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Finite multiplicity theorems

Toshiyuki Kobayashi∗ and Toshio Oshima†

Abstract

We find upper and lower bounds of the multiplicities of irreducible ad-
missible representations π of a semisimple Lie group G occurring in the in-
duced representations IndG

H τ from irreducible representations τ of a closed
subgroup H. As corollaries, we establish geometric criteria for finiteness
of the dimension of HomG(π, Ind

G
H τ) (induction) and of HomH(π|H , τ)

(restriction) by means of the real flag variety G/P , and criteria for uni-
form boundedness of these multiplicities by means of the complex flag
variety.

Keywords and phrases: real reductive group, admissible representation, multi-
plicity, unitary representation, spherical variety, symmetric spaces.
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1 Introduction

Let G be a connected real semisimple Lie group with finite center, and H a
closed (not necessarily, reductive) subgroup with at most finitely many con-
nected components. We consider the following two geometric conditions:

There exists an open H-orbit on the real flag variety G/P .(HP)

There exists an open Hc-orbit on the complex flag variety Gc/B.(HB)

Here P is a minimal parabolic subgroup of G, B is a Borel subgroup of a complex
Lie group Gc with the complexified Lie algebra gc = g⊗R C, and Hc a complex
subgroup with Lie algebra hc = h ⊗R C, where g and h are the Lie algebras of
G and H, respectively. The condition (HB) is equivalent to that Gc/Hc is a
spherical variety (i.e. Bc has an open orbit on Gc/Hc) when G ⊃ H are defined
algebraically.

An analogous notation PH ⊂ H and BH ⊂ Hc will be applied when H is
reductive. In this case we can consider also the following two conditions:

There exists an open PH -orbit on the real flag variety G/P .(PP)

There exists an open BH -orbit on the complex flag variety Gc/B.(BB)

∗Partially supported by Grant-in-Aid for Scientific Research (B)(22340026).
†Partially supported by Grant-in-Aid for Scientific Research (A)(20244008).
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Clearly, these four conditions on the pair (G,H) do not depend on the choice of
parabolics, coverings or connectedness of the groups, but are determined locally,
namely, only by the Lie algebras g and h. An easy argument (see Lemma 4.2)
shows that the following implications hold. Here we consider (PP) and (BB)
when H is reductive:

(HB)

=⇒ ⇐=

(BB) (HP)

⇐= =⇒

(PP)

None of the converse implications is true:

Example 1.1 ([13, Example 2.8.6]). Let (G,H) be a triple product pair (‵G×
‵G×‵G,∆‵G) with ‵G being a simple Lie group. Then (HP) holds iff ‵G is compact
or ‵g ≃ so(n, 1), (HB) holds iff ‵g ≃ su(2), sl(2,R), or sl(2,C); (PP) holds iff ‵G
is compact; (BB) never holds. Such a triple product arises naturally in the
analysis of the tensor product of two representations (see [4] for ‵G = SL(2,R);
[7] for ‵G = SO(n, 1), for instance).

It should be noted that the two conditions (HB) and (BB) depend only
on the complexifications (gc, hc). It is known by the work of Brion, Krämer,
and Vinberg–Kimelfeld [5, 17, 18, 28] that the geometric condition (HB) char-
acterizes the multiplicity-free property of irreducible (algebraic) finite dimen-
sional representations π in the induced representation IndGH τ with dim τ = 1
(i.e. (G,H) is a Gelfand pair), and that the condition (BB) characterizes the
multiplicity-free property of the restriction π|H with respect to G ↓ H (i.e.
(G,H) is a strong Gelfand pair). An extensive research has been made in the
decades in connection with algebraic group actions, invariant theory, and sym-
plectic geometry among others (e.g. [27]), but mostly in the framework of alge-
braic (finite dimensional) representations or in the case of compact subgroups
H.

These beautiful classic results may play a guiding principle in considering
what a natural generalization would be for non-compact subgroups H (or for
non-Riemannian homogeneous spaces G/H), however, only a complete change
of machinery has enabled us to prove finite/bounded multiplicity results for
admissible representations. Namely, in order to overcome analytic difficulties
arising from non-compact subgroups H and from infinite dimensional represen-
tations, we employ the theory of a system of partial differential equations with
regular singularities, for which micro-local analysis gives a canonical method.
Thus we establish in this paper that the above four geometric conditions (HP),
(HB), (PP), and (BB) characterize finiteness/boundedness of the multiplici-
ties of the induction/restriction for admissible representations of real reductive
groups, respectively (see Theorems A–D below).
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For a precise statement of our results, let Ĝad denote the set of equiv-
alence classes of irreducible admissible representations of G (see Definition

2.1), and Ĝf that of irreducible finite dimensional representations of G. We
write cg,K(π, IndGH τ) for the multiplicity of the underlying (g,K)-module πK of

π ∈ Ĝad occurring in the space of sections of the G-homogeneous vector bundle
over G/H associated to τ ∈ Ĥf (the topology of IndGH τ is not the main issue
here owing to analytic elliptic regularity).

Theorem A (finite multiplicity theorem for induction).

1) If (HP) holds, then cg,K(π, IndGH τ) <∞ for any π ∈ Ĝad and any τ ∈ Ĥf .
2) Suppose that G, H and τ are defined algebraically over R. If (HP) fails,

then for any algebraic representation τ of H there exists π ∈ Ĝad such that
cg,K(π, IndGH τ) =∞.

An upper bound formula of the multiplicities is presented in Theorem 2.4,
which is strong enough to give a proof of uniformly bounded multiplicity results
under stronger assumptions (Theorems B and D below), and thus plays a central
role throughout the paper. The algebraic assumption in the second statement
of Theorem A is crucial. A counterexample without the algebraic assumption
is illustrated in Example 3.6.

Concerning the uniform boundedness of the multiplicities for the induced
representation, we may consider the following three kinds of conditions:

sup
τ∈Ĥf

sup
π∈Ĝad

1

dim τ
cg,K(π, IndGH τ) <∞.(1.1)

sup
τ∈Ĥf

dim τ=1

sup
π∈Ĝad

cg,K(π, IndGH τ) <∞.(1.2)

sup
π∈Ĝad

cg,K(π,C∞(G/H)) <∞.(1.3)

Clearly, (1.1) ⇒ (1.2) ⇒ (1.3).

Needless to say, Ĝad and Ĥad depend heavily on real forms (G,H) of (Gc,Hc).
Surprisingly, the following theorem (and also Theorem D) guarantees that the
uniform boundedness condition of the multiplicities is determined only by the
complexified Lie algebras (gc, hc).

Theorem B (uniformly bounded theorem of multiplicities for induction).
1) The condition (HB) implies (1.1) (hence, (1.2) and (1.3), too).
2) Suppose (G,H) is defined algebraically over R. Then the conditions (HB),
(1.1), and (1.2), are all equivalent. Further, if H is reductive, then (1.3) is
equivalent to these conditions, too.

Remark 1.2. Theorem B is classically known for compact Lie group G even in a
stronger form [5, 18], i.e. the upper bound (1.3) is one. In contrast to the com-
pact case, the upper bound (1.3) is often greater than one if H is noncompact.
For instance, if (G,H) is a semisimple symmetric pair (SL(p+q,R), SO0(p, q)),
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then the upper bound (1.3) is no less than (p + q)! / p! q! in view of the con-
tribution of the most continuous principal series representations for G/H (cf.
[3, 25]).

Remark 1.3. It is known that the condition (HB) is equivalent to the commuta-
tivity of the ring of G-invariant differential operators. Further, if H is compact
then the condition (HB) is equivalent to that the Riemannian manifold G/H is
a weakly symmetric space in the sense of Selberg.

Example 1.4. 1) If (G,H) is a symmetric pair, then the condition (HB) (and
therefore (HP)) is always fulfilled. In particular, the uniform bounded estimate
(1.1) holds by Theorem B. This sharpens an earlier work of van den Ban [2]:

(1.4) cg,K(π, IndGH τ) <∞ for any π ∈ Ĝad and τ ∈ Ĥf .

