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Cancellation of Lattices and
Finite T'wo-Complexes

IAN HAMBLETON (1) AND MATTHIAS KRECK

This is the first in a series of three papers (referred to below as [I], [II} and [III])
on certain cancellation problems which arise in algebra and topology. For example, if
M,M' /N are modules with M @ N =M @ N,isM =M ? If K,K' are finite two-
complexes with KV 5% ~ K'VrS?%, is K ~ K' ? In [I] we consider these questions for
modules over orders (e.g. integral group rings Zm, = a finite group) and two-complexes
with finite fundamental group. Part {II] deals with cancellation of quadratic forms and
general results for 4-manifolds with finite fundamental group: when does X f (52 x §2) ~
Y §(S? x $?) imply X =~ Y? In [III] we study smooth structures on elliptic surfaces,
and the homeomorphism classification of 4-manifolds with certain special fundamental
groups.

We now give a more detailed description of the results in the present paper. Let
R be a Dedekind domain and F its field of quotients. A lattice over an R-order 4 is
an A-module which is projective as an R-module. The general stable range condition
for cancellation of lattices over orders is free rank > 2 [1, (3.5), p.184]. We obtain an
improvement in this stable range, assuming certain local information about the lattices.
The problem is to show that certain groups of elementary automorphisms act transitively
on unimodular elements in lattices, and our result suggests that an inductive procedure
may be useful, to pass from transitivity over a quotient order B to transitivity over
A. The arguments in §1 are modelled closely on the ones given in [1, Chap.IV §3].
To obtain the geometric applications, the elementary automorphisms are shown to be
realizable by (simple) homotopy equivalences.

To state our condition, let A and B be orders in separable algebras over F [4, 71.1,
75.1], and suppose that there is a surjective ring homomorphism ¢ : A — B. We say
that a finitely generated A-module L has (A, B)-free rank > 1 at a prime p € R, if there
exists an integer r such that (B” @ L), has free rank > 1 over A,. Here A, denotes the
localized order A ® R(;). In the extreme case B = 0, this is just the condition that L,
has a free direct summand. In the other extreme case A = B, there is no condition on

L.

Theorem A: Let L be an A-lattice and put M = L @ A. Suppose that there exists
a surjection of orders ¢ : A — B such that L has (A, B)-free rank > 1 at all but
finitely many primes. If GL3(A) acts transitively on unimodular elements in B @ B,

then for any A-lattice N which is locally a direct summand of M™ for some integer n,
M@®N=M @N implies M = M.

(1) Partially supported by NSERC grant A4000 and the Max Planck Institut fiir Mathematik
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In the classification of two-complexes with finite fundamental group we find that
(Zr,Z)-locally free modules have an important role, where Zx is the integral group
ring of a finite group. This special case motivates the definition of (A, B)-locally free
modules given above. We check that for B = Z, the conditions on “transitive action”
in Theorem A is satisfied (see (1.16)), hence can be omitted from the statement.

For example, consider the lattices L arising as m3(K'), where K is a finite 2-complex
with fundamental group m;(K) = 7. These are defined by exact sequences

(0.1) 0-L—-Cy—>Cy—-Cs—Z—-0

with C; = Ci(K) finitely generated free Zm modules.

More generally, any lattice L with a resolution (0.1) by finitely generated projec-
tive Z7 modules C; is unique up to direct sum with projectives. The stable class is
denoted 3Z. Such lattices with minimal Z-rank need not contain any projective direct
summands over Zw, but rationally contain all the representations of = except perhaps
the trivial one. Then L has (Zn,Z)-free rank > 1 at all primes not dividing the order
of . The simplest case occurs for 7 cyclic and L = ker {¢: Zm — Z} the augmentation

ideal.

The linear cancellation theorems in §1 have applications to the homotopy type of
2-complexes. Recall that J. H. C. Whitehead proved that any two finite 2-complexes
K, K' with isomorphic fundamental groups become homotopy equivalent after wedging
with a sufficiently large (finite) number of $%’s. It is well-known that in fact they become
simple homotopy equivalent since any Whitehead torsion can be realized stably by a
self-equivalence. Furthermore, if a : (I, zq) — m (K, z'¢) is a given isomorphism and
K, K' have the same Euler characteristic, then there is a simple homotopy equivalence
f:KvrS8% — K'vrS? inducing a on the fundamental groups.

The following is our main result about finite two-complexes. The analogous result
for “homotopy type” instead of “simple homotopy type” was proved by W. Browning
(3, 5.4].

Theorem B: Let K and K’ be finite 2-complexes with the same Euler characteristic
and finite fundamental group. Let o : m(I,z0) — m(K', zy) be a given isomorphism
and suppose that K ~ K, V §%. Then there is a simple homotopy equivalence f : K —
K' inducing « on the fundamental groups.

This is the best possible result in general, but for special fundamental groups it
can sometimes be improved (see §2):

Theorem 2.1: Let 7 be a finite subgroup of SO(3). If K and K' are finite 2-complexes
with fundamental group © and the same Euler characteristic, and a : m(K,z0) —
m1(K',zy) a given isomorphismn, then there is a simple homotopy equivalence f : K —
K' inducing o on the fundamental groups.

