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QUATERNIONIC MODULAR CURVES
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Dedicated to Ernst-Ulrich Gekeler

Abstract. We use a combinatorial result relating the discriminant of the

cycle pairing on a weighted finite graph to the eigenvalues of its Laplacian, to
deduce a formula for the orders of component groups of Jacobians of modular

curves arising from quaternion algebras over Fq(T ) or Q. Our formula over Q
recovers a result of Jordan and Livné.

1. Introduction

Let Fq be a finite field with q elements, where q is a power of a prime number p.
Let A = Fq[T ] be the ring of polynomials in the indeterminate T with coefficients in
Fq, and F = Fq(T ) be the fraction field of A. The degree map deg : F → Z∪{−∞},
which assigns to a non-zero polynomial its degree in T and deg(0) = −∞, is a
valuation of F . The corresponding place of F will be denoted by ∞. Apart from
∞, the places of F are in bijection with the non-zero prime ideals of A. Given a
place v of F , we denote by Fv the completion of F at v, and by Fv the residue field
of Fv.

Let B be a division quaternion algebra over F , which is “indefinite” in the sense
that B ⊗F F∞ ∼= M2(F∞). Let d be the (reduced) discriminant of B; cf. [20,
p. 58]. This is the product of primes p � A where B ramifies, i.e., B ⊗F Fp is a
division algebra over Fp. It is known from the theory of quaternion algebras that
d is a product of an even number of primes, and, up to isomorphism, d uniquely
determines B; cf. [20]. (Moreover, any square-free d with an even number of prime
divisors is the discriminant of some indefinite quaternion algebra over F .)

There is a smooth projective curve Xd over F associated with the quaternion al-
gebra B. It is the coarse moduli scheme of the so-called D-elliptic sheaves; roughly,
a D-elliptic sheaf is a vector bundle equipped with a meromorphic Frobenius and
an action of B; we refer to [10] for the precise definitions. The curve Xd has bad
reduction exactly at the primes dividing d and ∞; cf. [10]. Let Jd be the Jacobian
variety of Xd, and J d be the Néron model of Jd over A. Let p be a prime dividing
d. The main result of this paper is a formula for the order of the component group
ΦJd,p = (J d⊗Fp)/(J d⊗Fp)0. In order to state this formula, we need to introduce
more notation.

The order of a finite set S will be denoted by |S|. We define norm and degree
for a non-zero ideal n of A by |n| := |A/n| and deg(n) := logq |n|. The prime ideals
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2 MIHRAN PAPIKIAN

of A will always be assumed to be non-zero. Let B′ be the “definite” quaternion
algebra over F which is ramified at ∞ and at the primes p1, . . . , ps appearing in
the prime decomposition of

d′ := d/p =

s∏
i=1

pi.

Fix a maximal A-order M in B′. Let h(d′) be the class number of B′, that is, the
number of left M ideal classes. It is known that h(d′) is finite and independent of
the choice of M. Let I1, I2, . . . , Ih(d′) be representatives of the left ideal classes of
M, and let Mi be the right order of Ii, 1 ≤ i ≤ h(d′). It is not hard to show that
each M×i is isomorphic either to F×q or F×q2 ; thus, wi := |M×i /A×| is either equal

to 1 or q + 1; see [3, p. 383]. It is known that (cf. [3, (1)])

m(d′) :=

h(d′)∑
i=1

w−1
i =

1

q2 − 1

s∏
i=1

(|pi| − 1);

m(d′) is called the mass of B′. If we denote by hq+1 the number of wi’s equal to
q + 1, then by (1), (4) and (6) in [3]:

hq+1 =
1

2

s∏
i=1

(
1− (−1)deg(pi)

)
.

This gives a formula for the class number:

h(d′) = m(d′) + hq+1
q

q + 1
.

Definition 1.1. Denote Mij := I−1
j Ii. Let mij be a generator of the ideal

{Nr(α) | α ∈ Mij} � A, where Nr : B′ → F is the reduced norm. Let m � A
be a non-zero ideal. Let

bij(m) =
#{β ∈Mij | (Nr(β)/mij) = m}

(q − 1)wj
.

The m-th Brandt matrix of B′ is B(m) = (bij(m))1≤i,j≤h(d′) ∈Mh(d′)(Z).

