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Cancellation of Lattices and
Finite Two-Complexes

IAN HAMDLETON (1) AND MATTHIAS !(RECK

This is the first in aseries of three papers (referred to below as [I], [11] and [111])
on certain caneellation problems whieh arise in algebra and topology. For example, if
M, M' ,N are modules with M EB N f"oJ M' EB N, is M S::' M' ? If ]{, K ' are finite two­
eomplexes with K V r52 ~ K' V r52 , is ]( ::: K ' ? In [I] we eonsider these questions for
modules over orders (e.g. integral group rings Z7t", 7t" a finite group) and two-eomplexes
with finite fundamental group. Part {II] deals with eancellation of quadratic forms and
general results'for 4-manifolds with finite fundamental group: when does X ~ (52 X 52) ~
y ~ (82 X 52) imply X ~ Y? In (III] we study smooth structures on elliptic surfaces,
and the homeomorphism classification of 4-manifolds with certain special fundamental
groups.

We now give a more detailed descriptian af the results in the present paper. Let
R be a Dedekind domain and F its field of quatients. A lattice aver an R-order A is
an A-module which is projective as an R-Inodule. The general stable range condition
for cancellation of lattices over orders is free rank? 2 [1, (3.5), p.184]. We obtain an
improvement in this stable range, assuming certain local information about the lattices.
The problem is to show that eertain groups of elementary automorphisms act transitively
on unimodular elements in lattiees, and our result suggests that an inductive proeedure
may be useful, to pass from transitivity over a quotient order B to transitivity over
A. The arguments in §1 are modelled closely on the oues given in [1, Chap.IV,§3].
To obtain the geometrie applieations, the elementary automorphisms are shown to be
realizable by (simple) homotopy equivalenees.

To state our eondition, let A and B be orders in separable algebras over F [4, 71.1,
75.1], and suppose that there is a surjective ring homomorphism € : A --+ B. We say
that a finitely generated A-module L has (A, B)-free rank? 1 at a prime PER, if there
exists an integer r such that (B r EB L)p has free rank ? lover Ap• Here Ap denotes the
localized order A 0 R(p). In the extrenle case B = 0, this is just the condition that L p
has a free direct summand. In the other extreme case A = B, there is no eondition on
L.

Theorem A: Let L be an A-lattice and put M = L EB A. Suppose tbat tbere exists
a surjection of orders € : A --+ B sud] that L has (A, B)-free rank? 1 at a11 hut
finitely many primes. If GL2 (A) acts transitivelyon unimodular elements in B EB B,
then for any A-lattice N which is loca11y a direct summand of Mn for same integer n,
M EB N f"oJ M' EB N implies M ~ M'.

(1) Partially supported by NSERC grant A4000 and the Max Planck Institut für Mathematik
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In the classification of two-complexes with finite fundamental group we find that
(Z1r, Z)-loeally free modules have an important role, where Z1r is the integral group
ring of a finite group. This special case motivates the definition of (A, B)-loeally free
modules given above. We check that for B = Z, the conditions on "transitive action"
in Theorem A is satisfied (see (1.16)), henee ean be omitted from the statement.

For example, consider the lattices L ansing as 1r2(](), where K is a finite 2-complex
with fundamental group 1rl(K) = 1r. These are defined by exaet sequences

(0.1)

with Ci = Ci(F:) finitely generated free Zrr modules.

More generally, any lattice L with a resolution (0.1) hy finitely generated projec­
tive Z7r modules Ci is unique up to direct surn with projectives. The stahle class is
denoted n3 z. Such lattices with minimal Z-rank need not contain any projeetive direet
summands over Z7r, but rationally contain aU the representations of 7r except perhaps
the trivial one. Then L has (Zrr, Z)-free rank 2:: 1 at all primes not dividing the order
of 'Tr. The simplest case occurs for 7r eyclic and L = ker {f : Z7r -+ Z} the augmentation
ideal.

The linear eancellation theorems in §1 have applieations to the homotopy type of
2-complexes. Recall that J. H. C. Whitehead proved that any two finite 2-complexes
](, K' with isomorphie fundamental groups become homotopy equivalent after wedging
with a suffieiently large (finite) number of S2'S. It is well-known that in fact they become
.5imple homotopy equivalent since any Whitehead torsion can be realized stably by a
self-equivalence. Furthermore, if Q : 7r1( ](, x 0) -+ 7r1(](' , x' 0) is a giyen isomorphism and
K, K' have the same Euler characteristic, then there is a simple homotopy equivalence
f : K V r52 -+ K' V rS2 inducing a on the fundamental groups.

The following is our main result about finite two-complexes. The analogous result
for "homotopy type" instead of "simple hOlllOtOpy type" was proved by W. Browning
[3, 5.4].

Theorem B: Let]( and ](' be finite 2-colnplexes witb tbe same Euler characteristic
and finite fundamental group. Let Q': rrl(](,xO) -+ 7rl(]{',X~) be a given isomorphism
and suppose that K ~ ](0 V 52. Tben tbere is a simple homotopy equivalence f : K -+

K' inducing Q on tbe fundamental groups.

This is the best possible result in general, hut for special fundamental groups it
can sometirnes be improved (see §2):

Theorem 2.1: Let 7r be a finite subgroup 0150(3). JI K and ](' are finite 2-complexes
with fundamental group 7r and the same Euler characteristic, and Q : 7rl (K, xo) -+

7rl (K', x~) a given isomorphism, then there is a simple homotopy equivalence f : K -+

](' inducing Q' on the fundamental groups.

