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On the projective geometry of hypersurfaces

Takeshi SASAKI

Introduction

Projective differential geometry studies the properties
of submanifolds of projective spéce that are invariant under
the projective group. Its beginning goes back to the last
century (see [14] for a brief history) and the systematic study
was made first by E.J. Wilczynski and G. Fubini and E. Cech.
(Refer [22], (231, (101, [11] as well as 14] by E. Cartan).
The results up to 1960fs are accumulated in G. Bol's books [2]
with huge amount of references. The purpose of this note is to
reformulate the projective geometry of hypersurface. This
reformulation provides us an efficient way to develop an in-
variant fheory on convex domains in a projective view point
(c£. {17]1). Before explaining contents, I want to add soﬁe
remarks. As we can see in Bol's boock, there had been only a
few studies of submanifolds of codimensicon greater than one
except the theory of curves (see [6], [12]). This is partly
because the projective group is too large to yield fruitful
local and global results. This reason also explains that the

projective geometry does not attract much interest nowadays.



I do think however that there remain several subjects, for
instance W~congruences, Laplace segquences ..... , which should
be refined and generalized. Note that these subjects are re-
lated with a geometric theory of linear partial differential

equations of some kind.

In this note I have tried to make the theory of hyper-
surfaces in euclidean spaces as far as possible. Indeed on
hypersurfaces which satisfy some non?degeneracy condition,
we define the "second fundamental form" and construct a nor-
mal conformal connebtion. The method we use here owes much
ﬁo two investigations; one is by H. Flanders [9] and S.S.
Chern (7] on the affine differential geometry of hypersurfaces
(see also [3]). The other is by N. Tanaka [20] on the geometry

of CR-hypersurfaces (see also [21] and [8]).

For the sake of simplicity, we assume here that a hypersurface

is given by a local expression

=1 i j k., 1 a 13,5100
y-ZZ(x) Eajkxxx+24zijklxxxx X ).

1 <41i,3,...5 n.

By using an appropriate projective change of coordinates, we

normalize this expression as | ajj4 = ) 35393 = O (§ 4.2).
_ i, 3 _ 1. 3.k
Then the form ¢2 = z aijdx dx3 and = Z aijkdx dxjdx

have some invariant properties. In fact, in § 1 after presen-



ting these forms by use of the moving frame method, we prove
that the form ¢, is conformally invariant. The scalar

F =) (aijk)2 , which is called the Fubine-Pick invariant,
turns out to be a relative invariant. In § 2 we construct a
normal conformal connection associated with the form ¢, in
case n 2 3. At the same time we obtain the second fundamental
form by using the form ¢3 and auxiliary invariants. We next
derive the GauB equation and the Codazzi-Minardi equation and
prove in terms of these equations the fundamental theorem of
hypersurfaces (Theorem 2.8). In § 3 we assume in addition that
F does not vanish as in most literatures. In this case, the
problem reduces to Riemannian geometry. Some remarks are given
in § 4. We compare in § 4.1 our normalization and classical
ones by Fubini and by Wilczynski for n=2 ., In § 4.2 we explain
how to normalize a defining equation of a hypersurface and in
§ 4.3 an explicit calculation of invariants is given by use

of this normalization. The case n=1 1is remarked in § 4.4.

This note was written during the author's stay at the
Max-Planck-Institut fir Mathematik in Bonn. He expresses his
thanks to the Institute for the hospitality and comfortable
condition for work. Thanks also to R. Kulkarni and U. Pinkall

who kindly taught him the result in [22] and [25].
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§ 1. Fundamental invariants of a non-degenerate hypersurface

Let Pn+1 be a real projective space of dimension n+1

with homogeneous coordinate system (xo,xq,....,xn+1) . The

group of projective transformations G=PL(n+1,R) is by

definition the group SL(n+2,R) modulo its center. The action

2 n+1

of SL(n+2,R) on mn+ induces the action of G on P .

The isotropy group is denoted by H . Thus G —» Pn+1=G/H
0 01 .
' } of

0 fF & s 0 n
Bp+2 . Then each element g of G defines another basis

is a H-principal bundle. Fix a basis ef=(e

e=ge0 which we call a projective frame. In the following dis-

cussion we may assume each projective frame e={e0,....,en+1}
satisfies
(1.1) det (egs..... 'en+1) = 1

We define forms w, on the group G by

(1.2) de =y Pe .

{(1.3) dw =wYAwB

The condition (1.1) implies

(1.4) w =0 .



Here we use the summation convention and the index range is
assumed to be 0 5 a,8,....5 n+1 . The indices 1i,j,... used
below are assumed to run from 1 to n . Let M be a piece of
hypersurface in the projective space Pn+1 . The aim of this
section is to define some fundamental invariants of the hyper-
surface M . Let e be a local projective frame field over
M . It is a local section on M of the bundle G — Pn+1
due to the above identification. We write the induced form
e*w of w by e also by w . Restrict our consideration to
a local frame e which satisfies the condition

n+1

(1.5) wg =0 ,

{w01,....,w0n} are linearly independent.

Then another such a frame e 1is given by

{(1.6) = ge
where
A 0 0O
g = b a 0 , det g = 1
L c v
a = {a.j),b={bi),c=(cl)



1.3

~* -
The induced form e w being denoted by w , the equation

of .a frame change is

t
|
Y
[}
-

(1.7) w = dg.qg + gug

Now (1.5) implies

_ n+1 _ 1 n+1
0 = dmo = 0w AWy
and win+1 can be written as
n+1 _ J =

a

Here, for shortage of notation, we write w for Wy . We
define

= i,3 - =
{1.9) ¢ hijw w” , h (hij) and H det h .

