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Graphs attached to certain complex hyperbolic 

discrete reflection groups 

§o. Introduction 

by 

Masaaki YOSHIDA 

In the last few years, several discrete (complex) reflection 

groups acting on the unit ball 

were found and studied. Picard ([11]), Terada ([13]) and 

Deligne-Mostow ([3]) studied the monodromy groups of the 

Appell's hypergeomtric differential equations and found 27 

groups. Call these as PTDM groups. Hirzebruch ([5]) and 

Hofer ([7]) calculated Chern numbers of some orbifoldsattached 

to some line arrangements on the projective plane and found 

several groups, which will be called HH groups. Mostow ([10]) 
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constructed his "remarkable" polyhedra in B and found groups 

generated by three reflections described by triangular Coxeter 

graphs. PTDM groups and HH groups are also reflection groups. 

In this paper, I shall introduce new convention for graphs 

and shall give pentagonal graphs for all the PTDM groups, 

which are generated by five reflections. For some HH groups, 

I shall give graphs which describe how the mirrors of reflec­

tions are situated in B and what kinds of Fuchsian groups 

are acting on the mirrors. 

The author would like to thank to Max-Planck-Institut 

fur Mathematik, especially to professor Hirzebruch, where this 

paper was written for hospitality and excellent working conditions 

and to professor 1m Hof with whom he had valuable discussions 

in the boat. 
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§l. Discrete reflection groups on H2 

Although discrete reflection groups acting on the hyper­

bolic space are far from being classified, recently, 1m Hof ([8]) 

classified the "complete orthoschemes". I omitt the details 

and shall give the Coxeter graphs of two dimensional complete 

orthoschemes. 
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two real parameters 

3 ~ P ~ m, one real parameter 

3<p q<c» !.+ql<~ 
-' -' p ~ 

Here the symbol .- __ e stands for two reflections which admit 

a common perpendicular. For example, the arrangement of the 

mirrors of generating reflections of the first group is as 

follows 

---

Two lines,· if they meet, are perpendicular. 
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§2. Complex hyperbolic plane 

Let V be a three dimensional vector space ove~ [, on 

which we fix a Hermitian form H of signature (+,+,-). The 

unitary group of H operates on the projective space Pz = 

v - {O}/Cx we denote the resulting group on P2 by PU (H) • 

Set <p,q>. H(p,q) and 

V-· {pE V <p,p> < a}, 

VO = {p E. V <p,p> = O}, 

V+ • {p f: V I <p, p> > O}, 

n : V - {O} + F2 canonical map, 

Aut(B) = the restriction of PUCH) to B. 

We regard B as a Riemannian manifold equiped with the Aut(B)­

invariant metric. Let us choose basis of V so that 

then B is the unit ball in to. The isotropy subgroup of 

Aut (B) at the origin is the unitary group U(2). The ball 

has two kinds of totally geodesic real two dimensional surfaces 

- 5 -



that is, two dimensional real hyperbolic space and the one 

dimensional complex hyperbolic space. In the sequel we shall 

see that the ball B looks like an amalgamation o{ the both. 
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13. Lines in B 

A vector r ~ v+ (resp. V~, VOl defines a line 

rJ. • n{x E V - to} I <x,r> 0:: 0> 

through (resp. outside, touching) B. An element of Aut(B) 

which fixes the line rL is represented by 

(3.1) 

(3.2) 

In the 

I" and 

in B, 

x + x + 
<x,r> 

(t-l)<r r> r , , I (I II 1, 

x + x + ~ k <x,r> r , k f IR, T t: 

sequel, by a line in B we mean the intersection of 

a line r.L for some r E V+. For two distinct lines 

represented by r l and r 2, introduce the invariant 

p(rl'r2) • 
l<rl ,r 2>1 

/<rl ,rl ><r Z,r2> 

The two lines meet in B, meet on aB or admits a (unique) 

perpendicular line in B if and only if p(rl,rZ) < 1, = 1 

or > 1. We want to consider line arrangements in B. Let 

() denote a line in B. For two distinct lines, represented 

by r l and r 2, we symbolize as follows 
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o 0 

0---0 

0--0 

0------0 

p(r1,rZ) • 0, perpendicular 

o < p(r1,rZ) < 1 

p(r1,rZ) • 1 

We are particularly' interested in the following arrangements· 

.0 . . . 
(3.3) 0 9 

'.. " 6- --- d 
, 0 - - - -0--0 - - - -·0 J O~--fO\---"O 

Up to Aut(B), these arrangements have two real parameters 

as in 11. (If one segment becomes bold faced then the arrange­

ments fails one parameter.) 
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14. Reflections in Aut (B) 

Definition. A transformation A in Aut(B) is called 

a reflection if A is represented by (3.1) for some non-trivial 

root of unity t, say ll/p, and r € V+. It is denoted by 

GD. A reflection group in Aut (B) is a group generated by 

reflections. 

