp).
Write Xy =X1/9, Xp =X, ... ,Xp=Xp. Since 8(Xy,...,%X,) =1,
we have

= det [R(X;, X1 = 97" det [n(X;, X1 =9 (M*2) p,
which proves (i). (ii) follows from h=¢h and (i). u]

From (ii) in Lemma 1.5 we have a uniquely defined form h =

1/(n+2
h/|H| ( ), which is called the affine metric .



We now have

Theorem 1.1. Let M" be a nondegenerate hvpersurface, Then
there is a unigue transversal vector field & such that

(i) thetransversal connection form is 0;
and.

(i) . | vol ] incid ith tt |

We may also replace {ii) by

(iia) the affine fundamental form coincides with the affine
metric.
or

(ii b) the induced volume element coincides with the volume

Proof. Start with any transversal vector field £ and compute H =
H&.

With ¢ = IHI”(”"'Z) let E=9Et+2. ByLemma 1.3 we can choose
Z so that the transversal connection form for £ is 0. By Lemma
1.5, (i), we have H=H/|H| so that |H =1, which means that the
induced volume element 8 coincides with the volume element v for
the fundamental form h for E.

By lemma 1.5, (ii), we see that h coincides with the affine
metric R. Hence V coincides with the volume element ¥ for the
affine metric.

We have shown the existence of a transversal vector field which
satisfies (i), (i), (iia), and (iib).

To show the uniqueness part of the theorem, let £ be a
transversal vector field satisfying i) and ii). Then,by Lemma 1.4,
IH{_'I =1. Thus h=HRand 6=v =9 . Thus any two transversal
vector fields satisfying ii) must have the same induced volume
elements. If they both satisfy (i), they must coincide as we know

from the Remark following Lemma 1.3.



The uniqueness of a transversal vector field satisfying (i) and
(iia), or (i) and (iib), is also obvious from what we said in the
above. |

The unique transversal vector field in Theorem 1.1 is called the
_a_ﬁ_]_ng_ng_pm_a_]_ For this unique choice, we have the induced
connection ¢ and the induced volume element & (equal to thé
volume element ¥ of the affine metric i), which together defines a
natural equiaffine structure on M. The affine fundamental form is

the same as the affine metric. The approach in this section was
sketched in [N].

2.Fundamental equations

Let M be a nondegenerate hypersurface immersed in RN 1 and
let £ be the affine normal (whose unique existence we have
established in Theorem 1.1). For this choice, we have the induced
connection v, the affine fundamental form h, which coincides with
the affine metric i, the shape operator S, the induced volume
element & which coincides with the volume element of the affine
metric. !

We have the following set of fundamental equations for these
objects:

Equation of Gauss: The curvature tensor R of v is given by
(2.1) R(X,Y)Z = h{Y,Z)SX - h(X,2Z)SY.

Equation of Codazzj for h:

(2.2) (9xh)(Y,2Z) = (vyh)(X,2).

Thus we get a symmetric trilinear form C(X,Y,Z) =
(9yxh)(Y,Z), which is called the cubic form for MM,

£ . ¢ { for S
(2.3) (VxS)(Y) = (vyS)(X)

Equation of Ricci:



(2.4) h(SX,Y) = h(X,SY)

We make some observations.

1. IfR=0, thenS=0. The converse is obvious.

In fact, let X= 0. If h(X,X) =0, we may assume | h(X,X) | =1
and take Z such that | h(Z,Z) | =1 and h(X,Z) =0. NowtakeY =12
in the equation of Gauss:

0=h(Z,2)SX - h(X,Z)SY =h(Z,2)SX thus SX =0.
If h(X,X) =0, take Y such that h(X,Y)=1and h(Y,Y) =0, Setting 2
=X In the equation of Gauss we get h(Y,X)SX =0 so SX =0 again.

2. More generally, Sis determined uniquely by h and R. This
can be proved by similar arguments as 1 (or assuming there is
another S’ satisfying the equation of Gauss, apply the argument in !
toS -95).

3. If S=0, the affine normals are parallel to each other in
R 1, MNis called an improper affine hypersphere.

4. Suppose S =x 1, where x is a function and I the identity

transformation. (We say that MO is affine umbilical) Then Codazzi's
equation for S implies that x is a constant function. If x = 0, MM is
called a proper affine hypersphere. All the lines from the points of
MM in the direction of £ meet at one point, the center of the proper
affine hypersphere.

5. The Riccitensor for ¥ is given by

Ric(Y,Z) = (trace S)h(Y,Z) - h(SY,Z).
If Ric = 0, this equation implies S =0 and, consequently,R=0 by 1.
H=trace S/n is called the affine mean curvature. K= det S is

called the affine (Gauss-Kronecker) curvature.

6. Let dimM 2> 3. Then the equation of Gauss and the equation of
Codazzi for h imply the equation of Codazzi for S. To prove this,

take Vw of both sides ¢of the equation of Gauss and write down the



second Bianchi identity:

(VwWRI(X,Y) + (IyR)(Y,W) + (VyR)(W,X) = 0.
After some cancellation by using Codazzi's equation for h we get

h(Z,X){(vyS)(W) - (v\yS)(Y))}

+h(Z,Y){(VyS)X - (94S)W)
+h(Z,W){(94S)Y - (vyS)X} = 0.

Now given X and Y, choose Z such that h(X,Z) =h(Y,Z) =0 and
H(Z,Z) =t1 and let W = Z in the above equation. We get (vyS)(Y)
- (vy8S)(X) = 0.