Let P (x) be the characteristic polynomial of the Brandt matrix B(p). Denote
by P ′(x) the derivative of P (x). Let

n(d) =
(

1− (−1)deg(p)
)
hq+1 =

1

2

∏
q|d

q is prime

(
1− (−1)deg(q)

)
.

Theorem 1.2. We have:

|ΦJd,p| =
|P (−|p| − 1) · P ′(|p|+ 1)|

2m(d′)(q + 1)n(d)
.

This formula is the function field analogue of a result of Jordan and Livné [8]
for Shimura curves over Q. In [8], for a prime p dividing the discriminant d of
an indefinite quaternion algebra, the authors use the Cherednik-Drinfeld p-adic
uniformization of the corresponding Shimura curve Xd to construct a regular model
X d of Xd over Zp. Then, they apply a result of Raynaud (cf. [1, §9.6]), reducing
the problem of computation of the group of connected components ΦJd,p of the

Jacobian of Xd to linear algebra computations with the intersection matrix of the
special fibre of X d. This approach leaves it somewhat mysterious the reason for
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the appearance of different invariants of the quaternion algebra in the formula for
|ΦJd,p|.

To prove Theorem 1.2 we take a different approach, which emphasises the com-
binatorial nature of the formula for |ΦJd,p|, although it still relies on the function
field analogue of the Cherednik-Drinfeld uniformization. In Section 2, we recall a
result from [13], which relates the discriminant of a weighted cycle pairing on the
first homology group of a graph to the eigenvalues of its Laplacian. By a theorem of
Grothendieck, given a semistable curve, the discriminant of the cycle pairing on its
dual graph is the order of the component group of its Jacobian (see Theorem 2.2).
On the other hand, using the rigid-analytic uniformization of Xd, one shows that
the Laplacian of the dual graph of Xd over Fp is related to a Hecke operator with
characteristic polynomial P (x). Here we should mention that the dual graph of the
semistable model of Xd that one obtains through the rigid-analytic uniformization
is naturally weighted and the Hecke operator mentioned above is related to the
weighted Laplacian, so one has to deal with weighted graphs from the outset. The
proof of Theorem 1.2 then reduces to computing the weights of this dual graph,
which is done in Section 3. Our approach applies to Shimura curves over Q as well.
In Section 4, we reprove the result of Jordan and Livné using this method. (Here
we also use the opportunity to correct a small mistake in the main formula of [8];
see Remark 4.1.)

Example 1.3. We observe that h(d′) = 1 if and only if deg(d′) ≤ 2. Since d′ is a
product of an odd number of primes, we conclude that h(d′) = 1 is equivalent to
d′ = q being a prime of degree ≤ 2. Thus, d = pq and P (x) = x − (|p| + 1), since
|p| + 1 is a root of P (x) for any p (cf. [21, p. 739]). First, assume deg(q) = 1. In
this case, m(d′) = (q + 1)−1, and

n(d) =

{
2 if deg(p) is odd,

0 if deg(p) is even.

Thus,

|ΦJd,p| =

{
|p|+1
q+1 , if deg(p) is odd;

(|p|+ 1)(q + 1), if deg(p) is even.

Now assume deg(q) = 2. In this case, m(d′) = 1, n(d) = 0, and

|ΦJd,p| = |p|+ 1.

Example 1.4. Some calculations of Brandt matrices over Fq(T ) were carried out
by Schweizer in [17]. For example, he computed that for q = 2, p = T , and
d′ = T 5 + T 2 + 1 we have

P (x) = (x−3)(x2 + x− 1)

× (x8 + x7 − 11x6 − 8x5 + 38x4 + 16x3 − 44x2 − 4x+ 4).

Therefore, for d = T (T 5 + T 2 + 1) and p = T , we have h(d′) = 11, m(d′) = 31/3,
n(d) = 2 and

|ΦJd,T | =
|P (−3)P ′(3)|

2 31
3 32

= 52 · 11 · 61 · 113.