For 7 cyclic or 7 = Z/2 x Z/2, this was proved in [5], [T].
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§1: Cancellation of lattices

By an “A-module” we will mean a finitely generated right A-module. As above
we suppose that € : A — B is a surjective ring homomorphism of R-orders in (possibly
different) separable F-algebras. If M is an A-lattice and N := €, (M) = M ®4 B, we
get an induced homomorphism

e : GL(M) — GL(N).

If M = M, ® M, is a direct sum splitting of an A-module then E(M;, M) denotes
the subgroup of GL(M) generated by the elementary automorphisms ([1, p.182]). Let
E(M;, M) be the subgroup of elementary automorphisms of the form 13 @ f where
f : My — M, is a homomorphism. Similarly, let E_(M;, M>) be the subgroup consisting
of those of the form 155 @ ¢, where ¢ : M2 — M,;. Then

E(My, My) = (E4(My, My), E- (M, My)).

If O is a two-sided ideal in A, then let GL(M;90) = ker (GL(M) —» GL(M/M9O). We
define
E:}:(M],MQ;D) = Ei(Ml,Mg) N GL(M,D)

Finally, let E(M, M2;90) be the normal subgroup of E(M;, M;) generated by all ele-
mentary automorphisms as above with f(M;) C MO, or g(M;) C M9, respectively.

We will frequently use the notation P = pgA@ p1 A for a free A-module of rank two
with the basis {po,p;}. It has rank one submodules P; = p;A for ¢ = 0,1. We define

E+(P)=E+(poA,p1A) and E4(P; D) = E+(poA,p1 4; D) when the basis is understood
from the context.

Recall that for an element ¢ € M, Op(z) is the left ideal in A generated by
{f(z) | f € Homa(M, A)}.

If Om(z) = A we say that z is unimodular. If N C M is a submodule, then an element
z € N is M-unimodular if Op(z) = A.

The following result of Bass is an essential ingredient in the proofs of the cancellation
theorems.

Theorem 1.1: ([1,(3.1), p.178; (3.2), p.181]) Suppose that Q = A and P = poA®p, 4,
and O is a two-sided ideal in A. Let ¢ = (p,q) € P ® Q be an element such that
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z = po(mod®), and Opgg(z) + a = A for some left ideal a. Then there exists an
A-homomorphism f : Q — PO such that Op(p + f(q)) + a = A.

We also need two other facts.

Lemma 1.2: Let M be a finitely generated right A-module, projective over R, and
A" = A/At for an ideal t € R such that the localized order A, is maximal. Then the
induced map

Hom4(M, A) — Homu4/(M', 4)

is surjective, where M' = M [Mt.

Proof: First note that M, is projective over A;. Since A' = A, /At we can lift any
map f': M' — A’ to f: My — A,. After restricting to M C M; and multiplying by an
element r € R prime to t, we obtain a lifting of r' f'. But ' (the image of r in R') is a
unit in A'.

Lemma 1.3: ([2, (2.5.2),p.225]) If C is a semisimple algebra, then for each a, b € C
there exists r € C such that C(a+ rb) = Ca+ Cb.

‘We now come to the main result of the section.

Theorem 1.4: Let A be an R-order in a separable K-algebra and suppose that
M = P ® L is an A-lattice, where P = pyA @ p1 A, and L has (A, B)-free rank > 1 at
all but finitely many primes. For any two-sided ideal O in A, the subgroup of

G1(D) = (E(poA, L ® p14; D), E(p1 4, L @ po 4; D)) € GL(M; D)

fixing e.(po) acts transitively on the unimodular elements x € M such that £ = p ( mod
) and e,{z) = e.(po).

We divide the proof into several parts, stated as separate Lemmas for use in [II].
Let £ = p+ v € M be a unimodular element, where p = ppa + p1b € P and v € L. Let
T = poa + p1b+ v € M be a unimodular element, with p = ppa + p1b € P and v € L,
so that O(z) = Aa + Ab + O(v). We assume that e.(z) = e.(po) and z = py (mod O),
so a = 1{mod O), b,v = 0(mod O). In the proof we use the stability assumption on L
to move z so that its component in pgA @ L is unimodular. Then we move z to py to
prove the statement about unimodular elements in M. At each step we must use only

elements o of G,(9) fixing e.(po).

Lemma 1.5: Let S be a set of primes in R, and A = A/gA where g is the ideal in R

generated by all the primes p € S. Then after applying an element T € EL(Py, Po; D)
to z, O(Z) = Aa = A and e.(z) = e.(po).

Proof: The semi-simple quotient ring A/RadA = C x C', where ¢ = B/RadB and
C' is a complementary direct factor. Therefore the C' component of a is already a unit
since a projects to 1 in the semisimple quotient. Over the other factor we can apply [1,

(2.8),p.87): there exists u € O, such that the element a + ub projects to a unit in C
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and to 1 in B. Let g : Py = ppA C M such that g(p1) = pou. Extend g to a map from
M to M by zero on the complement. Then 7 = 1 + ¢ is an element of E4 (P, Py; D)
and 7(z)} has the desired properties (1.5). s

We apply Lemma 1.5 to the set S of primes p € R at which A is not maximal, or
L does not have (A, B)-free rank > 1.

Lemma 1.6: Ifz = ppa+p1b+v € M is a unimodular element for which Aa+gA = A.
Let t C R be the ideal which is maximal among those such that At C Aa. Then t is
relatively prime to g and A, is a maximal order. In addition, after applying an element
T € Ex(P1,L;O) we havez = poa+p1b+v with Aa+O(v)+ At = A, ppa+v unimodular,
and €,(z) = e.(po).