Definitfon. An element A ~ Aut(B) is called an E-re-

flection if A is represented bY,(3.l) for some non-trivial 

root of unity t~ say ll/p, and r ~ V-. It is denoted by 

@. An element A E Aut (B) is called a P-reflection if 

A is represented by (3.2) for some k ' IRx d VO ~ an r t . 

It is denoted by G. In any three cases, the fixed locus of 

A is called the mirror of A. 

Let A and B be two reflections in Aut(B) such that 

the group <A,B> generated by A and B is discrete. If 

the mirrors of A and Bare situated as Or----O then 

<A,B> is a unitary reflection group, which will be briefly 

reviewed in is. If they are situated as C>----<) then <A,B> 

is a subgroup of the parabolic subgroup of Aut(B), which we 

also review in 16. If they are situated as ()---() then 

<A,B> a Fuchsian group 
ac~ as 

on the common perpendicular 

line in B. If it is a Fuchsian group of the first kind (i.e. 
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finite covolume) then it must be a triangle group. Let p 

and r be the order of the reflection A and Band 

(p,q,r) be the type of the triangle group. We shall symbolize 

the group <A,B> by 

1+.41 < 1 
p q r ' 

We shall use this symbol not only for two reflections'but also 

for E and P-reflections. We regard a line perpendicular to 

a mirror point as a line passing through the point. Thus for 

P. r (2 !. Ipl, Irl ~ CD), the group ® --~q- 0 acts on the 

perpendicular line as a Fuchsian triangle group of type (Ipl, 
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§5. Unitary reflection groups (c.f. [2]) 

A unitary reflection group generated by two reflections, 

of order p and r, has a presentation 

R' P = R r = 1, 
I 2 

(5.1) 

with ?q R4 s on each side, where 2q is a positive integer 

generator than 2 and 

1 + !. + 1 > 1 -
P q r 

and q is an integer if p ~ r. It is symbolized by the graph 

® 2q ®. 

Let G C U(2) be a two dimensional unitary reflection 

group and G C PGL(2) its propectified group. The group IT 

is a polyhedral group. For a given polyhedral group <p,q,r>, 

there is a unique maximal unitary reflection group G such 

that rr· <p,q,r>. This group is denoted by <p,q,r>s', where 

.!.!. +! +! - 1, 
s P q r 

and has a presentation 
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(S.2) 

The center is of order 2s and generated by RIR2R3 ; 

1 + Z2s + <p,q,r>s + <p,q,r> + 1. 

One can find a graph of the group <p,q,r>s in some literature 

(c.f. [1]) but we do not use it. The group <p,q,r>s has a 

subgroup with graph ®. 2q ® and the group is generated 

by the subgroup and the center. Thus if we regard the group 

a subgroup of Aut(B), the group is symbolized by 

@ ® 2q <!). 

If one regard the group as a transformation group on [2 then 

the regular orbit is [2 minus three lines passing through a 

point in common. 

The Shephard-Todd symbol ([12]) of these groups are as follows 

<5,2,2>5 • G(2s,2,2), <3,3,2>6 = (7) J 

<4,3,2>12 • (11), <5,3,2>30 = (19). 
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§6. Parabolic reflection group in Aut(B) ([4]) 

We shall study here discrete reflection groups in the 

isotropy subgroup of Aut (B) at. P E: aB. To do so we choose 

the Hermitian form H so that B is represented by 

{[z,u,l] € 1P2 I 1m z - lul 2 > a}, 

and P = [1,0,0) E aBo Let p be the parabolic subgroup of 

Aut (B) corresponding to P and C its center. Then 
1 

r+r-T\a\2 1 2 Alia ll, a f 11:, r E. 

R, t. p • [p,a,r] • 0 II a 
hd = 1 

0 0 1 

C • {[l,O,r] \ r t: R} • 

Let w be the homomorphism of p onto the one dimensional 

Euclidean motion group U(l) ~ ~ given by 

. [}.I,a,r] + 
[ llO all ' 

then we have 

1 + C + P ~ U(l) ~ C + 1. 