3 Graph of a function

Let x"*1 =F(x!, ...,x") be a function on a domain G in R" and
consider the graph immersion
(3.1) fi(x, Lo.,xM e = (xF, LoxM, F(xt, oL, xM)) e RN,
We want to find the affine normatl for this hypersurface under the
condition
(3.2) det [FU-]#O,
where Fj; = 32F /dxiax].,

We start with an obvious choice of a transversal field £ =
(0,...,0,1). We have
f*(a/axJ)=(O,...,1,...,Fj),

. = dF/3x). Thus

where | appears as the j-th component and FJ

Dasoxi f,(8/2x0) = Fy &,
that is,
(3.3)  Vpspxi (3/0x1) =0 and  h(asax!,a/0x)) = Fy; .
Also,
Dasaxi § =0 so = =0.
We see that f defines a nondegenerate hypersurface if and only if
det [Fyjl = 0. We now find H = Hy as follows. Since we have



0(37x 1, ..., 8/3xM) = wlf(d/dx!), ..., (d3/3xN), &) =1,
we get
hij = h(a/ox!,a70x)) = Fy;

so that
(3.4) H = det (hy;) i.e. Hessian of F.
We now want to find a vector field Z such that

d |H|”(”+2)/ax1 + h(X,Z) =0 for all vector fields X.
Write Z=22'(3/3x}) andtake X =2/2x'. Then

2 1M1 /(0¥ 2D axi + 3 hyy 2 = 0.
Let [F1)] be the inverse matrix of [FU]. Then we get

2K = - S FKI (3 |H1/(n+2) /oxt)
The affine normal is then
(3.5) T=- %y i (FKia W1/ (n*2)) /oty (0, ..., 1, .0 Fy)

+ HV/(n*2) (0,...,0,1).

Example. For the graph of xM*1 =3 3y x!x}, where {aj] isa
constant matrix with nonzero determinant H, we have € =
i (n+2) E. Thus the shape operator Sis zero and the induced
connection ¥ is flat.

Remark. It is a theorem of Jorgens [J] that ifF(x',...,x") isa
gifferentiable function on the whole R? such that det [Fij) isa
positive constant, then F js a gquadratic function. This theorem
has interesting applications in the theory of surfaces (c¢f. [Sp)
p.165, p. 390).

There is a generalization of this result from the point of view of
affine differential geometry by Calabi in [Ca 1]. See also [Sp] for
other applications of Jorgens’ theorem.
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4. Cubic form and apolarity

Let M be a nondegenerate hypersurface in RM™ 1T, We now
consider tHe Levi-civita connection @ for the affine metric h and
study the difference between ¥ and the induced connection v. We

denote the difference tensor by K:

(4.1) K(X,Y) = uxY - TyY
and also write
(4.2) Ky (Y) =K(X,Y), Ky=9yx- Uy

which is symmetricinX andy,

Proposition 4.1. Ky correspondsto -(1/2) (vyh) relative fo
ihe metric h, thatis,
(4.3) h(KyY,Z) = - (1/2) (vyh)(Y,2).

Proof. We apply the derivation vy = Uy + Ky on h and obtain
Vxh = Kyh. Thus we have
(4.4) (9yh)(Y,2Z) = (Kyh)(Y,Z) = - h(KyY,Z) - h(Y,KyZ).
Here (9yxh)(Y,Z) is symmetric inX, Y and Z as we know, and
h(KyxY,Z) is symmetric in X and Y. It follows that h(Y,KyZ) is
symmetric in X and Y, as well as in X and Z, namely, in X, Y and Z.
From (1) we get

(9yh)(Y,Z) = -2 h(KyY,2Z). o

Coroliary. Ihe induced connection v and the Levi-Civita

tion © for t £ . incide wi h ot} if I

only if K =0, that {s, if and only if vh =0.

We'll see later that this is the case if and only if M is a quadratic

hypersurface.,
Proposition 4.2. (apolacity)
(4.5) trace Ky = 0 for every tangent vector X.

Broof. Applying the derivation 9y = ﬁx + Ky to the volume
element © = vy we obtain

0=Vxe=(ﬁx+|‘<x)v =va,
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which implies trace Ky =0. O

Remark. Interms of the index notation for tensors, we write h
= (hij), (i) = (hij)-1 , and vh = (hijk)- Then trace Ky = 0 can be
written as

i] -
Zj jhhy = 0.

5. Some more equations

We may further investigate the relationship between the
curvature tensor R of the induced connection v and the curvature
tensor R of the Levi-Civita connection T for the affine metric h.

Proposition 5.1.

(5.1) R(X,Y) = R(X,Y) + (VyK)y - (VyK)x + [Ky,Ky]
= R(X,Y) + (VXK)Y - (VyK)X.
(5.2) R(X,Y)Z = (1/2){h(Y,2Z)SX - h{(X,Z)SY + h(SY,Z)X

- h(SX,Z)Y} - [Ky,KylZ
Proof. To obtain (5.1) we compute R(X,Y) = [Vy,Vy] - Vix,Y]
by using (4.2) and note
(VyKdy = TyKy - Ky Ty - KGy ¥
as well as
(VyK)y = (Tydy + (Ky-K)y = (FyK)y + Ky Ky - Kiy Y -
From (5.2) and the equation of Gauss we have
h(R(X,Y)Z,W) = h(Y,Z)h(SX,W) - h(X,Z)h(SY,W)
+ h((TyKIxZ, W) - h((VyK)yZ, W)
- h{[Ky,Ky]Z,W).
Alternating this equation in Z and W and observing that Ky and
(ﬁyK)x = ﬁy(Kx) - K$YX are symmetric operators relative to h,

we obtain
2 h(R(X,Y)Z,W)
= h(Y,Z)h(SX,W) - h(X,Z)h(SY,W)
+ h(X,W)h(SY,Z) - h(Y,W)h(SX,Z) - 2h([Ky,Ky]Z,W).
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This leads to (5.2). - u]
Remark. (5.2) is the same equation as (13), p. 136 in [Sch].

