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Equivariant holomorphic differential

operators and finite averages
of values of L-functions

by
Siegfried Böcherer and Bernhard Heim

Abstract

We construct holomorphic differential operators for the doubling
method in the framework of Jacobi groups a la Arakawa [1] and we
establish a relation between them and differential operators for the
integral representation of triple product L-functions a la Garrett. Both
types of differential operators are equivariant for different subgroups
embedded in Sp(3,R); their relation leads to extensions of the second
author’s “arithmetic trace formula” to other critical values.

Introduction

In [20] the second author obtained an identity for weighted finite averages
over values of triple product L-functions (in the largest critical point) on one
side and central critical values of L-functions L(f ⊗Sym2(g), s) on the other
side. In particular, the identity relates, for a given cuspidal eigenform f of
weight k, the two finite sums∑

g∈Sk
Λ(f ⊗ f ⊗ g, s+) and

∑
h∈S2k−2

Λ(h, s+) · Λ(h⊗ Sym2(f), sc).

In both cases, the sum should run over normalized Hecke eigenforms of weight
k and weight 2k−2 respectively and s+ and sc denote the largest and central
critical points of the L-functions in question. We use Λ(...) instead of L(...)
to indicate that we have divided the L-value by an appropriate period, the
summands above are therefore all algebraic.
It is quite mysterious that by this identity central critical values of L-functions
get related to critical values in the range of convergence of other L-functions.
This identity was obtained by restricting a degree three Siegel Eisenstein
series in different ways and combining our knowledge about such restrictions,
in particular,

• The pullback formulas for triple product L-functions (following Garrett
[16])
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• The identification of the first Fourier-Jacobi-coefficient of a Siegel Eisen-
stein series with a Jacobi-Eisenstein series of index one [2]

• The pullback formula of Arakawa for Jacobi-Eisenstein series [1]

• Ichino’s work on the Gross-Prasad conjecture for the Saito-Kurokawa-
liftings [23], rephrased as an explicit spectral decomposition of restric-
tions of Jacobi forms [18].

From previous works on restrictions (in particular the doubling method, see
e.g. [3]) it is quite natural to expect, that there exist variants of the identity
in question, which can be obtained by applying differential operators before
doing the restriction. “Variants” means that the weights k and 2k − 2 can
be changed and also the largest critical points should be moved.

The construction of appropriate differential operators for our situation is one
of the main topic of this paper; interesting new problems arise for the fol-
lowing reasons:
The holomorphic differential operators should be equivariant with respect to
the groups stabilizing the subdomains, to which we restrict. Here an amus-
ing new feature comes up: There are no holomorphic differential operators,
which fit to all the restrictions which have to be considered at the same time.
So what we do is to consider two types of differential operators separately
for different restrictions, one of them is well-know (the one for a restriction
a la Garrett), but the other one (which fits to the work of Arakawa) cannot
be found in the literature and has to be constructed; it can be viewed as a
Jacobi-forms version of the differential operators studied by the first author
and Ibukiyama for symplectic groups [3, 21].This is indeed the main technical
part of our paper.
At the end, we can glue these differential operators together in the sense
that we can write the operator of the Arakawa-Ichino-side as a finite linear
combination of the ones adopted to the Garrett side to obtain again such an
identity for L-values.

We present our main results in two ways, one in terms of periods of Jacobi
forms and and the other in terms central critical values. The formulation in
terms of periods is more general, its translation into central critical values
relies on the spectacular results of Ichino. Indeed we will work as long as
possible without using Ichino’s formula, arriving at more general identities
between values of triple-product L-functions and periods for Jacobi forms
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of arbitrary squarefree index. These results are formulated more generally
than in [20], but they need some results about pullbacks of Jacobi-Eisenstein
series going beyond Arakawa (worked out by K.Bringmann and the second
author in [19, 12]).

The first section is devoted to the definition and properties of the differential
operators. In the second and third section we study pullbacks modified by
differential operators whereas in section 4 we will compare the resulting for-
mulas and in the final section we specialize our identities to the case, where
the results of Ichino are available.

Acknowledgement: During the preparation of this paper, the authors were
supported by several institutions: The first author thanks the Tata Insiti-
tute for Fundamental Research (Mumbai), in particular Dipendra Prasad
for kind hospitality and excellent working conditions during his visit in oc-
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second author thanks the Max-Planck-Institut für Mathematik in Bonn for
an invitation in july/august 2010, where the final version was completed.
During mai 20010 both authors stayed at the GUtech (German University of
Technology in Oman) in Muscat. They are very thankful for the hospitality
and the supportive working conditions.

Preliminaries
For matrices A,B of appropriate size we put A[B] := Bt · A · B. For basic
facts about elliptic modular forms we refer to [27] and for Siegel modular
forms to [24]. In particular, we denote by Mk and Sk the spaces of modular
and cuspidal modular forms for weight k with respect to the full modular
group SL(2,Z). We equip Sk with the usual Petersson scalar product <,>.
For normalized Hecke eigenforms fi =

∑
ai(n)e2πiz ∈ Ski we define “Satake

parameters” αi(p), βi(p) ∈ C by

ai(p) = αi(p) + βi(p), αi(p) · βi(p) = pk−1
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and we put

L(fi, s) =
∏
p

1

(1− αi(p)p−s)(1− βi(p)p−s)

L2(fi, s) = D(fi, s− ki + 1)

=
∏
p

1

(1− pki−1−s)(1− αi(p)2p−s)(1− βi(p)2p−s)
.

Moreover we define the triple product L-function L(f1 ⊗ f2 ⊗ f3, s) by∏
p

det

(
18 −

(
α1(p) 0

0 β1(p)

)
⊗
(
α2(p) 0

0 β2(p)

)
⊗
(
α3(p) 0

0 β3(p)

)
p−s
)−1

and L(f1 ⊗ Sym2(f2), s) by

∏
p

det

16 −
(
α1(p) 0

0 β1(p)

)
⊗

 α2(p)
2 0 0

0 pk2−1 0
0 0 β2(p)

2

 p−s

−1

.

We mention the identity

L(f1 ⊗ f2 ⊗ f2, s) = L(f1, s− k2 + 1) · L(f1 ⊗ Sym2(f2), s).

Hecke eigenforms for Jacobi groups and associated zeta functions will be
explained in sections 4 and sections 5.

1 Differential operators on H3

We give a construction of the differential operators in question in a direct
and explicit way appropriate for the purpose of this paper. A more general
exposition will be given elsewhere [6].

1.1 Embeddings of symplectic groups and Jacobi groups
in symplectic groups of higher rank

1.1.1 Symplectic groups

The symplectic group Sp(n,R) acts on Siegel’s upper half space Hn in the
usual way. Moreover, Sp(n,R) acts by a “slash-operator “ |k on functions
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f : Hn −→ C by

(f |k M)(Z) := j(M,Z)−kf(M < Z >) (M ∈ Sp(n,R), Z ∈ Hn).

Here j(M,Z) = det(CZ +D) is the standard automorphy factor and

M < Z >:= (AZ +B)(CZ +D)−1 for M =

(
A B
C D

)
∈ Sp(n,R).

In the sequel we embed small symplectic groups Sp(n) as subgroups into
bigger symplectic groups Sp(n+m) by

↑:


Sp(n) −→ Sp(n+m)(
a b
c d

)
7−→


a 0 b 0
0 1m 0 0
c 0 d 0
0 0 0 1m


and

↓:


Sp(n) −→ Sp(n+m)(
a b
c d

)
7−→


1m 0 0 0
0 a 0 b
0 0 1m 0
0 c 0 d

 .

It should always be clear from the context, what n and m are.

