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On the projective geometry of hypersurfaces

Takeshi SASAKI

Introduction

projective differential geometry studies the properties

of submanifolds of projective space that are invariant under

the projective group. Its beginning goes back to the last

century (see [14] for abrief history) and the.systematic study

was made first by E.J. Wilczynski and G. Fubini and E. ~ech.

(Refer [22], [23], [10], [11] as weIl as [4] by E. Cartan).

The results up to 1960's are accumulated in G. Bol's books [2]

with huge amount of references. The purpose of this note is to

reformulate the projective geornetry of hypersurface. This

reformulation provides us an efficient way to develop an in­

variant theory on eonvex domains in a pro.jective view point

(cf. [17]). Before explaining contents, I want to add some

remarks. As we can see in Bol's book, there.had been only a

few studies of submanifolds of codimension greater than one

except the theory of curves (see [6], [12]). This is partly

beeause the projective group is too large to yield fruitful

loeal and global results. This reason also explains that the

projective geometry does not attraet much interest nowadays.
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I do think however that there remain several subjeets, for

instanee W-eongruenees, Laplaee sequences ..... , whieh should

be refined and generalized. Note that these subjeets are re-

lated with a geometrie theory of linear partial differential

equations of some kind.

In this note I have tried to make the theory of hyper-

surfaees in euelidean spaces as far asO possible. Indeed on

hypersurfaces which satisfy same non-degeneracy condition,

we define the "seeond fundamental form" and construct a nor-

mal conformal conneetion. The method we use here Qwes much

to two investigationsi one is by H. Flanders [9] and 5.5.

ehern [7] on the affine differential geometry of hypersurfaces

(see also [3]). The ether 15 by N. Tanaka [20] on the geometry

of CR-hypersurfaces (see also [21] and [8]).

For the sake of s1mplicity, we assume here that a hypersurface

15 given by a Ioeal expression

Y= -21 \(x i )2+ -61 \' i j k 1
I.. I.. a ijkx X X + 24

i . k 1 5
\' a X x] X X +0 (X ),
L ijkl

1 ~ i,j, ... s n.

By using an appropriate prejective change of coordinates, we

normalize this expression as La... = L
~~J

Then the form $2 = L aijdxidxj and ~3

have same invariant properties. In faet,

a .... = 0 (§ 4.2).
~~JJ

i . k
= L aijkdx dxJdx

in § 1 after presen-



-2-

ting these forms by use of the moving frame method, we prove

that the form ~2 is conformally invariant. The scalar

F = L (aijk)2 , which is called the Fubine-Pick invariant,

turns out to be a relative invariant. In § 2 we construct a

normal conformal connection associated with the form ~2 in

case n ~ 3. At the same time we obtain the second fundamental

form by using the form ~3 and auxiliary invariants. We next

derive the Gauß equation and the Codazzi-Minardi equation and

prove in terms of these equations the fundamental theorem of

hypersurfaces (Theorem' 2.8). In § 3 we assurne in addition that

F does not vanish as in most literatures. In this case, the

problem reduces to Riemannian geometry. Some remarks are given

in § 4. We cornpare in § 4.1 our normalization and classical

ones by Fubini and by Wilczynski for n=2 . In § 4.2 we explain

how to normalize a defining equation of a hypersurface and in

§ 4.3 an explicit calculation of invariants is given by use

of this norrnalization. The case n=1 is remarked in § 4.4.

This note was written during the author,' s stay at the

Max-Planck-Institut für Mathematik in Bonn. He expresses his

thanks to the Institute for the hospitality and comfortable

condition for work. Thanks also to R. Kulkarni and U. Pinkall

who kindly taught hirn the result in [22] and [25].
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§ 1. Fundamental invariants of a non-degenerate hypersurface

n+1Let P be areal projective space of dimension n+1

o 1 n+1with homogeneaus coordinate system (x,x , .... ,x ). The

group of projective transformations G=PL(n+1,R) is by

definition the group SL(n+2,R) modulo its center. The action

of SL(n+2,m) on .n+2 induces the action of G on pn+1 .

The isotropy group is denoted by H . Thus G~ pn +1=G/H

is a H-principal bundle. Fix a basis eO={eoo, .•.. ,en+10} ·of

an +2 • Then each element g of G defines another basis

°e=ge which we call a projective frame. In the following dis-

cussion we may assurne each projective frame e={eo, .... ,en +1}

satisfies

( 1 • 1 ) det ( e O' · · · · · , e n +1 ) = 1 .

We define forms ß on the group G byw
Cl

( 1 .2) de e= w
Cl

e
ßCl

Then the equation of Maurer-Cartan is

( 1 .3) dw ß = w Y A W ß
a Cl Y

The condition (1.1) implies

( 1 .4)
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Here we use the summation convention and the index range is

assumed to be 0 ~ a,ß, ••.. ~ n+1 . The indices i,j, .•• used

below are assumed to run fram 1 ta n . Let M be a piece of

hypersurface in the projective space pn+1 . The aim of this

section is to define some fundamental invariants of the hyper-

surface M. Let e be a loeal projective frame field over

M . It is a Ioeal section on M of the bundle G~ pn+1

due to the above identification. We write the induced form

*e W of W by e also by w • Restridt our consideration to

a Ioeal frame e which satisfies the condition

(1 • 5 ) n+1Wo = 0 ,

1 n{wO , ••.• ,wa } are linearly independent.