Proof: Let t C R denote the ideal, maximal among those such that At C Aa. If p
divides t, for some prime dividing @, then t = AaN R -1 implies that AaNR-1C p. But
(Aa), = A, for all primes p dividing g, so this is impossible. Hence g is relatively prime
to t, and in particular t # 0.

Now we project to the semilocal ring A’ = A/At, which is the quotient of the
order A¢(maximal by our choice of g) and so the projection ¢ : A’ — B’ splits and
A' = B' x C'. Since over the B’ factor a projects to 1, we have (Aa)’ = A'. Over the
complementary factor C' we use a suitable 7 € E(p{C', L'), so that after applying 7 we
achieve the condition

(1.7) Ald +O(v) = A

over both factors of A'. This is an application of (1.3) to the component of z in L' ®p|C"
using the fact that C' C L’. The necessary homomorphism ¢ € Hom 4/(P{, L'O"), which

is the identity over B’ can be lifted to Hom 4 (P, LO) since P, is projective and extended
to M by zero on poA @ L.

We now lift the relation (1.7) to A using (1.2) and obtain
Aa+ O(v) + At = A,

But At C Aa so v + ppa is unimodular. «

We now complete the proof of Theorem 1.4 by the following:

Lemma 1.8: Let z = pga + p1b + v, with £ = po (mod D) and e,(z) = po. Suppose
that z = pja + v is unimodular, and write L & Py = 2zA @ Lo. Then there exist
elementary automorphisms 7y € E (zA,Py;9), 12 € E4(P1,Ry), 13 € E4(Py, P1;0)
and 74 € E4(Py, L; D) such that 1475 ' 137271 (z) = po and the product fixes e.(po).

Proof: This is the argument of [1, pp. 183-184] Let ¢1(z) = p1(1 — a — b), with

91(Lo) = 0. Define g2(p1) = po, g3(po) = pi(a — 1), and ga(po) = —v, where the
homomorphisms are extended to the obvious complements by zero. If 7; = 1 4 g, then

1475 'T372m1(Z) = Po.
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The product fixes €.(po) and lies in E(Py,po @ L; O). =

We now introduce the following notation: if N is a submodule of M and G C
GL(M), then G(N)={¢g € G|g(N)=N}. If M = M, @ M, and G C GL(M,), then
(by definition) G(N) = {9 € G|(9 ® 1am,)(N) = N}.

Definition 1.9: Suppose that M = P® L is an A-lattice, where P = pgpA® p1 4, and
N C M is a submodule containing pgA as a direct summand. Let O = Ann(M/N),
two-sided ideal in A. A subgroup Gy C GL(P) is (N, po,€) — transitive if

(i) Go(N) acts transitively on the images in N/N N MO of the elements poa, for any
a € A representing a unit in A/D, and

(ii) the subgroup of Go(N) which fixes po (mod D) acts transitively on the images in
ex(P) of the P-unimodular elements z € P N N such that z = po (mod O).

Lemma 1.10: Let M = P @® L be an A-lattice, where P = ppA ® p1A. Let
N=piA®N' CM and O = Ann(M/N).

(i) Suppose that N' is a submodule of finite index in pyA @ L and that there exists a
subgroup Go C GL(P) which satisfies the condition in Definition 1.9(i). If € N isa M-
unimodular element, then there exist elementary automorphismsr; € E_(po A, L®p1 A),
T2 € E4(poA,N"), and 8, € Go(N) such that z' = 8;727m1(z) has ' = p(mod O). In
addition, i(N) = N, for: = 1,2.

(1i) Suppose that there exists a subgroup Gy C GL(P) which satisfies the condition
in Definition 1.9(ii). If z € N is a M-unimodular element with £ = po (mod O), then
there exist elementary automorphisms 13,74 € E(P,L;9) and 8, € Go(N), such that
z' = 140273(z) has e.(2') = e.(po) and ' = po (mod O). In addition, 7;(N) = N, for
1= 3,4.

Proof: (i) By assumption, A/O is a finite ring. It is convenient to describe the elements
of N C ppA®p1 A® L in the notation used above: z = ppa+ p, b+ v, where pyb+v € N'
and v € L.

We work over N/N N MO and start by arranging that = has p1b+ v = 0(mod D).
To see this note that Aa + Op(p1d + v) = A, so there exists ¢ € O(p1b + v) such that
Aa + ¢ contains 1. Apply (1.3) to A @ poA and the element (c,a) to find z € A with
A(a + zc) = A(mod D). There exists g; : L@ p1A — poA with ¢1(p1b + v) = pozc,
since ¢ € Op(p1b+ v). Let u € A be a lifting of u(a + z¢) = (mod O), and define f; :
poA —» L®p1Aby fi(po) = (pib+ v)u. Extend by zero on the complements, and define
1 = (14 ¢1), 72 = (1— f1). Then 7271(2) = poa(mod O), 1,72 € E(poA, LB p; A), and
7i(N) = N for : = 1,2. By assumption there exists §; € Go(N) to get z = po (mod O).
(ii) We will first make the P-component p = ppa + p1b of z unimodular, using the
fact that P satisfies the hypotheses of (1.1), with O = Ann(M/N) and a = 0. Again
we start with O(p) + O(v) = A, so there exists ¢ € O(v) such that O(p) + ¢ contains
1. Apply (1.1) to A ® P and the element (c,p) to find z € PO with O(p + 2¢) = A.
There exists g3 : L — P with g3(v) = zc. Extend by zero on the complement, then