1.1.2 Jacobi groups

We prefer to consider a Jacobi group as a subgroup of an appropriate sym-
plectic group:

Gn :=




a 0 b µ
λ′ 1 µ′ κ
c 0 d −λ
0 0 0 1

 ∈ Sp(n+ 1) |
(
a b
c d

)
∈ Sp(n)


with (λ′, µ′) = (λ, µ) ·

(
a b
c d

)
.

We put n = n1 + n2 and we consider embeddings of Gn1 and Gn2 in a big
symplectic group Sp(n+ 1):
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ι(n1, n)+ : Gn1 −→ Sp(n1 + n2 + 1)


a 0 b µ
λ′ 1 µ′ κ
c 0 d −λ
0 0 0 1

 7−→



a 0 0 b 0 µ
0 1n2 0 0 0 0
λ′ 0 1 µ′ 0 κ

c 0 0 d 0 −λ
0 0 0 0 1n2 0
0 0 0 0 0 1


and

ι(n2, n)− : Gn2 7−→ Sp(n+ 1)
a 0 b µ
λ′ 1 µ′ κ
c 0 d −λ
0 0 0 1

 7−→


1n1 0 0 0 0 0
0 a 0 0 b µ
0 λ′ 1 0 µ′ κ
0 0 0 1n1 0 0
0 c 0 0 d −λ
0 0 0 0 0 1

 .

We look at a corresponding embedding of domains: We decompose an ele-
ment Z ∈ Hn+1 as

Z =

 τ1 z z1

zt τ2 z2

zt1 zt2 τ3

 , τ1 ∈ Hn1 , τ2 ∈ Hn2 , τ3 ∈ H1. (1)

Occasionally we use Z =

(
τ1 z
zt τ2

)
∈ Hn1+n2 to denote the upper left cor-

ner of Z.

Both groups ι(n1, n)+(Gn1)(R) and ι−(n2, n)(Gn2)(R) stabilize the subman-
ifold of Hn+1 defined by z = 0.
We define Jacobi forms of degree n as holomorphic functions on Hn+1 of the
form

F (Z) = φ(τ1, z)e
2πimτ2 , Z =

(
τ1 z
zt τ2

)
∈ Hn+1

satisfying the transformation law F |k M = F for all M ∈ Gn(Z) with the
additional requirement of holomorphy in the cusps if n = 1.
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As an immediate consequence of these definitions we have

Remark : Suppose F is a weight k Jacobi form of degree n = n1 + n2 of
index m with Z decomposed as in (1)

F (Z) = φ(

(
τ1 z
zt τ2

)
,

(
z1

z2

)
) · e2πim·τ3 .

Then

F|z=0 = φ(

(
τ1 0
0 τ2

)
,

(
z1

z2

)
) · e2πimτ3

is a Jacobi form of index m for (τ1, z1, τ3) and for (τ2, z2, τ3) of the same
weight k .

1.2 Existence of some differential operators

We introduce differential operators on Hn, which are polynomials in the
entries ∂i,j of the matrix

∂ :=

(
(1 + δij)

2

∂

∂zij

)
.

The transformation properties of these differential operators, in particular of
their minors are described in [14, 26]. We will also tacitly use that for any
polynomial P in the entries of ∂ and any complex symmetric matrix T of
size n we have

P(∂) etr(T ·Z) = P(T ) etr(T ·Z) (Z ∈ Hn).

Most of the statements below will make sense in the general context intro-
duced above, their proofs are however will be completely different and much
more complicated. We stick now to differential operators on H3 where direct
and more explicit methods are available.
One of our main aims in this section is the proof of the following

Theorem 1.1 (weak version) There exists for each ν ≥ 0 a holomorphic
differential operator D (a polynomial in ∂i,j, evaluated in z = 0) acting on
C∞-functions defined on H3 such that for all M ∈ G1(R)

D(F |k ι(1, 2)+(M)) = D(F ) |k+ν M+
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D(F |k ι(1, 2)−(M)) = D(F ) |k+ν M−.

Here M+ means action of M for the variables (τ1, z1, τ3) and M− the action
for the variables τ2, z2, τ3.
If F is a Jacobi modular form of degree 2, index m and of weight k then
D(F ) defines for ν > 0 a cuspidal Jacobi form of degree one, index m and
weight k + ν for (τ1, z1, τ3) and for (τ2, z2, τ3); moreover, DF is symmetric:

D(F )(τ1, z1, τ2, z2; τ3) = D(F )(τ2, z2, τ1, z1; τ3).

We obtain the cuspidality property by considering the differential operator
together with the action of

ι(1, 2)+(


a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1

) (a ∈ R, a 6= 0)

on the constant term in the Fourier expansion (or more generally on those
holomorphic functions on H3, which do not depend on (τ1, z1) (and similarly
for (τ2, z2)).
The theorem follows from a statement about differential operators with much
stronger properties; instead of the notation ∂ij we use here

∂ =

 ∂τ1 ∂z ∂z1
∂z ∂τ2 ∂z2
∂z1 ∂z2 ∂τ3

 . (2)

Theorem 1.1 (strong version):
The differential operator

Dk := (k − 1)∂z1∂z2 − (k − 1)∂z∂τ3 + z · ∂[3]

acting on C∞-functions F defined on H3 satisfies

Dk (F |k M) = (DkF ) |k+1 M

for all M ∈ ι(1, 1)±(G1(R)). Moreover Dk satisfies a symmetry relation:

Dk(F |k V ) = (DkF ) |k+1 V
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where

V :=



0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 ∈ Sp(3,R).

Proof: The symmetry property can be read off directly from the explicit
formula. We put ∂[3] := det(∂). This operator has the fundamental transfor-
mation property

∂[3](F |1 M) =
(
∂[3]F

)
|3 M (M ∈ Sp(3,R)),

see [14, p.216].

We consider now the differential operator L defined by

F 7−→ z−k+2∂[3](F · zk−1).

The z-coordinate is changed to z
cτ1+d

or z
cτ2+d

if we act on H3 by ι(1, 1, 1)±(G1(R))

and

(
∗ ∗
c d

)
denotes the “symplectic part” of the element of G1. There-

fore, this operator has the required transformation property. We easily get
the identity

L = z · ∂[3] + (k − 1)∂z1∂z2 − (k − 1)∂z∂τ3 −
(k − 1)(k − 2)

4
z−1∂τ3 .

The last summand above has itself the requested transformation property
and hence it can just be omitted.
Then we get the differential operator D of Theorem 1 (weak version) by

D := D0
k,ν = (Dk+ν−1 ◦ . . .Dk+1 ◦ Dk)z=0 .

Remark: The procedure above does not generalize to higher degree, the
analogues of theorem 1 (both versions) for arbitrary degree n are however
true, but the proof has to go along the lines of [3].
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Basic examples: Changing the weight from k to k + 1 and k + 2 (with
restriction)

D0
k,1 = (k − 1) {∂z1∂z2 − ∂z∂τ3}|z=0

D0
k,2 =

{
(k∂z1∂z2 − k∂z∂τ3) ((k − 1)∂z1∂z2 − (k − 1)∂z∂τ3)−

k

2
∂τ3∂

[3]

}
z=0

=

{
k(k − 1)∂2

z1
∂2
z2

+ (k − 2k2)∂z∂z1∂z2∂τ3 + k(k − 1

2
)∂2
z∂

2
τ3

−k
2
∂τ1∂τ2∂

2
τ3

+
k

2
∂2
z2
∂τ1∂τ3 +

k

2
∂2
z1
∂τ2∂τ3

}
|z=0

.

Remark: We should point out that the “weight” k in all our considerations
about differential operators is allowed to be an arbitrary complex number as
long as we use the same branch of log j(M,Z) on both sides of the transfor-
mation laws.