Proposition 5.2. TheRiccitensor for the affine metric h is given
by
(5.3) Ric (Y,Z)=(1/2){h(Y,2) trace S+ (n-2)h(SY,2) }
+ trace (KyKz),
where trace(KyKz) =h(Ky,Kz) (inner product extending h to the

tensor space of type (1,1)).
Proof. Take trace {X = R(X,Y)Z } using (5.1) and noting
trace {X = h(X,Z2)SY} = h(SY,2Z)
trace {X = h(SX,2)Y = h(X,SZ)Y} = h(Y,SZ) = h(SY,Z)
trace {X = [Ky,Ky] 2} = trace {X = KyKyZ} - trace{X — KyKyZ}
= trace (KyKy),
because

KXKYZ=KKYZX and trace KKYZ=O (by apolarity).

Remark. Our formula (5.3) is the same as (2.22) in Schneider’s
paper [Schn] and formula (3.18) in Calabi’'s paper [Ca 2].

Proposition 5.3. Ihe scalar curvature p =X hURjj of the affine
(5.4) o= (n-1) trace S+ h(K,K) =n(n-1)H+ J
Proof. Immediate from (5.3). o

Remark. H=1trace S/n is the affine mean curvature,as already
defined. J = h(K,K) is called the Pick invariant. (5.4) is the same
as Schneider’s formula on line 2, p.404 of [Schn] and Calabi’'s
(3.19) in[Ca 2]. Also see Blaschke's book [Bla], p.158.

For n=2, Ric(Y,Z) =% h(Y,Z), where X is the curvature for h.




13

Thus we get

(5.5) X = 2H+J,

which is essentially the same as (14), p.136 of [Sch].
We derive one more equation.

Let L be the bilinear symmetric form defined by

(5.6) L(X,2Z) =trace {Y = (VyK)(X,2)}.
We want to prove
Proposition 5.4.

(5.7) L(X,2) =(n/2){h(X,Z)H - h(SX,Z)}..

Proof. Go back to the equation inthe proof of Proposition 5.1:
h(R(X,Y)Z,W) = h(Y,Z)h(SX,W) - h(X,Z)h(SY,W)
+h((FyK)IxZ, W) - h((TyK)yZ, W)
- h([Ky,KylZ,W) .
Adding this equation and the equation obtained by interchanging 2
and W, we obtain
0 = 2h((DyKIxZ,W) - 2h(TyK)yZ, W)
+ h(Y,Z)h(SX,W) - h(X,Z)h(SY,W)
+ h(Y,W)h(SX,2Z) - h{X,W)h(SY,2).
Eliminating W we write
2 (VyK)yZ + h(Y,2Z)SX + h(SX,2)Y
=2 (VyK)yZ + h(X,Z)SY + h(SY,Z)X.
Now by taking the trace of the mapping Y — the above, we get (5.7)
by virtue of trace{y — (ﬁxK)YZ} =0, which can be established as
follows.
From KyZ =KzY we have (VyK)yZ = (TyK)7Y, Hence
trace {Y = (VyK)yZ} = trace (VyK);
=trace(VyK) - trace K’v‘xz =X (trace Kz) =0
using apolarity twice, ]
Remark. (5.7) is the same as (2.24) in[Schn]. The tensor L is
the same as Cij = VSTSU in (15), p.136, in [Sch]. Observe that
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(S5.4) determines H uniquely from h and K, and (5.7) determines S.
Thus h and C = vh determine H and S uniquely.

6. Theorem of Pick and Berwald
We now prove the following classical result [Ber] for a

nondegenerate hypersurface .

Theorem 6.1. J._e_tﬂf"ln—)RnH be a nondegenerate
I [ : I ! bic f s identicall
Ihen f(M™) lies in a quadratic hvypersurface,

Proof, We first show that f is umbilical, that is, S=¢ 1, wherepg
is a constant. Since Yh =0, we get R(X,Y)-h =0 for any X,Y €
T«(M), where R(X,Y) acts as a derivation. Thus h(R(X,Y)Y,Y) =0.

Using the equation of Gauss we obtain
h(Y,Y)h(SX,Y) = h(X,Y)h(SY,Y).
Let {X1 y o n ,Xn} be an orthonormal basis for the affine metric in
Ty (M): h(Xi,Xj) = €8 , where g =x1. Then
h(Xj,Xj)h(SXi,Xj) =h(Xi,Xj)h(SXjXJ-) =0
and h(SXi,Xj)=O for i=j.
It follows tat there are scalars pj such that SX;=¢X; 1 <1 <n.
We now show that all ¢;’s are equal. Let i=j. Then X; + 2Xj is
non-null relative to h. We may normalize it and extend it to an
orthonormal basis in T, (M). From what we have shown, we have
SZ=pZ for some scalar ¢, On the other hand, we have SZ =

S(X; + ZXj) = p; Xi + 20Xy = p(Xj + ZXJ-). From linear independence
we get p; = fj-
Now we can write S=¢1 onM", where pis a scalar function.