In our context, (1.4) is derived from a weaker geometric condition (HP) by
Theorem A.
2) If Gc/Hc is a spherical variety then any real form (G,H) satisfies (HB).
There are some few non-symmetric spherical varieties Gc/Hc such as (gc, hc) =
(sl(2n+1,C), sp(n,C)), (so(2n+1,C), gl(n,C)), and (so(7,C), g2(C)), and they
have been classified in [5, 18]. Some non-symmetric ‘real spherical homoge-
neous spaces’ G/H such as SU(n, n + 1)/Sp(n,R), SU(2p + 1, 2q)/Sp(p, q),
G2(R)/SL(3,R), G2(R)/SU(2, 1), etc. admit discrete series representations
(i.e. irreducible unitary representations that occur in closed subspaces of the
L2-spaces) and some others like SL(2n + 1,R)/Sp(n,R) do not (see [12, Part
I]).
3) If we take H to be a maximal unipotent subgroup N , then (HP) holds
by the open Bruhat cell. The condition (HB) is satisfied iff G is quasi-split.
Our general formula (Theorem 2.4) applied to this special case gives an exact
estimate of multiplicities of generalized Whittaker vectors for generic parameter
in comparison with the Kostant–Lynch theory ([16, 20]; see Remark 2.5).

In Theorems A and B we have allowed H to be non-reductive and π to be
infinite dimensional, but have confined τ to be finite dimensional. In Theorems
C and D below, we treat the case where both π and τ are allowed to be infinite
dimensional. Let denote by HomH( , ) the space of continuous H-intertwining
operators.

Theorem C (finite multiplicity theorem for restriction). Assume H is reductive
in G.
1) If (PP) holds, then dimHomH(π|H , τ) < ∞ for any π ∈ Ĝad and for any

τ ∈ Ĥad.
2) Suppose (G,H) is defined algebraically over R. If (PP) fails, then there exist

π ∈ Ĝad and τ ∈ Ĥad such that dimHomH(π|H , τ) =∞.

Remark 1.5. If H = K then its minimal parabolic subgroup PH coincides with
K itself and the assumption (PP) is automatically satisfied because G = KP . In
this simplest case, any irreducible representation τ is finite dimensional and our
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argument for Theorem C 1) using hyperfunctions recovers so-called Casselman’s
subrepresentation theorem for which an algebraic proof using Jacquet functors
[6] is also known. Our proof of Theorem C 1) is given in Section 2, which in this
special case includes an analytic proof to an earlier work of Harish-Chandra [8]
that every irreducible quasi-simple representation ofG has finiteK-multiplicities
(cf. Section 2), for which an algebraic proof is also known (cf. [29, Chapter 3]).

Concerning uniform boundedness for the multiplicities of the restriction, we
consider the following three kinds of conditions:

sup
τ∈Ĥad

sup
π∈Ĝad

dimHomH(π|H , τ) <∞.(1.5)

sup
τ∈Ĥ∞

sup
π∈Ĝ∞

dimHomH(π|H , τ) <∞.(1.6)

sup
τ∈Ĥf

sup
π∈Ĝf

dimHomH(π|H , τ) <∞.(1.7)

Here Ĝ∞ (⊂ Ĝad) denotes the set of equivalence classes of irreducible smooth
admissible representations. Clearly, (1.5) ⇒ (1.6) ⇒ (1.7).

Theorem D (uniformly bounded theorem of multiplicities for restriction). As-
sume H is reductive.
1) The condition (BB) implies (1.5) (hence, (1.6) and (1.7), too).
2) Assume (G,H) is defined algebraically over R. Then (BB), (1.5), (1.6), and
(1.7) are all equivalent.

Example 1.6. 1) Owing to the classification [17], the condition (BB) is equiv-
alent to that (gc, hc) is the direct sum of some copies of (sln(C), gln−1(C))
(on(C), on−1(C)), and the trivial ones up to outer automorphisms. There-
fore the real forms such as (SL(n,R), GL(n − 1,R)), (SU(p, q), U(p − 1, q)),
(O(p, q), O(p−1, q)) are examples of the pair (G,H) satisfying (BB), and there-
fore (PP), too.
2) The symmetric pair (G,H) = (SO(n, 1), SO(k)×SO(n−k, 1)) is an example
of the pair that satisfies the condition (PP) but does not satisfy (BB) for 1 < k <
n. Likewise (G,H) = (SU(n, 1), S(U(k)× U(n− k, 1))) and (Sp(n, 1), Sp(k)×
Sp(n− k, 1)) satisfy (PP) but not (BB).

Recently, ‘multiplicity-one theorems’ have been proved in [26], asserting that
the upper bound (1.6) equals one for certain real forms (G,H) satisfying the
property (BB), which gives a finer result than Theorem D 1). However it should
be noted that the uniform bound (1.6) can be greater than one for some other
real forms (G,H) satisfying (BB). For instance, the upper bound (1.6) equals 2
if (G,H) = (SL(2,R), GL(1,R)+). Our approach here is based on the theory of
systems of partial differential equations with regular singularities is completely
different from [1, 26] which is based on the Gelfand–Kazhdan criterion.

Our approach using hyperfunction boundary value maps naturally connects
multiplicities with the geometry of the real flag variety. As one of applica-
tions of Theorem 2.4 we can obtain the following geometric result from infinite
dimensional representation theory:
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Corollary E. For any closed subgroup H of G, the number of open H-orbits
on G/P does not exceed the order of the little Weyl group W (a).

We now outline the paper. In Section 2 we give a quick review on ‘hyperfunc-
tion boundary maps’ where no assumption such as K-finiteness is required, and
prove a formula for the upper bound of the multiplicities in Theorem 2.4, which
is a key step to prove the upper estimates in Theorems A to D. Conversely, the
proof for a lower estimate of the multiplicities is based on a straightforward gen-
eralization of the construction of the Poisson transform for symmetric spaces.
Theorem 3.1 is a stepping stone for the lower estimates in Theorems A and C.
Uniform boundedness of multiplicities is discussed in Section 4 based on The-
orem 2.4, combined with the Borel–Weil theorem for parabolic subgroups and
a structural result on principal series representations. Thus we prove the first
statement of Theorem B. The second statement of Theorems B and D reduces
to the classical finite dimensional results. In Section 5 we discuss multiplici-
ties for the restriction of irreducible representations, and complete the proof of
Theorems C and D as an application of results in Sections 2 and 4.

2 An upper bound of the multiplicities

Let G be a connected real semisimple Lie group with finite center, and g its
Lie algebra. Let Z(g) be the center of the enveloping algebra U(g) of the
complexified Lie algebra gc. Then Z(g) is a polynomial ring of rank g generators,
and the Harish-Chandra isomorphism gives a parametrization of maximal ideals
of Z(g):

HomC-alg(Z(g),C) ≃ j∗c/W (j), χλ ←→ λ,

where j is a Cartan subalgebra of g and W (j) is the Weyl group for the root
system for (gc, jc).

Let π be a continuous representation of G on a complete locally convex
vector space V . Define V∞ to be the subspace of vectors v ∈ V for which
g 7→ π(g)v is a C∞ map from G into V . Then V∞ is a dense, G-invariant
subspace of V . Let π∞ denote the restriction of π to V∞. Then π∞ is a
continuous representation on V∞ endowed with a natural Fréchet topology,
and is called a smooth representation. It has a property that (V∞)∞ = V∞.
Following Harish-Chandra we call π is quasi-simple if π∞ restricts to scalar
multiplication on Z(g).

We fix a maximal compact subgroup K of G. We recall (see [29, Chapters
3,11], for some further details):

Definition 2.1. A continuous representation (π, V ) of G of finite length is
called admissible if one of the following equivalent conditions are satisfied:

π∞ is Z(g) finite.(2.1)

dimHomK(δ, π) <∞ for any irreducible representation δ of K.(2.2)
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Then the space VK consisting of K-finite vectors of V is contained in V∞,
and we write πK for the underlying (g,K)-module defined on VK . We denote

by Ĝad the set of equivalence classes of irreducible, admissible representations
of G on complete locally convex topological vector spaces, and by Ĝ∞ that of
smooth ones. Here two continuous representations (π1, V1) and (π2, V2) of G
are defined to be equivalent if there exists a homeomorphic G-homomorphism
T : V1 → V2. Naturally we may regard Ĝad ⊃ Ĝ∞ ⊃ Ĝf .