1.3 Explicit formulas for D0
k,ν

1.3.1 Differential operators for H×H ↪→ H2

In [3] we introduced differential operators on H2n with equivariance properties
with respect to Sp(n,R)↑×Sp(n,R)↓ ⊂ Sp(2n,R). For n = 1 these operators
appeared implicitly in [13] and have been studied from a different point of
view in [21].
These operators are related to the ones introduced above and they will appear
also later on explicitly, so we introduce them here for the special case needed
(again in a strong and a weak version):
We consider functions f defined on H2 and differential operators

∂ij :=
1 + δij

2

∂

∂zij
(1 ≤ i, j ≤ 2) for Z =

(
z11 z12

z12 z22

)
∈ H2.

Then we put

Dk = (−k +
1

2
)∂12 + z12 · (∂11∂22 − ∂12∂12).

For all M ∈ SL(2,R) we have

Dk
(
f |k M↑)) = (DkF ) |k+1 M

↑

10



Dk
(
f |k M↓)) = (DkF ) |k+1 M

↓

and we put, for t ≥ 0

D0
k,t := (Dk+t−1 ◦ · · · ◦ Dk)z12=0 .

For functions of type f(Z) = φ(z11, z12) · e2πimz22 these operators are quite
familiar in the theory of Jacobi forms [13].

There is another construction of such differential operators by means of har-
monic polynomials: We define (for even integers d) polynomials in A and B
by

∞∑
ν=0

Gν
d(A,B)Xν =

1

(1− AX + 1
2
BX2)

d−2
2

.

Then the Gν
d(A,B) are (up to a power of two) Gegenbauer polynomials. By{

C2k × C2k −→ C
(x, y) 7−→ Gν

2k({x, y}, {x, x} · {y, y})
we get polynomial functions of x, y, which are harmonic and homogeneous
of degree ν in both variables; here { , } denotes the standard bilinear form
on C2k. The general theory of Ibukiyama [21] asserts, that the differential
operators, defined (formally) by

Lk,ν := G2k(∂12, ∂11 · ∂22)z12=0

have the same transformation property as D0
k,ν ; these differential operators

were constructed in two completely different manners, but they are propor-
tional (the space of such operators is one-dimensional, see [21] for details).
The constant, defined by

D0
k,ν = c(k, ν) · Lk,ν

is equal to

c(k, ν) = (−1)ν2−ν
(2k − 3 + 2ν)!

(2k − 3 + ν)!

(
k − 2 + ν

k − 2

)−1

.

This is an easy computation (e.g. by comparing the effect of both operators
on the function Z 7−→ zν12 ; we omit details).

Remark: Both constructions have some specific merits: The combinatorics
of the Lk,ν is quite explicit, but when we compute Γ-factors in the doubling
method, the D0

k,ν are much more convenient.
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1.3.2 The operators D0
k,ν as “Jacobifications” of the D0

k,ν

The formula for defining Dk looks similar to the corresponding one for Dk− 1
2
,

more precisely, it follows directly from the definition of the differential oper-
ators in question that

Dk(F ) =
(
∂τ3 · Dk− 1

2

)
(F ) (3)

for any function F on H2 ×H, where on the left hand side of (3) we view F
as a function on H3 not depending on z1, z2.
This is not accidental, a systematic study of how to view the Dk as “jacobi-
fied” versions of the Dk− 1

2
will be given elsewhere [6] in a much more general

context.
In this section, we are mainly interested in relating the combinatorics of D0

k,ν

to the more accessible one of the D0
k− 1

2
,ν

.

We introduce two polynomials Pk,ν and Qk,ν with the entries of symmetric
matrices (of size two and three respectively) by

D0
k,ν

(
etr(TZ)

)
= Pk,ν(T )et1z11+z22 (Z ∈ H2)

D0
k,ν

(
etr(T ·Z)

)
= Qk,ν(T ) · etr(T ·Z)

|z=0 .

Here T and T are complex symmetric matrix of size 3 and 2 respectively and
t1, t2 denote the diagonal entries of T .
As an immediate consequence of (3) we obtain

Qk,ν(

(
T 0
0 m

)
= Pk− 1

2
,ν(m · T ). (4)

Note that the polynomial on the left hand side of the equation above has
to be homogeneous of degree ν in the entries of T and at the same time it
carries mν as a factor, therefore we can write it in the form given on the right
side.

Proposition 1.1: We write the symmetric complex matrix T as

T =

(
T r

rt m

)
.

Then
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Qk,ν(T ) = Pk− 1
2
(m · T − r · rt).

Proof: It is sufficient to consider real symmetric matrices. We decompose

T =

(
T r

rt m

)
=

(
T − 1

m
rrt 0

0 m

)[(
12 0
1
m

rt 1

)]
.

Then we put

M :=


12 0 0 0
rt 1 0 0
0 0 12 −r

0 0 0 1

 ∈ ι(1, 2)+(G1(R) · ι(1, 2)−(G1(R))

and write

M = ι(1, 2)+(M1) · ι(1, 2)−(M2) with Mi =


1 0 0 0
ri 1 0 0
0 0 1 −ri
0 0 0 1

 .

Then we get, using (4)

D0
k,νe

tr(T ·Z) = D0
k,ν

etr
 T − 1

m
rrt 0

0 m

·Z
|k M


=

D0
k,νe

tr

 T − 1
m

rrt 0
0 m

·Z |k+ν M+
1 |k+ν M−

2

= Pk− 1
2
,ν(mT − rrt)

(
e(t1−

1
m
r21)τ1+t2− 1

m
r22τ2+mτ3

)
|k+ν M+

1 |k+ν M−
2

= Pk− 1
2
,ν(mT − rrt)etr(T ·Z |z=0 .

Corollary 1.1: For all k and all ν we have

D0
k,ν = Qk,ν(∂)|z=0 = Pk− 1

2
,ν(∂τ3∂Z −

(
∂2
z1

∂z1∂z2
∂z1∂z2 ∂2

z2

)
).
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The advantage of this is that combinatorial formulas for the polynomials Pk,ν
are known, they can be described in terms of the Gegenbauer polynomials
(whose coefficients are explicitly known, see e.g. [13]), in particular, we have

D0
k,ν = c(k − 1

2
, ν) ·Gν

2k−1((∂τ3∂z − ∂z1∂z2), (∂τ3∂τ1 − ∂2
z1

)(∂τ3∂τ2 − ∂2
z2

)).

We have tacitly used the fact that the Gegenbauer polynomials can also be
defined for half-integral weight (in any case, the coefficients are polynomials
in k and therefore they make sense for any (not necessarily integral) weight
k.

1.4 Relation to differential operators of Ibukiyama-
Zagier

Now we define operators, which map functions on H3 to functions on H ×
H×H: For non-negative integers ν, t1, t2 we put

Dt1,t2,0
k,ν := D0,+

k+ν,t1
◦ D0,−

k+ν,t2
◦ D0

k,ν .

Here the plus (minus respectively) indicates that we view the function as
Jacobi form w.t. τ1, z1, τ3 (τ2, z2, τ3 respectively).
These operators map Siegel modular forms of weight k and degree 3 to func-
tions on H × H × H, which are modular forms for τ1 of weight k + ν + t1,
modular forms for τ2 of weight k+ ν + t2. In general, these operators do not
preserve automorphy for the variable τ3 (unless ν = 0). This is an interesting
new phenomenon. We will get a weak substitute for automorphy w.r.t. τ3 in
this section.