From Codazzi's equation for S, we conclude that p is a constant

function.

We now define a tensor field g of type (0,2) along the immersion
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f as follows. For each x€ MN, gy is a bilinear symmetric function
on Teex)(RN*1) determined by

g{fyeX, fxY) = h(X,Y) for X,Y €T, (M)
(6.1) g(fyX, £) =0, where £ is the affine normal

g(&,8) =p.
We now prove that g is parallel in RN that is,
(6.2) X g(U,V) = g(DyU,V) + g(U,DyV)

for any X € Tx(Mn) and for any vector fields U and V along f.

Consider three cases:
Case (i): U= f,Y, V=f,Z, where Y and Z are vector fields on M",
Then
Xg(U,V) =X h(Y,Z) =h(vyY,Z) + h(Y,vxZ)
g(DyU, V) = g(DyfyY,fyZ) = g(fye (IyY )+ h(X,Y)E,f,2)
h(vyY,2Z)

Il

and
9(U,DyV) = h(Y,UyZ)

so (6.2) is valid.
Case (ii): U="f,(Y), Vv==£t. Then Xg(U,V) =0,
g(DyU, £) = g(fy(OyxY) + h(X,Y)E, L) = h(X,Y)p

and
g(U,DxE&) =g(U, - fx(SX)) =- g(fu(Y),fe(pX)) = - ¢ h(Y,X)

so that (6.2) is valid.

Case (ifl): U=V=E. We have

X g(U,V) =Xp=0and g(Dx&,t) =g(-fyx(SX),£)=0.

Next we define a 1-form x along f by setting
A(FeX) = g(fyX,f(x)) for X & T (MN)
AE) =qg(E,f(x)) + 1,

where f(x) denotes the position vector of the image point f(x).

(6.3)

Again we show that x is parallel in R™1. If Y is a vector field on
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MM, then
X (M(feY)) =X (g(feY,f(x))

g(fe(UyY), f(x)) + h{X,Y)g(E,f(x)) +h(X,Y)
A(Dy (fyY)) = x(f,(VxY)) + h(X,Y)E)
=g (fy (TyY), F(x)) + h(X,Y){g(E,f(x)) + 1}
SO
(Dyx) (fY) = XOW(fy Y, F(x)) - x(Dy(fxY)) = 0.
Similarly,
(Dyx)(E) = X(A(E)) - x(Dyk) =X(g(E,f(x)) + 1) - x(-f(SX))
= g(Dy&,f(x)) +g(&,fX) + g(fye(SX),f(x))
= - g(eX,f(x)) + glpfy(X),f(x)) =0.

Thus x is parallel in R 1. This means that x is given by a
covector a (in the dual space RNT! of the vector space RN*1) | that
is, x(U) =<U,a> for any vector in RN, we may find an affine
function ¥ on RN such that dy = . We may also assume that
¥(f(xg)) =9(f(xg)) at apoint xpy in MM where ¢ is defined by
9(p) = g(f(p),f(p))/2, pe RN,

Now

(d9)(X) =X g(f(x),f(x))/2 =q(feX,f(x)) =x(feX) = (dy)(feX)
so de = dy. Hence 9of = yef on MMN. This means that f(M™) lies
in a quadratic hypersurface, m]

Remark 1. For any affine coordinate system we may write
g(u) = Zj j ayj ulud, p(u) = 2Zaul+ b,
S0 ¢ =¥ is an equation for a quadratic hypersurface.
Remark 2. Theorem 6.1 is generalized in [NP 2].
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7. Conormal immersions

Let M= R be a nondegenerate hypersurface with affine
normal £. We denote by R4y the vector space dual to the vector
space RO+ underlying the affine space R, we define a mapping
viM— Rpyq - {0} as follows.

For each x €M™, v, is an element of Rp+1 naturally identified
with an element in the dual space of T,(RN*1) such that
(7.1) vy (fyY) =0 for YET(M) and vy (&, ) =1.

We call vthe gffine conormal. Denoting by D the usual flat affine
connection in R4y, we have
(7.2) (Dyv)(£) =0 and (Dyv)(fyX) = - h(Y,X)
for all x,Y € T (M).

Indeed, from v(&) =1 we get
0=Y(v(§)) =(Dyv)(&) + v(DyE) = (Dyv) (&) + v(-£,(SY))
= (Dyv)(E) .

Also, from v(fy,(X)) =0, where X is any vector field, we get
0 =Y(v(fe (X)) = (Dyv) (fy (X)) + v(Dyfy (X))
= (Dyv) (e (X)) + v(f (vyX) + h(Y,X)E)
= (Dyv) (fe (X)) + h(Y,X).
Lemma. The conormal mapping v is animmersion of M into Ry,
- {0}.
Proof. Note that v,(Y) =Dy(v) for any Y €T (M). Thus if vy4(Y)
=0, then by (7.2) we have h(Y,X) =0 for every x € T (M). Since h

is nondegenerate, we get Y =0, 0

For each X€M , vy is transversal to the hypersurface v(M),
because vy (E,) =1, but vy (X) =Dyv (with X € T (M) ) satisfies
Dy(v)(E)=0. Thus we now consider vi M = R4 - {0} a central

hypersurface by taking v as a transversal vector field:
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Tf(x)(nn” )= Vi (T (M) + {vy}. We write

(7.3) Dy(vg(Y)) = vy (*Y) + h¥(X,Y) v,
where v* is the induced affine connection on M by v and h* is the
affine fundamental form for v. (Here hx is allowed to be

degenerate.)