Then another such a frame e is given by

(1 .6)

where

g =

e = ge

A 0 0

b a 0

11 C v

, det g = 1

a =
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.... *
The induced form e W being denoted by w , the equation

öfra frame change i5

( 1 • 7) w =

Now (1.5) implies

O d n+1 i n+1= Wo = W I\w i

and can be written as

( 1 .8) n+1 J'
W = h wi ij h .. = h ..

1.) J1.

Here, for shortage of notation, we write a
w for . We

define

( 1 .9)
i .

$ 2 = h. .w wJ , h = (h.. ) and H = det h •
1.J 1.J

In order to see the frame dependence of these quantities, we

use a component-wise writing of the equation ~1.7):

.... n+1
w.

1.

=

~i = AA~wj
J

-1 k n+1= 'J a i wk

j k 1 j k j k -1 1 n+ 1 jA kda. A. +a i w A. +b. w A. -va. w 1 c .
~ ] 1 ] 1. J 1. J

.... k
w.

1.
(1.10)
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n+1 n+1 -1 i n+1
wn +1 = wn +1 +dlogv+v C wj

i j i - n+ 1
W 1 +c A .w +1n+ ] n

... 0 ... j - n+1
AW

i
+w

i
b.+lJ W i. ]

o 0 i 0= vw 1 +d~+~w +c w.n+ ]

where (A
i

j ) means the inverse matrix of (a j) . From now on
i

the quantities corresponding to the frame e are written with.

tildes -. Then from the equation (1.10) follow the next for-

mulas.

(1.11)

(1.12)

(1.13)

h = ()..v)-1 ah t a

H = (deta)n+2H

1 ... -0 n+1
n+2 dlog H + W + wn +1

= 1 0 n+1 -1 j j k
n+2 dlog H+w +w n +1 +(v c hjk-bj~ )w

We now make abasie

Assumption 1.1. The matrix h= (h .. )
~J

15 throughout non-degenerate,

which turns out to be independent of the choice of frames due

to (1.11). Then, from (1.12) and (1.13), we can see that a frame

may be supposed to satisfy further restrlcions

(1.14)

(1.15)

I H 1 = 1 ,

o n+1
W +w 1 = 0 •n+
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Frorn these restrietions follows that !det al = 1 and IAVI = 1.

We now assurne that hand h have the same signature and non-

negative index's. Then AV = 1 unless index h = 0 . Even when

index h = 0 , we treat only the case AV = 1 to ~irnplify writings.

Then the matrix a is a special orthogonal transformation with

-
respect to h and- h . The frame change is now restricted to

(1.16) b.
~

1, det a = 1 •

We next take an exterior derivation of (1.8) and use (1.7) to

get

(dh h ·wk h'- I,' k) 1\ wj = 0 •
ij - ik j - jk~i

Then it is possible to put

(1.17) dh ..
1.J

(h. 'k) is symmetrie.
J.]

By this definition

dlogH

where (hij ) is the inverse of (h, ,) . So the conditions (1.14)
1.J

and (1.15) irnply

(1.18)
ij

h h ijk = o .
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Th1s 1s called the apola4i~y condition on (h, 'k). The
1.J

straightforward calculation by use of (1.10) and (1.16)

shows

Lemma 1.2.

Let us define

= h a Pa qa r
. j kpgr 1.

(1.19) i j k
$ 3 = h i j kW W W ,

F

The cubic form $3 is called the Fubini-Pie~ 6o~m and the

scalar F , which rnight be thought of the norm of $3' 1s

called the Fub~n~-Pie~ inva4ian.t. These invariants together

with $2 are the fundamental invariants of a hypersurface.

From Lemma 1.2 and the formula (1.11) one has

proposition 1.3. (1) By a frame change there hold

(2) F$2 i8 invariant.

We call this invariant form F$2 the projective metric,

although degenerate when F=O . The associated area element

I In/ 2 ./TUT 1 nF dA , where dA = ~ IHlw, A ••••• A W , defines an area

functional. A criterial hypersurface with respect to this
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funetional is ealled p~ojectlvely minimal ([1], [2]). Several

interesting loeal results are known for a projectively minimal

surfaee of hyperbolie type; see vel. 2 of [2]. Higher dimen-

sienal examples and a global result for a surface will be given

in [18].

We further eontinue to restriet frames. Take an exterior

derivative of (1.15) to get

(1.20) i
1\ W = 0 •

This enables us to put

(1.21) h
. i

. . w +1
~] n

o- w.
J.

and define L by

(1.22)

Then a lenghty caleulation by use of (1.10) shows

Henee

AL ..
J.]