r3(z) = (1 + g3)(z) = (p + z¢) + v, 3(N) = N and 3 € E(P,L; D).
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Finally, note that p = z(mod®Q) implies that p € P N N, so we can use our
assumption that a suitable element 8; of Go(N) moves €,(p) to e.(po) and preserves the
condition p = pgp (mod D). Now let fy : Po — L be defined by fs(po) = v and apply
14 = (1 — f4) € E(Py,L) to z. The result is that e.(z) = e.(po) and z = po (mod O).
Since v =0(mod D), v € N andso y(N)=N. « -

Corollary 1.11: Suppose that M = P @ L is an A-lattice, where P = ppA@® p1 A, and
L has (A, B)-free rank > 1 at all but finitely many primes. Let N C M be a submodule
of finite index containing po A as a direct summand, and O = Ann(M/N). Suppose that
there exists a subgroup Go C GL(P) which is (N, po, €)-transitive.

Then the subgroup G(N) stabilizing N of

G =(Go, E(pA,LOp1A), E(p1A, L@ pod)) C GL(M)
acts transitively on the set of M—unimodular elements in N.

Proof: We apply Lemma 1.10 and then Theorem 1.4 to complete the proof. Since
o = 1p (mod ) for every o € G1(D), it follows that G1(D) leaves N invariant. s

We will find it convenient to refer to the special case when O = A and N = M.

Corollary 1.12: Suppose that M = P @ L is an A-lattice, where P = ppA @ p1 4,
and L has (A, B)-free rank > 1 at all but finitely many primes. Let Go C GL(P) be a
subgroup such that €,(Go) acts transitively on the images in e.(P) of the P-unimodular
elements. Then the group

G= (GO:E(pOA)L @PlA),E(PIA,L EBPUA)) g GL(M)

acts transitively on the unimodular elements in M.

Remark 1.13: In some cases there may be no subgroup Gy with the required property.
For example, if B = Z= is the integral group ring of a finite group =, then GL,(B) acts
transitively on unimodular elements in B @ B if and only if the relation T B = B@ B
for a projective ideal J implies J & B. In [11, Thm. 3] Swan shows that this is not
true for a certain ideal in Zx where 7 is the generalized quaternion group of order
32. Jacobinski proved in [6] that cancellation in this sense holds for Zx unless =
has a quotient which is binary polyhedral (in particular, those satisfying the “Eichler
condition”). The converse was studied in [13]: Swan proved that cancellation fails for
Zr if m has a binary polyhedral quotient which is not one of 7 exceptional groups.

Proof of Theorem A: By Swan’s Cancellation Theorem ([12, 9.7] and the discussion
on [12,p.169]), M @ A = M' @ A since M @ A is the direct sum of two faithful modules.
We apply (1.12) following [1, IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan’s or Jacobinski’s cancellation
theorems independently. When the hypotheses of Corollary 1.11 apply, the same method
gives other cancellation results.



Lattices and Finite Two-Complexes 8

For geometric applications, we will be particularly interested in the case when B =
Z. We have remarked in (1.13) that GL2(A) acts transitively on unimodular elements
for A = Z and certain group rings of finite groups (in particular those which satisfy

the Eichler condition [12]). For applications to finite two-complexes, the transitivity of
SLy(A) is more useful.

Theorem 1.14: ([8, 10.6]) Suppose that A satisfies the Eichler condition, and let B be
the image of A in the product of all the commutative factors of AQ@p F. Then SL,y(A)
acts transitively on unimodular elements in A @ A provided that SK,(B) = 0.

Lemma 1.15: Let O be an ideal in A, P = pgA ® p1A, and let N = ppA @ p1 D.
Suppose that SLi(A) acts transitively on the unimodular elements of P, and that
(A/ (mod D))* — K;1(A4/(mod 9)) is injective. Then SLq(A;O) stabilizes N and acts
transitively on the P-unimodular elements ¢ € N such that z = pg (mod O).

Proof: If z = pga + p1b is a P-unimodular element with b € © and a = 1(mod D),

then a matrix in SLy(A) which moves py to ¢ must have the form o = Z ;), where
d =1(mod D) as well. Theno' =0o- ((1] _16) is contained in SLy(A; O) and stabilizes

N.»

Lemma 1.16:

(i) If e : A — Z is a surjection of orders, then E(P) maps onto SLy(Z).

(ii) Let O be an ideal in A, P = pyA® p1 A, and let N = ppA & p1O. Assume that
one of the following conditions holds (a) O contains ker (A — Z), or (b) ¢ € O where
(¢) = (D), or (c) (D,q) is a principal ideal, or (d) ONZ -1 = (q') for some integer ¢'
with the same prime divisors as q. Then the subgroup of E(P) which fixes py (mod O)
acts transitively on the images in e.(P) of the P-unimodular elements ¢ € N such that

z = pg (mod V).