Proposition 7.1. We have
(7.4) 0h*(X,Y)=h(SX,Y) forallX,Y €T, (M),

(7.5) X h(Y,Z) = h(9yY,Z) + h(Y,9 yZ) for anv vector fields Y
andZonMand X € Tx(M). (We express this property by saying that
v* is conjugate to Vv relative to h.)
(7.6) TyY =2(vyY + v*¢Y) for all vector fields X and Y on M.
Proof. From (viY)(&) =0 we obtain
0 =X((v4Y)(E)) = (Dy(vyY))(E) + (vyY ) (DyE).
Since (vyY)(DyE) = (viY)(-fu(SX)) =- h(Y,SX) by (7.2), we get
(Dy(vgY))(E) = h(Y,SX).
On the other hand, from (7.3) and (7.2) we get
(Dy (Vi Y)I(E) = h*(X,Y).
Thus we have (7.4)
To prove (7.5) we start with vy (Y)(f,Z) = -h(Y,Z2) asin (7.2).

We get
XV (YD) (F4Z)) = (Dyva (Y (F4Z) + vy (YD) (Dx(fyZ)).
Here
(Dyva (YD) (F2) =(vy (9% YD) (£,2) + h* (X, Y)Iv(f,2)
= - h(v*Y,2) by (7.2)

and
Vi (Y) (Dy(fy2)) = (V*(Y))[f*(VXZ) +h(X,Z)E8] = - h(Y,vyZ) .

From these we obtain X h(Y,Z) = h(v*yY,2) + h(v_Z Y).
X X
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Interchanging Y and Z we get (7.5).
Using (7.5) we get
=h(v*yY,2) - h(VXY,Z).

On the other hand, we have

(9yh)(Y,2Z) = - 2h(KyY,Z) = -2h(9yY - TUyY,Z).
It follows that ©*xY - vyY = - 2(vyY - UyY), which implies
(7.6). w

Remark. (7.5) and (7.6) appear as (21), p.127, and (28),
p.129 in [Sch]. They call ¥ the affine connection of the first kind
and v* the affine connection of the second kind. v and v* coincide
if and only if ¢ = T, that is, if and only if Vh =0. We already
know that this implies that M is a quadratic hypersurface.

We now discuss a geometric application of affine conormal to the

question of shadow boundary, For the sake of simplicity we discuss
surfaces in R3.

Let M be a nondegenerate surface imbedded in R3. A curve Xy on
M is said to be a chr a parallel lighting in the
direction of a vector a if the line through each point x in the
direction of a is tangent to M at X{, so that the cylinder through the
curve X with generators parallel to a is tangent to M along xt. We
now prove

Proposition 7. 1. Let M be a nondegenerate surface imbedded in
R. A curve x; on M is a shadow boundary if and only if it is a pre-

. lati ion k.
Proof. A curve X, is a pre-geodesic for vx if and only if VxX;

_ 9tXt. (Geometrically, it means that the the tangent line field is

parallel along the curve. In this case, we may reparametrize the
curve so that we have 9x;X;=0 )

Now using the affine conormal v we set v =v(x;) so that v*(i’t)
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= dv/dt.Then we get

(d7dt) (dv/dt) = vy (9%, X) - h* (X Xp)vp =g dv/dt + wy vy,
where ¥ = - h*(Yt’Yt). Thus we get a second-order linear
differential equation
(7.7)  d2v/dtZ = ¢ dv/dt + ¥ vy.

It follows that
Vi =0y & + ¢ B,
where o and p are certain constant covectors.

Take a vector a € R™ 1 such that a(a) =p(a) =0. Since vi(a) =
0 for eacht, it follows that a is tangent to M at x;.

Conversely, suppose X is a shadow boundary for a parallel
lighting in the direction of a. Then for vy = v(x;) we have vi(a) =
0, since a istangent to M at x;. Then (dv/dt)(a) = (d2v/dtZ)(a) =
0. Thus the covectors vy, dv/dt and d2v/dt2 are linearly

dependent. Thus we have equation (7.7), which implies that v*t ?<°t

= 94 ;t, that is, x; is a pre-geodesic for v¥. o

The following gives a characterization of a quadric in terms of
shadow boudaries, which we state without a proof.

Proposition 7.3. Let M be a nondegenerate surface imbedded in
R3. If every shadow boundary is a plane curve, then M is a

We shall prove here the following version of a result (Satz 3.3,
(b)) due to Simon [Si 1].

We recall that two torsion-free affine connections ¢ and ¢ are

said to be projectively equivalent if there is a 1-form ¢ such that
(7.8)  U'xY =VyxY +p(X)Y +p(Y)X for all vector fields X and Y.
It is known (for example, c¢f. [T]) that two affine connections are

projectively equivalent if and only if they have the same family of
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curves as pregeodesics.

Proposition 7.4. Let M" be a nondegenerate hvpersurfacein
R 1. Ifthe affine connections Vv and v* are projectively
equivalent, then M" js (part of) a guadric.