= p q . k 1 ... o· q r
vL a. 'a .. + (211-AC e hk1)h .. -c ... ·h a. a.

pq J.. J. lJ pqr l ]

AL = v L +
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Consequently, one can assurne renarning frames that the frame

1s so chosen that the condition

(1.23) L = 0

is always satisfied and that the frame change satisfy

(1 .24) 1 i i
tJ. = 2- AC eh.. ·

~J

With this restrietion the L.. transforms as
~J

(1.25)

In summary we have

Proposition 1.4. (1) For a given hypersurface which satisfies

Assumption 1.1, there is a local projective frame field satis-

fying

Wn+1=0, { 1 n}w , •••• , W are linearly independent,

o n+1
IH!=1, Wo +w n + 1 =0 and L=O ·

(2) Another frame satisfying this condition is given by a

transformation of the form
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a

c

If a frame change is restricted in this way, formulas in (1.10)

become simpler. The last three of (1.10), in fact, are rewritten

as in

(1.26)

...._­..........

o -2 0 -1 i 1 i j. k
wn + 1 =).. wn + 1 - ().. c Lik - 2 c c h ijk) W

We put here

(1.27) = - y,w
j

J

Then the last of (1.26) implies

(1 .28)

This formula and the formula (1.25) say that {L, ,}
1.J and

{Yj} are also invariants on a hypersurface in a certain sense,
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which will be explained in the next section.

We shail next briefly explain a relation of the above

reduction with an affine description of a hypersurface in the

affine space A
n +1 of dimension n+1 • Let f = (f 1 , ..... ,fn +1)

be a basis of" An +1 with the property

det (f 1 , •...• ,fn +1) = 1 ·

This is called a unlmodula4 affine frame. Let w ß (OSa~n+1,
a

1Sßsn+1) be the Maurer-Cartan form of the unimodular affine

group. We write shortly as before. When given a

hypersurface in A
n +1 , we associate" a frame satisfying

n+1
w = 0 •

This condition enables us also to write w,n+1=h, .w j and to
1. 1.J

define ~2 in the same manner. Furthermore, under the assumption

, it is able to restriet a loealof non-degeneraey of

frame field so that

h= (h, ,)
1.)

deth = 1 and n+1_ 0 • A cubic formwn + 1 -

~3 is defined by a similar reasoning. This fact implies that

~3 is an affinely defined object. Let us here recall that the

Fubini-Pick form ~3 measures the difference of a hypersurface '

from a quadratic hypersurface (see, f. ex. [9] § 12; cf. Corollary

2.11). Since there is now no waD, we can put hijwjn+1=lijwj ,

lij=lji · This tensor lij is called the affine mean curvature
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tensor and 1="1 ..hij/n is ca11ed the a66.i.ne. me.an. c.u/tvatuJte..
J.J

It is known that the last vector f of a frame is affinelyn+1

invariant (up to ! 1 in case index h=O) and it is called an

a66.i.ne. noJtmai. (See [3], [7J)

Let us now consider this hypersurface in the projective

space. Assume An + 1 is contained in pn+1 as an open set

defined by the first coordinate ox *0 . Let e=(1., 0, ••.• ,0)

be a fixed vector and f O be the tantological vector on the

hypersurface: fO(x)=x. We define a projective frame e by

Then with respect to this frame the Maurer-Cartan form looks

like

0 wj 0

(1.29) 0 j n+1
w. w.

J. J.

0 wj
n+1

0

Perform a transformation by

1

I

1
2 1
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Then the frame obtained satisfies the eondition (1) of Propo-

sition 1.4: namely the eorresponding eoframe is given by

0
i 0W

(1.30) 1 n+1 j n+1
2w

i wi
w

i

1 dl 1 i +w j 0.- 2 - 2w n+1 ,

so that

(1.31)

where dl = l.w j
J

Example 1.5. It is known that the equation 1 .. -lh.j=O charac-
1. J 1.

terizes an affine hypersphere and that in this ease 1 15 eon-

stant «(1]). Beeause a quadric is one of affine hyperspheres,

(1.31) teIls that Lij=Yj=O in the above frame (for a direct

verification see § 2). Combining this with the fact $3=0, it

holds always for a quadric.

We elose this section by giving a corollary of the projec-

tive invariance of F$2 . Assume n~2 and the hypersurface M

is closed and strictly convex, i.e. ~2 is definite. Then, on

the set N where F does not vanish, the form F~2 defines

a Riemannian metrie. Since any projective transformation which

leave M invariant is an isornetry with respect to this rnetric

and keeps the set N, Theorem 3.2 in [13, chapter I] implies
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Corollary 1.6 ([22],[25]). Let M be a closed strictly convex

h f · pn+1, n~2 . Then the t d t fypersur ace 1n _ connec e eomponen 0

the group of projective transformations which leave M in-

variant 1s compact unless F vanishes everywhere, name1y

un1ess M 1s a quadric.

The above argument is due to Obata [16], Proposition 4.1.

