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TIGHT SMOOTHING OF. SOME POLYHEDRAL SURFACES 

W. KUhnel and U. Pinkall 

1. INTRODUCTION AND RESULTS 

The main goal of this paper is to approximate certain tight poly­
hedral surfaces in euclidean 3-space E3 by tight smooth surfaces 

of the same topological type: we call this tight smoothing. This 

smoothing procedure gives a convenient tool for constructing 

examples of tight smooth surfaces. In particular we will construct 

in this way tight smooth surfaces of odd Euler characteristic X. 

So far the exlstence of tight surfaces with odd Euler characteristic 
depended on a very complicated construction due to N.H.Kuiper ([9]). 

Although we have no doubt that the idea behind this construction is 

essentially correct, it seems to be very difficult to prove rigo­
rously that the described surface is tight. Our examples are very 

explicit and have moreover a three-fold symmetry. 
A smooth compact surface M immersed into E3 is called tight 

if its total absolute curvature I IKI do equals the minimal 
possible value 2w(4 - X(M». Equivalent conditions (also applicable 

to nonsmooth surfaces) are 

1. for every closed halfspace H c:: E3 the preirnage of H in M is 

connected (two-piece-property), or 

2. every strict local supporting plane is a global supporting plane. 

For other characterizations and general results about tightness see 

the survey articles ['1], [12] . 

A compact po7.yhed:f'a.l surface in E3 is a finite complex consisting 

of vertices, straight edges and planar (but not necessarily convex) 

faces such that every edge is contained in exactly two faces and 

the faces around each vertex form locally a cone over a simply 

closed spherical polygon. All edges are assumed to be proper meaning 

that the adjacent faces are not coplanar. Such terms as "locally" 

or "E-neighborhood" will always refer to the inner geometry of the 

complex. In particular there may occur selfintersections (like in 
the case of smooth immersions). A vertex is called convex if the 

corresponding cone is convex, otherwise it is called nonconvex. 

The number of edges meeting at a vertex v is called the valence of v. 
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We call v a standaPd saddle vertex if 
(i) the valence of v is four, 

(ii) all angles of the faces at v are strictly smaller than TI, 

(iii) there is no local supporting plane through v. 

THEOREM 1: Assume that M is a tight polyhedPal su:t'faae in E3 suah that aU 

of its nonconve.r vel'tices 'have valence 3. Then fop every e:>O there exists a 

tight smooth Bupfaae M(e:) of the same topologiaaZ type whiah aoincides with M 

e:r:aept in the e-neighbol'hood of the union of aZZ edges of M. 

THEOREM 2: Assume that M is a tight polyhed:t>al 8Ul'faae in F? whose non­

conve.r vertices ape either 3-valent 01' standard saddle vertiaes. Then for every 

e>O there is a tight poZyhed:l'aZ sUl'faae M' whose faaes are in l-l-aorrespondenae 

!M.th the faces of M such that cOl'l'esponding faaes are paroaUel in distance less 

than e: and such that aU vertices are of vaZence 3. 

Combining the two theorems we see that every tight polyhedral sur­

face whose non convex vertices are either 3-valent or standard 

saddle vertices can be approximated (in a certain sense) by tight 

smooth surfaces of the same topological type. 

The proof of these theorems will be given in section 2 below. 

In section 3 we use theorem 1 to give an improved version of a 

statement originally due to N.H.Kuiper ([9]): 

THEOREM ~: For any odd integer X = -3 there exists a tight smooth immersion 

Of the sld'face with Eu1.er chaJoacteristic X into E3. It may be ohosen to have 

a three-fold symmetry. 

In section 4 we discuss further applications and some open questions. 