1.4.1 Differential operators equivariant for H3 ↪→ H3

We recall from [21, 22] that there is indeed for all triples (µ1, µ2, µ3) a dif-
ferential operator Lk(µ1, µ2, µ3) changing weights from k to k + µ2 + µ3, k +
µ1 + µ3, k + µ1 + µ2. This operator is unique up to constants. It is explicitly
described (and normalized) in [22] in terms of generating functions.
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For formal variables Y1, Y2, Y3 (which we collect as Y) and ∂ as in (2) we put

∆(∂,Y) := 1− ∂23Y1 − ∂13Y2 − ∂12Y3 +
1

2
∂23∂1Y2Y3 +

1

2
∂13∂2Y1Y3 +

+
1

2
∂12∂3Y1Y2 +

1

4
∂1∂2Y

2
3 +

1

4
∂2∂3Y

2
1 +

1

4
∂1∂3Y

2
2

d(∂) :=
1

2
∂1∂2∂3 −

1

2
∂1∂

2
23 −

1

2
∂2∂

2
13 −

1

2
∂3∂

2
12 + ∂13∂13∂23.

We also put

R(∂,Y) :=
1

2

(
∆(∂,Y) +

√
∆(∂,Y)2 − 4d(∂)Y1Y2Y3

)
.

If we expand

Gk(Y, ∂) :=
1

R(∂,Y)k−2
√

∆(∂,Y)2 − 4d(∂)Y1Y2Y3

=
∑

µ1,µ2,µ3

Lk(µ1, µ2, µ3)Y
ν1
1 Y ν2

2 Y ν3
3

as a formal power series, then

Lk(µ1, µ2, µ3)
0 := Lk(ν1, ν2, ν3)|z=z1=z2=0

is a holomorphic differential operator, mapping holomorphic functions on H3

to holomorphic functions on H×H×H and changing the weight from k (on
H3) to k + µ2 + µ3,m+ µ1 + µ3,m+ µ1 + µ2 (on H×H×H).

We remark, that these differential operators include the previously defined
operators Lk,ν on H2 as a special case:

Lk,ν = Lk(0, 0, ν)0,

if we apply the right hand side to a function on H2, viewed as a function on
H3 not depending on the variables τ3, z1, z2.

Proposition 1.2: There are rational numbers α(w) = αk,ν,t1,t2(w) such that

Dt1,t2,0
k,ν =

ν+Min(t1,t2)∑
w=0

α(w) · ∂wτ3 · Lk(ν + t2 − w, ν + t1 − w,w)0. (5)
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The α(w) are uniquely determined by the property above.

Actually, this is a statement about harmonic polynomials: Define a polyno-
mial function Q : C2k × C2k × C2k −→ C by

Q(x, y, z) := Qt1,t2
k,ν (

 xt · x xt · y xt · z
yt · x yt · y yt · z
zt · x zt · y zt · z

).

This polynomial is homogeneous of degree

ν + t1 in x and harmonic in x

ν + t2 in y and harmonic in y

2ν + t1 + t2 in z and not harmonic in z (in general).

The harmonicity is a consequence of the transformation properties of the
differential operators defining the polynomials, see e.g. [2, 21]. It follows
from the representation theory of the orthogonal group O(2k,C) (see e.g.
[17, p.255]) that such a polynomial can be written as

Q =

ν+[
t1+t2

2
]∑

w=0

(zt · z)w · Lw(x, y, z),

where Lw is now harmonic in all three sets of variables (and homogeneous of
degrees ν + t1, ν + t2, 2ν + t1 + t2 − 2w). Furthermore, the expression above
is unique.

It is an extra feature that the polynomial Q is invariant under the simulta-
neous action of the orthogonal group O(2k,C) on the three variables. This
carries over to the polynomials Lw. Therefore these polynomials are again
polynomials in the entries of the Gram matrix associated with x, y, z.
It is known that such invariant harmonic polynomials Lw can only exist if the
sum of the two smaller degrees is bigger than the largest degree (“balanced
case”). This comes down to the condition

w ≤ ν +Min{t1, t2}.

If this condition is satisfied, there is indeed such a polynomial, it is unique up
to constants. After rephrasing everything in terms of differential operators,
we get the proposition.
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1.4.2 On the coefficients α(w)

Using polyindices µ = (µ1, µ2, µ3) , λ = (λ1, λ2, λ3), κ = (κ1, κ2, κ3) we may
expand

Lk(µ)0 =
∑
λ,κ

Rµ(λ, κ)(∂τ1∂τ2∂τ3)
λ(∂z2∂z1∂z)

κ.

The coefficients Rµ(λ, κ) are analyzed in detail in [22].
The only property we need here is that Rµ(0, κ) 6= 0 only if µ = κ; in that
case

Rµ(0, µ) =
(k − 2 + µ2 + µ3)!(k − 2 + µ1 + µ3)!(k − 2 + µ1 + µ2)!

µ1!µ2!µ3!(k − 2 + µ1)!(k − 2 + µ2)!(k − 2 + µ3)!
.

Now we fix a number w′ satisfying 0 ≤ w′ ≤ ν + Min(t1, t2). We compare
the coefficient of ∂w

′
τ3
∂ν+t1−w

′
z1

∂ν+t2−w
′

z2
∂w
′

z on both sides of (5). For a fixed w′

this gives a linear equation for the α(w) :∑
w+λ3=w′

α(w)Rν+t2−w,ν+t1−w,w(0, 0, λ3, ν + t2 − w′, ν + t1 − w′, w′) = (∗),

where (*) denotes the corresponding coefficient on the left hand side of (5).
The matrix of the corresponding homogeneous system is then a lower trian-
gular matrix with diagonal elements equal to

Rν+t2−w′,ν+t−w′,w′(0, 0, 0; ν + t2 − w′, ν + t− w′, w′) 6= 0.

This procedure allows us to compute the rational numbers α(w) in each
particular case (of course we must compute some additional coefficients on
the left and right hand side arising either from the generating series of [22]
or from Gegenbauer polynomials). It would be nice to have a simple closed
formula for the coefficients α(w); it would in particular be desirable to show
them to be different from zero.
We compute a few cases below:
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1.4.3 Basic examples

We start with the formulas

Lk(0, 0, 1)0 = (k − 1)∂z

Lk(1, 1, 0)0 = −k − 1

2
∂τ3∂z + k(k − 1)∂z1∂z2

Lk(0, 0, 2)0 = −1

4
(k − 1)∂τ1∂τ2 +

k(k − 1)

2
∂2
z

Lk(1, 1, 1)0 = k3∂z∂z1∂z2 −
k2

2

(
∂τ1∂

2
z2

+ ∂τ2∂
2
z1

+ ∂τ3∂
2
z

)
+
k

2
∂τ1∂τ2∂τ3

Lk(2, 2, 0)0 =
k(k − 1)

8
∂2
z∂

2
τ3

+
k(k − 1)

16
∂τ1∂τ2∂

2
τ3

−(k + 1)k(k − 1)

8
∂τ2∂τ3∂

2
z1
− (k + 1)k(k − 1)

8
∂τ1∂τ3∂

2
z2

−(k + 1)k(k − 1)

2
∂τ3∂z∂z1∂z2 +

(k + 2)k + 1)k(k − 1)

4
∂2
z1
∂2
z2
.

All cases (except the forth one) can easily be obtained from the generating
series of Ibukiyma- Zagier by the observation that it simplifies considerably
for those Lk(µ1, µ2, µ3), for which at least one of the µi is zero: In that case
everything comes down to the consideration of a series of type

1

(1−X)k−1
=
∑(

k − 2 + j

k − 2

)
Xj.

The case Lk(1, 1, 1) was obtained in a different way: We determine the poly-
nomials in the entries of Gram matrix associated to (x, y, z) ∈ C(2k,3) with
the right degrees and normalized them properly.
We treat 3 examples following the pattern of the previous section.
Example 1: ν = 1, t1 = t2 = 0

D0
k,1 = α(0)Lk(1, 1, 0)0 + α(1)∂τ3Lk(0, 0, 1)0.