For 7r cyclic 01' 'Fr = Z/2 X Z/2, this was proved in [5], [7].
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§1: Cancellation of lattices

By an "A~module" we will mean a finitely generated right A-module. As above
we suppose that e : A -+ B is a surjective ring homomorphism of R~orders in (possibly
different) separable F-algebras. H M is an A-lattice and N := f..(M) = M ®A B, we
get an induced homomorphism

f.. : GL(A1) -+ GL(N) .

.
If M = MI EB M 2 is a direct sum splitting of an A-module then E(Mt , M 2 ) denotes
the subgroup of GL(M) generated by the elementary automorphisms ([1, p.lS2]). Let
E+(Mt , M 2 ) be the subgroup of elementary automorphisms of the form 1M EB / where
/ : Mt -+ M2 is a homomorphism. Similarly, let E-(Mt , M 2 ) be the subgroup consisting
of those of the form 1M EB 9, where 9 : A12 -+ MI. Then

H D is a two-sided ideal in A, then let GL(MjD) = ker(GL(M) -+ GL(M/MD). We
define

Finally, let E(MI, M2 j D) be the normal subgroup of E(MI, M 2 ) generated by all ele­

mentary automorphisms as above with f(MI ) 5:; M2D, or g(M2 ) S; MtD, respectively.

We will frequently use the notation P = poA EB PI A for a free A~module of rank two
with the basis {Po, PI}' It has rank one submodules Pi = PiA for i = 0, 1. We define

E±(P) = E±(poA,PIA) and E±(PjD) = E±(poA,PIA;D) when the basis is understood
from the context.

Recall that for an element x E M, 0 M (x) is the left ideal in A generated by

{fex) I f E HOIllA (A1, A)}.

If OM(X) = A we say that x is unimodular. If N 5:; M is a submodule, then an element
x E N is M-unimodular if OM(X) = A.

The following result of Bass is an essential ingredient in the proofs of the cancellation
theorems.

Theorem 1.1: ([1, (3.1), p.17Sj (3.2), p.lSl]) Suppose that Q = A and P = POAEBPI A,
and D is a two-sided ideal in A. Let x = (p,q) E P EB Q be an element such that
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x =po (modD), and OPEBQ(x) + a = A for same left ideal a. Then there exists an

A-homomorphism f : Q -+ PD such that 0 p(p + f( q)) + a = A.

We also need two other facts.

Lemma 1.2: Let M be a Jinitely generated rigbt A-module, projective over R, and
A' = AIAt for an ideal t ERsuch that the localized order At is maximal. Tben the
induced map

HomA(M, A) -+ HomA,(M' , A')

is surjective, where M' = MIMt.

Proof: First note that M l is projective over Al' Since A' = Al IAl t we can lift any
map I ' : M' -+ A' to 1 : M l -+ At. After restricting to M ~ M l and multiplying by an
element r E R prime to t, we obtain a lifting of r JI'. But r J (the image of r in R') is a
unit in A'.

Lemma 1.3: ([2, (2.5.2),p.225]) Jf C is a semisimple algebra, then for each a, b E C
there exists r E C such that C(a + rb) = Ca + eb.

We now come to the main result of the section.

Theorem 1.4: Let A be an R-order in a separable !(-algebra and suppose that
M = P EB L is an A-lattice, wbere P = poA EB PIA, and L has (A,B)-free rank ~ 1 at
a1l but finitely many primes. For any two-sided ideal .0 in A, the subgroup of

GI (D) = (E(poA, LEB PIAj .0), E(PI A, LEB PoAj .0)) ~ GL(Mj .0)

fixing €.(Po) acts transitively on the unimodular elements x E M such that x =po (mod

D) and €.(x) = €.(Po),

We divide the proof into several parts, stated as separate Lemmas for use in [11].
Let x = P+ v E M be a unimodular element, where p = poa +PIb E P and v E L. Let
x = poa +PIb + v E M be a unimodular element, with p = poa +Plb E P and v E L,
so that O(x) = Aa + Ab + O(v). We assurne that €.(x) = €.(po) and x =po (modD),

so a =1 (mod .0), b, v =0 (mod .0). In the proof we use the stability assumption on L
to move x so that its component in poA Ef) L is unimodular. Then we move x to Po to
prove the statement about unimodular elements in M. At each step we must use only
elements U of GI (.0) fixing €. (po).

Lemma 1.5: Let S be a set of primes in R, and A = AlgA wbere g is tbe ideal in R
generated byall tbe primes ~ E S. Then after applying an element T E E+(P1 , Po; 0)
to x, O(x) = Aä = A and €.(x) = €.(po).

Proof: The semi-simple quotient ring AIRadA = C x C', where C = iJlRadB and
C' is a complementary direct factor. Therefore the C component of a is already a unit
since a projects to 1 in the semisimple quotient. Over the other factor we cau apply [1,
(2.8),p.87]: there exists u E D, such that the element a + ub projects to a unH in CJ
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and to 1 in B. Let 9 : PI -+ poA ~ M such that 9(PI) = poti. Extend 9 to a map from
M to M by zero on the complement. Then T = 1 + 9 is an element of E+ (Pt, Po j .0)
and T(X) has the desired properties (1.5) .•

We apply Lemma 1.5 to the set S of primes PER at which A is not maximal, or
L does not have (A, B)-free rank 2:: 1.

Lemma 1.6: Hx = Poa+P1b+v E M is a unimodular element for which Aa+ gA = A.
Let t ~ R be the ideal which is maximal among those such that At ~ Aa. Then t is
relatively prime to g and At is a maximal order. In addition, after applying an element
T E E+(Pt, Lj .0) we have x = poa+P1b+v with Aa+O(v )+At = A, poa+v unimodular,
and f*(X) = E*(PO).