Let H be a closed subgroup of G. A G-equivariant vector bundle Vτ :=
G×H Vτ over G/H associates a finite dimensional representation (τ, Vτ ) of H.
Then we have a representation π of G on the space of sections

F(G/H; τ) ≃ {f ∈ F(G,Vτ ) : f(gh) = τ(h)−1f(g) for h ∈ H, g ∈ G},

where F = A, C∞, D′ or B denote the sheaves of analytic, smooth, distributions,
or hyperfunctions, respectively.

For each λ ∈ j∗c , the Lie algebra g acts on

F(G/H; τ)λ ≡F(G/H; τ, χλ)

:={f ∈ F(G/H; τ) : dπ(D)f = χλ(D)f for any D ∈ Z(g)}.(2.3)

Let E(G/H; τ)λ be the subspace consisting of K-finite vectors, which is inde-
pendent of F as far as dim τ < ∞ by analytic elliptic regularity [9, Theorem
3.4.4] because dπ(CG − 2CK) is an elliptic operator, where CG is the Casimir
element of g, and CK is that for k with the induced symmetric bilinear form
from the restriction of the Killing form of g.

The significance of the geometric condition (HP) is summarized as follows:

Theorem 2.2. If there exists an open H-orbit on G/P , then the (g,K)-module
E(G/H; τ)λ is of finite length for any finite dimensional representation τ of H
and any λ ∈ j∗c . In particular, C∞(G/H; τ)λ is an admissible representation of
G.

The first statement of Theorem A follows from Theorem 2.2. The main goal
of this section is to give a quantitative estimate of Theorem 2.2, namely, an
upper bound for the multiplicities of irreducible subquotients in E(G/H; τ)λ
under the condition (HP) (see Theorem 2.4). In the course of its proof, we
prove Theorem 2.2, too.

Let us fix some notation. Let g = k + s the Cartan decomposition corre-
sponding to K, and take a Cartan subalgebra j of g such that a := j ∩ s is a
maximal abelian subspace in s. We put t = k ∩ j. Let jc, ac and tc be the
complexifications of j, a and t, and let denote by j∗c , a

∗
c and t∗c the spaces of

complex linear forms on them, respectively. By the Killing form of gc we iden-
tify a∗c and t∗c with subspaces of j∗c . Let Σ(j), Σ(t) and Σ(a) be the set of the
roots for the pairs (gc, jc), (mc, tc) and (g, a), respectively, and let W (j), W (t)
and W (a) be the associated Weyl groups. Here mc is the centralizer of ac in kc.
We fix compatible positive systems Σ(t)+, Σ(j)+ and Σ(a)+, and let ρ denote
half the sum of roots in Σ(j)+ and we put ρt = ρ|t and ρn = ρ|a. Naturally we
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have Σ(t)+ ⊂ Σ(j)+. Put A = exp a and let M be the centralizer of a in K,
L :=MA, and N the maximal nilpotent subgroup of G corresponding to Σ(a)+.
Then P = LN = MAN is a minimal parabolic subgroup. We denote by Cρn

the one dimensional representation of P given by p 7→ | det(Ad(p) : n → n)| 12 .
Its differential representation equals ρn when restricted to j.

Given (ζ, Vζ) ∈ L̂f , we extend it to a representation of P with trivial action
of N , and define another irreducible representation of P by

(2.4) Vζ,P := Vζ ⊗ Cρn
.

Similarly, a P̄ -module Vζ,P̄ := Vζ ⊗ Cρn̄
is defined. Let Vζ,P := G ×P Vζ,P

be a G-equivariant vector bundle over G/P associated to the P -module Vζ,P ,
and we write F(U ;Vζ,P ) for the space of F = A, B, C∞ or D′-valued sections
for Vζ,P on an open set U of G/P . We write IGP (ζ) for the underlying (g,K)
-module of the normalized principal series representation F(G/P ;Vζ,P ). Then
the Z(g)-infinitesimal character of IGP (ζ) equals dζ + ρt ∈ j∗c where dζ denotes
the highest weight of the finite dimensional representation ζ of the Lie algebra
m+ a with respect to Σ(t)+.

For two continuous representations π and π′, we write HomG(π, π
′) for the

space of continuous G-homomorphisms. For two (g,K)-modules E, E′, we set

cg,K(E,E′) := dimHom(g,K)(E,E
′).

By a little abuse of notation, we also write cg,K(π,E′) for cg,K(πK , E
′) if πK

is the underlying (g,K)-module of π ∈ Ĝad. We recall the following fundamental
results on (g,K)-modules and their globalizations:

Lemma 2.3. 1) For any two admissible representations π, π′ on complete,
locally convex vector space, we have

(2.5) dimHomG(π, π
′) ≤ cg,K(πK , π

′
K)

2) For any two admissible (g,K)-modules E, E′, there exist admissible repre-
sentations π, π′ of G such that the equality holds in (2.5) with πK ≃ E and
π′
K ≃ E′.

The first statement is easy . For 2), the choice of such globalizations is not
unique. For example, we can take π and π′ to be smooth representations, by
the Casselman–Wallach completion [29, Theorem 11.6.7].

For π ∈ Ĝad, (τ, Vτ ) ∈ Ĥf , and (ζ, Vζ) ∈ L̂f ≃ P̂f ≃ ̂̄P f , we define

cg,K(π, IndGH τ) := dimHom(g,K)(πK ,F(G/H; τ)),(2.6)

cH∩P̄ (Vζ , Vτ,P̄ ) := dimHomH∩P̄ (Vζ , Vτ,P̄ ).

Then, (2.6) is independent of F because the image of a (g,K)-homomorphism
is contained in A(G/H; τ) by analytic elliptic regularity.
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We set

Wλ := {w ∈W (j) : wλ = λ},
W (j;λ) := {v ∈W (j) : (vλ)|a = λ|a}.(2.7)

We say λ ∈ j∗c is regular if Wλ = {e}.
The first main result of this paper is:

Theorem 2.4. Let H be a closed subgroup of G and suppose HP̄ is open in
G. Then for any finite dimensional representation τ of H and any π ∈ Ĝad, we
have

(2.8) cg,K(π, IndGH τ) ≤ #(W (t)\W (j;λ))
∑
ζ∈L̂f

cg,K(π, IGP (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ ).

Here λ ∈ j∗c is the Z(g)-infinitesimal character of π. If λ is regular, then we
have

cg,K(π, IndGH τ) ≤
∑
ζ∈L̂f

cg,K(π, IGP (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ ).

Note that cg,K(π, IGP (ζ)) is nonzero only for finitely many ζ ∈ L̂f for a

fixed π ∈ Ĝad. Further, cg,K(π, IGP (ζ)) is finite for any π and ζ (in fact, it is
uniformly bounded, see Proposition 4.1). Hence if HgP is open for some g ∈ G,
then cg,K(π, IndGH τ) <∞, which follows from Theorem 2.4 with P̄ replaced by
gPg−1.

Remark 2.5. 1) If G is compact, then G = P = P̄ and the equality holds in
(2.8), which is the Frobenius reciprocity theorem.
2) If H = N then the assumption in Theorem 2.4 is satisfied. In particular, if
ζ|a ∈ a∗c is generic, (2.8) implies the following inequality:

(2.9) cg,K(IGP (ζ), IndGN τ) ≤ #W (a) · dim ζ.

In this special case, our estimate (2.8) is best possible. Indeed the equality holds
in (2.9) as was proved by T. Lynch [20, Theorem 6.4].
3) If (G,H) is a semisimple symmetric pair, then the assumption in Theorem 2.4
is also satisfied.
4) There exists an open H-orbit in G/P if and only if the number of the H-
orbits in G/P is finite ([21]). An analogous statement does not hold for general
parabolic subgroups P .
5) It is plausible that the condition (HP) is equivalent to have a ‘generalized
Cartan decomposition’ G = KAH with some split abelian subgroup A of G as
we raised in [13, Conjecture 3.5] when H is reductive in G. However, we do not
need ‘G = KAH’ type decomposition in this paper.