This gives the linear equations

k(k − 1)α(0) = k − 1
−k−1

2
α(0) + (k − 1)α(1) = −(k − 1)

and from this

D0
k,1 =

1

k
Lk(1, 1, 0)0 − 2k − 1

2k
∂τ3Lk(0, 0, 1)0.
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Example 2: ν = t1 = t2 = 1

D1,1,0
k,1 =

{
(−k − 1

2
)2(k − 1)(∂2

z1
∂2
z2
− ∂z∂z1∂z2∂τ3)

}
z=0

= α(0)Lk(2, 2, 0)0 + α(1)∂τ3Lk(1, 1, 1)0 + α(2)∂2
τ3
Lk(0, 0, 2)0.

The linear equations are

(k+2)(k+1)k(k−1)
4

α(0) = (k + 1
2
)2(k − 1)

− (k+1)k(k−1)
2

α(0) + k3α(1) = −(k + 1
2
)2(k − 1)

k(k−1)
8

α(0) − k2

2
α(1) + k(k−1)

2
α(2) = 0

and from this

D1,1,0
k,1 =

4(k + 1
2
)2

(k + 2)(k + 1)k
Lk(2, 2, 0)0 −

(k + 1
2
)2(k − 1)

k2(k + 2)
∂τ3Lk(1, 1, 1)0 +

−
(k + 1

2
)2

k(k + 1)
∂2
τ3
Lk(0, 0, 2)0.

Example 3: ν = 2, t1 = t2 = 0

D0
k,2 =

{
k(k − 1)∂2

z1
∂2
z2

+ (k − 2k2)∂z∂z1∂z2∂τ3 + k(k − 1

2
)∂2
z∂

2
τ3

−k
2
∂τ1∂τ2∂

2
τ3

+
k

2
∂2
z2
∂τ1∂τ3 +

k

2
∂2
z1
∂τ2∂τ3

}
|z=0

α(0)Lk(2, 2, 0)0 + α(1) ∂τ3Lk(1, 1, 1)0 + α(2) ∂2
τ3
Lk(0, 0, 2)0.

The linear equations are

(k+2)(k+1)k(k−1)
4

α(0) = k(k − 1)

− (k+1)k(k−1)
2

α(0) + k3α(1) = k − 2k2

k(k−1)
8

α(0) − k2

2
α(1) + k(k−1)

2
α(2) = k(k − 1

2
)

and from this
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D0
k,2 =

4

(k + 2)(k + 1)
Lk(2, 2, 0)0 +

−1− 2k

(k + 2)k
∂τ3Lk(1, 1, 1)0 +

2k3 + 3k2 − 3k − 2

(k + 2)(k + 1)(k − 1)
∂2
τ3
Lk(0, 0, 2)0.

2 Pullback formulas with differential opera-

tors I: The Arakawa- side

2.1 Jacobi- and Siegel Eisenstein series

We first define the degree n Siegel Eisenstein series:

En
k (Z) :=

∑
M∈Sp(n,Z)∞\Sp(n,Z)

j(M,Z)−k (k > n+ 1, Z ∈ Hn).

Also we recall the definition of the degree n Jacobi-Eisenstein series: For

Z =

(
∗ ∗
∗ τ3

)
∈ Hn+1 (τ3 ∈ H)

we start from the function (with m ∈ N)

em :

{
H3 −→ C
Z 7−→ e2πimτ3

and we put (for k > n+ 2)

En
k,m(Z) :=

∑
M∈(Gn)∞\Gn(Z)

em |k M .

More explicitly, the summation runs over

{M = [λ, 0, 0] ·R↑ | R ∈ Sp(n,Z)∞\Sp(n,Z), λ ∈ Zn},

where as usual we use [λ, µ, κ] as notation for an element of the Heisenberg
part of Gn:

[λ, µ, κ] :=


1n 0 0 µ′

λ µ 0 κ
0 0 1n −λt
0 0 0 1

 (λ, µ ∈ Rn, κ ∈ R).

20



These two Eisenstein are connected via the Fourier-Jacobi-expansion of En+1
k :

En+1
k (Z) =

∞∑
m=0

enk,m(τ1, z)e
2πimτ3 .

If m is squarefree the relation is quite simple, see [2]:

enk,m(τ, Z)e2πimτ3 = Ak · σk−1(m)En
k,m(Z)

with

Ak :=
2

ζ(1− k)

and σk−1(m) =
∑

d|m d
k−1.

2.2 The pullback formula of Arakawa

We need a general pullback formula for D0
k,νE

2
k,m. The case of plain restriction

(i.e. ν = 0) and index m = 1 was worked out by Arakawa [1] and in a refined
version by the second author [19, 12] for squarefree index m.
A key tool in Arakawa’s pullback formula is a double coset decomposition
due to Garrett [16]: A complete set of representatives for

Sp(2,Z)∞\Sp(2,Z)/SL(2,Z)↑ × SL(2,Z)↓

is given by

{γd | d ≥ 0}

with

γd =

 12 02

0 d
d 0

12

 .

Note that the γ↑d ∈ Sp(3,Z) are not compatible with the differential operators
D0
k,ν in the sense that the theorem of the previous section does not apply to

the γ↑d .

We first consider the action of Dk on em |k [λ, 02, 0] |k γ↑d .
To study this, we remark that [λ, 02, 0] and γ↑d commute and therefore we

just have to study Dk

(
em | γ↑d

)
.

The key result is
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Proposition 2.1: For all k, d we have

Dk

(
em |k γ↑d

)
= (k − 1

2
)(k − 1)md(−2πi) em |k+1 γ

↑
d .

Corollary 2.1: For all ν > 0 we get

Dk,ν

(
em |k γ↑d

)
= 2−2ν(−2πi)ν

Γ(2k + 2ν − 2)

Γ(2k − 2)
(md)νem |k+ν γ↑d .

It is clear that we could prove this proposition by direct computation. How-
ever, we prefer to follow lemma 10 of [3], which can (hopefully) be generalized
to higher degree cases.

Using the matrix J(x) :=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 x

 and J := J(0)

we put (for d > 0)

Md := J · γ↑d ·
(

0 −d−1

d 0

)+

=


∗ ∗

d d 0
0 0 0
0 0 1

0 0 0
−1 1 0
0 0 0

 .

Using the decomposition (1) for Z ∈ H3 we study the auxiliary function

hk,Md
:= 1 |k Md = d−k(τ1τ3 + 2zτ3 + τ2τ3 − z2

1 − z2
2 − 2z1z2)

−k.

We compute Dkhk (with hk := hk,M1), using the elementary formulas

∂z2hk = −k
2
hk+1 · (−2z2 − 2z1)

∂z1∂z2hk = k(k + 1)hk+2(z1 + z2)
2 +

k

2
hk+1

∂zhk = −khk+1τ3

∂τ3∂zhk = −khk+1 + k(k + 1)hk+2(τ1 + 2z + τ2)τ3

∂[3]hk,M1 = 0 .
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The last equation follows from studying the linear map Z 7−→ CMZ + DM

with det(CM) = 0.
In summary, this gives

Dkhk =

(k − 1)

{
k

2
+ k

}
hk+1 +

(k − 1)
{
k(k + 1)(z1 + z2)

2 − k(k + 1)(τ1 + 2z + τ2)τ3
}
hk+2

= −k(k − 1

2
)(k − 1)hk+1

Then we get

Dkhk,Md
= −k(k − 1

2
)(k − 1) · d · hk+1,Md

and for Nd := J · γ↑d

Dk(1 |k Nd) = −k(k − 1

2
)(k − 1) d · (1 |k+1 Nd).

Here we may also include the case d = 0, because the formula above is
analytic in d - this is in accordance with the fact that these operators produce
cusp forms (after restriction).
To get from this a result about Dk(em |k γ↑), we start from the identity

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1em(τ3) =
∑
l∈Z

(τ3 + l)−k

and we apply to both sides first the operator |k γ↑d and then the differential
operator Dk.