Proof: Let t ~ R denote the ideal, maximal among those such that At ~ Aa. If P
divides t, for some prime dividing g, then t = Aa nR· 1 implies that Aa nR·1 ~ p. Eut
(Aa)p = Ap for all primes l' dividing g, so this is impossible. Hence g is relatively prime
to t, and in particular t i= o.

Now we project to the semilocal ring A' = AIAt, which is the quotient of the
order At (maximal by our choice of g) and so the projection E' : A' -+ B' splits and
A' = B' xC'. Since over the B' factor a projects to 1, we have (Aay = A'., Over the
complementary factor C' we use a suitable T E E(p~ C', L'), so that after applying T we
achieve the condition

(1.7) A'a' +O(v') = A'

over both factors of A'. This is an application of (1.3) to the component of x in L' EBP~C'
using the fact that C' ~ L'. Thc necessary hom01norphism 9 E ROffiA'(P{, L'D'), wmch
is the identity over B', can be lifted to HOffiA (PI, LD) since PI is projective and extended
to M by zero on poA EB L.

We now lift the relation (1.7) to A using (1.2) and obtain

Aa+O(v)+At=A.

But At ~ Aa so v + poa is unimodular.•

We now complete the proof of Theorem 1.4 by the following:

Lemma 1.8: Let x = poa +P1b + v, with x == po (modD) and E*(X) = Po. Suppose
that z = PI a + v is unimodular, and write L EB Po = zA EB L o. Then there exist
elementary automorphisms Tl E E+(zA, PI j .0), T2 E E+(Pl, Po), T3 E E+(Po, P1 ;D)
and T4 E E+(Po,L;D) such that T4T2-IT3T2Tl(X) = po and the product fixes €*(po).

Proof: This is the argument of [1, pp. 183-184] Let 91(Z) = PI(1 - a - b), with
91 (Lo) = O. Define 92(PI) = po, 93(PO) = PI (a - 1), and 94 (Po ) = -v, where the
homomorphisms are extended to the obvious complements by zero. H Ti = 1 + 9i, then
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The product fixes €*(Po) and lies in E(PI,po ffi Lj D). •
We now introduce the following notation: if N is a submodule of M and G ~

GL(M), then G(N) = {g E Glg(N) = N}. If M = MI ffiM2 and G ~ GL(M1 ), then
(by definition) G(N) = {g E G I(g EB 1M2)(N) = N}.

Definition 1.9: Suppose that M = P EB L is an A-lattice, where P = poA ffi PI A, and
N ~ M is a submodule containing poA as a direct sUInmand. Let D = Ann(M/N), a
two-sided ideal in A. A subgroup Go ~ GL(P) is (N,po, €) - t7'ansitive iE
(i) Go(N) acts transitively on the images in N/N n MD oE the elements poa, for any
a E A representing a unit in A/D, and

(ii) the subgroup oE Go(N) which fixes po (luodD) acts transitivelyon the images in

€*(P) of the P-unimodular elements x E P n N such tllat x =Po (mod D).

Lemma 1.10: Let M = P EB L bc an A-lattice, where P = PoA EB PIA. Let
N = poA ffi N' C M and D = Ann(A1/N).
(i) Suppose tbat N' is a submodule of finite index in PI A EB L and that there exists a
subgroupGo ~ GL(P) whicbsatisfies the conditionin Definition 1.9(i). Hx E N isaM­
unimodwar e1emen t, then there exist e1emen tary au tomorphisms Tl E E - (PO A, L ffiPI A),
T2 E E+(PoA,N'), and (h E Go(N) sud} that x' = BIT2T l(X) has x' =Po (modD). In
addition, Tj(N) = N, for i = 1,2.
(ii) Suppose that there exists a subgroup Go ~ GL(P) which satisfies the condition
in Definition 1.9(ii). H x E N is a M -unimodular element with x =Po (mod D), then
there exist elementary automorphisms 73,74 E E(P,LjD) and BI E Go(N), such that
x' = 74B2T3(x) has e.(x') = €.(Po) and x' =po (modD). In addition, Tj(N) = N, for
i = 3,4.

Proof: (i) By assumption, A/D is a finite ring. It is convenient to describe the elements
of N ~ PoAffip1AEBL in the notation used above: x = POa+plb+v, wherepIb+v E N'
and v E L.

We work over N / N n MD and start by arranging that x has PI b+v =0 (mod D).
To see this note that Aa +0 M (PI b+ v) = A, so there exists c E O(pl b+ v) such that
Aa + c contains 1. Apply (1.3) to A ffi poA and the element (c, a) to find z E A with

A(a + zc) = A(modD). There exists gl : L ffi PIA ~ poA with gl(PIb + v) = pozc,
since c E OM(Plb + v), Let u E A be a lifting of u(a + zc) =(modD), and define /1 :
poA ~ LEBpIA by Il(PO) == (plb+ v)u. Extend by zero on the complements, and define

Tl = (l+gI), T2 = (1- /1)' Then T2 Tl(X) =poa( fiod D), T],T2 E E(poA, Lffipl A ), and
Ti( N) = N for i = 1, 2. By assumption there exists BI E Go (N) to get x =po (mod D).

(ii) We will first make the P-component P = poa + PIb of x unimodular, using the
fact that P satisfies the hypotheses of (1.1), with D = Ann(M/N) and a = O. Again
we start with O(p) + O(v) = A, so there exists c E O(v) such that O(p) + c contains

1. Apply (1.1) to A ffi P and the elelnent (c,P) to find z E PD with O(p + zc) = A.
There exists 93 : L ~ P with g3(v) = zc. Extend by zero on the complement, then

T3(X) = (1 +93)(X) = (p + zc) + v, T3(N) = N and T3 E E(P,LjD).
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Finally, note that p =x (modD) implies that pEP n N, so we can use our
assumption that a suitable element ()2 of Go(N) moves f.(p) to f.(po) and preserves the

condition p =Po (modD). Now let /4 : Po -+ L be defined by !4(PO) = v and apply
T4 = (1 - /4) E E(Po,L) to x. The result is that f.(X) = f.(po) and x =po (modD).
Since v _ 0 (mod .0), v E N and so T4(N) = N . •.