2. PROOF OF THEOREMS 1 AND 2 I 
I TIGHT SMOOTHING 

Proof of theorem 1: First of all we replace each edge by a piece of 

a cylinder over a certain convex smooth curve. For given 0>0 let 

f: lR + lR be a function satisfying 

(i) f is convex and COO , 

( 11) f is strictly convex in the interval (-6 ,6) , 

(iii) f (x) = x for x ~ 0 , 
(iv) f (x) = fe-x) for all x • 

The orthogonal cylinder over the graph of this function will be a 

suitable smoothing of an edge between two orthogonal planes P" P2' 

Let 9,CP, and 92cP2 denote the generators of the cylinder through 

the points (o,f(o) and (-o,f(-o». The distance of g, from P2 
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(and of g2 from p]) will be /2·6 • Now for every angle between 

two planes we take an affine image of this smoothed orthogonal 

angle. We can do this in such a way that the distances of g1 from 

P 2 (and of g2 from P,) after the affine transformation will be 

exactly this same value /2·6 • Furthermore by compactness for an 

arbitrary given E>O one can find a 6>0 such that all these 

cylindrical pieces will lie in the E-neighborhood of the corres­

ponding edge. The smoothing is now clear everywhere except in the 

E-neighborhood of the vertices. 

We first consider the nonconvex vertices of valence three. It 

is easy to see that exactly one of the three angles between edges 

is greater than n • The plane of this angle will be labeled as 

"horizontal", the direction of the remaining edge as "vertical" 

(see fig. 1 ). For both horizontal cylinders (coming from the smoo­

thing of the horizontal edges) the upper boundary is a horizontal 

straight line lying in one of the vertical faces. Our assumption 

that both of these lines have distance /2'0 from the horizontal 

plane implies that these two Jines meet on the vertical edge. 

Using an affine transformation of E3 we can assume without loss of 

generality that all these planes are orthogonal and that the two 

horizontal cylinders are congruent. Let t ~ gt' 0 ~ t ~ 1 be a 

smooth parametr~zation of the family of generators of the vertical 

cylinder Cv ' Nt the normal plane to Cv through the generator gt' 

Let Yo be the curve of intersection of the first cylinder with the 

plane No, Y, the intersection of the second cylinder with N,. 

Then the orthogonal trajectories of the family Nt through the 

points of Yo intersect each plane Nt in a congruent copy Yt of Yo' 

Because of Y, = Y, the curves Yt provide a smooth interpolation 

between Yo and Y, (see fig. 1 ). The surface swept out by t~e Yt 

is usually called a "molding surface" or "GesimsfUiche" (see [6J ) • 
..., 

The Yt are lines of curvature on this surface and it is easy to 

check that its Gaussian curvature is nonpositive everywhere. 

Clearly the molding surface fits smoothly the cylinders and the planes. 
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Now for a convex vertex we can proceed similarly. In order to pre­
serve a possible rotational symmetry of the vertex cone we suggest 

the following: truncate the vertex by a plane (preserving the 

symmetry, if there is any). Then the resulting vertices will have 

valence three. Now smooth the new edges by cylinders as described 

above (but with 'essentially smaller o). Then we can apply the 

same kind of construction near the vertices. The only difference is 

that this time the molding surface will have nonnegative Gaussian 
curvature. 

Altogether we get a smooth approximation of the qiven polyhe­

dral surface M which coincides with M in the E-neighborhood of 
the union of the edges and such that positive Gaussian curvature 

occurs only in the E-neighborhood of the convex vertices. If the 

polyhedral surface is tight these vertices lie on the boundary of 

the convex hull and consequently the smoothed surface will be tight 
as well. 

Proof of theorem 2: The idea behind theorem 2 is that generically 

all vertices are 3-valent: if the planes spanned by the various faces 

lie in general position then no more than three planes can meet at 

a vertex. On the other hand the tightness itself is a very special 

situation. Therefore we have to be very careful when changing our 

given tight surface. 

Lerrma: The ve~tex cone of a standard saddZe ve~tex is the boundary of the union 

of two 'Toofs" whepe we mean by a poof the inte~section of ~ cZosed halfspaoes. 

The pidge of each poof wiZt hit the intepiop of the othep PO of. 

Proof of the lemma: Locally there is an orientation of the surface. 