The left hand side then becomes

(−2πi)k

(k − 1)!

∑
m=1

mk−1Dk (em |k γd) .

Concerning the right side, we recall that (τ3 + l)−k = j(J(l),Z)−k and J(l) =

J·T(l) for an appropriate translation T(l), hence we can view Dk

(
(τ3 + l)−k | γ↑d

)
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as

Dk

(
1 |k J(l)γ↑d

)
= Dk

(
1 |k Jγ↑dT(l)

)
= Dk

(
1 |k Jγ↑d

)
|k T(l)

= Dk(1 |k Nd) | T(l)

= −k(k − 1

2
(k − 1)d1 |k+1 Nd |k T(l)

= −k(k − 1

2
(k − 1)d(τ3 + l)−k−1 |k+1 γ

↑
d .

Comparison of both sides gives

Dk

(
em |k γ↑d

)
= (k − 1

2
)(k − 1)dm(−2πi)em |k+1 γd.

This proves the proposition.
The proposition and its corollary allow us immediately to generalize Arakawa’s
pullback formula to the case of D0

k,νE
2
k,m. The reason is that the differen-

tial operator commutes with all substitutions entering into the definition of
the Jacobi-Eisenstein series (when written in terms of representatives arising
from Garrett’s double coset decomposition) except the γ↑d ; for these substi-
tutions, we use the corollary above.
Furthermore, we recall that that (at least if the index m is squarefree) the
space J cuspk,m of Jacobi cusp forms of index m and weight k has a (orthogonal)
basis {Φi} consisting of eigenforms of the Jacobi-Hecke operators given by
the double cosets

G1(Z) · diag(1, n−1, 1, n) ·G1(Z) , (n ∈ N).

The corresponding eigenvalues will be denoted by λ(Φi, n). We associate to
these eigenforms Φi the zeta functions

ZJ(s,Φi) =
∑ λ(Φi, n)

ns
,

which were studied in [1, 19].
With these facts at hand, the generalization of Arakawa’s pullback formula
is just a formal manipulation following the original computation [1, 12, 19]
line by line; our version here is the analogue of [12, Prop.4.1]
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Theorem 2.1: Let m be a squarefree positive integer and ν a non-negative
integer. We denote by {Φi} an orthogonal Hecke eigenbasis of the space of
Jacobi cusp forms of index m and weight k + ν. Then(

D0
k,νE

2
k,m

)
(τ1, z2, τ2, z, τ3) =

δν,0E
1
k,m(τ1, z1)× E1

k,m(τ2, z2)e
2πimτ3+

β(k, ν)
∑
i

ZJ(k,Φi)

|| Φi ||2
Φi(τ1, z1)× Φ(τ2, z2))e

2πimτ3 .

Here we have changed the notion of Jacobi forms: They appear now as
functions on H × C. Furthermore || || denotes the Petersson norm of the
Jacobi form Φ (as explained e.g. in [1, section 2] and

β(k, ν) = 2−2ν(−2πi)ν
Γ(2k + 2ν − 2)

Γ(2k − 2)
mν (−1)

k+ν
2 π21−k−ν

m(k + ν − 3
2
)
.

Comment: The first part of the constant β(k, ν) comes from the corollary
above, the second part comes from [12, Prop.4.1] with k replaced by k + ν.
Furthermore, we should point out that factor dν on the right side of the
Corollary is responsible for changing the critical point of the zeta function
ZJ(s,Φi) from k + ν to k.
Remark: For a reinterpretation of the zeta function ZJ(s,Φ) in terms of
L-functions for elliptic modular forms we refer the reader to section 5.

2.3 The final restriction to H×H
We may now apply the operators D0

k+ν,t to the Jacobi forms of the theorem:
Formally we get the spectral decomposition

D0
k+ν,t(Φi · e2πimτ3) =

∑
{f}

I(t)(Φi, f) · f · e2πimτ3

where the f run over an orthogonal basis of Sk+ν+t, e.g. a basis of normalized
Hecke eigenforms. By abuse of notation, we write

D0
k+ν,t(Φi) := D0

k+ν,t(Φi · e2πimτ3)e−2πimτ3 .

Due to reasons to be explained later, we call
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I(t)(Φi, f) :=
< D0

k+ν,t(Φi), f >

< f, f >

an Ichino-period for the Jacobi form Φi.

Theorem 2.1: “Final general pullback formula for the Arakawa-
Ichino side”(first version)
For integers k > 4, m > 0 m squarefree, ν, t1, t2 ≥ 0 we have

Dt1,t2,0
k,ν E2

k,m = δν,0X+

β(k, ν)
∑
i

ZJ(k,Φi)

|| Φi ||2
∑
{f}

∑
{g}

I(t1)(Φi, f) · I(t2)(Φi, g)f ⊗ g · e2πimτ3 ,

where the f run over an orthogonal basis of Sk+ν+t1 and the g over an or-
thogonal basis of Sk+ν+t2 . The contribution X only occurs for ν = 0; it
equals

X =δt,0Ek +
κ(k, t1)

Akσk−1(m)ζ(k)ζ(2k − 2)
×
∑
{f}

af (m)
D(f, k − 1)

< f, f >
f

⊗
δk,t2Ek +

κ(k, t2)

Akσk−1(m)ζ(k)ζ(2k − 2

∑
{g}

ag(m)
D(g, k − 1)

< g, g >
g

 e2πimτ3 .

As for the contribution X we recall that

< D0
k,t(E

2
k)(

(
∗ 0
0 τ ′

)
, f >= κ(k, t)

D(f, k − 1)

ζ(k)ζ(2k − 2)
f(−τ̄ ′)

for a Hecke eigenform in Sk+t. This is a version of the doubling method with
differential operators as in [4]. The constant is a natural product of three
factors

κ(k, t) =
(−1)

k+t
2 23−k−tπ

k + t− 1
×

t−1∏
i=0

(−k − i)×
t−1∏
i=0

(−k − i+
1

2
).

Again the first factor comes from the analogous formula for weight (k + t)
without differential operator, the second factor comes from the iteration of
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the formula ∂12(z11 + 2z12 + z22)
−k = (−k)(z11 + 2z12 + z22)

−k−1, which arises
naturally in the doubling method (see [3, 4]), and the third factor comes from
the normalization of the differential operator Dk,t.
We can reformulate this for the Jacobi-Eisenstein series as

< D0
k,t(E

1
k,m), f >=

κ(k, t)

Akσk−1(m)

D(f, k − 1)

ζ(k)ζ(2k − 2)
af (m).

The formula above is the final general Arakawa-Ichino-side of our identity.
The summands will be rewritten in section 5.

3 Pullback formulas with differential opera-

tors II: The Garrett side

In section 1.4 we introduced differential operators Lk(µ1, µ2, µ3), which were
defined by means of a generating series. We have used these differential op-
erators in the Garrett integral representation for triple product L-functions
already in previous works, [9, 10]. In loc. cite we only considered the inte-
grals against cusp forms, here however we need the exact pullback formula
including also possible contributions from Eisenstein series:

We have to study Lk(µ1, µ2, µ3)(E
3
k) in detail; We start with a few remarks

concerning the noncuspidal part:

• Lk(µ1, µ2, µ3)(F ) is cuspidal in all three variables unless two of the µi
are zero; this is true for any degree 3 Siegel modular form F of weight
k by a reasoning similar to the one given in the proof of the theorem
in section 1.

• For the remaining case (say e.g. µ1 = µ2 = 0) we recall that Lk(0, 0, µ)0 =
Gµ

2k(∂z, ∂τ1∂τ2)|z=0,

so Lk(0, 0, µ)0 acts on F like Lk,µ acts on F (

(
Z 0
0 τ3

)
), when viewed

as a function of Z =

(
τ1 z
z τ2

)
.