Proof. From (7.5) and (7.8) we obtain

X h(Y,2Z) =h(uyY,Z) + h(Y,9xZ) + p(X)h(Y,Z) + o(Z)h(Y,X),
that is,
(7.9) (Oxh)(Y,2) =p(X)n(Y,2Z) + e(Z)h(X,Z).
Since the left-hand side is symmetric in X and Y by Codazzi's
equation, we obtain e(X)h(Y,Z) = p(Y)h(X,Z). Since h is
nondegenerate, this implies p(X)Y =p(Y)X. This being valid for

any X and Y, we conclude that p = 0. Hence v =v* and vh=0. It

follows that M7 is (part of) a quadratic hypersurface. m

8. Homogeneous affine surfaces

A nondegenerate surface M imbedded in R3 is said to be
homogeneoys if there is a Lie subgroup G of the group of all special
affine transformations A(3) = SL(3,R)- R3 such that M is the orbit
of a certain point by G. Homogeneous affine surfaces are

classified, up to affine transformations, e.g. Chapter 12 of [G].

Here we shall describe all such surfaces together with the

corresponding groups. An affine surface is glliptic or hyperbolic
according as whether the affine metric h is positive definite or not.

Example 8.1. Quadrics.

i) ellipsoid: x%+ y2+zZ =1, which is the orbit of 1(1,0,0) by
S0(3).

ii)_one-sheeted hyperboloid: x2 + yZ - z€ = 1, which is the orbit
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of 1(1,0,0) by so*(2,1).
iii) two-sheeted hyperboloid: X2 + y2 - 22 = -1, which is the orbit
of 1(0,0,1) by sO*(2,1).

iv) elliptic paraboloid: z = $(x% + y2), which is the orbit of the
origin t(0,0,0) by the group of all matrices of the form

[ cos t -sin t 0 a
sint cos t 0 b
a cost + b sint -asintt+bcost 1 F(al+ bd)
0 0 0 1
v) hyperbolic paraboloid: z = 3(xZ - y2), which is the orbit of

the origin by the group of all matrices similar to the one above,
where cos t and sint are replaced by cosh t and sinh t and
%(al + b%) by $(a? - b?).

Example 8.2 Elliptic surfaces

i) z=1/xy, X,y >0, which if the orbit of the point t(1,1,1) by
the group of all matrices of the form
a 0 0
0 b 0 a,b >0
0 0 1/ab

This is an affine sphere whose center is the origin.

ii) (22 - 2x)3y2 = -1, vy >0, equivalently,
the graph x =%(y 2/3+ 22), y>0.
This is the orbit of t(v}, 1,0) by the group of all matrices of the

form
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- 2 ™~

a’2/3 o0 ba l’/3 pcr2
0 a 0 0

0 0 a'/3 b

0 0 0 1 .
~ /

Example 8.3 Hyperbolic syrfaces
i)y z=1/(xZ+vy2), x>0,y>0. This is the orbit of '(1,0,1) by
the group of all matrices of the form
ccost - c¢sintt 0
¢ sintt ccost 0 c> 0.
0 0 ¢ ¢

1) x=(z2 - y 2/3)/8, y > 0. This is the orbit of 1(0,1,1) by
the group of all matrices of th form
(a2 0 abs4 b2/g|
0 a’> 0 0

Example 8.4. Ruled surface z=xy - y3/3, called a Cayley
surface, which is the orbit of the origin by the group of all

matrices of the form

”

! b O a
01 0 b
b a 1| ab-b3/3
0 0 0 1 ,

This is an improper affine sphere (so0 the induced connection ¥ is

flat with x,y as flat affine coordinates on the surface). By

computation, all h;;, = 0 except h =-2. Thus vh=0 but 9¢h
ijk 222
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=0, The line (t,0,0) lies on the surface as well as the lines
(t+a,b, bt + ab - b3/3),

For any point p = (xqg,Y0,20) which is not on the surface, the
orbit by the same group is the set of all points (u,v,w), where

u=xp+bygta, v=yg+h, w=bXxg+taygtzgtab-Db3/3.
We get

W=uv-vo/3+ [zg - (xp Yo ~ y03/3)].

Thus the orbit of p is obtained from the original surface by a
translationz = z + ¢, where ¢ = [z5 - (xgvq - y03/3)].

A recent .result shows that a nondegenerate affine surface in R3

which satisfies vh = 0 and vZh =0 is essentially congruent to
(part of) the Cayley surface by a special affine transformation of
R3. see [NP 3].

9. Laplacian of affine distance and harmonicity of the
conormal mapping

Let M be a nondegenerate hypersurface imbedded in RN*1 and
identify every point of RN twith its position vector (from a certain
fixed point 0).

Pick a point p in R7* 1. For any point x € M, write
(9.1) x-p=ZX+9(x) Ex, 2y €Ty (M), p(x) €R,
where & is the affine normal. If we use the affine conormal v
introduced in section 7, we have from (9.1) ‘.
(9.2) p(x) =vi(x - p).
This number is‘ defined as the affine distance from p to x. Fixing p

in RN"*1, consider the affine distance v(x - p) as a function on M.
Proposition 9.1. For a given point p in R, the function

v(x - p) _o_rlmh has an extremum at u € M if apd only if the vector up
is inthe direction of the affine normal & .
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Proof. From (9.1) we get for any X € T (M)

X=Dy(x - p) =DyZ + (Xp)& + p Dyt = UyZ + h(X,Z)¢& + (Xp) & - pSX
and
(9.3) - X-pSX+ VyZ=0 and h(X,Z) + Xp=0.