Note that the above proof 1s simple but needs some smoothness

condition on M. Under a 1ess restrictive condition this

coro11ary was already known by Vinberg and Kats in [22] and by

J. Benzecri in [25] with a elose look on Drojective transfor-

mations.
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§ 2. Anormal eonformal connection of a non-degenerate hyper-

surface

Because of the conformal invarianee of a fundamental two

form $2' one can derive an associated normal conformal eonnec­

tion on a hypersurface satisfying Assumption 1.'. The aim of

this sect10n 1s to eonstruct this eonnection and, by use of

this connection, to formulate the fundamental theorem of hyper­

surfaces in the projective space pn+' . We assume the dimension

n~3 throughout this section.

Let h=(h
ij

) be a non-degenerate nxn symmetrie matrix

and put

-1

I =

-,

h

Let G, denote the orthogonal group with respeet to I moduls

its center: G, = {g € GL(n+2, 2); grtg = I}/center. Its Lie

algebra 15 denoted by B, . Let H, be the subgroup of G,

whose element has a representative

[ b a

c

ahta = h
t

b = Aah c
1 t

~ = 2 Ach e
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Then the homogeneous space G1/ H1 is a quadric which is

canonically embedded in pn+1 . The derivation of anormal

conforrnal connection is now stated as follows: to find cano-

nically a B1-valued 1-form rr satisfying a certain curva­

ture condition. Since a general process how to obtain n is

well-known (see [13] Theorem 4.2 in p. 135 ~ 136), it is simply

necessary to relate n using w • Assurne n has the following
I

form wi th an unknown 1-farm l' •

( 2 • 1 ) 7r=W+1' •

The curvature fram n of IT is defined by

(2.2) n = d7r - ITl\n •

We want to determine l' so that n j
i is written as

(2.3) C j +C j -0
, i kl i lk- ,

and has a property

(2.4)

From now on, the rule of raising and lowering indices with

respect to h will be used. We first define
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(2.5)
a n+1

0
n+1 n+1

TO = Ta = , T O = - Wo

j 1 'k 1 1 h· j
W

1
Ti = h

J
hiklw =

2 2 i 1

Frorn this definition follows

(2.6)
i i

TI = W

dh - h TI - :.k - h k = 0
i j ik j j,k 1T i

The rernaining components of T are tentatively supposed to

have a form

(2.7) M" = M.,
~J J~

Then TI has values in S1 relative to h . We next see

Lemma 2.1. ~ ß = ~ n+1 0
u ~, = n = 0o a n+ 1 ·

Proof. These are shown by the syrnrnetry of hij , h ijk ' Lij

and M., • As an illustration
J:]

n 0
o

o CL 0= d7T O - TI "TIo Cl

= dw
O

- wO
i (definition of TI)
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i j= - W A (L ij + Mij)w (structure equation of w)

= 0 (structure of L ..
~J

and M .. )
~J

Since others are simi~arly shawn, we da not reproduce them

here.

The tensor n j
i

is by definition "-

n
i

j
d1T i

j a
A

j= - 1f
i

1f
a

dT
i

j k j k j .k j= - T. A wk - w. A Tk - Ti A T
k~ ~

Since a calculation shows

using this to compute dT j
i

one has a formu!a

•

(2.8)

= 1 (hikmh jm. -h .. h jrn )
4 1 ~lm k

Hence,



j
C. '1
~ J

2.5

= 1 K ( 2) (M 1 L ) Mj h4 i1+ n- 11 + ~ i1 + j i1

where we have put

(2.9)

Therefore the condition (2.4) 1s satisfied on1y when

(2.10) Mt t =
1.J

1 1 F
K.. - 2 L .. + h ..

4 (n- 2 ) ~ ~. ~ J. .8 (n- 2) (n-1 ) ~ J .

We introduce a new invar~ant f ..
~J

by

(2.11) f' j~
= -

1

4(n-2)
K .. +
~J

F------h..
8 (n-2) (n-1) 1.J

Then the definition (2.7) is rewritten as

( 2 • 7) t

j
T r+1

Proposition 2.2. Let T denote the form T for a new frame

ge . Then

-1
T = g T g

Proof. By the definition (2.11) and by (1.10) it holds
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i j= g ijl.JJ I.JJ

Using this identity and putting for amoment,

we can see following equalities from Lemma 1.2, (1.11), (1.25)

and (1.26):

't
0= ,-2 0+,-1 c i L j 1 c jr ,

n+1 1\ L n +1 1\ ijw - 2 "J

The definition of T.
j gives a formula

~

It is now immediate to see that these formulas together imply

the result.

This proposition shows that if we define n by (2.1)

making use of l' derived above, it has a following invariance

by achnage of frame:

(2.12) -1 -1
n = dg.g + gng for g € H1 .

This implies that n defines anormal conformal connection.

To be more precise, we assurne h=(h
ij

)

non-degenerate matrix (cf.(1.11). Let

is a fixed constant

P be the set of all
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frames satisfying the condition (1) of proposition 1.6. Then

·the seeond part of this proposition means that P is a prin-

eipal bundle over the hypersurface M with H
1

as a fibre

group. Now the forrnula (2.12) says that there exists a g ­1

valued 1-forrn on P whose restrietion to every Ioeal seetion

e is exactly ~ . We write again by ~ this form on P. On

the other hand Proposition 2.2 implies that T comes also

from an intrinsie form on P, whieh we denote also by T •

This is a tensorial 1-form on P. So we have proved

proposition 2.3. Let ~ and P be defined as above. Then

~ is anormal eonforrnal eonneetion on a hypersurfaee M.