Proof: Part (i) follows from the fact that E2(Z) = E(poZ,p1Z) = SLy(Z). For part (ii)
we first observe that the transitivity claimed can be carried out in E3(Z), and then use
one of our assumptions to lift the matrices to E(P). This last step is straightforward

except under assumption (d). In that case, we choose an element u € © such that

0) in order to

e«(u) = ¢, and then act on = = poa + p;1b by a matrix of the form (rlu 1

obtain the relation e,(b) = 0(mod ¢').

Example 1.17: Let A = Zm, where 7 is the direct product of two cyclic groups of
order two, generated by S,T. Let O = (S —-1,2(T-1),ST—-1,14+ 5+ T+ ST). Then
ex(D) = (4), but 4 ¢ O, and (D,4) is not principal. However, ONZ 1= (8).

We conclude this section by giving a useful generalization of the Roiter Replacement
Theorem [9]). An A-lattice L will be called (A, B)-faithful if B*®L is a faithful A-module
for some integer s. If I' is a hereditary order containing A, then I' = T(B) x I'(C'), where
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['(B) is a hereditary order containing B. The I'-module generated by an A-module L
is denoted I'L.

Theorem 1.18: Let L be an (A, B)-faithful lattice over an order A, with respect to
€: A — B. Suppose that I" is a hereditary order containing A and nI' C A for some
integer n. In addition, we assume that the map of units (A/nT)* — (I'(B)/n[(B))* is
surjective. Then for any locally-free projective A-module P of rank r with T'(B)L free,
there exists an A-module L' in the same genus as L suchthat L@ P = L' @ A".

Proof: We consider the pull-back square

A — r

! !
A/nl’ — T/aT

Let A = A/nl and T = I'/nI with a similar convention for modules {(e.g. L = L®4 A).
Since L is (A, B)-faithful, by Roiter’s Theorem there exists a I'(C')-module U in the
same genus as ['(C)L such that U @ T(C)" = T'(C)(L @ P). Note that U is projective
of rank > 1 over I'(C). We add T'(B}L @ P) to both sides and use the assumption
I'(B)P = T'(B)", to express our original module L @ P as a pull-back

(a: (LOANRAT - (B LU STT)@r ).
The isomorphism « can be varied by self-automorphisms of the right-hand side which

lift over A or T.

We remark that for rank > 2 the action of elementary matrices over I is transitive
on unimodular elements. Using this variation over the I'(C') component of «, we can
assume that « induces the identity on the T'(C)" summand. Over the I'(B)" factor, we
use the assumption on (4)* to achieve the same result. If we denote the new patching
isomorphism by o', we have the block form

1 _ (B8 O
O‘_(r id)'

(B:Loal — (T(B)LoU)®rI)
is our desired module L', and it follows that L & P = L' & A". Since P is locally free,

and cancellation holds locally, we see that L' is in the same genus as L. «

The pullback

Corollary 1.19: Let A = Zx, 7 a finite group and L be any (A, Z)-faithful module.
Then for any projective A-module P of rank v, there exists a module L' in the same
genus as L suchthat L P = L' A".
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§2: Applications to Two-Complexes

The cancellation problem for 2-complexes has been extensively investigated [3],
[5], [7], [10]. In particular it is known that even for finite abelian fundamental groups,
there are examples of 2-complexes which are stably simply equivalent but not homotopy
equivalent [7]. On the other hand, for a fixed finite fundamental group and Euler
characteristic, K V §? is homotopy equivalent to K’V §? [3].

The Proof of Theorem B: Let A : K Vv r5? — K'V rS§% be a simple homotopy
equivalence as above, inducing a given isomorphism « on the fundamental groups. Let
A = Z[m(K)], L = my(I), and note that this module has (A4, Z)-free rank > 1. We
may assume that 7 = 1 and set P = m2(S? V §2) C ma(Ko V S?V §?).

By Corollary 1.12 and Lemma 1.16 the group G = (E(Py,L & P,), E(Py,L @& F,))
acts transitively on unimodular elements in L @ P.

To realize elements in G by simple self homotopy equivalences of Ky V25% = KV 5?2,
inducing the identity on 7, it is enough to do this for E(P1,L @ Pp). This group is
generated by automorphisms of the form 1 + f and 1 + ¢, where f:L® Py — P,
and ¢: P — L @ P, are arbitrary A-homomorphisms. Recall that P, = p; A and
L @ Py = m2(K). Consider the map IdVu: K v 5% = KV §% | where u = (g(p1),p1) €
(K V §%) = mo(K) @ p1A. It realizes 1 4 g and its restriction to K is the identity and
it also induces the identity on (K Vv §%)/K = §%. Thus the additivity formula for the
Whitehead torsion implies that the torsion of Id V u vanishes.

To realize 1 + f we note that f: L @ Py = m(K) = Ho(K;A) — P, = A factors
through H,(K,K'; A), with K the 1-skeleton. The reason for this is that we have an
exact sequence

Hom 4(H (K, K'; A), A) - Hom4(Hy(K; A), A) — Ext)(H,(K'; A), A)

and the last group vanishes since H{(K'; 4) is Z-torsion free. Choose a factorization
map f: Ho(K,K'; A) — A, where Ho(K,K'; A) is a free A-module generated by the
2-cells of K (appropriately connected to the base point). Denote this basis by ey, .., e.
Now write K = K1UD?U...UD?. Pinch off the 2-cells to obtain I VrS? and denote the
projection map by p: K — K V kS2. Consider the composition map 8: K — KV kS§? —
K V 52, where the second map is Id V f(e;) V ... V f(ex). By construction the induced
map in 72 is 1 @ f and the composition K — K V §%2 — K is homotopic to Id. Finally
consider 8V Id: K V §% — KV §? realizing 1+ f. Its restriction to §? and the induced
map on K are homotopic to the identity implying from the additivity of the Whitehead
torsion that §V Id has trivial torsion.