Assume that p=v(x - p) has an extremum at x = u. Then Xp =0
for every X € T, (M). From (8.3), we get h(X,Z2) =0. This implies
that Z =0 so that u-y=¢t, thatis, Up is in the direction of .

Conversely, assume that up is in the direction of E,u. Evaluating
(9.3) at u, we conclude Z =0 and Xp =0 for every X € Ty (M). Thus
v(x-p) has an extremum at x = u. 0

Now we consider the affine distance from the origin oto x € M,
which is expressed by py = v(x). We also define a vector fiseld x —
Zy by
(9.4)  x=2Zy+pky.

Recall that the Laplacian A ¢ for any smooth function ¢ on M
relative to a nondegenerate metric (in our case, the affine metric
h) is defined by

A ¢ = div (grad¢),
where grad¢ is the vector field such that d¢(Y) = h(dive¢,Y) for
every vector field Y, and (div W), =trace {X€Tyx(M) = TyW €
T« (M)} . Note, however, that in this last eauation, Py can be
replaced by Uy by virtue of IyW = TyW + KyW = TyW + KyX
and the apolarity: trace Kyy =0 .

Proposition 9.2. Eor the function ¢ defined by (9.4) we have
(9.5) ap=-n(1+Hp), where Histhe affine mean curvature.

Proof. From the second equation in (9.3) we see that Z =
- grad p. From the first equation, we get divZ=n+g¢traceS=
n+neH. Thus we get (9.5). O
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Remark. If we define an (n-1)-form p=((Z2)6/n on M, that is,
BUXqywv ey Xpo1) =0(Z, X1, ., X1/
=w(x,x1,...,xn_1’£)/n,
then
(9.6) dp=(1+Hp)e.

Iheorem 9.3. Ifanondegenerate hypersyrface ™M is compact,
then the affine mean curvature cannot be identically 0.

Proof. If His identically O, then Aé= -n or, equivalently, dp
=©. From the theorem of Stokes, we get [ divZ e =0, or
equivalently, [8 =0, leading to a contradiction. 0

This result is found in [Ch]. For Stokes’s theorem, see
[KN],pp.281-3. There is another geometric quantity which is closely
related to the affine mean curvature. Let viM —= R, be the
conormal mapping for a nondegenerate hypersurface fi M — RN*1,
We want to calculate the tension field for the mapping v (relative
to the affine metric h).

Let us recall the definition of the tension field for a mapping,
say, ¢ from a manifold (M,qg), where g is an arbitrary riemannian
or pseudo-riemannian metric (with Levi-Civita connection ¢) into a
manifold M with a torsion-free affine connection V. For vector
fields X and Y on M, we consider

He(X,Y) = ¥y ¢x(Y) - ¢x(vyY),
which can be easily verified to be tensorial, that is, the value (in
T?(x)(ﬁ))dependson1yon Xx and Yx. This He is the Hessian for ¢
relative to (v, V). Now the tension field =(9) is defined as the
trace of He relative to the metric g, namely, if
{X1,...,XKk,Xk+1,-..,Xn} is an orthonormal basis relative to ¢ in
Tx(M) with g(Xj,Xij) =¢j=% 1, then

T(9)x = I ;€ Hp(Xj,Xj) € To(x).

This is independent of the choice of an orthonormal basis. If we
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take an arbitrary basis {Xj,...,Xp} and the components of g are
(gjj) , then

T(¢)x = Z gl Hep(Xi,Xj),
where [gl) ]is the inverse of the matrix [gij]-

The mapping ¢ is said to be harmonijc if =(9) vanishes
everywhere.

Now we go back to the conormal mapping and prove the following
result. \

Proposition 9.4. IThe affine mean curvature of a nondegenerate
hypersurface M in RN js 0 if and only if the conormal mapping v:
M — Rp+ Is harmonic.

Proof. From Sections 4 and 7 we know vy - Uy =Ky = Ty -
V*X,where Vv is the induced connection on M, V% the conjugate
connection (induced by the conormal mapping), and ¥ the Levi-
Civita connection for the affine metric h. For the conormal mapping
v the Hessian (relative to the flat connection D in Rp+1 and the
connection V) is given by

Hy (X,Y) = Dy (vk(Y)) - vx(TyY) =Dy (vx(Y)) - Vv (TkyY + KyY)

= h*x(X,Y) v - v¥(K(X,Y)) =h(SX,Y) v - v¥(K(X,Y))
by virtue of (7.3) and (7.4). To take the trace of Hy, let
{X1,...,Xn} be any basis and let [hij ] and [h1J] be the component
matrix for h and its inverse. Then

Zj U nSXi X v o= 5 g hT sk hyg v = el skyv

=%, Sljv=_(trace ) v.
We have also
2,5 (KX, X)) = B CEy 5 hT KK ) %
= (2 jnlEq (- Hnkm hmij)X,

T (Zm (- HNKM C 55 50T hijm))Xg = 0

by using Propositions 4.1 and 4.2 (see the remark following
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Proposition 4.2, namely, Zj jhUhjj; =0). Hence
S, 5 W ve(K(Xi, X5) =v*( Z; 5 hiJ (K(Xi,X}))) = 0.
The tension field of v is
r(v) =trace H, = (traceS)v,

from which the assertion of Proposition 9.4 is obvious. o

We may also obtain Theorem 9.3 from Proposition 8.4 using the
fact that if M is compact, then the harmonic mapping vi M — Rp+

must be a constant, contrary to the fact that v is an immersion.