Let G C P be a discrete reflection group of locally 
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finite volume at P then G· neG) is a crystallographic 

group in U(l) ~ [ and G has a non-trivial center : 

For a given crystallographic group ~ = <p,q,r>(2 ~ p,q,r < ~, 

IIp + l/q + 1/r: = 1) or <2,2,2,2 T>(Im T > 0), there is 

a unique maximal discrete reflection group G denoted by 

<p,q,r>~ or <2,2,2,2; T>~, respectively, such that n(G)· IT. 

The group <p,q,r>~ has a presentation (5.2) and the group 

<2,2,2,2 ; T>~ has a presentation 

k = 1,"', 4. 

A discrete group in p generated by two reflection of 

order p and r has a presentation (5.1) and symbolized by 

the graph 

where 1/q· IIp + 11r - 1. The group <p,q,r> has a subgroup 
00 

with graph ~ and is generated by the subgroup and 

the center. Thus the group has the following diagram : 

e~ 
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The orbit space BIG U {P} added by a point P is a 

domain in [2 and the discriminant consists of three Crespo 

four) lines passing through a point in common for G = <p,q,r>~ 

Crespo <2,2,2,2 ; ~> ). 
m 

In [4], these groups were denoted as follows 

<3,3,3>~ = r III C3 ; 0), 

<2,3,6>m = rVI C6 ; 0), 

<2,2,2,2 
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S7. PTDM groups (c.f. [11], [13] and [3]) 

Let xl' x2' x3 be homogeneous coordinates of P2 and 

set xo'" o. Put 

{i,j} c {O,I,l,3} , 

S(ijt) • {xi = Xj • xt }, {i,j,k} C {O,I,2,3}, 

p 0 
2 

A .... U.S(ij), 
I..J 

the manifold obtained from ~l by blowing 

up the four points S(ijk), 

T : pO + P2 the natural map, 

S (ij) 0 C lPo proper transform of S (ij) , 

A ... {[xl,xl,l] E £>\ xl ,x2 €: IR, x2 > 0, xl -x2 > 0, 

xl < I}. 

There is a Fuchsian differential equation E(A) defined on 

~2' with regular singularity along A, called Appell's 

hypergeometric differential equations, where A· (AO,Al ,A2,A3) 

are four complex parameters. The equation defines the projective 

monodromy representation 
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p : 'If 1 (£', Q) .. PGL (3, [) . (Q f;i) 

For certain values of A's, the image of p (called the projec~ 

tive monodromy group of B(A) is a discrete subgroup of PU(H). 

There are just 27 such groups, call these as PTDM groups. They 

are reflection groups in Aut(B) ([15]). 

Fix a point Q in fl and regard fl c. f) c CP 2 a Let 11 

(resp. 12,1~,14,lS) be a loop with the base point Q going 

on fl near to the line L = S(012)0 (resp. S(02)0, S(13)0, 

S(123)0, S(12)0), turning around L in ~ and coming back 

on fl. One may note that ;., ... , 15 generate 'lf l (D,Q). 

Set 

Q 

-+-----+S (02) ° 
S(012)0 5(13)° 

[P ° 2 

1(1) • - (A O + Al + AZ - 2), 

1(2) • AO + AZ - 1, 
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1(3) • ~l + ~3 - 1, 

1(5) = ~l + ~2 - 1 

then, in view of [13], we see that P(li) (izl,···,5) is a 

reflection (resp. P-reflection, E-reflection) if lei) > 0 

(resp. 0, < 0). Let F(i) be the mirror of p(li). Since 

~ is simply connected, we can conclude that F(I),···,FeS) 

form a (may be degenerated) pentagon (3.3). The intersection 

of this pentagon and a real geodesic surface H2 is a pentagon 

in the (may be degenerated) figure in §l. 

For the explicit values of ~l""'~5' we refer to .[13). 

We are now ready to give graphs of PTDM groups. Unlike the 

case of real reflection groups and like the case of unitary 

reflection groups, one group may have different diagrams. 
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8' 
3\ 

\ 

18. Coxeter graphs of PTDM groups 

We shall give Coxeter graphs for 27 PTDM groups. All 

conventions are explained in 14, Sand 6. The number under 

each pentagon is the group number (Terada number) used in [13]. 