Corollary 1.11: Suppose that M = P ffi L is an A-lattice, wbere P = poA ffi Pt A, and
L has (A, B)-free rank;?: 1 at a11 hut finitely many primes. Let N ~ M be a submodule
oE finite index containing poA as a direct summand, and D = Ann(M/ N). Suppose that
there exists a subgroup Go ~ GL(P) wbich is (N,po, f)-transitive.

Then the subgroup G(N) stabilizing N oE

C = (Go, E(poA, LEB Pl A), E(plA, LEB poA») ~ CL(M)

acts transitivelyon tbe set oE A1-unin]odular elements in N.

Proof: We apply Lemma 1.10 and then Theorem 1.4 to complete the proof. Since
a _ 1A1 (mod .0) for every a E Cl (.0), it follows that Cl (.0) leaves N invariant.•

We will find it convenient to refer to the special case when D = A and N = M.

Corollary 1.12: Suppose that M = P EB L is an A-lattice, where P = poA ffi P1A,
and L has (A, B)-free rank ~ 1 at a1l but finitely many primes. Let Go ~ GL(P) be a
subgroup such that f.(Go) acts transitivelyon tbc images in f.(P) oE tbe P-unimodular
elemen ts. Then tbe group

acts transitivelyon tbe unimodular elements in M.

Remark 1.13: In some cases there may be no subgroup Go with the required property.
For example, if B = Ztr is the integral group ring of a finite group 7r, then GL2 (B) acts
transitivelyon unimodular elements in BEB B if and only if the relation J EB B rv BEB B
for a projective ideal J implies J rv B. In [11, Thm. 3] Swan shows that this is not
true for a certain ideal in Z7r where 7r is the generalized quaternion group of order
32. Jacobinski proved in [6] that cancellation in this sense holds for Z7r unless 7r
has a quotient which is binary polyhedral (in particular, those satisfying the "Eichler
condition"). The converse was studied in [13]: Swan proved that cancellation fails for
Z7r if 1r has a binary polyhedral quotient which is not one of 7 exceptional groups.

Prüof of Theorem A: By Swan's Cancellation Theorem ([12, 9.7] and the discussion
on [12, p.169]), M ffi A rv M' ffi A since ],,1 EB A is the direct surn of two faithful modules.
We apply (1.12) following [1, IV,3.5] to cancel the free modules.

Remark: The method does not seem to prove either Swan's or Jacobinski's cancellation
theorems independently. When the hypotheses of Corollary 1.11 apply, the same method
gives other cancellation results.
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For geometrie applieations, we will be particularly interested in the ease when B =
Z. We have remarked in (1.13) that GL2 (A) acts transitivelyon unimodular elements
for A = Z and certain group rings of finite groups (in particular those whieh satisfy
the Eiehler condition [12]). For applications to finite two-eomplexes, the transitivity of
SL 2 ( A) is more usefn!.

Theorem 1.14: ([8, 10.6]) Suppose that A satisfi.es the Eichler condition, and let B be
tbe image of A in the product of all the cOlnmutative factors of A ®R F. Then SL2(A)
acts transitively on unimodular elements in A EB A provided that SK1(B) = O.

Lemma 1.15: Let .0 be an ideal in A, P = poA EB P1A, and let N = poA EB P1D.
Suppose that SL2(A) acts transitivelyon the unimodular elements of P, and that
(AI (mod D))X -+ [(1 (AI (mod .0)) is injective. Then SL2 (A; .0) stabilizes N and acts

transitivelyon the P-unimodular elelnents x E N such that x =po (mod 0).

Proof: If x = poa + P1b is a P-unimodular element with b E .0 and a == 1 (modD),

then a matrix in SL2(A) which moves po to x mnst have the form u = (: ~), where

d =1 ( mod D) as weil. Then u' = u· ( ~ -;c) is contained in SL 2 ( Aj D) and stabilizes

N .•

Lemma 1.16:
(i) H € : A -+ Z is a surjection of orders, then E(P) Inaps onto SL2(Z).

(ii) Let .0 be an ideal in A, P = poA EB P1A, and let N = poA EB p1D. Assurne that
one of the following conditions holds (a) D COll tains ker (A -+ Z), 01' (b) q E .0 where
(q) = € ... (D), 01' (c) (D, q) is a principal ideal, 01' (d) D n Z . 1 = (q') for some integer q'
with tbe same prime divisors as q. Then tbe subgroup of E(P) wbicb fixes Po (modD)
acts transitivelyon the images in €.(P) of tbe P-unimodular elements x E N such that
x - po (modD).

Proof: Part (i) follows from the faet that E2 (Z) = E(po Z,Pl Z) = SL2 (Z). For part (ii)
we first observe that the transitivity c1aimed cau be carried out in E2(Z), and then use
one of our assumptions to lift the matrices to E(P). This last step is straightforward
except under assumption (d). In that case, we choose an element u E D such that

€.(u) = q, and then aet on x = poa +P1b by a matrix of the form (r~ ~) in order to

obtain the relation €.(b) =0 (mod q'). •

Example 1.17: Let A = Z7r, where 7r is the direct product of two cyc1ic groups of
order two, generated by S, T. Let D = (S - 1, 2(T - 1), ST - 1, 1 + S + T + ST). Tben
f.(D) == (4), but 4 ~ D, and (D, 4) is not principal. However, D n Z ·1 = (8).