• Over any field K there are 5 orbits of

Sp(3, K)∞\Sp(3, K)/SL(2, K)3,
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given by

O0 := 16 , O1 :=


13 03

0 0 0
0 0 1
0 1 0

13

 , O2 :=


13 03

0 0 1
0 0 0
1 0 0

13

 ,

O3 :=


13 03

0 1 0
1 0 0
0 0 0

13

 , Omain =


13 03

0 0 0
0 0 0
1 1 1

13


Applying the differential operators Lk(µ1, µ2, µ3) to the degree three Siegel
Eisenstein series, we first notice, which orbits (and their contributions to the
pullbacks) get killed. If at least two of the µi are non-zero, then only the
“main orbit” Omain remains. If only µi is different from zero, then the two
orbits Oi and Omain survive.
With the remarks from above and using the results from [16, 15, 9, 10, 20]
we get

Proposition 3.1: Let k be an even integer, k > 4 and let µ1, µ2, µ3 be any
non-negative integers. Then

Lk(µ1, µ2, µ3)(E
3
k) =

δ0,µ1δ0,µ2δ0,µ3Ek ⊗ Ek ⊗ Ek+

δ0,µ1δ0,µ2

κ(k, µ3)

c(k, µ3

∑
g∈Sk+µ3

D(g, k − 1)

< g, g >
g ⊗ g ⊗ Ek+

δ0,µ1δ0,µ3

κ(k, µ2)

c(k, µ2

∑
g∈Sk+µ2

D(k − 1, g)

< g, g >
g ⊗ Ek ⊗ g+

δ0,µ2δ0,µ3

κ(k, µ1)

c(k, µ1)

∑
g∈Sk+µ1

D(k − 1, g)

< g, g >
Ek ⊗ g ⊗ g+

γ(k, µ1, µ2, µ3)

ζ(k)ζ(2k − 2)

∑
f,g,h

L(f ⊗ g ⊗ h, 2k + µ1 + µ2 + µ3 − 2)

< f, f >< g, g >< h, h >
f ⊗ g ⊗ h.

The last sum goes over a normalized basis of Hecke eigenforms for Sk+µ2+µ3 ,
Sk+µ1+µ3 and Sk+µ1+µ2 and
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γ(k, µ1, µ2, µ3) = (i)−k+µ1+µ2+µ32−5k+8−4µ1−4µ2−4µ3π3−2k−µ1−µ2−µ3 ×
Γ(2k + µ1 + µ2 + µ3 − 2)

Γ(2k − 2)Γ(k)
×

Γ(µ1 + µ2 + k − 1)Γ(µ1 + µ3 + k − 1)Γ(µ2 + µ3 + k − 1)

µ1!µ2!µ3!
.

We extract this archimedian factor from the computation in [9, (2.41)]. The
simple form of this factor comes out only after some tedious calculations.
The reason is that the archimedian integral is not computed directly for the
differential operator Lk(µ1, µ2, µ3), but for a composition of (not necessar-
ily holomorphic) differential operators (Maaß type operators together with
the operators from [8]) whose “holomorphic component” is then up to a fac-
tor equal to Lk(µ1, µ2, µ3)). This procedure avoids a lot of combinatorial
problems).
Remark: The critical point which appears in the proposition above is the
largest critical point for the triple L-function only if at least one of he µi is
zero. Note also that we do not get the central critical value (because k = 2
is not allowed!)

4 Comparison: first version via periods

We follow the basic strategy of [20]: We fix an even number k > 4, non-
negative integers ν, t1, t2 and a squarefree positive integer m and also we
choose normalized Hecke eigenforms f ∈ Sk+ν+t1 and g ∈ Sk+ν+t2 . Starting
from the Siegel Eisenstein series E3

k of degree 3 we first pick out the m-th
Fourier-Jacobi-coefficient. As mentioned at the beginning of section 2, this
m-th Fourier Jacobi coefficient equals

Akσk−1(m) · E2
k,m,

i.e. it equals, up to a factor, the Jacobi-Eisenstein series of index m defined
earlier.
We apply the differential operator Dt1,t2,0

k,ν to E2
k,m and pick out the coefficient

of f ⊗ g · e2πimτ3 . According to theorem 2.2 this coefficient is equal to

δν,0

(
κ(k, t1)κ(k, t2)af (m)ag(m)

Akσk−1(m)ζ(k)2ζ(2k − 2)2

D(f, k − 1)

< f, f >

D(g, k − 1)

< g, g >

)
+
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β(k, ν)
∑
i

ZJ(k,Φi)

|| Φi ||2
I(t1)(Φi, f)I(t2)(Φi, g).

On the other hand,

Dt1,t2,0
k,ν =

ν+Min(t1,t2)∑
w=0

αk,ν,t1,t2(w)∂wτ3 · Lk(ν + t2 − w, ν + t1 − w,w)0.

We may as well apply the operators Lk(...)
0 to E3

k , use Garrett’s pullback
formula (proposition 3.1) and then pick out the m-th Fourier coefficient with
respect to τ3. If f and g are different, we get

∑
k,ν,t1,t2

αk,ν,t1,t2(w)(2πim)w
∑

h∈Sk+2ν+t1+t2−2w

γ(k, ν + t2 − w, ν + t1 − w,w)×

ah(m)
L(f ⊗ g ⊗ h, 2k + 2ν + t1 + t2 − w − 2)

< f, f >< g, g >< h, h >
.

The case f = g is slightly more complicated, because an additional term may
arise if t1 = t2 = t and w = ν + t. The additional term is

δt1,t2αk,ν,t,t(ν + t)(2πim)ν+t
κ(k, ν + t)

c(k, ν + t)

Akσk−1(m)

ζ(k)ζ(2k − 2)

D(g, k − 1)

< g, g >
,

where the last factor in front of the L-function comes from the Fourier ex-
pansion of the Eisenstein series:

Ek = 1 + Ak
∑

σk−1(n)e2πinz.

Summarizing this, we obtain

Main Theorem 4.1: Let k be an even integer with k > 4 and let ν, t1, t2
be arbitrary non-negative integers such that k + ν + t1 and k + ν + t2 are
even; furthermore let m be a squarefree positive integer. Let f ∈ Sk+ν+t1

and g ∈ Sk+ν+t2 be normalized Hecke eigenforms and denote by (Φi)i∈I an
orthogonal Hecke eigenbasis of J cuspk+ν,m. Then we have the identity

δν,0
κ(k, t1)κ(k, t2)af (m)ag(m)

Akσk−1(m)ζ(k)2ζ(2k − 2)2

D(f, k − 1)

< f, f >

D(g, k − 1)

< g, g >
+
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β(k, ν)Akσk−1(m)
∑
i

ZJ(k,Φi)

|| Φi ||2
I(t1)(Φi, f)I(t2)(Φi, g) =

δt1,t2δf,gαk,ν,t,t(ν+t)(2πim)ν+t
κ(k, ν + t)

c(k, ν + t)
Akσk−1(m)

D(g, k − 1)

ζ(k)ζ(2k − 2) < g, g >
+

ν+Min(t1,t2)∑
w=0

αk,ν,t1,t2(w)(2πim)w
γ(k, ν + t2 − w, ν + t1 − w,w)

ζ(k)ζ(2k − 2)
×

∑
h∈Sk+2ν+t1+t2−2w

ah(m)
L(f ⊗ g ⊗ h, 2k + 2ν + t1 + t2 − w − 2)

< f, f >< g, g >< h, h >
.