This enables us to talk about "convex" and "concave" edges meeting 

at a standard saddle vertex v. If there are two subsequent edges 

(in cyclic order) of the same kind then the plane ~panned by those 

two edges will be a supporting plane. This implies that the edges 

of a standard saddle vertex have to be creased in an alternating 

manner: convex, concave, convex, concave. Let us take the two 

convex edges as ridges. Then the two roofs are built up by the two 

pairs of planes' adjacent to the two convex edges. The condition 

that all interior angles of the faces at v are smaller than 

implies that each convex edge (the ridge) hits the interior of the 

other roof. 
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figure 2 

To finish the proof of theorem 2 we observe what happens if 
we move one of the four planes a little bit in the normal direction. 
This is the same as saying that one of the roofs is moved against 

the other one. First of all we see that the boundary of the union 

of the two roofs will still be a surface. Hence the topology does 

not change by this process. Secondly we see that the saddle vertex 

splits into two vertices, each being the intersection pOint of a 

ridge with the other roof. The vertex cone of each of the new 
vertices will be the boundary of the union of a roof and a closed 

halfspace. Therefore these new vertices are nonconvex and of valence 

three with exactly one local supporting plane (see figure 2 for the 

si~uation before and after this process). After iterated application 
of this process the surface finally will have only 3-valent vertices. 

The convex vertices will split into convex vertices of valence 3 

and the former nonconvex 3-valent vertices will keep their geometry: 

they will just be moved by a euclidean translation. The important 

pOint is that by this process no open sets of local supporting 
planes are created. Therefore if the old surface was tight the new 

surface will be tight as well. 

3. A TIGHT POLYHEDRAL PROJECTIVE PLANE WITH TWO HANDLES 

The main part of the surface to be described is a polyhedral Boy 

surface with a three-fold symmetry 1a modified version of the one 

given in [1] ). This has the property that all its strict local 

supporting planes concentrate at the vertices of three convex 

faces on the boundary of the convex hull. Then one has to cut out 

these three faces and to join the resulting surface with an 
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figure 3 
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figure 5 
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All the strict local supporting planes of this polyhedral Boy 

surface with two handles will concentrate at the vertices of the 

tetrahedron which implies that the surface will be tight. 

Every vertex lies in the cubic lattice ~3c E3 where the origin 

is the triple point of the Boy surface (which is not a vertex of 

the surface). All of the nonconvex vertices are in fact of 

valence three. The figure 3 shows three different views onto the 

polyhedral Boy surface (the tetrahedron does not show up there). 

Note one can distinguish the curve of selfintersections from the 

edges by a different drawing. 

We'describe the surface explicitly by the coordinates of the 

vertices and the shape of the faces. The three-fold symmetry 

appears as cycliC shift of the three coordinates x-.y-.z-.x 

corresponding to the cyclic shift of the indices 1-.2-.3-+1 of 

the following vertices: 

A, = (-1 , , , 0) A2 - ( 0,-1, 1 ) A3 = 1 , 0, -1 ) 

B1 = (-1, 1 , -1 ) B2 = (-1,-1, 1 ) B3 = 1,-1,-1) 

C1 = (-1 , 0, -1 ) C2 = (-1,-1, 0) C3 = 0,-1,-1) 

D1 = ( 0, 2, 1) D2 = ( 1 , 0, 2) D3 = 2, 1 , 0) 

E1 = (-1 , 2, 1 ) E2 = ( , , -1, 2) E3 = 2, 1 , -1 ) 

F, = (-1 , 0,-2) F2 = (-2,-1, 0) F3 = 0,-2,-1) 

G, = (-4,-1, 2) G2 = ( 2,-4,-1) G3 = (-1 , 2,-4) 

H1 = (-5, 0, 2) H2 = ( 2,-5, 0) H3 = 0, 2,-5) 

J 1 = ( 2, 2,-8) J 2 = (-8, 2, 2) J 3 = 2,-8, 2) 

K = ( 2, 2, 2) 

The vertices J 1 , J 2 , J 3 , K span a tetrahedron which contains a 

polyhedral Boy surface spanned by the 24 vertices Ai' Bi ,· .. , Hi ' 
i = 1,2,3. The 13 faces of this Boy surface split into 5 different 

types under the three-fold symmetry. Figure 4 shows these 5 types 

where type 5 is invariant. The dashed lines indicate the curve of 

selfintersections. This curve is the closed space polygon 

where the pOints are the following: 

L1 = ( 1 , 0, 0) L2 = 0, 1 , 0) L3 = 0, 0, 1) 

M, .. (-1 , 0, 0) M2 = 0, -1 , 0) M3 = 0, 0, -1 ) 