Remark. Proposition 9.4 is in [Ca 3] for locally strictly convex

affine surfaces.

10. An example: SL(n,R)/S0(n).

We denote by s(n) the vector space of all real symmetric
matrices of degree n. We define a mapping f: GL(n,R) = s(n) by
(10.1) f(A) = 3atA
and an action o of GL(n,R) on s(n) by
(10.2) o(A)X=AX'A for AeGL(n,R) and X €s(n).

The mapping f is equivariant in the sense that
(10.3) f(AB) =c(A)f(B) for A,B€GL{(n,R).

It is easy to verify that the image f(GL(n,R)) coincides with the
set p(n) of all positive-definite matrices ins(n). p(n) is a
connected open subset of s(n). It is also known that the
exponential mapping X - exp X gives a diffeomorphism of s(n) onto
pin).

We now restrict f and ¢ to the subgroup SL(n,R) of GL{n,R). The
image f(SL(n,R)) coincides with p;(n) = {X € p(n); det X = 1},
which is also equal to the orbit of the identity matrix I by the action
o(SL(n,R)). The isotropy group at I equals SO(n) so that py(n) =

SL(n,R)/SO(n). It is known that this is a symmetric homogeneous
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space where the involutive automorphism of SL(n,R) is A — ta-t,

Now consider 8(n) as a vector space or a centro-affine space.
It has a volume element invariant by SL(n,R) acting on it by g in
(10.2). For the imbedded hypersurface f: SL(n,R)/S0(n) = py ©
s(n), we take the position vectors as transversal vectors: for
each p € SL(n,R)/S0(n), choose A € SL(n,R) such that p=m(A),
where 7 is the projection of SL(n,R) = SL(n,R)/S0(n), and let E,p
=2A tA, regarded as position vector, which depends only on p.

For SL(n,R)/S0(n), its tangent space at pg = m(I) may be
represented by the subspace mpy = {X € s1(n,R), tx = X}, such that
s1{(n,R) =mg+ o(n), where o(n) is the Lie algebra of SO(n). For
each X € Mg, we have f,(X) =X, as tangent vector at I to s(n).
Now let ag = exp (sX) and define the vector field X along m(ag) by
R =ag(X). Then £, (X) = ag X tag and

[ Defa(X)g=g =2 X°.
From this we get
(10.4) h(X,X) =traceX2/n so h(X,Y) =trace XY/n
and
(10.5) UyX =2 X2 - 2trace X2/n so 9UyY =2 (XY - trace (XY)/n).
Since £, h and v are invariant by the action of SL(n,R), it follows
that £ is the affine normal, h in (10.4) is the expression on mg of
the affine metric invariant by SL(n,R)}, and v in (10.5) is the
expression on mg of the induced affine connection which is also
invariant by SL(n,R). It also follows that our hypersurface is
indeed an affine hypersphere. See [Sa].

Since the linear isotropy group Ad(SQ(n)) on my is irreducible,
it follows that the natural invariant Riemannian metric for the
symmetric space SL{n,R)/S0O(n) coincides with the invariant affine
metric up to a scalar factor. In fact, the former is the restriction

to mq of the Killing-Cartan form of the Lie algebra s1(n,R),
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namely, 2ntrace XY. This means that by adjusting the choice of £
by a constant factor, we ¢can make the affine metric to coincide with
the natural invariant Riemannian metric on SL(n,R)/S0(n).

The Levi-Civita connection of this metric is expressed on mg by

VyY = [X,Y)/2. In particular, VyX =0.

For n=2, we see that v = 9. Inthis case, SL(2,R)/50(2)
(hyperbolic plane) is imbedded in s(2) = RS as one component of
the two-sheeted hyperboloid (thus a quadric).

Remark 1. We may write p(n) as the homogeneous space
G6L*(n,R)/S0(n), which can be provided with an invariant
Riemannian metric. The natural imbedding of SL{n,R)/S0(n) into
GLY(n,R)/S0(n) is equivariant and isometric. If we consider the
former as an affine hypersurface in the latter, what properties
does it have?

Remark 2. The space p(n) may be decomposed into the union of
hypersurfaces px(n) consisting of positive-definite symmeric

matrices of determinant x > 0.

11. Affine locally symmetric hypersurfaces.

Inthe example of SL(n,R)/S0O(n) as an affine hypersurface the
affine metric, which coincides with the standard invariant
Riemannian metric is locally symmetric, that is, YR =0. The
following theorem concerning an affine hypersurface such that vR =
O has been proved in [VV]. 3

Iheorem 11.1. Let M be anondegenerate hvpersurface in RN,
n>3. IhenM js affine locally symmetric, that is, YR =0, if and
onlyif Mis animproper affine hypersphere or a non-degenerate
quadratic hvpersurface.

The essence of the proof is to show the following. A

nondegenerate hypersurface M in RM! satisfies R(X,Y) R=0
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(namely, the derivation R(X,Y) maps R into O for any tangent
vectors X,Y) if and only if M is an affine hypersphere. Once this is
established, then VR =0, which implies R(X,Y)-R =0, will give S =
p 1, wherepis a constant., Then the equation of Gauss and VR=10
implies Vh =0.

Remark. Every surface M in R® satisfies R(X,Y).R = 0.
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