Our machinery for the proof of Theorem 2.4 is the theory of regular singu-
larities of a system of partial differential equations [10, 22]. We regard the group
manifold G as a symmetric space (G × G)/∆G, and apply the construction of
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taking the boundary values of B(G;χλ) to the hyperfunction valued principal
series of G × G. If a solution f ∈ B(G;χλ) defined in (2.10) below is ideally

analytic at a boundary point of G in the compactification G̃ constructed in [23,
§1] then f is expressed as a sum of convergent series. If f is (K×K)-finite then
f is automatically ideally analytic at any boundary point and this expression
was studied earlier by Harish-Chandra, Casselman and Miličić among others.
However, in our setting, we cannot assume that f is (K × K)-finite. The ad-
vantage of our approach is that the boundary maps are well-defined inductively
even locally as (g+ g)-homomorphisms, which enables us to capture the left g-
module B(G;χλ, τ) as a filtered module under the assumption (HP). We review
briefly some results of [23] in a way that we need.

We let G × G act on the space B(G) of hyperfunctions on G from the left
and right:

(πL(g)◦πR(g
′)f)(x) = f(g−1xg′) for (g, g′) ∈ G×G and f ∈ B(G).

For χλ ∈ HomC-alg(Z(g),C) ≃ j∗c/W (j) we define

(2.10) B(G;χλ) := {f ∈ B(G) : dπL(D)f = χλ(D)f for any D ∈ Z(g)}.

The boundary value maps are defined inductively as g+ g-maps as follows:
We set

Ξ := {(λ, µ) ∈ j∗c × a∗c : (wλ)|a = µ for some w ∈W (j)}.

For (λ, µ) ∈ Ξ, we consider the following finite set of irreducible representations
of the Levi subgroup L =MA defined as

A(λ, µ) := {ζ ∈ L̂f : dζ + ρt ∈W (j)λ, dζ|a = µ}.

Further, corresponding to the ‘logarithmic terms’, we recall from [23, Proposi-
tion 2.8] the multiplicity function N : Ξ→ N with the properties

(2.11)


Nλ,µ ≤ #{w ∈W (j) : (wλ)|a = µ}/#W (t),

Nλ,µ ≤ 1 if ⟨λ, α⟩ ≠ 0 for any α ∈ Σ(j),

Nwλ,µ = Nλ,µ for any w ∈W (j).

For λ ∈ j∗c we define a finite set

Iλ := {(µ, i) : (λ, µ) ∈ Ξ, i = 1, . . . , Nλ,µ}.

Clearly Iλ = Iwλ for any w ∈ W (j). Fix Y ∈ a such that α(Y ) > 0 for
α ∈ Σ(a)+ and that ν(Y ) ̸= µ(Y ) whenever ν ̸= µ with (λ, ν), (λ, µ) ∈ Ξ,
and we give a lexicographical order ≺ on Iλ by (ν, j) ≺ (µ, i) if and only if
Re(µ− ν)(Y ) + ϵ Im(µ− ν)(Y ) + ϵ2(i− j) > 0 for 0 < ϵ≪ 1.

Let U be an open set in (G×G)/(P × P̄ ). Then we have the boundary value
maps

βi
µ : B(G;χλ)µ,i →

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P )
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for each (µ, i) ∈ Iλ on the subspace B(G;χλ)µ,i defined inductively by

B(G;χλ)µ,i :=


B(G;χλ) if (µ, i) is the smallest,∩
(ν,j)∈Iλ

(ν,j)≺(µ,i)

Kerβj
ν otherwise.

The subspaces B(G;χλ)µ,i with the partial order ≺ induces a gradation of
B(G;χλ), and we write grB(G;χλ) for the corresponding graded module. Then

the collection β̄ = ⊕(µ,i)∈Iλβ
i
µ of the induced map

βi
µ : B(G;χλ)µ,i/Kerβi

µ →
⊕

ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P )

gives a g⊕ g-homomorphism:

β̄ : grB(G;χλ)→
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P ).

Moreover β̄ respects the action of the subgroup of G×G that stabilizes U .
Assume that HP̄ is open in G. We set U := (G×HP̄ )/(P × P̄ ). Then we

have a (g×H)-homomorphism

β̄ : grB(G;χλ)K×1 →
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P ).

It is important to note that Holmgren’s uniqueness principle for hyperfunc-
tions holds, i.e. if u ∈ B(G;χλ) satisfies βi

µ(u) = 0 for all (µ, i) ∈ Iλ, then u

vanishes on an open subset of G (see [23, §3]). Therefore β̄ is injective since
B(G;χλ)K×1 ⊂ A(G) by analytic elliptic regularity. Passing to 1×∆(H)-fixed
vectors in the g×H ×H-map

β̄ ⊗ id : grB(G;χλ)K×1 ⊗ Vτ →
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P )⊗ Vτ ,

we get an injective g-map

β̄ : (grB(G;χλ)K ⊗Vτ )∆(H) →
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

(
B(U ;Vζ,P ⊠ Vζ∗,P )⊗ Vτ

)∆(H)

.

In light of the natural isomorphism(
B(HP̄/P̄ ;Vζ∗,P̄ )⊗ Vτ

)∆(H) ≃
(
Vζ∗,P̄ ⊗ Vτ

)∆(H∩P̄ ) ≃ HomH∩P̄ (Vζ , Vτ,P̄ ),

we have thus(
B(U ;Vζ,P ⊠ Vζ∗,P )⊗ Vτ

)∆(H)

≃ B(G/P ;Vζ,P )⊗HomH∩P̄ (Vζ , Vτ,P̄ ).
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Hence we have obtained an injective (g,K)-homomorphism

β̄ : grB(G/H; τ, χλ)K →
⊕

ζ∈A(λ,µ)

IGP (ζ)⊗ CNλ,µ ⊗HomH∩P̄ (Vζ , Vτ,P̄ ).

Since the set of irreducible subquotients of the (g,K)-module B(G/H; τ)λ is
the same with that of the graded (g,K)-module grB(G/H; τ, χλ)K ≃ grE(G/H; τ)λ.
This completes the proof of Theorem 2.2.

Let π ∈ Ĝad, and λ be its infinitesimal character. Then

Homg,K(πK ,B(G/H; τ))

≃Homg,K

(
πK , (B(G)⊗ Vτ )∆(H)

)
=Homg,K

(
πK , (B(G;χλ)⊗ Vτ )∆(H)

)
⊂Homg,K

(
πK , (grB(G;χλ)K ⊗ Vτ )∆(H)

)
⊂

⊕
ζ∈A(λ,µ)

CNλ,µ ⊗Homg,K

(
πK , I

G
P (ζ)

)
⊗HomH∩P̄ (Vζ , Vτ,P̄ )

and hence

cg,K(π, IndGH τ) ≤
∑

ζ∈A(λ,µ)

Nλ,µcg,K(πK , I
G
P (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ )

=
∑
ζ∈L̂f

Nλ,dζ|a · cg,K(πK , I
G
P (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ ).

Now Theorem 2.4 follows from (2.11).
As we have seen in the proof of Theorem 2.4, the above argument leads us

to an upper estimate of the multiplicities of subquotients as well. Let denote
by [E : π] the multiplicity of an irreducible (g,K)-module πK occurring as a
subquotient of a (g,K)-module E.

Proposition 2.6. Suppose that HP̄ is open. For any τ ∈ Ĥf and any π ∈ Ĝ
having Z(g)-infinitesimal character λ ∈ j∗c , we have

[E(G/H; τ)λ : π] ≤ #(W (t)\W (j;λ))
∑
ζ∈L̂f

[IGP (ζ) : π] · cH∩P̄ (Vζ,P̄ , Vτ ).

Corollary 2.7. Suppose HP̄ is open and µ ∈ a∗c satisfies Re⟨µ, α⟩ ≥ 0 for any α ∈
Σ(a)+. Assume that µ + ρt ∈ j∗c is regular with respect to W (j). Then for any

τ ∈ Ĥf we have

(2.12) cg,K(IGP (1⊗ µ), C∞(G/H; τ)) ≤ #W (a) · cH∩P̄ (V1⊗µ, Vτ,P̄ ).

Proof of Corollary 2.7. Let πK be the unique irreducible quotient of the spher-
ical principal series representation IGP (1 ⊗ µ). Since the K-fixed vector in
IGP (1⊗ µ) is cyclic (cf. [15]), we have

cg,K(IGP (1⊗ µ), C∞(G/H, τ)) ≤ cg,K(πK , C
∞(G/H; τ)).
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It follows from the theory of zonal spherical functions that cg,K(πK , I
G
P (ζ)) ̸= 0

(or, equivalently, = 1) only if ζ is of the form 1 ⊗ wµ for some w ∈ W (a).
Hence Corollary follows from (2.11) and from the last formula in the proof of
Theorem 2.4.