N, = (-1 I 0, , ) N2 = 1 , -1 , 0) N3 = 0, 1 , -1 ) 

0 = 0, 0, 0) 
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The faces of the tetrahedron are shown in figure 5. In order to 
join the Boy surface with the tetrahedron we have to cut out the 

three faces of type 4 from both of them. This is already indicated 

in the drawing of type 7 • 

The Euler characteristic of the Boy surface is easily computed 

to be X = 24 - 36 + 13 = 1 • After gluing it together with the 

tetrahedron we get X = 28 - 42 + 11 = -3 (Note that the three 

noncontractible faces of the tetrahedron don't make a contribution 

to the Euler characteristic). It is not hard to see that all the 

vertices of this surface are in fact of valence three. 

In order to complete the proof of theorem 3 one has to attach 

an arbitrary number of handles to this tight polyhedral surface 

such that th~ threefold symmetry is preserved. This is easy to do 

if this number has a residue 0 or 1 modulo 3. In the case of a 

residue 2 modulo 3 one can use the boundary of a hexagonal truncated 

pyramid where three quadrilaterals have been removed which are 

not adjacent to each other (see figure 6). 

figure 6 

4. CONCLUDING REMARKS 

1. Many examples of tight polyhedral surfaces in the literature are 

of the kind to which our theorems apply. In fact such n smoothing 
process has already been used implicitly in Kuiper's example of a 

tight Klein bottle with handle (see [9] ). Banchoff's tight square 

tori (see [4] ) satisfy the assumptions of our theorem 2 if the 

meridian curve has a horizontal top and bottom edge. If there is a 

top cr bottom vertex one has to truncate it hori~ontally a little bit. 



- 11 -

Other examples are the boundaries of the difference set of 

two convex 3-polytopes. Such a construction has been used in (5] 

to get tight polyhedral surfaces with geometrical degree four. 

Assume that P and P' are 3-polytopes which are dual to each 
other and such that the vertices of each lie outside of the other. 

Then the boundary of each difference set P' P', P" P will be 

a tight polyhedral surface satisfying the assumptions of our 

theorem 1. Quite symmetrical examples can be constructed using the 

Platonic or Archimedean solids and their duals (see figure 7 

which shows the difference of a dodecahedron and an icosahedron) . 

In the case of an octahedron minus a cube the resulting manifold 

of genus 7 happens to be a so-called "Platonic manifold" {5,4;7} 

(see [14] ). 

figure 7 

2. However, the question is what happens for tight polyhedral 

surfaces in general. The 7-vertex Csaszar torus ( cf. [8]) and 

Brehms's flat torus are tight and contain vertices of other types, 

in particular the "mixed curvature type" (see figure 8) where a 

nonconvex vertex admits an open set of local supporting planes. 
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There is the notion of a polyhedral curvature K = K+ - K- which 
corresponds to the Gaussian curvature, and an absolute curvature 

+ -K - K + K which corresponds to the absolute Gaussian curvature 
of a smooth surface (see [3],[7] ). In terms of those a tight 
smoothing has to preserve the positive part K+ and the negative 

part K- simultaneously. In [7J it is shown that one can approxi­

mate an arbitrary polyhedral surface in such a way that the various 

curvatures converge. This however does not imply that a tight 
polyhedral surface will be smoothed tightly because additional 
open sets of local supporting planes will be created. 

We would like to ask the following 

Question: Does an arbitrary tight polyhedral surface in E3 admit 

a tight smoothing? 

The corresponding question for tight surfaces with boundary is 
known to be false because there is a tight polyhedral M~bius band 
in E3 but not tight smooth one (see [10] ). It is also known 

to be false for surfaces in high dimensional euclidean space 

because there are no tight smooth surfaces in En for n ~ 6 

whereas there are such tight polyhedral surfaces (cf. [2] ). 

3. Finally we want to mention another application of our theorem. 

In [13] there will be studied the following problem: which regular 

homotopy classes of surfaces in E3 contain a tight smooth one? 
In particular it will be shown that there are tight smooth surfaces 

of non-standard regular homotopy types. Certain tightly smoothed 

tight polyhedral surfaces will be used in this construction, in 

particular the tight Boy surface with two handles described in 

section 3. 
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