We complete the cancellation by composing & with a simple self-equivalence to
obtain k' : KV §% — K'V.5? which fixes the S factor. Now the composition of A’ with
the inclusion and projection gives a homotopy equivalence f : K — K' which again by
the additivity formula for the Whitechead torsion is simple. »

Although the result of Theorem B can not be improved in general for 2-complexes
with finite fundamental group, there are improvements possible for special fundamental
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groups. For example, there is just one homotopy type for each Euler characteristic when
w1 is finite abelian of rank less than 3 [7], [10].

We wish to describe another approach to such results. Recall that the finite sub-
groups G of SO(3) are cyclic, dihedral, A4, S4 and As. For each of these, ZG satisfies the
Eichler condition so Browning’s results measure the number of distinct two-complexes
with fundamental group G (see [3, 5.4]). As an application of the method we show:

Theorem 2.1: Let 7 be a finite subgroup of SO(3). If K and K' are finite 2-complexes
with fundamental group = and the same Euler characteristic, and let a : m (K, zo) —
m(K',zy) be a given isomorphism, then there is a simple homotopy equivalence f :
K — K' inducing « on the fundamental groups.

The method of proof is based the following more general construction. A based
two-complex (K, +) is a finite 2-complex K and a surjection v : m(K)* — T from the
dual of m2(K) to a finite A-module T. Two such pairs (K,v) and (K',v') are stably
simply equivalent if there exists a simple homotopy equivalence h : K vVrS? — K'VrS?,
inducing the identity on m;, and 1somorphisms

p=h":m(K') @A - m(K) @ A"

and u : 7' — T such that yo p; o = u o' op;, where p; is the projection on the first
summand.

Lemma 2.2: Let (K,7) be a based finite two-complex with m;(K) =n. If K' is a
two-complex which is stably simply equivalent to K, then there exists a surjection '
to T' such that the based pairs (K,7v) and (K',4') are stably simply equivalent.

Proof: We choose a stable equivalence A : KV rS? — K'V rS? and let A* = ¢ :
T (K')* @A™ — m(K)* @ A™. We can take T = T', so choose an isomorphism u : T' —
T, and denote by e(T') the exponent of T as a finite abelian group.

First we observe that there exists an element o € E(m(K)*, A") such that o(¢(0®
A™)) = 0(dA") (mod e(T)). This follows by induction on r from Lemma 1.3. Since any
such ¢ is realized by a simple self-equivalence of K V r$§?, we may assume that ¢ itself
preserves the summand (0 @ A") modulo (7).

Next, we define 4’ : mo(K')* — T' to be the composite

'y'=u_lo*yop1 0po1],

where 23 : T(K')* < m(K')* @ 0 is the inclusion onto the first summand. It follows
that y o py 0 ¢ = u o+’ 0 p;, and hence that (K,v) and (K',v') are stably simply
equivalent.

We now assume until further notice that 7 does not have periodic cohomology. This
excludes cyclic groups of any order or dihedral groups of order not divisible by four.
It follows that 7;(K) is not rationally isomorphic to QJ, where J = J(7) denotes the
augmentation ideal of A = Zx. This is the case for example whenever the minimal Euler
characteristic is not 1. From (0.1), there is an isomorphism m(K)® Q = Q(J @ A™!).
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Let L be the image of m3(K) under the projection to Q(J @ A"™). Then we have a short
exact sequence

(2.3) 0 - ;A > m(K)—L -0,

where 2 is a right ideal of finite index in P; = p;A. Then by push-out, () —
P1A @ L is an inclusion respecting the inclusion p; A C p; A and the identity on L. This
construction produces a based pair (K, ) if we take v to be the induced projection onto
the dual module T = Homz( A/, Q/Z). In the next three Lemmas we construct based
pairs of this type explicitly for each of our fundamental groups 7.

Lemma 2.4: Let m be a non—periodic finite subgroup of SO(3). Then there exists a
representative M of Q3Z with minimal Z-rank, and a short exact sequence

0— (3(x),2)* > N* > J(7)—0

which is non-split when restricted to each cyclic subgroup of order two in w. This
extension is classified by an element 8y € Extl (J(m), (J(7),2)*) = H%(n,Z/2).

Proof: If # C SU(2) denotes the double cover of 7, there is an exact sequence
03 (F)=C,=Ci—»ConZ—-0

where the C; are free Z{#] modules. Let <z> = Z/2 be the kernel of the epimorphism
# — w, and tensor the above exact sequence over Z <z> with Z. This produces a
complex over A = Z[n]

0-3(r)=C2—-C1 = Coy—Z—0

which is exact except at C;, where the homology is Z/2. We further resolve by adding
A to Cy, with 1 € A mapped to a lift to C; of the generator of the homology group
Z/2. The ideal (J(),2) fits into the exact sequence