Nowadays, Brandt matrix calculations over Fq(T ) are implemented in Magma, which
makes the calculation of |ΦJd,p| fairly routine. Some of the values of |ΦJd,p| are
listed in Tables 1 and 2.
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p |ΦJd,p|
T − 3 25

T 2 − 3 213 · 36 · 5 · 7 · 11 · 13 · 17 · 37 · 59
T 3 + T + 1 216 · 39 · 5 · 7 · 11 · 13 · 23 · 181

Table 1. q = 5 and d = T (T − 1)(T − 2)p

p |ΦJd,p|
T 210 · 192 · 433

T − 1 212 · 3 · 7 · 179 · 1871
T − 3 219 · 5 · 1032

T 2 − 3 223 · 52 · 7 · 29 · 6525499 · 13235507
T 3 + 2 222 · 33 · 56 · 7 · 134 · 195 · 437

Table 2. q = 7 and d = (T 3 − 2)p

Let X0(d) be the Drinfeld modular curve over F classifying rank-2 Drinfeld A-
modules with Γ0(d)-level structures; cf. [4]. Let J0(d) be the Jacobian variety
of X0(d). The Jacquet-Langlands correspondence and Zarhin’s isogeny theorem
over function fields imply that there is a surjective homomorphism J0(d) → Jd

defined over F ; cf. [14, Thm. 7.1]. Thus, there are functorial homomorphisms
ψp : ΦJ0(d),p → ΦJd,p for primes p dividing d, where ΦJ0(d),p denotes the group
of connected components of the Néron model of J0(d) at p. The group ΦJ0(d),p

is well-understood: its complete description as an abelian group can be found in
[16, Thm. 5.3]. In particular, ΦJ0(d),p has no elements of p-power order and the
isomorphism class of ΦJ0(d),p depends only on the degrees of the primes dividing
d and the number of these primes. We observe from Tables 1 and 2 that these
properties do not transfer to ΦJd,p, in the sense that |ΦJd,p| can be divisible by
the characteristic of the field and |ΦJd,p| depends not just on the degree of p but
on the actual ideal p. Another difference between the groups ΦJ0(d),p and ΦJd,p

is that the latter is generally a much larger group. Indeed, the order of the group
ΦJ0(d),p grows linearly with |d|; see [16, Thm. 5.3]. On the other hand, one can use
Theorem 1.2 and the arguments in [13] to prove the following estimates:

Theorem 1.5. For two positive real valued functions f(x) and g(x) defined on an
infinite subset of ideals of A, we write f(x) ∼ g(x) when lim|x|→∞ f(x)/g(x) = 1.
We have:

(1) If d′ is fixed and p varies, then

logq |ΦJd,p| ∼ (2h(d′)− 1) deg(p).

(2) If p is fixed and d′ varies, then

ln |ΦJd,p| ∼ 2h(d′) · c(p),

where c(p) is an explicit constant depending only on p, which can be esti-
mated as c(p) = ln

(
|p|+ 1

2

)
+O

(
|p|−2 deg(p)

)
.

Proof. It is known from the theory of automorphic forms that one of the roots of
P (x) is λ1 = |p| + 1 and all other roots satisfy |λi| ≤ 2

√
|p|, 2 ≤ i ≤ h(d′). More

precisely, the Brandt matrices form an algebra which is isomorphic to the algebra
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of Hecke operators acting on the space spanned by one specific Eisenstein series and
the “p-new” part of Drinfeld automorphic cusp forms on the congruence subgroup
Γ0(d) of GL2(A); cf. [21, §2]. Using this, one obtains the bound |λi| ≤ 2

√
|p|

from the Ramanujan-Petersson conjecture over function fields. Part (1) then easily
follows from Theorem 1.2.

If p is fixed and deg(d′)→∞, then the eigenvalues λ2, . . . , λh(d′) become equidis-

tributed in the interval
[
−2
√
|p|, 2

√
|p|
]

with respect to a certain Sato-Tate mea-

sure. This follows from the equidistribution result of Nagoshi [12] for the eigenvalues
of a fixed Hecke operator acting on the spaces of Drinfeld cusp forms as the level
varies, and the observation of Serre [18, Thm. 2] that the same equidistribution
persists if one restricts the Hecke operator to the new part of the space of cusp
forms. Having this fact, one can argue as in [13, §4.3] to obtain part (2). �

2. Graphs and Laplacians

2.1. Graphs. A graph consists of a set of vertices V (G), a set of oriented edges
E(G) and two maps

E(G)→ V (G)× V (G), e 7→ (o(e), t(e))

and

E(G)→ E(G), e 7→ ē

such that ¯̄e = e and t(ē) = o(e); cf. [19, p. 13]. For e ∈ E(G), the edge ē is called
the inverse of e, the vertex o(e) (resp. t(e)) is called the origin (resp. terminus) of
e. The vertices o(e), t(e) are called the extremities of e. We say that two vertices
are adjacent if they are the extremities of some edge. We say that G is finite, if it
has finitely many vertices and edges. A weighted graph is a graph G equipped with
two maps w : E(G) → Z>0 and w : V (G) → Z>0, called weight functions, such
that w(e) = w(ē) for all e ∈ E(G). We say that a weighed graph G is N -regular if
there is a positive integer N ≥ 1 such that for any vertex v ∈ V (G) we have∑

e∈E(G)
t(e)=v

w(v)

w(e)
= N.