10, .8'10 16.8,8 9,0) 18 . 
8' >'0 , " 

0 0 8 (9] 
' , 8 " 

I , 
10 , I 10 ,8 18 ' 18 , , I , , I 

0---• 0----0 10 G---0 16 
Q----G 

6 

-1- - 2-

12 ,~, 6 

G' , 3 

, 
12 ~ 

. 0--1-2-

-S - -6 -

-3 - -4-

.. 

-7 - - 8-

- 19 -

8 , 
I 

'e» 



-"~ ~i) G' W~ 16, ' ' J.6 
" (!J 2 8' o (~ , 

\ 

8 t CD 8. 16\ 4 \ t 8 

0-~-
I 0 1-6" - '3> 168 

-9- -10 - -11 -
-12 -

20, 4 24 ;' 24 ... 0'12 
0) 

24 , , 8 
... " 

... 
" 

; , ... 

0) 0" 0 0 
4' 

I , \ 
8 ' I ,10 6 , 4 12 \ , 

@--20-0 ®-24-0 
\ I 

@--- @- ~4-24 

-13 - -14 - - 15- -16-

0 0 36 ,0,,4 24 24 ... , 6 30, ,10 
... , , ... " I I 

'0 'Ci 0 0 ~ '0 (~ 
\ , 

6 \ . '12 6\ /6 
4 " 

'1' 4 \ , 12 , ' 

@--24G @-2~-0 0 3-0--0 @-36--0 
-17 - -18 - -19 - - 20-
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(0 0 /z~"~_ @ 
4(l; ',10 48/ , 6 8/ 'p 

" 
, 

" ,; , 
" 

, 

~) <~V '0 ® ~ 0 e ',' 
I 6\ ,'8 6\ I \ I 

10' 112 24 , '12 
I 

@-48-8 
\ I \ I 

@-- ®-ii0 (9-4-(0 40 

- 21- - 22- - 23- - 24-

o 8 / ' GO , 

I 
GO \ I 6 

0-;--G 
- 2S- - 26- - 21-

Note. The groups 3 and 19 are used in [14] and the group 

1 is treated in [11]. 
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19. A two dimensional complex crystallographic group 

Let Aut([2) be the complex Euclidean motion group 

U(2) ~ [2 acting on [2. We call an element of Aut(t 2) a 

reflection or an E-reflection if it is conjugate to [1 
lJ] 

or [lJ 
lJl (lJ = ll/p), and symbolize as ® or ~ , 

respectively. Note that this definition is essentially the 

same as we did in §4. 

There 

such that 

exists a crystallographic group 

the orbit space is (>2 and the 

ro C (Aut((2) 

regular orbit is lJ. 
The group rO admits an exact sequence 

1 + Z ~ Z + rO + <2,2,2>2 + 1. 

This group is denoted by (4.2)1 in [9], and generating reflec­

tions and their relations are known. 

By using E-reflections also, by the analogous arguments 

and conventions as in 14, 5 and 7, we can symbolize the group 

ra by the pentagonal graph 

&.' 
® 

e5 
I 

4 \ 
I 

~-- - - - 2 
8 
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Here the subdiagram 

stands for the subgroup of Aut([2), which is isomorphic to 

the one dimensional crystallographic group <lpl,lql,lrl>, 

acting on the perpendicular affine line. 

The group ra appears as a quotient of the PTDM groups 

r of Terada number 3,5,9,10,11,12,15,17,24. Because each 

of them has a diagram 

stands for one of the 

three kinds. 

such that . PI- , . Pz : , :P3 qz, Q4' qs are even and I -, -P 4 I, 

IPS: , q1' q3 are divisible by 4. The kernel K of the natural 

homomorphism r + rO .is again a reflection group in Aut(B), 

requires infinitely many generating reflections, whose arrange­

ment of mirrors are same as r and the orders are half or 

one fourth of those of r. Galois correspondence may be put 

into the following diagram. 
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B - {mirros of r} ~ 1 

.. 
£2 _ {mirrors of rO} f---t K 

.. I ra II r/K 
[) ......-.-. r 

This situation is very much related to the Hirzebruch's 

construction (6) of surfaces covered by ~ball,uhich are 
A 

finite ramified coverin~of abelian surfaces. 
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SlOe Hessian configuration and HH groups 

Hessian configuration A C F2 consists of the following 

12 lines : 

x. • 0 J 
i • 1,2,3, 

i,j = 1,2,3, 

where w == exp 2n~ /3. Put 

£)' = lP2 ~ A, 

E ··{e .. -A .. " A .li,j=1,Z,3} 
1J 1J oJ 

the nine 4~fold points of 

p a 
Z the manifold obtained from P z by blowing up E, 

or . p a ... 1P2 the natural map, . 2 

A~R. C P 0 
2 proper transformation of Ak1 (k , 1= 0 , 1 ,2 , 3) , 

EO == -1 or E, 0 e .. 
1) 

== 
-1 or eij . 