This is a Cartan eonneetion on P of type

As for a Cartan conneetion we refer to [13]. The bundle

P is a subbundle of GI M

(2.1) lifts to P

----~~ M defined in § 1. The relation

The above reasoning enables us to say that the form T

is the seeond fundamental fQrm in the projeetive case. The Gauß

equation which expresses the eurvature tensor by use of this form

is given as follows.

Proposition 2.4.

Then

Let
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( 1 ) C
ijk1

h, m= Ci klJrn

1
(hikmhlj

rn m= 4 - h'l h' k )
~ rn J

1 .
- hjkKi1 + hikK j1

- h
i1

K
jk

)+ 4 (n-2) (h j1 Kik

1
- hikhj1)F+ 4 (n-1) (n-2) (h i1 h jk

(2 ) Cijk
C. 0

:= jk~

f'k j-f .. k+
1 (h 1 1= 2 ij L1k-hik L 1j )

~, ~J,

where

(2.13)

(3 )

Proof. (1) i5 direct from (2.8) and (2.9). (3) 1s obvious by

definition. For (2), we see by definition

First show

o l(h k j 2 n+1 0 j k k 0
d-r. = 2 'j" W AW +1- wi I\W +1 +w, AL •.w +L. W AI..Ll )

~ ~ k n n ~ Jk ~k

k .;j k 0 k)
+(df t\w -f,',(O k"w +f'k Lll I\W ,ik ~J ~

and then insert this to the above equation. Several cancelations
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by use of idebtities defining T and L will prove (2). Here

note that the right handside of (2.13) 1s the covariant derivative
, '0

of f ij with respect to TIiJ-oiJTI and defines a tensorial form

on M.

We next derive the Codazzi-Minardi equation. Define covariant

derivatives of T by

(2.14) DT = dT - TATI ~ TIAT

then, from the structure equation (1.3)

(2.15) n = DT + TAT •

In order to write down explicitly this equation, we will introduce

.~ovariant derivatives of coefficients of T by the following equa-

tions

(2.16)

.1 1 1 1 0
h, 'k lTI =dh, 'k-hl· 'kTI ,-h 'lk TT ,-h, 'l TI k+hi 'kTT
~J , 1.J J 1. 1. J ~J ]

k k k 0 1 0
L" kTI =dL. ,-Lk,TI ,-L'k TT , +2L, ,TI +h" TI 1~J, ~J J ~ 1. J 1.J 1.J

j '0 jYi ,TI =dy.-y,TT. J +3Y,TI +L,.TI 1,J 1. ] 1. 1. 1.J n+

Because of the transformation rule of T which is explicitly

written in Lemma 1.2., (1.25) and (1.28), these definitions are

natural in the sense that the right handsides become again ten-

sorial forms. We now have
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Proposition 2.5. (Codazzi-Minardi). The equation (2.15) is

equivalent to the syrnmetry of

tions

h. 'k
~J

and and the equa-

Yi . -y ..,J J,~

( 1 )

(2)

(3 )

hijk,l-hijl,k=Lilhjk-Likhjl+Ljlhik-Ljkhil '

_ 1 1 y y
Li j , k - Lik , j - h i j f lk- h ik f 1 j +2 (h ik j - h i j k) ,

1 1
=Li1f j-Lj1f i ·

Proaf. The (O,O)-th component of the right handside of (2.15) is

0 e 0 0a. a. a.
dTO - Ta ATr - Tr a AT +T . AT

a. a. e ce.

i 0= - Tr AT.
~

(f ij +
1

Lij)Tr
i ATr j= - 2

Similarly the (n+1, n+1)-, (O,i)- and (j,

1 i j 1h i j kare - (f .. - -L .. ) 1T ATr - - jk Tr A1T and
.lJ 2 ~J ' 2

tively. So the vanishing af n
o

a and nß
n +1

Ta get (1) calculate first

n+1)-th components
1 i k
ihijkTt' ATr respec-

implies the symrnetry.

and then use the formula (1) of Proposition 2.4. Similarly the

(i,O)-th and the (n+1,j)-th cornponents give the same equation

(2) and the rernaining (n+1,O)-th cornponent gives (3).

Corollary 2.6. ( 1 ) L .. = - l h . jk k
~J n ~ ,
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= 1 j + 1 h jk
(2) Yi 2(n-1) L ij , 8(n-1) (n-2) i K jk

Proof. Take a contraction of (2.16) relative to h., and use the
~J

apolarity condition (1.18) and the trace condition (1.23) to get

ij
h h. 'k 1 =

~J ,

Then the contraction of (1) and (2) of Proposition 2.~ gives the

result.