Note that two vertices might be the extremities of multiple edges , i.e., there

might be e 6= e′ with o(e) = o(e′) and t(e) = t(e′). Also, G might have loops ,
i.e., edges e ∈ E(G) with e 6= ē and t(e) = o(e). Finally, as in [9], we do not exclude
the case e = ē:

We say that a group Γ acts on the weighted graphG if Γ acts on the sets V (G) and
E(G) so that for any γ ∈ Γ, v ∈ V (G), e ∈ E(G) we have γ(o(e)) = o(γe), γe = γē,
w(γe) = w(e), w(γv) = w(v). For a group Γ acting on G, we have a quotient graph
Γ \ G and a natural mapping j : G → Γ \ G such that V (Γ \ G) = Γ \ V (G) and
E(Γ \G) = Γ \ E(G). Furthermore, if G is a weighted graph and the stabilizers

Γv := {γ ∈ Γ | γv = v} and Γe := {γ ∈ Γ | γe = e}
are finite for every v ∈ V (G), e ∈ E(G), then we make Γ \G into a weighted graph
by putting w(j(v)) = |Γv| · w(v) and w(j(e)) = |Γe| · w(e).

Let K be a non-archimedean local field with finite residue field k. Let T be the
Bruhat-Tits tree associated with SL2(K); cf. [19]. We make T into a weighed graph
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by assigning the weight 1 to all its vertices and edges. Then T is a (|k|+1)-regular
tree. The group PGL2(K) naturally acts on T . Let Γ be a discrete subgroup of
PGL2(K) with compact quotient. Then the stabilizers in Γ of the vertices and
edges of T are finite, and, since Γ is cocompact in PGL2(K), the quotient graph
Γ \ T is finite; cf. [15, Lem. 5.1]. We make Γ \ T into a weighed graph as in the
previous paragraph.

2.2. Laplacians. We assume from now on that G is finite and connected. Let
C0(G,Q) be the vector space over Q with basis V (G). The (weighted) Laplacian
is the linear transformation ∆ : C0(G,Q)→ C0(G,Q) defined by

∆(v) =
∑
t(e)=v

w(v)

w(e)
(v − o(e)).

It is well-known (and easy to prove) that the eigenvalues of ∆ are non-negative
real numbers, and 0 is an eigenvalue of ∆ with multiplicity one; cf. [13, §2.1]. The
weighted adjacency operator is the linear transformation δ : C0(G,Q)→ C0(G,Q)
defined by

δ(v) =
∑
t(e)=v

w(v)

w(e)
o(e).

The pairing E(G)× E(G)→ Z:

(e, e′) =


w(e) if e′ = e,

−w(e) if e′ = ē,

0 otherwise,

extends to a symmetric, bilinear, positive-definite pairing on the first simplicial ho-
mology group H1(G,Z), which is just a weighted version of the usual cycle pairing.
Let D(G) be the order of the cokernel of the map

H1(G,Z) −→ Hom(H1(G,Z),Z)

ϕ 7→ (ϕ, ∗).

For a graph G, let E(G)∗ be a subset of E(G) with the following two properties:

(i) if e = ē then e 6∈ E(G)∗;
(ii) if e 6= ē then either e or ē, but not both, is in E(G)∗.

We define the mass of G as

m(G) :=
∑

v∈V (G)

w(v)−1.

Theorem 2.1. Assume G is finite with n vertices. Let

0 = λ1 < λ2 ≤ · · · ≤ λn

be the eigenvalues of ∆. Then

D(G) = m(G)−1

∏
e∈E(G)∗ w(e)∏
v∈V (G) w(v)

n∏
i=2

λi.