We conclude this section by giving a useful generalization of the Roiter Replacement
Theorem [9]. An A-lattice L will be ealled (A, B)-faithful if B 8 EBL is a faithful A-module
for some integer s. Ifr is a hereditary order containing A, then r == r(B) X r(C), where
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f(B) is a hereditary order containing B. The f-module generated by an A-module L
is denoted f L.

Theorem 1.18: Let L be an (A, B)-faitbfullattice over an order A, with respect to
€ : A -+ B. Suppose that f is a hereditary order containing A and nf S; A for some
integer n. In addition, we assume that tlle map of units (A/nf)X --+ (f(B)/nf(B)) x is
surjective. Then for any loca11y-free projective A-module P of rank r with f(B)L free,
there exists an A-module L' in the SaIne genus as L such that L ffi P ......, L' ffi Ar.

Proof: We consider the pull-back square

A
1

A/nf

-+ f
!

-+ f/nr

Let Ä = A/nf and r = r /nr with a similar convention for modules (e.g. L = L ®A Ä.:).
Since L is (A, B)-faithful, by Roiter's Theorem there exists a f( C)-module U in the
same genus as r(C)L such that U ffi r(cy ~ f(C)(L ffi P). Note that U is projective
of rank;::: lover f(C). We add "r(B)(L ffi P) to both sides and use the assumption
f(B)P ......, r(B)r, to express our original module L ffi P as a pull-back

The isomorphism 0' can be varied by self-automorphisms of the right-hand side which
lift over Ä or f.

We remark that for rank;::: 2 the action of elementary matrices over r is transitive
on unimodular elements. Using this variation over the r(C) component of 0', we can
assume that Q' induces the identity on the f(c)r summand. Over the r(B)r factor, we
use the assumption on (A) x to achieve the same result. If we denote the new patching
isomorphism by er.', we have the block form

Q' = (~ i~)'

The pullback
(ß : L ®A r -+ (r(B)L El1 U) 0r I')

is our desired module L', and it follows that L ffi P ......, L' ffi Ar. Since P is locally free,
and cancellation holds locally, we see that L' is in the same genus as L.•

Corollary 1.19: Let A = Z1T", 1T" a finite group and L be any (A, Z)-faithful module.
Then for any projective A-module P oE rank r, there exists a module L' in tbe same
genus as L such that L ffi P ......, L' ffi Ar.
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§2: Applications to Two-Complexes

10

The cancellation problem for 2-complexes has been extensively investigated [3],
[5], [7], [10]. In particular it is known that even for finite abelian fundamental groups,
there are examples of 2-coluplexes which are stably simply equivalent hut not homotopy
equivalent [7]. On the other hand, for a fixed finite fundamental group and Euler
characteristie, K V 52 is homotopy equivalcnt to ](' V 52 [3].

The Proof of Theorem B: Let h : I< V r52 ~ K' V r52 be a simple homotopy
equivalence as above, inducing a given isomorphism a on the fundamental groups. Let
A = Z[1rl(I<)], L = 1r2(I<o), and note that this nl0dule has (A, Z)-free rank ~ 1. We
mayassume that r = 1 and set P = 1r2(52 V 52) ~ 1r2([{O V 52 V 52).

Hy Corollary 1.12 and Lemma 1.16 the group G = (E(Po,Lffi PI),E(Pr,L $ Po))
aets transitivelyon unimodular elements in LEB P.

To realize elements in G by simple self homotopy equivalenees of K oV252 = KV 52,
indueing the identity on 1r1, it is enough to do this for E (PI ,L EB Po). This group is
generated by automorphisms of the fonu 1 + f and 1 + 9, where f: L ffi Po ---+ PI
and g: PI ---+ L ffi Po are arbitrary A-homomorphisms. Reeall that PI = PI A and
L EB Po = 1r2 (K). Consider the map ! d V u: [( V 52 ---+ [( V 52 1 where u = (g(PI) 1 PI) E
1r2 (K V 52) = 1r2 (K) EB PI A. It realizes 1 + 9 and its restrietion to [( is the identity and
it also induees the identity on (K V 5 2)/!( = 52. Thus the additivity formula for the
Whitehead torsion implies that the torsion of [d V u vanishes.

To realize 1 + f we note that f: L EB PI = 1r2(K) = H2([(j A) ---+ PI = A factors
through H2 (K, K I i A), with [(1 the I-skeleton. The reason for this is that we have an
exaet sequenee

and the last group vamshes since H 1 ( [(1 ; A) is Z-torsion free. Choose a faetorization
map f: H 2 ([{, KI jA) ---+ A, where H 2([(, [(1 j A) is a free A-module generated by the
2-cells of ]{ (appropriately conneeted to the base point). Denote this basis by el, .. , ek.
Now wri te [< = K 1 uD2U ... UD2. Pinch off the 2-cells to 0btain [( Vr 52 and denote the
projeetion map by p: [{ ---+ K V k52 . Consider the eomposition map ß: K ---+ K V k52 ---+

K V 52, where the second map is I d V !(e1 ) V ... V f( ek). By construetion the induced
map in 1r2 is 1 ffi fand the composition K ---+ I< V 52 ~ K is homotopic to I d. Finally
consider ßV I d: K V 82 ---+ 1< V 82 realizing 1+f. Its restrietion to 82 and the induced
map on K are homotopic to the identity implying from the additivity of the Whitehead
torsion that ßV I d has trivial torsion.