The first relation of this corollary says that the curvature

tensor is expressible in terms of covariant derivatives of

h ijk • In special case we have

Corollary 2.7. i
C ij

1 kl= - 4 h j Lkl

proof~ By the definition (2.13) of f .. k
~J ,

if i ,=
, J

1
- 8(n-1) F,j where

if , .
J,~

= 1 (h i h pq h i h pq) F,j
- 4 (n - 2 ) pq, i j + pq j , i + 8 (n - 1) (n - 2 )

Then (1) of .Proposition 2.5 shows

h i h. pq
= h i (h,pq - h,pq , ) + h

i h. pq
pq J ,i pq J ,~ ~ , ] pq J. , J

2h, pqL +
1

F= -J pq 2 , j
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Thus we have

i i
f j . - f i ., ~ , ]

1 kl
= 4 h j Lk1 -·

The previous corollary then implies the result.

The fundamental theorem of a hypersurface in the projective

case can now be stated as follows.

Theorem 2.8. L~t M be an-dimensional manifold with anormal

conformal eonnection TI (n ~ 3) . Let T be a tensorial 1-forrn

with symmetrie coefficients of the form as illustrated in (2.5)

and (2.7). Assume that T satisfies the covariant relation in

proposition 2.5 and the curvature tensor of TI satisfies the

relation in Lemma 2.1 and Proposition 2.4. Then, for a given point

P of M, there exists a neighborhood of p whieh can be embedded

as a non-degenerate hyper5urface in the projective space of dimen-

5ion n+1 so that TI and T are the connection and the invariant

induced by this ernbedding respectively. This ernbedding is unique

up to a projective transformation.

Proof. Given TI and T , define W=TI-T . The conditions on TI

and T imply that dW=WAw . This says that one can salve the

differential equation (1.2) :de = we and we have Theorem. The

ambiguity depends on the choice of initial conditions.

Corollary 2.9. Assume ~3 = 0 and n ~ 3 . Then the hypersurface
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is locally a quadric.

Proof. Frorn ~ = 03
follows n = 0 and T = 0 . Then Theorem

2.10 irnplies the result since ~3 = 0 for a quadric.

The Bianchi identity 1s as usual given by differentiating

the defining equation of the curvature tensor. "That is,

(2.17) dn = TrAn - nATr •

We here define covariant derivatives of the curvature tensor by

(2.18)

Proposition 2.10. The Bianchi identity (2.17) implies

"

( 1 ) S (jkl) C
ijk1 = 0, S(ijk)C. 'k = 0,

~J

S(jkl)Cijk,l = 0,
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where S(i ... j) means a operator to take a cyclic summation

from i to j .

Proof. The identlty (2.J7) for indices (0,0) and fO,i) are

i °TI An.
1

This implies (1) as usual. Components with indices (n+1,n+1)

and (i,n+1) give the same result. The (i,j)-th component

and the (i,O)-th cornponent are respectively

Then (2.18) and (2.19) imply (2). The (n+1,i)-th component

gives also the second of (2). The cornponent with index (O,n+1)

is trivial and that with index (n+1,O) is also trivial in view

of the relation (3) of Proposition 2.4.

By taking contractions of (1) and (2), we have

Corollary 2.11. (1)

(2) When implies

Applying these calculations we will prove
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Theorem 2.12. AS5ume that a hyper5urface i5 strictIy convex, 1.e.

h i5 definite, and that in ca5e n~4 and on. =0
1.

in

case n=3 . Then the hypersurface is locaIIy a quadric.

Proof. The assumption says that the connecti9n rr is flat due

to Corollary 2.11. Then, from Corollary 2.8, hjklLkl=O for

any choice of a normalized frame. However the formula (1.25) im-

plies

Hence

of h

K =0 and F=K P=O . This shows ~ =0
pq P 3

and Corollary 2.9. proves the theorem.

by the definiteness

This theorem can be regarded as a rigidity theorem of a spe-

eial kind. Note that this theorem and a theorem by Obata [16,

Theorem I] together imply Corollary 1.6 for n~3 .
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§ 3. The case F * 0

In this section we treat a hypersurface whose Fubini-Pick

invariant does not vanish everywhere. This is the case that attrac-

ted classically rnuch interest. As we shall soon see, the formulation

becornes extrernely simple in this case.

Recall first the identity
2-

A F=F • Taking derivatives, .

dlog F = dlog F - 2 dlogA ,

hence the first formula of (1.10) is rewritten as

- {1, 1
w + 2 dlog F

o 1 i j= w + 2- dlog F ~ b.Aa W
1. ]

This allows us to choose b. so that the left handside is zero.
1.

Renaming a frame we rnay assurne

( 3 • 1 )
o 1

w =- 2 dlog F , b i = 0 ·

We next consider F as a function given in advance, then IAI=1

and the group H reduces the orthogonal group module its centre.

This means that the hypersurface aamits locally a pseudo-Riemannian

structure which is projectively invariant. The fundamental tensor

g.. (assurne index g .. ~ 0)
1.J. 1.J

given by

and the connection form a. j
1.

are



( 3 • 2) g'j= IFlh .. ,
1. 1.J

3.2

Usually we take ~1 as F to simplify the formula. In this case

(3.3)

We shall consider this case hereafter. Then and e
n+1 are

uniquely deterrnined up to sign ±1 . The vector en +1 is called

a p~oje~t~ve no~mat vector of a hypersurface. Refer the book [2].