Here h runs over a normalized Hecke eigenbasis of Sk+2ν+t1+t2−2w and we
write t for ti if t1 = t2

This is our most general identity; its significance depends on understanding
(by reinterpretation) the left hand side, in particular the periods I(t)(Φ, g);
one can however as well consider such periods as objects of independent
interest.
Remark: To have an identity with algebraic summands, we should divide
both sides of the identity above by (2πi)2ν+t1+t2 . The reason is that we should
have normalized our differential operators from the beginning in such a way
that the application to Fourier series with algebraic coefficients gives again
Fourier series with algebraic coefficients.

5 Comparison: final version via central val-

ues of L-functions

It is desirable to rewrite the Arakawa-Ichino side of our main identity in
terms of elliptic modular forms (rather than Jacobi forms). In principle, this
should be possible in general, definite results however are available only for
m = 1, t1 = t2 = 0. We will briefly indicate where the problems are for the
general case, but then we will concentrate on the cases where definite results
are available.
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5.1 How to rewrite the ZJ(k,Φi)

Here a general solution is available, which we briefly sketch: By choosing the
basis {Φi} of J cuspk+ν,m properly, it is possible to associate to each Φi an elliptic

cusp form ϕi in the spaceMnew,−
2k+2ν−2(m

′), which was introduced by Skoruppa
and Zagier [29]; here m′ is a suitable divisor of m. Then one can express
ZJ(s,Φi) in terms of L(ϕi, s), we refer to [19, 12] for details.
Now we stick to the case m = 1: here the correspondence between the
Φi ∈ J cuspk+ν,1 and the ϕi ∈ S2k+2ν−2 is already described in [13]. Moreover in
this case [1, 19]

ZJ(s,Φi) =
L(ϕi, s+ k + ν − 3)

ζ(2s− 2)
.

5.2 How to rewrite the Ichino periods

To give an appropriate reformulation of the Ichino periods I(t)(Φ, f) in gen-
eral, we would need a version of Ichino’s result involving differential opera-
tors; such a result is likely to be true (see [7] for the case of Yoshida lifts);
we would also need a version, which allows to treat Jacobi forms of index
m > 1; it is not clear what in that case the analogue of Ichino’s result should
look like.
The case m = 1, t1 = t2 = 0 was already considered in [20]; it uses Ichino’s
result in a crucial way:

I(Φi, f)2 = 2−k−ν
|| ϕ̃i ||2

|| ϕi ||2|| f ||4
L̂(ϕi ⊗ Sym2(f), 2k + 2ν − 2),

where ϕ̃i is the modular form of half-integral weight corresponding to Φi and
the hat indicates the completion of the L-function. We should also mention
here the identity of Petersson products [25]

|| Φi ||2= 22k+2ν−3 || ϕ̃ ||2 .

5.3 The main identity using L-functions

Using the results from above, we can now reformulate our main theorem 4.1
entirely in terms of elliptic modular forms and L-functions. We do this for
f = g, otherwise we would need square roots of the central critical values;
also we have (at the moment) to restrict ourselves to t1 = t2 = 0.
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Theorem 5.1: Let f be a normalized Hecke eigenform of weight k + ν with
k > 4. Then

δν,0
κ(k, 0)2

Akζ(k)2ζ(2k − 2)2

(
D(f, k − 1)

< f, f >

)2

+

2−3k−3ν+3Akβ(k, ν)
∑

ϕ∈S2k+2ν−2

L(ϕ, 2k + ν − 3)L̂(ϕ⊗ Sym2(f), 2k + 2ν − 2)

ζ(2k − 2) || ϕ ||2|| f ||4

=

αk,ν,0,0(ν)(2πi)ν
κ(k, ν)

c(k, ν)
Ak

D(f, k − 1)

ζ(k)ζ(2k − 2) < f, f >
+

ν∑
w=0

αk,ν,0,0(w)(2πi)w
γ(k, ν − w, ν − w,w)

ζ(k)ζ(2k − 2)
×

∑
h∈Sk+2ν−2w

L(f ⊗ f ⊗ h, 2k + 2ν − w − 2)

< f, f >2< h, h >
.

Remarks:

A) As in the case ν = 0 discussed in [20] our identity connects central
critical values to critical values in the range of convergence. It should
be possible to extract information about the central critical values from
this identity.

B) It would be desirable to include the case k = 4 here (by Hecke summa-
tion).

C) The (excluded) case k = 2 is also remarkable: Then for ν = 0 the con-
tributions on both sides are the same (say, for a congruence subgroup
Γ0(p)). For a completely different approach to such averages for weight
2 we refer to the work of Feigon and Whitehouse [11].
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6 A degenerate case

6.1 The case ν odd

There are no Jacobi forms of index one and odd weight on H × C, see [13,
Thm.2.2]; therefore we get for all odd positive integers ν

D0
k,νE

2
k,1 = 0.

Nevertheless we may apply our comparison procedure using differential op-
erators Dt1,t2,0

k,ν for ν, t1, t2 all odd; The left hand side of our main theorem 4.1
then degenerates and we get

Corollary 6.1: Let f, g, k, ν, t1, t2 be as in our main theorem but with the
additional condition that ν, t1, t2 are all odd and the index m is one; then

δt1,t2δf,gαk,ν,t,t(ν + t)(2πi)ν+t
κ(k, ν + t)

c(k, ν + t)
Ak

D(g, k − 1)

ζ(k)ζ(2k − 2) < g, g >
+

ν+Min(t1,t2)∑
w=0

αk,ν,t1,t2(w)(2πi)w
γ(k, ν + t2 − w, ν + t1 − w,w)

ζ(k)ζ(2k − 2)
×

∑
h∈Sk+2ν+t1+t2−2w

ah(m)
L(f ⊗ g ⊗ h, 2k + 2ν + t1 + t2 − w − 2)

< f, f >< g, g >< h, h >
= 0.

6.2 An example

It may be of interest to consider simple examples of our identities, where
only a few terms appear.
The simplest possible case of the corollary above is k = 10, ν = t1 = t2 = 1.
With f = g = ∆ ∈ S12, only w = 1 gives a contribution, again with h = ∆
as the only contributing h. Then the corollary gives

α10,1,1,1(2)
(
2π (−1)1/2

)
A10

κ(10, 2)

c(10, 2)
π29 D(∆, 9)

π29||∆||2

= (−1)α10,1,1,1(1) γ(10, 1, 1, 1) π51L(∆⊗∆⊗∆, 21)

π51||∆||6
(∗)
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where we have divided the L-values by appropriate powers of π to obtain
algebraic values.
We confirm the identity (*) numerically, use the explicit values:

α10,1,1,1(2) = −
(

1
2

+ k
)2

k(k + 1)
= − 32 · 72

23 · 5 · 11

α10,1,1,1(1) = −
(

1
2

+ k
)2

(k − 1)

k2(k + 2)
= −33 · 72

26 · 52

A10 = −23 · 3 · 11

κ(10, 2) =
3 · 5 · 7 · 19

210
· π

c(10, 2) =
7

3
D(∆, 9)

π29||∆||2
=

2 · 420

245 · 20!
=

223

38 · 55 · 74 · 11 · 13 · 17 · 19

γ(10, 1, 1, 1) = (−1)(3−k)/2π−2k (k!)3(2k)!

25k+4(k − 1)!(2k − 3)!

= (−1)−7/2π−20 310 · 56 · 72 · 19

234

L(∆⊗∆⊗∆, 21)

π51||∆||6
=

254

316 · 59 · 76 · 11 · 13 · 17 · 19
.

Here the values of D(∆, 9) and L(∆ ⊗∆ ⊗∆, 21) are taken from [30] and
[28] respectively.
With these values we can compute both sides of (*) independently and obtain
on both sides the same value

i · π31 × 214

33 · 55 · 72 · 11 · 13 · 17
.
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[3] Böcherer, S.: Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinrei-
hen II. Math.Z.189, 81-110(1985)
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