Example 2.8. µ satisfies the regularity condition of Corollary 2.7, in the fol-
lowing cases:
1) µ = ρn.
2) Imµ is regular with respect to W (a).

The case 1) is clear. Let us see the case 2). If w ∈ W (j) satisfies w(ρt +
µ) = ρt + µ, then we have w Imµ = Imµ by taking the projection to R-span√
−1Σ(j). By Chevalley’s theorem, w is contained in the subgroup generated

by the reflection of the roots orthogonal to Imµ, that is, w ∈ W (t) by the
assumption. Now we have ρt = (w(ρt + µ))|t = wρt, showing w = 1.

3 A lower bound of the multiplicities

In this section we give a proof of Theorem A 2) and Corollary E. The key idea
is to generalize the construction of the Poisson transform known for symmetric
spaces, see Theorem 3.1 below.

Let us recall how irreducible finite dimensional representations are realized
into principal series representations. As before, let P = LN be a Langlands
decomposition of the minimal parabolic subgroup P of G, and n the Lie algebra
of N . Suppose σ is an irreducible finite dimensional representation of G on a
vector space Vσ. Then, the Levi subgroup L leaves

V n
σ := {v ∈ Vσ : dσ(X)v = 0 for any X ∈ n}

invariant, and acts irreducibly on it. We denote by ζσ this representation of L.
Then σ is the unique quotient of the principal series representation IGP (ζσ), or
equivalently, the contragredient representation σ∗ satisfies:

(3.1) dimHomg,K(σ∗, IGP (ζ∗σ)) = 1.

For σ ∈ Ĝf and τ ∈ Ĥf , we set

cH(σ, τ) := dimHomH(σ|H , τ).

The following lower bound of the dimension of (g,K)-homomorphisms is crucial
in the proof of Theorem A 2) and Corollary E.

Theorem 3.1. Suppose that H is a closed subgroup of G and that there are m
disjoint H-invariant open sets of G/P . Then

cg,K(IGP (ζσ), Ind
G
H τ) ≥ mcH(σ, τ)

for any σ ∈ Ĝf and τ ∈ Ĥf .
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In order to prove Theorem 3.1, we construct (g,K)-homomorphisms from a
principal series representation IGP (ζ) into IndGH τ by means of kernel hyperfunc-
tions:

Lemma 3.2. For any ζ ∈ L̂f and (τ, Vτ ) ∈ Ĥf , we have

cg,K(IGP (ζ), IndGH τ) ≥ dim (Vτ ⊗ B(G/P ;Vζ∗,P ))
H
.

Here (Vτ ⊗ B(G/P ;Vζ∗,P ))
H

denotes the space of H-fixed vectors of the diagonal
action.

Proof. The natural G-invariant paring

⟨ , ⟩ : A(G/P ;Vζ,P )× B(G/P ;Vζ∗,P )→ C

induces an injective G-homomorphism

Ψ : B(G/P ;Vζ∗,P ) ↪→ HomG(A(G/P, Vζ,P ),A(G))

by Ψ(χ)(u)(g) := ⟨π(g−1)u, χ⟩ for χ ∈ B(G/P ;Vζ∗,P ), u ∈ A(G/P, Vζ,P ) and
g ∈ G. Here, we let G act on HomG(A(G/P, Vζ,P ),A(G)) via the right transla-
tion on A(G). Passing to the space of ∆(H)-fixed vectors in the G×H-map

Ψ⊗ id : B(G/P ;Vζ∗,P )⊗ Vτ ↪→ Homg,K(A(G/P ;Vζ,P ),A(G))⊗ Vτ ,

we have an injective map

(3.2) P : (Vτ ⊗ B(G/P ;Vζ∗,P ))
H
↪→ HomG(A(G/P ;Vζ,P ), IndGH τ).

Hence we have proved Lemma 3.2.

Example 3.3. If H = K and τ is the one dimensional trivial representation,
then (Vτ ⊗ B(G/P ;Vζ∗,P ))

K ̸= 0 (or, equivalently is one dimensional) if and
only if ζ|M is trivial. The corresponding intertwining operator (see (3.2)) from
A(G/P ;Vζ∗,P ) into A(G/K) coincides with the Poisson transform for the Rie-
mannian symmetric space G/K up to a scalar multiple.

Proof of Theorem 3.1. Let Ui (i = 1, 2, . . . ,m) be disjoint H-invariant open
subsets of G/P . We define χi ∈ B(G/P ) by

χi(g) =

{
1 if g ∈ Ui,

0 if g /∈ Ui.

Clearly, χi ∈ B(G/P )H (i = 1, 2, . . . ,m) are linearly independent.
Next we identify V ∗

σ with the unique subspace of the principal series rep-
resentation IGP (ζ∗σ) (see (3.1)). Take linearly independent H-fixed elements
u1, . . . , un of Vτ ⊗ V ∗

σ with n := cH(σ, τ), where we have regarded as uj ∈(
Vτ ⊗ B(G/P ;Vζ∗

σ,P )
)H

. Then χiuj ∈
(
Vτ ⊗ B(G/P ;Vζ∗

σ,P )
)H

are well-defined
and linearly independent for i = 1, . . . ,m and j = 1, . . . , n because uj are real
analytic. Owing to Lemma 3.2, Theorem 3.1 has been now proved.
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We pin down special cases of Theorem 3.1:

Example 3.4. Suppose H is a closed subgroup of G.

1) For any σ ∈ Ĝf and τ ∈ Ĥf , cg,K(IGP (ζσ), Ind
G
H τ) ≥ cH(σ, τ).

2) cg,K(IGP (1), C∞(G/H)) ≥ m.

The first statement follows because G/P itself is an open H-invariant subset,
and the second statement corresponds to σ = 1, τ = 1 and ζσ = 1.

Finally, we use the following elementary result for algebraic groups.

Lemma 3.5. Suppose H is an algebraic subgroup of a real algebraic semisimple
Lie group G. If there is no open H-orbit on G/P , then there exist infinitely
many, disjoint H-invariant open sets of G/P .

For the sake of completeness, we give a proof of Lemma 3.5 in Appendix.

Proof of Theorem A 2). Suppose there is no open H-orbit on G/P . Then we
can take infinitely many disjoint H-invariant open subsets Ui of G/P by Lemma

3.5. For a given algebraic representation τ ∈ Ĥf , we can take σ ∈ Ĝf with
cH(σ, τ) > 0 by the Frobenius reciprocity. Then cg,K(IGP (ζσ), Ind

G
H τ) = ∞ by

Theorem 3.1. Since there are at most finitely many irreducible (g,K)-modules
occurring in the principal series representation IGP (ζσ) as subquotients, Theorem
3.1 now follows.

Proof of Corollary E. Let m be the number of open H-orbits on G/P . By
Example 3.4, we have

cg,K(IGP (1), IndGH 1) ≥ m.

Comparing this with Corollary 2.7 in the case µ = ρn and τ = 1, we get
m ≤ #W (a).

We end this section with a counterexample to an analogous multiplicity-finite
statement without algebraic assumptions in Theorem 3.1.

Example 3.6. Let G = SL(2,R)× · · · × SL(2,R) be the direct product group
of (n + 1)-copies of SL(2,R). Fix real numbers λ1, . . . , λn which are linearly

independent over Q. Writing kθ :=

(
cos θ − sin θ
sin θ cos θ

)
and pt,x :=

(
et x
0 e−t

)
,

we define a two-dimensional subgroup of G by

H = {gt,x = (pt,x, kλ1t, · · · , kλnt) : (t, x) ∈ R2}.

Then there is no open H-orbit on G/P if n > 1 because dimG/P = n + 1 >
dimH = 2. However, we still have a finite multiplicity statement:

(3.3) cg,K(π, IndGH τ) ≤ 2 for any π ∈ Ĝad and for any τ ∈ Ĥf .

Let us prove (3.3). We observe that any finite dimensional irreducible represen-
tation of H factors through the quotient group H/[H,H] ≃ R, and is of the form
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τµ(gt,x) = eµt for some µ ∈ C. Let χm(kθ) := e2π
√
−1mθ and σµ(pt,x) := eµt.