Proof. See Theorem 3.1 in [13]. �



ON COMPONENT GROUPS OF JACOBIANS OF QUATERNIONIC MODULAR CURVES 7

The arithmetic significance of this theorem comes from the following. Let π :
X → S be a semi-stable curve of genus g ≥ 1 over a Dedekind scheme S of dimension
1. Recall that this means that π is a proper and flat morphism whose fibres Xs̄

over the geometric points s̄ of S are reduced, connected curves of arithmetic genus
g, and have only ordinary double points as singularities; cf. [11, Def. 10.3.14].
We assume that the generic fibre Xη of X is a smooth, projective, geometrically
connected curve. Let s ∈ S be a closed point, and x ∈ Xs be a singular point.
There exists a scheme S′, étale over S, such that any point x′ ∈ X ′ := X ×S S′
lying above x, belonging to a fiber X ′s′ , is a split ordinary double point, and

ÔX′,x′ ∼= ÔS′,s′ [[u, v]]/(uv − c)
for some c ∈ OS′,s′ . Moreover, the valuation wx of c for the normalized valuation
of OS′,s′ is independent of the choice of S′, s′, and of x′. For the proof of these
facts we refer to [11, Cor. 10.3.22].

One can associate a graph GXs
to Xs, the so-called dual graph (cf. [11, p.

511]): Let ks be the residue field at s. The vertices of GXs are the irreducible
components of Xs ×ks ks, and each ordinary double point x ∈ Xs defines an edge
ex whose extremities correspond to the irreducible components containing x (the
two orientations of ex correspond to a choice of one of the two branches passing
through x as the origin of ex). We assign the weight w(ex) = wx.

Theorem 2.2. Let J be the Jacobian variety of Xη. Let J be the Néron model of
J over S. Let ΦJ,s := Js̄/J 0

s̄ be the group of connected components of J at s ∈ S.
Then |ΦJ,s| = D(GXs).

Proof. This follows from 11.5 and 12.10 in [6]. �

Thus, Theorems 2.1 and 2.2 relate the order |ΦJ,s| to the eigenvalues of the
weighted Laplacian of GXs

.

Remark 2.3. Note that we have assigned weights only to the edges of GXs , and in
fact, |ΦJ,s| depends only on the weights of the edges of GXs . To apply the formula
in Theorem 2.1, one can assign arbitrary weights to the vertices of GXs

, e.g., all
1. As we will see, in the situations where X arises from quaternion algebras, there
will be a natural choice for the weights of vertices.

2.3. Involutions. Let G be a weighed N -regular finite connected graph. In addi-
tion, assume that G is bipartite, that is, V (G) is a disjoint union V (G) = O t I
such that every edge e ∈ E(G) has one of its extremities in O and the other in I;
in particular, G has no edges with t(e) = o(e).

Let τ be a non-trivial involution acting on G (as a weighted graph) which in-
terchanges O and I. Note that τ does not fix any vertices or edges, although it is
possible that τ(e) = ē. Let G′ := G/〈τ〉 be the quotient of G under the action of τ .
This graph G′ is a weighted graph in which w(v′) = w(v) and w(e′) = w(e), where
v ∈ V (G) is a preimage of v′ ∈ V (G′) and e ∈ E(G) is a preimage of e′ ∈ V (G′).
Note that G′ might have edges e′ with ē′ = e′; this happens when τ(e) = ē for
the preimage e ∈ E(G) of e′. Also, G′ might contain loops; this happens if there
are two edges e1 6= e2 in G such that o(e1) = o(e2), t(e1) = t(e2), and τ(e1) = ē2.
Finally, note that G′ is again N -regular.

Let ∆ : C0(G,Q)→ C0(G,Q) be the weighted Laplacian of G:

∆(v) = Nv − δ(v),
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where δ is the weighted adjacency operator of G. Let ∆′ be the weighted Laplacian
of G′ and δ′ its weighted adjacency operator.

Lemma 2.4. Let h be the number of vertices of G′. If λ1, . . . , λh are the eigenvalues
of δ′, then ±λ1, . . . ,±λh are the eigenvalues of δ.

Proof. It is clear that G has 2h vertices. It is also clear that δ and τ commute
as linear operators on C0(G,R). Let v1, . . . , vh be the vertices in O, so that
τ(v1), . . . , τ(vh) are the vertices in I. Let v′1, . . . , v

′
h ∈ V (G′) be the images of

v1, . . . , vh; we take these vertices as a basis of C0(G′,R). Let M be the matrix of δ′

with respect to this basis. From what was said, it is easy to see that δ is represented

by the 2h× 2h matrix

(
0 M
M 0

)
. Since(

Ih Ih
Ih −Ih

)(
0 M
M 0

)(
Ih Ih
Ih −Ih

)−1

=

(
M 0
0 −M

)
,

the claim follows. �

The largest eigenvalue of δ′ is N , which occurs with multiplicity 1.