0— (J(r),2) 2 A—>Z/2 0.
Now the kernel is N = Q3Z, sitting in an exact sequence
(2.5) 0— J*(x) = N— (3(n),2) — 0.
This sequence splits over Z and dualizing gives
(2.6) 0 — (I(m),2)* = N* — I(x) — 0,

which as an extension, is classified by an element of Ext}(J,(I,2)*) & Ext},(J,2/2).
Moreover, this extension group is isomorphic to H?(m,Z/2). Since the augmentation
ideal for 7 restricts to the augmentation ideal plus a free module over any subgroup,
it follows that (2.6) is non-split when restricted to every subgroup of order two in
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7. We remark that its extension class 8 € H?(w,Z/2) is uniquely determined by this
condition, since the 2-Sylow subgroup of 7 is Z/2 x Z/2 or dihedral D(2¥+1), for k > 2.s

Lemma 2.7: Let m be a non-periodic finite subgroup of SO(3). If # # Sy, A4, As
let 8(r) = (I(x)?2,23(x)). If m = S4, A4 or Ay let R(n) = (I(Z/2 x Z/2),23(7)),
where (3(Z/2 x Z/2) denote the right ideal in Zw generated by the augmentation
ideal of Zp, p = Syla(A4). Then the extension class 8 for (2.6) is in the image
ExtL4(3I(r)/8(7),Z/2) — Exty(I(r),Z/2). If x # S4, A4, As then the quotient module
I(m)/R(r) 2 Z/2 @ Z/2, with trivial -action.

Proof: First consider the case when f&(7) = (J(7)?,23(x)). The augmentation ideal
J(m) = {g—1|g € 7} as a free abelian group. However, the quotient J/K as an A-module
is generated by any set {g — 1} of generators for 7. In addition, if g has odd order m,
then 2°(g — 1) € (I*,2"*]) for i > 0. To check the latter claim, pick r such that
4r = 1(mod m) and compute (g7 — 1)* = (g — 1) (mod 2I(g)), where I(g) = (¢* ~1:
1 <7< m—1). From these two observations, we see that for = dihedral, Z/2 x Z/2 or
S4 the quotient module J(7)/R(r) = Z/2 & Z/2, with trivial 7-action.

We now check the statement about 8y by computing the sequence:
(2.8) Hom (8, Z/2) — Ext4(3/8,Z/2) — Ext},(3,Z/2)

First note that
Hom(3/8,Z/2) —» Hom4(3J,Z/2)

is an isomorphism, and so the first map in (2.8} is an injection. Next to compute the
group Hom 4(&, Z/2) we can work modulo & = (J3,27%). As an A-module, the quotient
£/ 8 = (Z/2)* with trivial w-action. Therefore Homa(R,Z/2) = (Z/2)3.

Finally, we compute Ext)(3/&,Z/2). Since J/8 = (Z/2)? with trivial w-action, we
just need to compute Ext}(Z/2,Z/2) via the exact sequence

0 — Hom(Z,2/2) — ExtY4(Z/2,Z/2) - Ext}4(Z,Z/2) — 0.

But
ExtL4(Z,Z/2) = H'(n,Z/2) = (Z/2)*

and so we get the answer Ext’ (3/8,2Z/2) = (Z/2)°. These values can now be substituted
into (2.8) to show that Ext4(J/&,Z/2) — Ext4(3,Z/2) is onto.

Next we consider the case where 7 = Sy and &(7) = (3(Z/2 x Z/2),23(x)). Here
H?(m,Z/2) = (Z/2)* and 3/R = M>(F2) ® F2. Then Homa(R,Z/2) = (Z/2)? injects
into Ext(3/8,Z/2) = (Z/2)* and so Ext}(J/&,Z/2) — Ext'(3,Z/2) is onto.

Finally we have the cases m = A4 or As and K(7) = (J(Z/2 x Z/2),23(x)). Here
H%*(r,Z/2) = Z/2, generated by our extension class 85 For m = A4, let w € 7 be
a 3-cycle. Then J/f = (w — 1,w? — 1) and this module is isomorphic to the quotient
module F3{(3) arising from the epimorphism = — Z/3. Then Homa(&,Z2/2) = Z/2
injects into ExtY(J/8,Z/2) = (Z/2)? and so Ext,(J/R,Z/2) — Ext4(J,Z/2) is onto.

For m = As, let 71,7, be non-conjugate 5-cycles. Then J/& = ((v{ — 1),(r§ ~ 1) :
1 < i < 4). This module is isomorphic to My(F4) where 7 & SL,(F4) acts through its
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standard representation. Again, Homa(f,Z/2) & Z/2 injects into ExtY(J/8,2/2) =
(Z/2)? and so Ext}(J/8,Z/2) — Ext!,(3,2/2) is onto. s

Proposition 2.9: Let 7 be a non—periodic finite subgroup of SO(3) and suppose that
N =Q%2Z. Let ¢ : A =Zn — Z be the augmentation map. Then there exists a module
M with free A-rank 2 containing N = M@ poA as a submodule of finite index such that
(i) for some subgroup Go C GL(P), Go(N) acts transitively on the images in N/NNMD
of the elements poa, for any a € A representing a unit in A/D, and

(ii) the subgroup of Go(N) which fixes po (mod D) acts transitively on the images in
e«(P) of the P-unimodular elements ¢ € P N N such that x = ps (mod O).