Then χm (m ∈ Z) and σµ (µ ∈ C) are one dimensional representations of SO(2)
and AN = {pt,x : t, x ∈ R}, respectively.

For m = (m1, . . . ,mn) ∈ Zn and u ∈ C∞(G/H; τµ), we define

(Smu)(g0, g1, . . . , gm) :=∫ 2π

0

· · ·
∫ 2π

0

u(g0, g1kθ1 , . . . , gnkθn)e
2π

√
−1(m1θ1+···+mnθn)

dθ1
2π
· · · dθn

2π
.

Then, for t, x, φ1, . . . , φn ∈ R/2πZ, and g = (g0, g1, · · · , gn), we have

(Smu)(ggt,x) = σµ−2π
√
−1(λ1m1+···+λnmn)

(p−1
t,x)

n∏
j=1

χmj (k
−1
φj

)(Smu)(g).

Thus, Smu defines an element of C∞(G/H̃;σµ−2π
√
−1⟨λ,m⟩ ⊗ χm) where χm =

χm1
⊗ · · · ⊗ χmn

, ⟨λ,m⟩ := λ1m1 + · · ·+ λnmn, and

H̃ := AN × SO(2)× · · · × SO(2).

Clearly, S :=
⊕

m∈Zn Sm gives an injective G-homomorphism:

S : C∞(G/H; τµ)→
⊕
m∈Zn

C∞(G/H̃;σµ−2π
√
−1⟨λ,m⟩ ⊗ χm).

Now (3.3) follows from the well-known facts on G1 = SL(2,R):

1) #{µ ∈ C : Hom(g1,K1)(π1, Ind
G1

AN σµ) ̸= 0} ≤ 2, for any π1 ∈ Ĝ1ad.

2) IndG1

K1
χl is multiplicity-free for any l ∈ Z.

4 Uniform boundedness of the multiplicities

This section is devoted to the proof of Theorem B. We will prove (HB) ⇒
(1.1) based on the general formula (2.8) on upper bounds of multiplicities (see
Theorem 2.4). The opposite implication (1.2) ⇒ (BB) (or (1.3) ⇒ (BB) when
H is reductive) by using Theorem 3.1 on lower bounds.

We begin with the following uniform estimate of multiplicities of irreducible
representations occurring in principal series representations as subquotients for
which there is, to our knowledge, no direct proof in the literature. So we will
give its proof in the appendix (see Section 6.2).

Proposition 4.1. There exits a constant N depending only on G such that

[IGP (ζ) : π] ≤ N for any π ∈ Ĝad and for any ζ ∈ L̂f .

Retain the notation of Section 2. In particular, B is the Borel subgroup
of Gc with the Lie algebra b given by the positive system Σ(j)+. Then b is
contained in the complexified Lie algebra pc of the minimal parabolic subgroup
P = LN of G.
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Lemma 4.2. If Hc acts on Gc/B with an open orbit, then there exists g ∈ G
such that HcgB is open in Gc and that HgP is open in G. In particular, (HB)
⇒ (HP).

Proof. Put G′
c = {g ∈ Gc : Ad(g)hc + b ̸= gc}. Then G′

c is a proper closed
analytic subset of the complex manifold Gc. Hence G ̸⊂ G′

c and there exists
g ∈ G with Ad(g)hc + b = gc, which implies Ad(g)h+ Lie(P ) = g.

Suppose that Hc has an open orbit on Gc/B. Replacing H by g−1Hg in
Lemma 4.2, we may assume that HcB is open in Gc and HP is open in G.
Then we apply Theorem 2.4 and Proposition 4.1 with P̄ replaced by P . Thus
we have shown

cg,K(π, IndGH τ) ≤ N#(W (t)\W (j; dπ))
∑
ζ∈L̂f
dζ=dπ

cH∩P (Vζ ,Vτ,P )

for any π ∈ Ĝad with infinitesimal character dπ and for any (τ, Vτ ) ∈ Ĥf . Now
the implication (HB) ⇒ (1.1) in Theorem B follows from Proposition 4.3 below
on finite dimensional representations.

Let P0 be the identity component of P , J the Cartan subgroup of G with
Lie algebra j, and Z(G) the center of G. Let D be the maximal dimension
of the irreducible representations of J . Note that D ≤ #(J/Z(G) exp j) =
#(P/Z(G)P0) and D = 1 if G is linear.

Proposition 4.3. Assume that HcB is open in Gc and that HP is open in G.
For any (τ, Vτ ) ∈ Ĥf and (ζ, Vζ) ∈ L̂f we have cH∩P (Vζ , Vτ,P ) ≤ D · dim τ .

Proof. It follows from gc = hc + b and b ⊂ pc that

(4.1) pc = (hc ∩ pc) + b.

Let P̃c be the connected and simply connected complex Lie group with Lie
algebra pc. We write (H∩P )c and B̃ for the connected subgroups of P̃c with Lie
algebra hc∩pc and b, respectively. Then the P -module ζ∗ uniquely corresponds
to irreducible representations ζ1 of J and ζo of P0 by the natural map J ×Po ∋
(j, p) 7→ jp ∈ P and hence ζ∗ is isomorphic to the direct sum of dim ζ1 copies

of O(P̃c/B̃,Lλ) as pc-modules. Here Lλ is the P̃c-homogeneous holomorphic

line bundle over P̃c/B̃ associated with a suitable character λ of B such that the

space of global holomorphic sections, denoted by O(P̃c/B̃,Lλ), corresponds to
the Borel–Weil realization of ζo. Note that dim ζ1 ≤ D. Passing to the space of
fixed vectors under the diagonal action of H ∩ P on Vτ,P ⊗ Vζ , we have

(Vτ,P ⊗ Vζ)H∩P ⊂
dim ζ1⊕ (

Vτ,P ⊗O(P̃c/B̃,Lλ)
)hc∩pc

.

Since (H ∩P )c acts on P̃c/B̃ with an open orbit by (4.1), dim(Vτ,P ⊗Vζ)H∩P ≤
dim ζ1 ·dim τ because a holomorphic function on a connected complex manifold
is uniquely determined by its restriction to an open subset. Hence Proposition
4.3 is proved.
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Thus we have completed the proof of the implication (HB) ⇒ (1.1) in The-
orem B.

Remark 4.4. Let G be real algebraic (not necessarily reductive), σ an involution
andH = Gσ. R. Lipsman proved that the multiplicity of the abstract Plancherel
formula for G/H is uniformly bounded under the hypothesis that this statement
is true in the reductive case ([19, Theorem 7.3]). Theorem B shows that his
hypothesis is true because there always exists an open Hc-orbit on Gc/B for
any complex reductive symmetric pair (Gc,Hc).

Let us prove the remaining implication in Theorem B, namely, (1.2)⇒ (HB)
(or (1.3) ⇒ (HB) when H is reductive).

Let N be the constant in Proposition 4.1. Then, for any π ∈ Ĝad, ζ ∈ L̂f ,
and τ ∈ Ĥf , we have

cg,K(IGP (ζ), IndGH τ) ≤ Ncg,K(π, IndGH τ).

Therefore the conditions (1.2) and (1.3) imply

sup
τ∈Ĥf

dim τ=1

sup
ζ∈L̂f

cg,K(IGP (ζ), IndGH τ) <∞,

sup
ζ∈L̂f

cg,K(IGP (ζ), C∞(G/H)) <∞,

respectively. Applying Theorem 3.1 with m = 1, we get

sup
τ∈Ĥf

dim τ=1

sup
σ∈Ĝf

cH(σ, τ) <∞,

sup
σ∈Ĝf

cH(σ,1) <∞,

respectively. Hence, the implication (1.2) ⇒ (HB) (or (1.3) ⇒ (HB) when H is
reductive) reduces to the implication (iii)′ ⇒ (i) (or (iv)′ ⇒ (i)) in the following
classical results on finite dimensional representations:

Lemma 4.5 ([28]). Let Hc be an algebraic subgroup of a complex semisimple

Lie group Gc. In what follows Ĝalg, Ĥalg denote the set of irreducible algebraic
finite dimensional irreducible representations of Gc, Hc, respectively. Then the
following five conditions on the pair (Gc,Hc) are equivalent:

(i) There exists an open Hc-orbit on Gc/B.