Corollary 2.5. Let P (x) be the characteristic polynomial of δ′. Let P ′(x) be the
derivative of P (x). Enumerate the eigenvalues of δ′ so that N = λ1 > λ2 ≥ · · · ≥
λh. The eigenvalues of ∆ are N ± λi, 1 ≤ i ≤ h, and the product of non-zero
eigenvalues of ∆ is

2N

h∏
i=2

(N + λi)(N − λi) = |P (−N)P ′(N)|.

Proof. The first claim follows from Lemma 2.4. The last equality follows from

P ′(N) =

h∏
i=2

(N − λi), P (−N) = (−1)h2N

h∏
i=2

(N + λi).

�

3. Graphs arising from quaternion algebras

The set-up and notation in this section will be the same as in the introduction.
In particular, B is an indefinite quaternion algebra over F of discriminant d. We
fix a prime p|d, and denote by B′ the definite quaternion algebra of discriminant
d′ := d/p. Let K := Fp, and

Γ0 :=
(
M⊗A[p−1]

)×
/A[p−1]×,

Γ+ :=
{
m ∈

(
M⊗A[p−1]

)× ∣∣ ordpNr(m) ∈ 2Z
}/

A[p−1]×.

Note that Γ+ is a normal subgroup of Γ0 of index 2. By fixing an isomorphism
B′ ⊗F K ∼= M2(K), one can consider Γ0 and Γ+ as discrete cocompact subgroups
of PGL2(K). Let T be the Bruhat-Tits tree associated with SL2(K). As we have
discussed in §2.1, the quotient graphs G0 := Γ0 \ T and G+ := Γ+ \ T are finite,
weighted, (|p|+ 1)-regular graphs.

Let V (T ) = V (T )1 t V (T )2 be the disjoint union such that, for v ∈ V (T )i
and u ∈ V (T )j , the combinatorial distance between v and u is even if and only if
i = j. Using the Corollary on page 75 in [19], it is easy to see that γV (T )i = V (T )i
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(i = 1, 2) for γ ∈ Γ+, and γV (T )1 = V (T )2 and γV (T )2 = V (T )1 for γ ∈ Γ0−Γ+.
Thus, G+ is bipartite. Fix some τ ∈ Γ0−Γ+. It induces an involution of G+ which
does not depend on the choice of τ . By abuse of notation, we will denote this
involution by τ . The triple {G+, τ , G0 = G+/〈τ〉} fits into the setting of §2.3.

As is explained in [9, p. 291], using Eichler’s approximation theorem, one can
identify V (G0) = {v1, . . . , vh(d′)} with the set {M1, . . . ,Mh(d′)} so that (Γ0)v′i

∼=
M×i /A×, where v′i is a preimage of vi in T . In particular, the cardinality of V (G0)
is the class number of B′ and w(vi) = wi, 1 ≤ i ≤ h(d′). Moreover, by [9, p.
294] (see also [5, Prop. 4.4]), the weighted adjacency operator of G0 is given by
the transpose of the p-th Brandt matrix B(p) if we fix v1, . . . , vh(d′) as a basis of
C0(G0,R). (In [9], Kurihara considers only quaternion algebras over Q, but his
arguments apply also, essentially verbatim, to quaternion algebras over F .)

Lemma 3.1. Let v ∈ V (G0) be a vertex of weight q + 1. For an edge e ∈ E(G0)
with t(e) = v we have either w(e) = 1 or w(e) = q + 1. Moreover,

# {e ∈ E(G0) | t(e) = v, w(e) = q + 1} = 1 + (−1)deg(p).

Proof. Let e′ ∈ E(T ) be a preimage of e ∈ E(G0). Similar to the case of vertices,
one can show that the stabilizer (Γ0)e′ is isomorphic to I×/A× for a certain Eichler
A-order I in B′. On the other hand, by [3, p. 383], I× is isomorphic either to F×q
or F×q2 . This implies the first claim.