It is known ([5], [7]) that the universal branched covering 

of p 0 
2 with ramification indices n on a Ak1 (k,1=0,1,2,3) 

and m on EO is biholomorphic to the ball B for (n,m) 

A, 

• (4,2), (3.3) and (2,m). Let r(n,m) C Aut(B) be the Deck 

transformation group. These three are the HH groups corresponding 
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to the Hessian configuration. These are reflection groups 

generated by eleven reflections. I can not give any Coxeter 

graphs for them but shall describe the arrangements of mirrors. 

Let A be a triangle 

Regarding A cDc P2o, the triangle is bounded by five lines 
a a a a a 

A02 ' e 30 , A33 , e 03 and AOI in this order. Thus just as we 

did in §7, we can define loops 11 , .•• ,1 5 , with base point 

at Q E A, turning around the above five lines, the represen­

tation 

P : 1fl (j)r ,Q) + r{n,m) 

and the reflection or P-reflection p{l.). 
1 

The mirrors 

of P{l i ) (i=I,· •• ,S) again form a pentagon (3.3). For 

(n,m) = (2,~), the pentagon degenerates to a triangle. 

F{i) 

Unlike the PTDM groups, p(l.) (i=l,···,S) do not generate 
1 

the group r(n,m). The stabilizer r(n,m)i of F(i) in r{n,m) 

is a reflection group containing p(li +2) and P(li +3), regard­

ing 6 • 1. If F(i) is a line in B then r(n,m)i acts as 

a Fuchsian group of the first kind\land if F{i) is a point 
on J:4t i) 

on 3B then r(n,m)i i~ isomorphic to the group <2,2,2,2;T>~ 
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for som T. One can easily check that the five groups r(n,m)i 

(i=l,···,S) generates the whole group. Thus we can say that 

the group r(n,m) is determined by the skelton pentagon and 

the five Fuchsian groups generated by elliptic transformation 

for (n,m) a (2,m), three Fuchsian and two parabolic reflection 

groups. 

Let us study the group r(n,m)i. The Hessian configuration 

A is invar-iant under the Hessian group G2l6 C PGL (3) generated 

by 3-fold reflections with mirror Akl (k,1=O,l,2,3) ([12]). 
"U 

This implies the existence of a reflection group r(n,m) in 

Aut (B) which admits an exact sequence 

"U 
1 + r(n,m) + r(n,m) + G216 + 1. 

This tells us the following. Let <p,q,r> (l/p+l/q+l/r = 1) 

be a triangle group such that p and q are multiples of 3 

then there exists, uniquely, a subgroup of index 3 with sign 

(p/3,q,q,q,r/3), which we shall denote by <p/3;q,q,q;r/3>. 

Then if 
f(i).we 

nn,mh 
have! 

r(4,2)l 

denotes the restriction of r(n,m)L on the line 

"'- "U- "U • r(4,2)3 • r(4,2)S • <4;2,2,2;4>, 

'" • <4;4,4,4;1>, 

f(3,3)1 ~ r(3,3)3 ~ r(3,3)S 

- 27 -
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r(3,3)2 '" f(3,3)4 '" <3; 3 , 3,3; 1 >, = = 

r(2,co)1 '" f(2,co)3 '" f(2,00)S '" <2;00,00,00;2>, = = = 

'" '" r(2,oo)Z = r(2,oo)4 == <2,2,2,2; w> 00. 

<8 ; 0, b , b ; c > 
If @---------------@ denotes a reflection group in 

Aut(B) which is isomorphicVto <a;b,b,b;c>, with two specified 
,on the common perpendicular, <2 2 22-w> 

f?\ "" 00 I?\ reflection of order a and b, and ~ ~ 

denotes the parabolic group <2,2,2,2;w> with two specified 
00 

reflection, then the above result can be abriviated by the 

following diagrams 

(m,n) = (4,2), (3,3), 

r l = <n m, m, m n>, 

r3 = <n m, m, m. · n>, • 
r 2 = <n n, n, n · 1>, , 

00, 00,00 ; 2>, 

00, ;;, CD : 2>, 

<2, 2, 2 J 2 ; w> • co 
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