We eomplete the cancellation by composing h with a simple self-equivalence to
obtain h' : K V52 ~ K' v.52 which fixes the 52 factor. Now the composition of h' with
the inclusion and projeetion gives a homotopy equivalenee f : [{ ~ K' which again by
the additivity formula for the Whitehead torsion is simple.•

Although the result of Theorem B ean not be improved in general for 2-complexes
with finite fundamental group, there are improvements possible for special fundamental
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groups. For example, there is just one homotopy type for each Euler characteristic when
1rl is finite abelian of rank less than 3 [7], [10].

We wish to describe another approach to such results. Recall that the finite sub­
groups G of 50(3) are cyclic, dihedral, A4 , 54 and As. For each of these, ZG satisfies the
Eichler condition so Browning's results nleasure the number of distinct two-complexes
with fundamental group G (see [3,5.4]). As an application of the method we show:

Theorem 2.1: Let 1r be a finite subgroup of50(3). H]{ and ](' are finite 2-complexes
with fundamental group 1r and the same Euler characteristic, and let a : 1rl(K, xo) -+

1r1 (K', xh) be a given isomorpmsm, then there is a simple bomotopy equivalence f :
]( -+ K ' inducing a on the fundamental groups.

The method of proof is based the following more general construction. A baJed
two-complex (K,,) is a finite 2-complex ]( and a ~'Urjection , : 1r2(K)* -+ T from the
dual of 1r2 ( !() to a finite A-fiodule T. Two such pairs (](,,) and (]{',,/) are 3tably
3imply equivalent if there exists a simple homotopy equivalenee h : ]( Vr52 -+ ]{' Vr52 ,

inducing the identity on 7I'1, and isomorphisms

and 'U : T' -+ T such that ,0 PI 0'P = U 0,' 0 PI, where PI is the projection on the first
summand.

Lemma 2.2: Let (]{,,) be a based finite twO-complex with 1rI (]{) = 1r. H K ' is a
twcrcomplex which is stably simply equivalent to ](, then there exists a surjection "
to T' such that the based pairs (K,,) and (K' ,,') are stably simply equivalent.

Proof: We choose a stable equivalenee h : ]( V rS2 -+ ](' V rS2 , and let h* = 'P :
7r2(K')* ffi Ar -+ 1r2(]()'" ffi Ar. We can take T' .-v T, so ehoose an isomorphism u : T' -+

T, and denote by e(T) the exponent of T as a finite abelian group.

First we 0 bserve that there exists an element (j E E (7r2 ( K) '" , Ar) such that (j ( 'P (0 ffi
Ar)) =O(ffiAr) (mod e(T)). This follows by induction on r from Lemma 1.3. Since any
such (j is realized by a simple self-equivalence of ]( V r52, we may assume that 'P itself
preserves the summand (0 EB Ar) modulo e(T).

Next, we define " : 1r2(I(')'" -+ T' to be the composite

, -1 .; = U 0 , 0 PI o<p 0 tl ,

where i 1 : 1r2(K')* C-+ 1r2(](')* EB 0 is the inclusion onto the first summand. It follows
that , 0 PI 0 'P = U 0 " 0 PI, and hence that (J(,,) and (](' ,,') are stably simply
equivalent. •

We now assume until further notice that 7r does not have periodic eohomology. This
excludes cyclie groups of any order or dihedral groups of order not divisible by four.
It follows that 1r2(!() is not rationally isomorphie to Q'J, where 'J = 'J(7r) denotes the
augmentation ideal of A = Zn. This is the case for example whenever the minimal Euler
characteristic is not 1. From (0.1), there is an isomorphism 1r2(I() 0 Q ~ Q(J EB Ar+I).
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Let L be the image of 11"2 (I{) under the projection to Q(J EB Ar). Then we have a 8hort
exact sequence

(2.3) o--+ Pl21 --+ 7r2 (I{) --+ L --+ 0,

where 21 is a right ideal of finite index in PI = PIA. Then by push-out, 7r2(I{) ~
PIA EB L is an inclusion respecting the inclusion PI21 ~ PIA and the identity on L. This
construction produces a based pair (1(, ,) if we take / to be the induced projection onto
the dual module T = Homz(A/21, Q/Z). In the next three Lemnlas we construct based
pairs of this type explicitly for each of our fundamental groups 11".

Lemma 2.4: Let 11" be a non-penodic finite subgroup oE 50(3). Tben tbere exists a
representative 91 oE f23Z witb minimal Z-rank, and a short exact sequence

0--+ (J(7r),2)* --+ 91* --+ J(7r) --+ 0

wbich is non-split when restricted to each cyc1ic subgroup oE order two in 7r. This
extension is c1assified byan element Bf]1 E Ext~(J(7r), (J(7r),2}*) "J H 2 (7r, Z/2).

Proof: If if C SU(2) denotes the double cover of 7f', there is an exact sequence

o--+ J* (if) --+ (;2 --+ C't --+ Co --+ Z --+ 0

where the Ci are free Z[if] modules. Let <z> = Z/2 be the kernel of the epimorphism
if --+ 7r, and tensor the above exact sequence over Z < z > with Z. This produces a
complex over A = Z[7r]

wmch is exact exeept at Cl, where the homology is Z/2. We further resolve by adding
A to C2 , with 1 E A mapped to a lift to Cl of the generator of the homology group
Z/2. The ideal (J(11"), 2} fits into the exaet sequenee

o --+ (J(7r), 2) --+ A --+ Z/2 --+ O.