(ii) cH(σ, τ) ≤ dim τ for any σ ∈ Ĝalg and τ ∈ Ĥalg.

(ii)′ sup
τ∈Ĥalg

sup
σ∈Ĝalg

1

dim τ
cH(σ, τ) <∞.

(iii) cH(σ, τ) ≤ 1 for any σ ∈ Ĝalg and τ ∈ Ĥalg such that dim τ = 1.
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(iii)′ sup
τ∈Ĥalg

dim τ=1

sup
σ∈Ĝalg

cH(σ, τ) <∞.

Furthermore, if H is reductive, then they are also equivalent to:

(iv) cH(σ,1) ≤ 1 for any σ ∈ Ĝalg.

(iv)′ sup
σ∈Ĝalg

cH(σ,1) <∞.

Proof. The following implications are obvious:

(ii) ⇒ (iii) ⇒ (iv)

⇓ ⇓ ⇓
(ii)

′ ⇒ (iii)
′ ⇒ (iv)

′

The implication (i)⇒ (ii) follows easily from the Borel–Weil theorem. The non-
trivial part is (iii)⇒ (i) (or (iv)⇒ (i)), which was proved in Vinberg–Kimelfeld
[28].

Let us show the remaining (and easy) implication (iii)′ ⇒ (iii) (or (iv)′ ⇒
(iv)). Suppose cH(σ, τ) ≥ 2 for some σ ∈ Ĝalg and τ ∈ Ĥalg with dim τ = 1.
Then we can find two linearly independent highest weight vectors f1, f2 ∈ O(Gc)
such that fj(b

−1gh) = χσ(b)τ(h
−1)fj(g) (j = 1, 2) for any b ∈ B, h ∈ Hc, and

g ∈ Gc where χσ corresponds to a highest weight of σ. We claim that f i1f
N−i
2

(0 ≤ i ≤ N) are linearly independent. Indeed, suppose a0f
N
1 + a1f

N−1
1 f2 +

· · ·+ aNf
N
2 = 0 is a linear dependence. Let λ be a zero of the equation a0t

N +
a1t

N−1+· · ·+aN = 0. Since the ring O(Gc) has no divisor, we have f1−λf2 = 0,
which contradicts to the linear independence of f1 and f2. Therefore, we have
cH(σN , τ

N ) ≥ N + 1 where σN ∈ Ĝalg is defined to have a highest weight χN
σ .

Hence (iii)′ ⇒ (iii) is shown. The implication (iv)′ ⇒ (iv) is immediate by
putting τ = 1.

We have thus completed the proof of Theorem B.

5 Restriction of irreducible representations

In this section we discuss the restriction of an admissible irreducible represen-
tation π of a semisimple Lie group with respect to a reductive subgroup H,
and give a proof of Theorems C and D on geometric criteria for finiteness and
boundedness of the dimension of HomH(π|H , τ), the space of continuous H-

homomorphisms for τ ∈ Ĥad.
In dealing with the restrictions of admissible representations which are not

necessarily unitary, we work mostly in the framework of smooth representations.
We begin with an elementary observation:

Lemma 5.1. Suppose (π, Vπ) ∈ Ĝad and (τ, Vτ ) ∈ Ĥad. Then we have a natural
injective map

HomH(Vπ, Vτ )→ HomH(V∞
π , V∞

τ ), φ 7→ φ|V ∞
π
.
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Proof. Let φ : Vπ → Vτ be a continuous H-homomorphism. If v is a smooth
vector of Vπ as a representation of G, then v is a smooth vector for the repre-
sentation π|H of the subgroup H, and consequently, so is φ(v) for τ . Since V∞

π

is dense in Vπ, φ 7→ φ|V ∞
π

is injective.

Let ∆H denote the diagonal subgroup {(h, h) : h ∈ H} in G × H. The
next lemma reduces the problem of the restriction to a problem on the induced
representation for which we have already solved in Sections 2 and 3:

Lemma 5.2. For any π ∈ Ĝ∞ and τ ∈ Ĥ∞, there is a natural bijection

HomH(π|H , τ) ≃ HomG×H(π × σ,C∞(G×H/∆H)).

Here, τ∗ is the contragredient representation of H on the continuous dual (the
space of distribution vectors), and σ denotes its smooth representation (τ∗)∞.

Proof. We write Vπ, Vτ , and Vσ for the representation spaces of the smooth
representations π, τ , and σ, respectively.

Suppose φ : Vπ → Vτ is a continuous H-homomorphism. We define a con-
tinuous map Φ : Vπ × Vσ ×G×H → C by

Φ(v, u; g, h) := ⟨φ(π(g−1)v), σ(h−1)u⟩.

Then the induced map (v, u) 7→ Φ(v, u; ·, ·) gives a continuous (G×H)-homomorphism
from Vπ × Vσ to C∞(G×H/∆H).

Conversely, suppose Ψ : Vπ×Wσ → C∞(G×H/∆H) is a continuous (G×H)-
homomorphism. Then the linear map

ψ : Vπ →W ∗
σ , v 7→ Ψ(v, ·)(e, e)

is a continuous H-homomorphism, and therefore, its image is contained in the
subspace (W ∗

σ )
∞ of W ∗

σ . Since every smooth representation τ of H is reflexive,
i.e. (W ∗

σ )
∞ ≃ Vτ , we have now shown Lemma.

Combining Lemma 5.1 with Lemma 5.2, we get

dimHomH(π|H , τ) ≤ dimHomH(π∞|H , τ∞)

=dimHomG×H(π∞ × (τ∗)∞, C∞(G×H/∆H)).(5.1)

Now Theorems C and D follow from (5.1) and Theorems A and B in light
of the following elementary observation:

Lemma 5.3. 1) The condition (PP) holds for the pair (G,H) if and only if the
condition (HP) holds for (G×H,∆H).
2) The condition (BB) holds for (G,H) if and only if the condition (HB) holds
for (G×H,∆H).

Proof. 1) P ×PH is a minimal parabolic subgroup of G×H. The claim follows
from the natural bijection (P × PH)\(G × H)/∆H ≃ P\G/PH . 2) Similarly,
B×BH is a Borel subgroup of Gc×Hc, and the claim follows from the bijection
(B ×BH)\(Gc ×Hc)/∆Hc ≃ B\Gc/BH .
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In the case where π is unitary, we can decompose the restriction π|H into the
direct integral of irreducible unitary representations of H, and such a decompo-
sition (branching law) is unique as H is of type I in the sense of von Neumann

algebras. We denote by Ĝ the set of (unitary) equivalence classes of irreducible

unitary representations of G. For (π, Vπ) ∈ Ĝ, (τ,Wτ ) ∈ Ĥ, φ ∈ HomH(τ, π|H)
gives an irreducible summand φ(Wτ ) in Vπ.

As an immediate corollary of Theorems C and D, we give an upper bound
of the multiplicity in the discrete part:

Theorem 5.4. Suppose (G,H) is a pair of reductive Lie groups.
1) If there is an open PH-orbit on G/P , then dimHomH(τ, π|H) < ∞ for any

π ∈ Ĝ and τ ∈ Ĥ.
2) If there is an open BH-orbit on Gc/B, sup

π∈Ĝ,τ∈Ĥ

dimHomH(τ, π|H) <∞.

Proof of Theorem 5.4. Since the adjoint map gives an anti-linear bijection

HomH(Vτ , Vπ) ≃ HomH(Vπ, Vτ ),

Theorem 5.4 follows from Theorems B and D.

Remark 5.5. 1) Theorem 5.4 2) was announced in this form in [12, Part II,
Remark 2.10]. See [1, 14, 26] for recent results without unitarity.
2) If H = K a maximal compact subgroup of G, then the assumption of The-
orem 5.4 1) is obviously satisfied because PH = K and KP = G. In this

case dim τ < ∞ for any τ ∈ K̂. This simplest case gives an analytic proof to
the celebrated result of Harish-Chandra asserting that any irreducible unitary
representation is admissible (using a theorem of I. Segal on the existence of
infinitesimal characters of irreducible unitary representations).
3) Even if (PP) fails, it may happen that dimHomH(τ, π|H) < ∞ for any

τ ∈ Ĥ for a specific triple (π,G,H). This was studied in details in [12] when
the decomposition is discretely decomposable.