Proof: From Lemma 2.7 we get an element 8y € Exty(3(x)/R(n),Z/2) with image
m € Ext}(I(n),Z/2). Since Hom4(&,Z/2) injects into Homz(&,Z/2) we can assume
that @y gives a short exact sequence

0-2/2—-T - 3(m)/R(x)—0

with T of exponent two.
We identify the dual T = T and use (2.6) to deduce a short exact sequence

(2.10) 0-N—-A0 R~ T —0,

where £ denotes the dual left module £* made into a right A-module in the usual way.
If # # Sy, Ag, As, then the induced map A — T has image 71 = Z/2 @ Z/2, with non-
trivial w-action. When m = S, then T7 = M,(F;) and when 7 = A4 or As, the image
Ty = I(n)/R(m). Let 2A C A be the kernel of the projection to T} in the above sequence.
It follows that 91 is described by (2.3): it contains 2 as a Z direct summand, and has a
cokernel we denote by L. We remark that since T has exponent two, A C (J,2).

Define M = ppA® p1A@ L, and N = poA @ N. Since A is a right ideal in A,
we can identify py A @ L with the pushout of the sequence 0 — pyd - N1 = L — 0
using the inclusion pyd C p1A. As usual P = PoA @ p1A and © = Ann(M/N).
When 7 # S4, As, As, we have checked that A/ is Z/2 ® Z/2, where 7 acts through
an epimorphism 7 — Z/2. It follows that © = (J(m),2), where mp is the kernel
of the epimorphism p : ®# — Z/2. The exceptional cases, 1 = Sy, A4, As lead to
O =ker(A — M,(F3)), O =ker(A — F3((3)), or O = ker (A — M;(F4)) respectively.

The assertions of Proposition 2.9 are now easy to verify. In fact, part (i) is trivial
since the elements of 7 together with +1 suffice to lift the units. Part (ii) follows from
(1.16) once we notice that 2 = O so that the algebraic automorphisms given there do
stabilize N. Indeed, they have the effect p; = poc + p1d with d = 1(mod ©). Since
N C p1A® L can be expressed as a pull-back M = {(a,v)|a(mod D) = v(mod L)},
for some Ly C L, the elements (ad,v) € N whenever (a,v) € N and d = 1(mod V).
Hence the automorphisms extend by the identity on L and preserve 9. «

Lemma 2.11: Let K be a finite two-complex with = = n;(K, zq) finite. Suppose that
f: K — K is a homotopy equivalence such that the induced map f. : m(K)® Q —
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72(K) ® Q has trivial reduced norm at every simple factor of Qr. If SK (Z7) = 0 and
f induces the identity on (K, zo), then f is a simple homotopy equivalence.

Proof: We consider the chain homotopy equivalence induced by f on the chain complex
of K tensored over the rationals, and compute its Reidemeister torsion. OQur assump-
tion implies that the induced map f, : mo(K) — m2(XK) has trivial determinant in
Im(Wh(Zr) — Wh(Qr)) = Wh(Zx)/SK,(Zn), hence the Whitehead torsion of f

vanishes. »

The Proof of Theorem 2.1: For any finite subgroup = of SO(3), it is known that
SKy(Zm) = 0 (see [8, 14.1, 14.5]). Let K be a finite 2-complex and let M = m(K).
We may assume, by Theorem A, that K has minimal Euler characteristic. Suppose
first that 7 (K) is periodic, i.e. cyclic or dihedral (of order 2m, m odd). In this case,
N = J(7)*, a two-sided fractional ideal in QA. By scaling, we can embed 90 C I(r) as
a two-sided ideal in A. Then

N=pA®NCM=pA®piA,

and by Lemma 2.2 we need to show that a suitable subgroup of GL2(A4), stabilizing
N, acts transitively on M-umimodular elements in N. First we apply Theorem 1.14
and then Lemma 1.15 with A = Zn and O = J(7). We conclude that the subgroup of

SLy(A; D) preserving N acts transitively on M-unimodular elements in N.

The algebraic automorphisms needed for transitivity on unimodular elements p-
reserve the k-invariant of K V §2. To see this recall that the k-invariant is an el-
ement k € H3*(m,M). Under the action of SLy(4;90), the image of k is dk, where
d = 1(mod ). However, the elements of O act as zero on this cohomology group, by
dimension-shifting. It now follows that such an algebraic automorphism is induced by
a homotopy self-equivalence f : K vV 82 - K Vv §2.

By Lemma 2.11 applied to K V §2, f is a simple homotopy equivalence. Therefore
we can cancel the final $?, to get a simple homotopy equivalence between K and K'.

Next, suppose that 7 is non-periodic. The construction of N C M in (2.9) used
a surjection y : mo(K)* — T, giving us a based pair (J{,v). By Lemma 2.2 we need
to show that a suitable subgroup of GL(M), stabilizing N, acts transitively on M-
unimodular elements in N. This time the necessary transitivity follows from Corollary
1.11, and we conclude that my(K) = m(K'). It is not difficult to check that the self-
automorphisms used in the proof do not change the k-invariant (see Lemma 1.10 where
they are given explicitly). There is an exact sequence

= Y (m,3) = H (n, M) — H(r,(3,2))

The third term is isomorphic to H%(r,Z/2), and therefore the action of O is zero. Now
twice the k-invariant is in the image of H3(7,J*) by construction of 23Z. Under our
embedding Nt C A @ 8%, the submodule J* is mapped into 0 @ K*. It follows as above
that the self-automorphisms are realized by simple homotopy equivalences. »
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