Now the kernel is 91 = n3 z, sitting in an exact sequence

(2.5)

This sequence splits over Z and dualizing gives

(2.6) o --+ (J('rr), 2} * --+ ')1* --+ JCrr) --+ 0,

which as an extension, is classified by an element of Ext~(J, (1,2)*) "J Ext~(J,Z/2).
Moreover, this extension group is isomorphie to H2 (7r, Z/2). Sinee the augmentation
ideal for 7l" restriets to the augmentation ideal plus a free module over any subgroup,
it follows that (2.6) is non-split when restricted to every subgroup of order two in
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1T. We remark that its extension class 8?l E H2(1T, Z/2) is uniquely deterrnined by this
condition, since the 2-Sylow subgroup of 1T is Z/2 x Z/2 or dihedral D(2k+1

), for k ~ 2.•

Lemma 2.7: Let 1T be a non-periodic finite subgroup oE 50(3). If 1T :f 54, At, As
let ~(1T) = (J(1T)2,2J(1T)). H 1T = 54 ,A4 or A5 let ~(1T) = (J(Z/2 x Z/2),2J(1T)),
where (J(Z/2 x Z/2) denote the right ideal in Z1T generated by tbe augmentation
ideal of Zp, p = Sy12 ( At ). Then the extension dass B'Jt for (2.6) is in the image
Ext~(J(1T)/3\(1r),Z/2)~ Ext~(J(1r),Z/2). H1r:f 54,A4,A5 tben tbe quotient module
J(1r)/j\(1r) "V Z/2 ffi Z/2, witb trivia11T-action.

Proof: First consider the case when 3\(7r) = (J(1r)2 , 2JCrr)). The augmentation ideal
J (1r) = {g - 1 I9 E 1r} as a free abelian group. However, the quotient J / Ji as an A-module
is generated by any set {g - 1} of generators for 1r. In addi tion, if 9 has odd order m,
then 2i (g - 1) E (14, 2i +1I) for i ;::: O. To check the latter claim, pick r sueh that
4r =1 (mod m) and eompute (gr - 1)4 =(g - 1) (mod 21(g)), where J(g) = (gi - 1 :
1 ::; i ::; m - 1). From these two observations, we see that for 7r dihedral, Z/2 x Z/2 or
54 the quotient module J(1r)/3\(1r) ~ Z/2 ffi Z/2, with trivial1r-action.

We now eheek the statement about 8'Jt by eomputing the sequenee:

(2.8)

First note that

HOffiA(Ji, Z/2) ~ Ext~(J/Ji,Z/2) -t Ext~(J,Z/2)

HOffiA(J/Ji, Z/2) ~ HOffiA(J, Z/2)

is an isomorphism, and so the first map in (2.8) is an injection. Next to eompute the
group HOffiA(Ji, Z/2) we ean work modulo Jio = (J3, 2J2). As an A-module, the quotient
3\/~ = (Z/2)3 with trivial1T-aetion. Therefore HomA(Ji, Z/2) "V (Z/2)3.

Finally, we eompute Ext~(J/ Ji, Z/2). Sinee J / j\ "V (Z/2}2 with trivial1T-aetion, we
just need to eompute Ext~(Z/2,Z/2) via the exact sequenee

o~ HOffiA(Z, Z/2) -t Ext~(Z/2,Z/2) -t Ext~(Z,Z/2) -t O.

But
Ext~(Z,Z/2) ~ H 1 (1T, Z/2) = (Z/2)2

and so we get the answer Ext~(J/3\, Z/2) "V (Z/2)6. These values ean now be substituted
iuto (2.8) to show that Ext~(J/j\,Z/2) -t Ext~(J,Z/2) is outo.

Next we eonsider the ease where 7r = 54 and Ji(7r) = (J(Z/2 X Z/2),2J(1r)). Here
H2(1T, Z/2) = (Z/2)2 and J/Ji = M2(F2) EB F2. Then HOffiA(Ji, Z/2) "V (Z/2)2 injects
ioto Ext~(J/j\,Z/2) "V (Z/2)4 and so Ext~(J/Ji,Z/2) -t Ext~(J,Z/2) is onto.

Finally we have the eases 1T = A4 or As and 3\(1T) = (J(Z/2 X Z/2),2J(1r)). Here
H2(1r, Z/2) = Z/2, generated by our extension dass Bi)1o For 1r = A4 , let w E 1r be
a 3-eyde. Then J / fi. = (w - 1, w2 - 1) and this module is isomorphie to the quotient
module F2«(3) arising from the epimorphism 1r -t Z/3. Then HomA(fi., Z/2) ~ Z/2
injeets ioto Ext~(J/Ji,Z/2) ~ (Z/2)2 and so Ext~(J/Ji, Z/2) -t Ext~(J,Z/2) is onto.

For 1r = As , let Tl, T2 be non-eonjugate 5-cyc1es. Then J / ß.. = ((Ti - 1), (T~ - 1) :
1 ::; i ::; 4). This module is isomorphie to M 2(F4) Where 1r "V SL 2(F4) acts through its
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standard representation. Again, HonlA(J\, Z/2) ~ Z/2 injects into Ext~(:J/>t,Z/2) ~
(Z/2)2 and so Ext~(J/j\, Z/2) ~ Ext~(J, Z/2) is onto.•

Proposition 2.9: Let 7r be a non-periodic finite subgroup of 50(3) and suppose that
91 = n3 z. Let f : A = Z7r ~ Z be tbe augmentation map. Then there exists a module
M with free A-rank 2 contallling N = 91 ffi poA as a submodule of finite index such that
(i) for some subgroup Go S; GL(P), Go(N) acts transitivelyon the images in N/NnMD
of tbe elements poa, for anya E A representing a unit in A/D, and
(il) the subgroup of Go(N) which fixes po (modD) acts transitivelyon the images in
f ... (P) of the P-unimodular elements x E P n N such that x _ po (mod D).

Proof: From Lemma 2.7 we get an element B~ E Ext~(J(7r)/>t(7r), Z/2) with image
8~ E Ext~(J(7r), Z/2). Since HomA(J\, Z/2) injects into Homz(>t, Z/2) we eau assume
that BI)l gives a short exact sequence

with T of exponent two.