The second claim can also be deduced from the results in [3], but a more direct
argument is the following: Let v′ ∈ V (T ) be a preimage of v. Through the identi-
fication discussed in the introduction, let M′ be the maximal order corresponding
to v′. Then M′× ∼= F×q2 . Let γ be a generator of this group. We need to count the

number of edges e′ ∈ E(T ) such that t(e′) = v′ and γe′ = e′. The set

Star(v′) = {e′ ∈ E(T ) | t(e′) = v′}
is in natural bijection with P1(Fp), and through this bijection γ acts on Star(v′) in
the same way as a certain matrix in GL2(Fq) acts on P1(Fp); cf. [9, p. 292]. The
characteristic polynomial of γ, as a matrix in GL2(Fq), is an irreducible quadratic
polynomial over Fq. It is easy to check that such a matrix has two fixed points

in P1(Fq) and these points lie in P1(Fq2) − P1(Fq). Therefore, γ acting on P1(Fp)
has no fixed points if deg(p) is odd, and has exactly two fixed points if deg(p) is
even. �

Theorem 3.2. The graph G+ has the following properties:

(1) G+ is a finite, weighted, (|p|+ 1)-regular graph.
(2) |V (G+)| = 2h(d′).
(3) For v ∈ V (G+), we have w(v) = 1 or q + 1. The number of vertices of

weight q + 1 is 2hq+1.
(4)

∑
v∈V (G+) w(v)−1 = 2m(d′).

(5) For e ∈ E(G+), we have w(e) = 1 or q + 1. Modulo the orientation, the
number of edges of G+ of weight q + 1 is hq+1

(
1 + (−1)deg(p)

)
.

(6)

D(G+) =
|P (−|p| − 1) · P ′(|p|+ 1)|

2m(d′)(q + 1)n(d)
.

Proof. We have |V (G+)| = 2|V (G0)| = 2h(d′), the weight of v ∈ V (G+) is the
weight of its image in G0, and every v ∈ V (G0) has exactly two preimages in G+.
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This proves (1)-(4). Similarly, the weight of e ∈ E(G+) is equal to the weight of
its image in G0. Therefore, by Lemma 3.1, for e ∈ E(G+) we have w(e) = 1 or
q + 1. We can count the number of edges in G0 of weight q + 1 using the same
lemma. More precisely, for each of the hq+1 vertices of G0 with weight q + 1 we

get
(
1 + (−1)deg(p)

)
edges e of weight q + 1 terminating at the given vertex. This

way we count each edge with non-trivial weight twice if e 6= ē (once from t(e) and
once from t(ē)), and count the edge only once if e = ē. On the other hand, an edge
of G0 has two preimages in G+ if e 6= ē, and one preimage if e = ē. Thus, modulo
the orientation, the number of edges of G+ of weight q+ 1 is hq+1

(
1 + (−1)deg(p)

)
.

We proved that∏
e∈E(G+)∗ w(e)∏
v∈V (G+) w(v)

=
(q + 1)hq+1(1+(−1)deg(p))

(q + 1)2hq+1
=

1

(q + 1)n(d)
.

Now the formula in part (6) follows from Theorem 2.1 and Corollary 2.5. �

As follows from the analogue of the Cherednik-Drinfeld uniformization for Xd
K ,

proven in this context by Hausberger [7], Xd
K is a twisted Mumford curve. More

precisely, if we denote by O(2)
p the ring of integers of the quadratic unramified

extension of K and denote by F(2)
p the residue field of O(2)

p , then Xd
K has a semi-

stable model Xd

O(2)
p

over O(2)
p such that the dual graph of Xd

F(2)
p

is the weighted

graph G+. Therefore, using Theorem 2.2 and Theorem 3.2, we obtain Theorem
1.2.

4. Shimura curves over Q

Let B be an indefinite quaternion algebra over Q of discriminant d. Let Xd be
the corresponding Shimura curve over Q parametrizing abelian surfaces equipped
with an action of B. The Jacobian variety Jd of Xd has bad reduction at the
primes dividing d.

Fix a prime p dividing d. Let B′ be the rational definite quaternion algebra of
discriminant d′ = d/p. Fix a maximal Z-order M in B′. Let h(d′) be the class
number of B′. Let I1, I2, . . . , Ih(d′) be representatives of the left ideal classes ofM,

and letMi be the right order of Ii, 1 ≤ i ≤ h(d′). Denote wi =M×i /Z×. We have
Eichler’s formula for the mass of B′:

m(d′) :=

h(d′)∑
i=1

w−1
i =

1

12

∏
`|d′

` prime

(`− 1).