The forrnula5 of a frame change are now reduced to

-J' i J' - n+1 k n+1
Aw = W i ,w i = a i wk

(3.4)
- k j k 1 j k - 0 j 0w. = da i Aj

+ a. w1 A
j

, wi = a i wj1. 1.

i j i 0 0
Wn+1 = wn +1 Aj

, Wn+1 = wn+1

So we may put

(3.5)

50 that from (3.3),

(3.6) T ..
1.J

s ..
1.J

The invariant is given by



(3.7)

We put

= SI 41

J.J

3.3

(3.8)

The next proposition gives a relation eonneeting the normal

veetor e and the first veetor e O ; this is a projeetive
n+1

analogue of the relation in the affine geometry (see [9], [19]).

Proposition 3.1. Let ß be the Laplaeian of the metric gij .

Then

ß e o = nen +1 + Tr(T)eO •

Proof. Sinee deO =
iw e.

J.
, the eovariant derivative of 1s

e
i

· The derivative of e i is

so e = TiJ.eO- 1 h k e +g e . Then taking traces, we havei,j 2 ij k ij n+1

the'formula.

Remark 3.2. Let us eonsider an affinely homogeneous hyperbolie

n+1affine hypersphere which 1s not a quadric; f. ex. M={xEA ;

1 n+1 ix ..... x =1, x >Ol (na) . Then the eofrarne (1.29) already

satisfies IF]=eonst # 0 , so does the eoframe (1.30). There-
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fore (1.30) 1s the normalized eoframe in the sense above. Then

it 1s seen that Tr(T) = const.l , in partieular Tr(T)*O , i.e.

Tr(T) is a nontrivial absolute invariant.

The Codazzi-Minardi equation is summarized in the next

Proposition 3.3.

tensors.

and are all symmetrie

(2) h1jk,1-hijl,k=gikLjl-gilLjk+gjkLil-gjlLik ·

111 y y
(3) Tij,k-Tik,j= 2(h ij Tlk-h ik Tlj)+(gij k-gik j) ,

k
(4) h j ik,

The proof is similar to that of Proposition 2.5 and Corollary

2.6. The ealeulation of the Riemann curvature tensor Rijk1

also a routine. Namely one has

is

Proposition 3.4. ( 1 )
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iR=R. are given by
~

(2 ) The Ricci tensor and the scalar curvature

R 1
=-(n-1)Tr (U) + 4 F •
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§ 4. Same remarks

In this sectian we shall make four remarks. The first ane

is to remark to § 3. The second remark is to interpret the re-

duetien in § 1 in terms ef eeeffieients of a defining equation

of a hypersurfaee. Using this we list an explicit expression in

the third rernark. The final remark treats the case n=1 .

1. Fubini frame and Wilczynski frame. The normalized frame in

§ 3 was first considered by Fubini. Let x=x(u,v) be a parametrie

representation of a two-dimensional surface. Assume the surface

is of hyperbolic type and the coordinate (u,v) is chosen so

26that e :=ldet .(x, x , x , x )1*0, det (x, x , x , x )= detu v uv u v uu

(x, x u' x v' x )=0 . Then the surfaee satisfiesvv

x = e x + ßx + px
(4 • 1 ) {

uu u u v

x = yx + 6 x + qxvv u v v .

Fubini's normalization is, in this situation,
. . .

6
e =81 ßy I (see

[10] Chapter IV, [15] p. 123). Ta be more precise, we chaose a

projective frame given by

where
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Then we have

1
w

du 2
= r-' W

o
Wo = 0, IF I = 1 •

The invariants p and q are involved in U11 and U22 •

In same cases another choice of a frame i5 u5eful. Suppose

also n=2 and F*O I h=(~~) . Note that the apolarity condition

implie5 h,2*=O . Then the formula (1.25) shows that we may

1 2
assume Lij=O , because the equation L'11-c h111=L22-c h 222 =O

k1s always solvable w1th respect to c . A frame with this pro-

perty is called a Wilczynski frame (see(118,11) and (118,13) in

[2]). It has played a fundamental role in Bols' book, especially

in Chapter VIII. However, it is not possible to generalize this

choice in higher dimension.

2. A normal form of a hypersurface. Consider a hypersurface

given by an equation

y = tlJ (x)
1x = (x , n

I X )

in the af~ine space An +1 The problem here is to derive a

certain norrnalization of ~ Which corresponds to the reduction

in § 1. Assume the hypersurface is non-degenerate and passes



4.3

through the origin (x/y)=(O,O)

has a formal development like as

Then the above expression

(4 .2) y = < X, X > + L" ~d I

d~3

where < I > is a certain non-degenerate bilinear form and

~d is a homogeneous polynominal of degree d. (Make an affine

change of coordinates if necessary). Define coefficients of ~d

by

1fJd = ~! L I .

which are symmetrie with respect to indices. Then , putting <X,X>

1 t= - xh X2
for a non-degenerate matrix

i O

= t h Ja ° 'k
~J

h= (h .. ) I we define
~J

2
Tr ~4 = ij klL h h a ijkl

Proposition 4.1. (1) For every point of~. non-degenerate hyper­

surface , there exists a projective change of coordinates such'

that the hypersurface has an expression at that point

2= Tr $4 = 0 ·

(2) Every projective transformation which keeps this expression

invariant belongs to the isotropy group at the origin of the
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quadric y = < x,x > •

We shall sketch how to calc~late to show this proposition.