We identify the dual T ~ T and use (2.6) to deduee a short exaet sequence

(2.10)

where ~ denotes the dualleft module Jl* made into a right A-module in the usual way.
If 7r f:. 54, At, As , then the induced map A ~ T has image Tl ~ Z/2 ffi Z/2, with non~

trivial7r-action. When 7r = 54, then Tl ~ M2 (F2 ) and when 7r = A 4 or As , the image
Tl ~ I(7r)/J\(7r). Let 2{ C A be the kernel of the projeetion to Tl in the above sequence.
It follows that 91 is described by (2.3): it eontains 21 as a Z direet summand, and has a
cokernel we denote by L. We remark that sinee T has exponent two, 21 S; (:1,2).

Define M = poA EB PIA ffi L, and N = poA EB 91. Sinee 21 is a right ideal in A,
we ean identify PIA ffi L with the pushout of the sequence 0 ~ PI 21 ~ 91 ~ L ~ 0
using the inclusion Pl 21 C P1A. As usual P = poA EB P1A and D = Ann(M/N).
When 1T i=- 54, A4 , As , we have checked that A/2l is Z/2 EB Z/2, where 7r acts through
an epimorphism 7r ~ Z/2. It follows that D = (J(1ro), 2), where 1ro is the kernel
of the epimorphism p : 1r ~ Z/2. The exceptional cases, 1r = S4,A4,A~ lead to
D = ker(A ~ M2(F2)), D = ker(A ~ F2((3)), or D = ker(A ~ M2(F4)) respectively.

The assertions of Proposition 2.9 are now easy to verify. In fact, part (i) is trivial
since the elements of 7r together with ±l suffice to lift the units. Part (ii) follows from
(1.16) onee we notice that 21 = .0 so that the algebraic automorphisms given there do

stabilize N. Indeed, they have the effect PI ~ po C +P1d with d =1 (mod D). Since
91 S; P1A ffi L cau be expressed as a pull-back 91 = {(a,v) la(modD) =v(modLo)},

for some Lo S; L, the elements (ad, v) E 91 whenever (a, v) E 91 and d =1 (modD).
Henee the automorphisms extend by the identity on L and preserve 91.•

Lemma 2.11: Let [{ be a finite two-complex with 1r = 1rl (K, xo) finite. Suppose that
f : K ~ K is a homotopy equivalence such tllat the induced map f ... : 1r2(K) ® Q ~
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7t"2(K) ® Q has trivial reduced norm at every simple factor of Q7t". Jf 8K] (Z7t") = 0 and
f induces the identity on 7t"] (K, xo), then f is a simple homotopy equivalence.

Proof: We consider the chain homotopy equivalence induced by fon the chain complex
of K tensored over the rationals, and compute its Reidemeister torsion. Our assump­
tion implies that the induced map f. : '7r2(I() --+ 7t"2(I() has trivial determinant in
I m(Wh(Z7r) --+ W h(Q7t")) = W h(Z7r)/8I(] (Z7r), hence the Whitehead torsion of f
vanishes.•

The Proof of Theorem 2.1: For any finite subgroup 7t" of 80(3), it is known that
8K](Z7t") = 0 (see [8, 14.1, 14.5]). Let !( be a finite 2-complex and let 91 = 7t"2(K).
We may assume, by Theorem A, that !( has minimal Euler characteristic. Suppose
first that 7t"] (K) is periodic 1 i.e. cyclic or dihedral (of order 2m, m odd). In this case,
m= J(7t")., a two-sided fractional ideal in QA. By scaling, we can embed 91 C J(7t") as
a two-sided ideal in A. Then

and by Lemma 2.2 we need to show that a suitable subgroup of GL2 (A), stabilizing
N, acts transitivelyon M-unimodular elements in N. First we apply Theorem 1.14
and then Lemma 1.15 with A = Z7r and D = J(7t"). We conclude that the subgroup of
SL2(Aj D) preserving N acts transitivelyon M-unimodular elements in N.

The algebraic automorphisms needecl for transitivity on unimodular elements p­
reserve the k-invariant of !( V 8 2 • Ta see this recall that the k-invariant is an el­
ement k E H3( 7r, 91). Under the action of 8L2(Aj D), the image of k is dk, where
d =1 (mod D). However, the elements of D act as zero on this cohomology group, by
dimension-shifting. It now follows that such an algebraic automorphism is induced by
a homotopy self-equivalence f : !( V 82 --+ !( V 82 .

By Lemma 2.11 applied to !{ V 8 2 , f is a simple homotopy equivalence. Therefore
we can cancel the final 8 2 , to get a simple homotopy equivalenee between K and K'.

Next, suppose that 7t" is non-periodic. The construetion of N eMin (2.9) used
a surjeetion I : 7t"2 (!(). --+ T , giving us a based pair (!(, I)' BY Lemma 2.2 we need
to show that a suitable subgroup of GL(M), stabilizing N, acts transitivelyon M­
unimodular elements in N. This time the necessary transitivity follows from Corollary
1.11, and we conclude that 7r2(K) ~ '1r2(!('). It is not diffieult to check that the self­
automorphisms used in the proof do not change thc k-invariant (see Lemma 1.10 where
they are given explicitly). There is an exaet sequence

The third term is isomorphie to H2(7t", Z/2), and therefore the action of D is zero. Now
twice the k-invariant is in the image of H 3 (7t", J"') by construction of n3 z. Under our
embedding'J1 c A ffi jt"', the submodule J'" is mapped into 0 ffi jt•. It follows as above
that the self-automorphisms are realized by simple homotopy eqllivalences.•
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