Let B(p) ∈Mh(Z) be the p-th Brandt matrix for B′, and P (x) be the characteristic
polynomial of B(p). Write (p + 1) = λ1 > λ2 ≥ · · · ≥ λh(d′) for the eigenvalues of
B(p).

Let

Γ+ =

{
γ ∈

(
M⊗ Z[p−1]

)× ∣∣∣∣ ordpNr(γ) ∈ 2Z
}/

Z[p−1]×.

The group Γ+ acts on the Bruhat-Tits tree T of SL2(Qp). The quotient G+ :=
Γ+ \Tp is a finite weighted (p+ 1)-regular bipartite graph.

The Cherednik-Drinfeld uniformization theorem for Xd
Qp

implies that this curve

has a semi-stable model over Zp whose dual graph, as a weighted graph, is G+; see
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[2] or [9]. Therefore, the order of the component group ΦJd,p of the Néron model

of Jd at p is |ΦJd,p| = D(G+). Now the same argument as in Section 3, with the
same references to [9], produces the following formula:

|ΦJd,p| =
|P (−p− 1)P ′(p+ 1)|

2m(d′)

∏
e∈E(G+)∗ w(e)∏
v∈V (G+) w(v)

.

The only small difference from the function field case is that now the weights w(v),
w(e) for v ∈ V (G+) and e ∈ E(G+) are more varied, in the sense that w(v) can be
1, 2, 3, 6, 12, and w(e) can be 1, 2, 3. We consider three separate cases:

Case 1: d′ = 2 (equiv. d = 2p). In this case, h(d′) = 1, m(d′) = 1/12,
P (x) = x − (p + 1), and G+ has two vertices of weight 12. By Proposition 4.2 in

[9], the number of edges of weight 2 is 1
2

(
1 +

(
−4
p

))
, and the number of edges of

weight 3 is
(

1 +
(
−3
p

))
. (Here

(
∗
p

)
is the Legendre symbol.) Therefore

(4.1) |ΦJd,p| = (p+ 1)2
1
2 (−3+(−4

p ))3(−3
p ).

Case 2: d′ = 3 (equiv. d = 3p). In this case, h(d′) = 1, m(d′) = 1/6, P (x) =
x − (p + 1), and G+ has two vertices of weight 6. By Proposition 4.2 in [9], the

number of edges of weight 2 is
(

1 +
(
−4
p

))
, and the number of edges of weight 3

is 1
2

(
1 +

(
−3
p

))
. Therefore

(4.2) |ΦJd,p| = (p+ 1)2(−4
p )3

1
2 (−1+(−3

p )).

Case 3: d′ ≥ 5. In this case, the vertices of G+ have weights 1, 2, or 3. Moreover,
by [9, p. 291], the number of vertices of weight 2 (resp. 3) is 2h2 (resp. 2h3), where

h2 =
1

2

∏
`|d′

(
1−

(
−4

`

))
, h3 =

1

2

∏
`|d′

(
1−

(
−3

`

))
.

By [9, Prop. 4.2] and the argument in Section 3, the number of edges (modulo the

orientation) of weight 2 (resp. 3) in G+ is h2

(
1 +

(
−4
p

))
(resp. h3

(
1 +

(
−3
p

))
).

Therefore, ∏
e∈E(G+)∗ w(e)∏
v∈V (G+) w(v)

=
2h2(1+(−4

p ))3h3(1+(−3
p ))

22h232h3
=

1

2n23n3
,

where

n2 =
1

2

∏
`|d

(
1−

(
−4

`

))
, n3 =

1

2

∏
`|d

(
1−

(
−3

`

))
.

We get

(4.3) |ΦJd,p| =
|P (−p− 1)P ′(p+ 1)|

2m(d′)2n23n3
=

p+ 1

m(d′)2n23n3

h(d′)∏
i=2

(p+ 1− λi)(p+ 1 + λi).

Remark 4.1. Note that our formulas (4.1), (4.2) and (4.3) differ slightly from the
formula in Theorem 2.3 of [8]. The formula in [8] is not correct as stated, which is
a result of a subtraction mistake on line 2 of page 235 in [8].
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[2] J.-F. Boutot and H. Carayol, Uniformisation p-adique des courbes de Shimura: les théorèmes
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