6 Appendix

6.1 Proof of Lemma 3.5

Lemma 6.1. Let Hc be a complex algebraic group acting on a smooth complex
variety X by Ψ : Hc × X ∋ (g, x) 7→ gx ∈ X. Then there exists a locally
closed submanifold Y of X in the Zariski topology such that the following two
conditions holds:
1) Ψ|Hc×Y is a submersion.
2) #

(
Y ∩Ψ−1

Hc×Y (y)
)
is finite and does not depend on y ∈ Y .

Proof. Let ℓ be the minimal codimension of the submanifold Hcx for x ∈ X. Fix
p ∈ X such that the codimension of Hcp equals ℓ. Let Y be an ℓ-dimensional
locally closed submanifold of X through p such that dΨ|Hc×Y is surjective at
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(e, p). By shrinking Y if necessary, we may assume that dΨ|Hc×Y surjects TyY
at (e, y) for all y ∈ Y . Since the surjectivity of dΨ|Hc×Y at (e, y) implies that of
dΨ|Hc×Y at (h, y) for any h ∈ H, Ψ|Hc×Y is a submersion. Consider a locally
closed subvariety

Ỹ = (pr× idY )◦(Ψ|Hc×Y × idY )
−1(∆Y )

of Y × Y , where pr is the natural projection map of G× Y onto Y and ∆Y =
{(y, y) ∈ Y × Y : y ∈ Y }. By definition, (x, y) ∈ Ỹ if and only if Hcx = Hcy.
Since the fiber of the map π : Ỹ ∋ (x, y) 7→ x ∈ Y is discrete, there exist a
positive number m and a Zariski open subset Y ′ of Y such that π|π−1(Y ′) is an
m-fold covering map of Y ′. Then we have the lemma by replacing Y by Y ′.

Lemma 6.2. Suppose we are in the setting of Lemma 6.1. If H and M are
real forms of Hc and X such that H · M ⊂ M , then there exists a locally
closed submanifold N of M in the usual topology satisfying the following two
conditions:
1) Ψ|H×N is a submersion of H ×N to M ,
2) Hx ̸= Hy for any x, y ∈ N with x ̸= y.

Proof. Put N ′ =M ∩ Y . Owing to Lemma 6.1 2), the cardinality

n = sup
x∈N ′

#{y ∈ N ′ : Hx = Hy}

is finite and so we can find n different points p1, . . . , pn of N ′ such that Hp1 =
· · · = Hpn. Let Ui be open neighborhoods of pi in N

′ which do not meet each
other. Then the open subset N = {p ∈ U1 : Hp∩Ui ̸= ∅ for i = 1, . . . , n} of N ′

is the required one.

The following lemma in the non-algebraic setting may also be useful for
Theorem 3.1.

Lemma 6.3. Let H be a Lie group acts on a manifold M . Suppose there exists
a locally closed submanifold N of M such that the map Ψ : H ×M ∋ (h, x) 7→
hx ∈M satisfies Lemma 6.2 1) and
2)′ mN (x) <∞ for any x ∈ N .
Here we setmN (x) := #{y ∈ N : Hy = Hx}. Then the conditions Lemma 6.2 1)
and 2) are satisfied by shrinking N if necessary.

Proof. Put Ui = {x ∈ N : mN (x) > i} for i = 1, 2, . . .. Then Ui are open
subsets of N because Ψ(H × U) ∩N is open in N for any open subset U of N .
Put Vi = N\Ui. Since

∪
i Vi = N by our assumption, Baire’s category theorem

says that there exists Vm having an inner point under the induced topology of
N . Replacing N by the interior of Vm and using the same argument in the proof
of Lemma 6.2, we have Lemma 6.3.
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6.2 Proof of Proposition 4.1

We shall prove a uniform estimate of the multiplicity of irreducible representa-
tions occurring in a principal series representation.

Suppose we are in the setting of Section 4. Let α1, . . . , αn be the fundamental
system in Σ(j)+ and ω1, · · · , ωn the corresponding fundamental weights. By
taking a covering group of G if necessary, we may assume that G is the real
form of the simply connected complex Lie group Gc or its covering group, so
that the fundamental representation Vi with the highest weight ωi lifts to G.
For λ ∈ j∗c we put

λ =
n∑

i=1

Λi(λ)ωi

and define

Reλ =

n∑
i=1

(ReΛi(λ))ωi.

We will review the Jantzen–Zuckerman translation principle. Let Fλ(g,K)
be the category of (g,K)-modules of finite length with a generalized infinitesimal
character χλ. After conjugation by the Weyl group if necessary, we may assume
λ satisfies

(6.1) Re⟨λ, α⟩ ≤ 0 for α ∈ Σ(j)+.

For V ∈ Fλ(g,K) we define Φi
λ(V ) := pλ+ωi(V ⊗ Vi). Here pλ+ωi is the pro-

jection map to the primary component with generalized infinitesimal character
λ + ωi. Then Φi

λ is an exact functor from Fλ(g,K) to Fλ+ωi(g,K). Similarly,
we define a functor from Fλ+ωi(g,K) to Fλ(g,K) by Ψi

λ(W ) := pλ(W ⊗ V ∗
i ),

where V ∗
i is the contragredient representation of Vi.

Let (ζ, Vζ) ∈ L̂f . We write dζ ∈ j∗c for the highest weight with respect
to Σ(t)+, and take wo ∈ W (j) such that λ := wodζ satisfies (6.1). Assume
ReΛi(λ) < −1 for some i. This assumption assures that λ and λ + ωi are
equisingular, namely, ⟨λ, α⟩ = 0 ⇔ ⟨λ+ ωi, α⟩ = 0 for α ∈ Σ(j). Then we have
an isomorphism of (g,K)-modules:

(6.2) Ψi
λ(I

G
P (ζ ′)) ≃ IGP (ζ) and IGP (ζ ′) ≃ Φi

λ(I
G
P (ζ)).

Here (ζ ′, Vζ′) ∈ L̂f is the unique representation such that Vζ′,P occurs as a
subquotient of Vζ,P ⊗ Vi and satisfies wodζ

′ = λ + ωi. Thanks to [11, The-
orem 7.232], Φi

λ induces an equivalence of categories between Fλ(g,K) and
Fλ+ωi(g,K). In particular, Φi

λ sends (non-zero) irreducible (g,K)-modules to
(non-zero) irreducible (g,K)-modules and we have

Hom(g,K)(π, I
G
P (ζ)) ≃ Hom(g,K)(Φ

i
λ(π),Φ

i
λ(I

G
P (ζ)))

≃ Hom(g,K)(Φ
i
λ(π), I

G
P (ζ ′))

for any (π, V ) ∈ Fλ(g,K). Here we use (6.2) for the second equality. Hence
applying Φi

λ successively, we may assume

|Re dζ| ≤ C
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in order to prove Proposition 4.1, where | · | is the norm induced from the Killing
form and C := |

∑n
i=1 ωi|.

Now we recall Vogan’s results on minimal K-type theory. We take a Cartan
subalgebra t̃ of k and fix a positive system ∆+(kc, t̃c). We write δK ∈

√
−1̃t∗ for

half the sum of elements in ∆+(kc, t̃c). If µ ∈ t̃∗c is the highest weight of a K-type
τ we define ∥τ∥ := |µ+2δK |, where | · | denotes the norm in

√
−1̃t∗ induced from

the Killing form. A minimal K-type of the (g,K)-module (π, V ) is a K-type τ
for which |τ | is minimal among all K-types occurring in π. It follows from [11,
Theorem 10.26] that there exists a constant C ′ depending only on g with the
following property: if π is a (g,K)-module with infinitesimal character λ, then

|Re(λ)| ≥ ∥τ∥ − C ′.

Let N be the maximal dimension of τ ∈ K̂ among all K-types τ with ∥τ∥ ≤
C +C ′. We remark that N depends only on the Lie algebra g. For π ∈ Ĝad, let
τ be one of its minimal K-types. Because τ occurs in π with multiplicity one,
we have

[π : IGP (ζ)] ≤ dimHomK(τ, IGP (ζ)).

Then the right-hand side equals dimHomM (τ|M , ζ|M ) by the Frobenius reci-
procity theorem. Since dimHomM (τ|M , ζ|M ) ≤ N , we have proved Proposi-
tion 4.1.
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