A projective transformation that keeps the origin has a form

\l Y a x + cy
y = .. , x = ,

A + b x + lJ Y A +bx+lJY

where a=(a j), b=(b
i

) and c=(c j ) as before. As 5 urne the ex-i

-pression (4.2) is transformed into
~

y = < x, x > + L ~d

Then the comparison of the second-degree terms gives

(4.3)
tah a =.A \l h •

Since we are concerned with a projective transformation, we may

assurne

(4 .4) I AVj = 1 •

The comparison of the third-degree terms then gives

(4 • 5 )

D.
~

where is used to denote quantities associated to ~d. The
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notation Sym denotes a symmetrization. Take a trace of (4.5),

then one sees that a suitable choice of c makes Tr~3=0 .

Assuming next Tr~3=0 also, compute the fourth-degree terms.

Then

(4 .6) 6 (ll \) - <c , c> ) Sym (h. .h k 1 ) .+ A\J a. .k 1. ~J ~J

_ -2 P q r s -2 p q r
-A a a. a

j
a k a l -4A Sym(b.a a. a k a

1
)pqrs ~ ~ pqr ]

Take traces twice times

(4 .7)
2" -2 2

2n(n+2) (~\J-<c,C»+A\JTr 1f!4=A Tr W4 •

Then a suitable choice of II proves the first part of Proposi-

tion. The second part can be seen from (4.5) and (4.7) together

with (4.3) and (4.4).

3. Explicit expression of invariants. Let y=w(x) be an equa­

tion of a hypersurface, which is normalized as in the previous

remark. We use a following normalized frame:

( 1 ,
1x , •••• I

nx , w(x) )

(4 .8)

where

·--c. = a(O, •••• ,0,1,0, ... ,0, w. (x»
~ ~

1 i -n
·en +1 = - 2 9 0 +c ei +Cl ( 0, ••• , 0, 1) ,



a =

4.6

(det Vi .• )-1/n(n+2)
~J

, da

i -n-2 ji
c = no. o.j1P

-n-2 kl ij
1 = 0. (aa.. j -(n+1)a..a. .-aa.kllJ Wl' .)1JJ

~ ~ ] ~J

Subindices derivatives with respect to i
~mean (x ): 1JJ i = ,

=~
aX

o,j , . The dual frame W is given by
ax

0
i 0w

1 n+1 i i n+1 n+1
(4 • 9) w = 2W

j
dloga.ö j -c w

j
w j

Idl 1 i i i
02 -2w +dc +c dloga

where

Then we have

(4.10)

i -1 i
W = a dx ,

n+2
= tl tlJ •.

~J

n+1
w.

]

n+2 k
= Cl ~jkW

..

Assurne, for simplicity, 1JJ ij (O)=oij. The apolarity condition

at the origin is L llJ· • •=0, hence a.(O)=O • This shows, at
~~J ]

the origin



(4.11)

4.7

hiJ·(O) = c'}' , h. 'k(O)=a i ' k ' F(O)=a. 'ka , 'k ·1.:J 1.J J 1.J 1.J

A further calculation shows

L, , (0) = -.L
2

(a , a -a ., ) - (1 2 ) F C . ,
.. 1.J n+ pq1. . pqj PP~J _ n n+ 1.J

(Take summations for repeated indices)

4 • The case n=1 . The reduction in § 1 shows h 111 =0 as weIl

as L=L =0 if n=1 . So the treatments in § 2 and § 3 cannot
11

appIy for a curve. We will reproduce a part of [ 5] in our nota-

tion. The connection form w has a form

0 1
0cu w

0
·1w, .w

0
w2 w1

-cu

and by a frame change it varies as

-0
d log A bww = + w -

-2= A w2w
2

A point where w =0
.2

i5 called a ~ex~ac~~c point. If we write
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a curve locally as

(see Proposition 4.1), then (4.11) shows that (0,0) i8 a sextactic

point if and only if e=O . It 1s known that if w2 =O every­

where, then a curve is a conie ([5], [15])

Proposition 4.2. Assume the eurve has no sextactic points. Then

there is a unique frame such that w takes a form

0
1

0w

0 1
w, w

1 0-w w,

Proof. Since w2*0 by assumption, we can choose A so that

1 0w
2

= -w • Choose next b so that w =0 • Uniqueness can be see~

readily from (1.10).

1When we choose a frame as above, w is called the p~ojee~ive

tine etemen~. When we write
,

w,=kw , the coefficient k is called

the pkojeetive eu~vatu~e oi a curve. The above reduction corres-

ponds to the expression of a curve as
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Then, at the origin, the projective line element is dx and

the projective curvature is equal to g/18 . Refer [5] for a

variational problem concerning the projectiv~ curvature.
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