In order to see the frame dependence of these quantities, we

use a component-wise writing of the equation (1.7):

(
o0 = wO4dlog A - biA;mj
ml = AA;mj
< o n¥t =1 K n+1
i i %k
"~ 3 L [ l .
{(1.10) .k da.Ja " +a lm JA.k+b.w3A.k—u 1 LW n+1cJA.

i i i i i1 j




-~

n+1 n+1

_ n+1
= Yn+1

Wy +dlogv+v_1clmj

- i, j.i - n+1 _ j. k 3 3 j i
<< @ +Cc A jmn+1 {dc” +c mk +uw +vwn+1 )Aj

~ 0,7 3 T n+l _ j 0 0
Awi fmi bj+umi = ai wj +dbi+biw

-~ -~

0., - i n+1 _ 0 0 i 0
Aopgq *hywn e 4y = Voo, *dutuw tc Wy

\

where (Aij) means the inverse matrix of (aijj . From now on

the quantities corresponding to the frame e are written with.

tildes ~ . Then from the equation (1.10) follow the next for-

mulas.
(1.11) h = (av) 'anta ,
(1.12) H = (deta)™ % ,
1 = ~0 ~ n+1
(1.13) — dlog H + w® + u_,,
_ 1 0 n+el =1 3, _ ik
o+3 dlog H+w O 1 +(v 'c hjk bjAk Jw

We now make a basic

Assumption 1.1. The matrix h=(hij) is throughout non-degenerate,

which turns out to be independent of the choice of frames due

to (1.11). Then, from (1.12) and (1.13), we can see that a frame

may be supposed to satisfy further restricions

(1.14) |lB| = 1,

(1.15) wlep DFT g



1.5

From these restrictions follows that |det a| = 1 and |Av| = 1.
We now assume that h and & have the same signature and non-
negative index's. Then Av = 1 unless index h = 0 . Even when
index h = 0 , we treat only the case v = 1 to simplify writings.
Then the matrix a 1is a special orthogonal transformation with
respect to h and. ﬂ . The frame change is now restricted to

i k

(1.16) bi = AC hjkai r AV

1, det a = 1

We next take an exterior derivation of (1.8) and use (1.7) to

get

_ k _ .. k j 2
(dhlJ h kY 5 hjkmi ) A w 0 .
Then it is possible to put
k k _ k
(1.17) dhij , hikwj hjkm i = hijkm :
(hijk) is symmetric.

By this definition
dlogH = hiJdh, =n
1]

where (h1J) is the inverse of (h,.) . So the conditions (1.14)

and (1.15) imply

ij -
(1.18) h™7hy gy = 0



This is called the apolarity condition on (hijk). The
straightforward calculation by use of (1.10) and (1.16)
shows
- Lemma 1.2. Ah = h a,Pa qa ol

Let us define
(1.19) by = hijkmlmjwk ,

- ip, ig kr
The cubic form ¢, is called the Fubini-Pick form and the
scalar F , which might be thought of the norm of ¢ is
called the Fubini-Pick ALnvariant. These invariants together
with ¢, are the fundamental invariants of a hypersurface.

From Lemma 1.2 and the formula (1.11) one has

Proposition 1.3. (1) By a frame change there hold

- _ .2 - _ .2 2 _
¢2‘)\¢21¢3-)\¢3,1F—F.

(2) F¢2. is invariant.

We call this invariant form Fo, the projective metric,
although degenerate when F=0 . The associated area element

1
|F|n/2 dA , where dA = V[H|w. A..... A w? , defines an area

functional. A criterial hypersurface with respect to this



functional is called phojectively minimal ([1], [2]). Several
interesting local results are known for a projectively minimal
surface of hyperbolic type; see vol. 2 of [2]. Higher dimen-
sional examples and a global result for a surface will be given

in [18].

We further continue to restrict frames. Take an exterior

derivative of (1.15) to get

J . =
(1.20) (hyqupyq? = wg) A w™ =0

This enables us to put

i 0 _ i _
(1.21) hijm n+1 wyo = Lijw ; Lij = Lji ’
and define L by

- 13
(1.22) L Lijh /n

Then a lenghty calculation by use of (1.10) shows

'S P, g ; k1 SO o g, T
AL, vL a._aj + (2y rc ¢ hkl)hij c hpqrai aj

Hence

- k 1
AL = vL + {2y rc ¢ hkl)
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Consequently, one can assume renaming frames that the frame

is so chosen that the condition
(1.23) L =20
is always satisfied and that the frame change satisfy

Aclclh.. .
ij

=
1]
Nl

(1.24)
With this restriction the Lij transforms as
(1.25) } Lij = (Lkl - Ahklmc )ai a. .

In summary we have

Proposition 1.4. (1) For a given hypersurface which satisfies

Assumption 1.1, there is a local projective frame field satis-

fying

wn+1=0, {w1,....,wn} are linearly independent,

_ 0 n+1_ _
|H|=1, W UL =0 and L=0 .
(2) Another frame satisfying this condition is given by a

transformation of the form



1.9

A
bi = Aaikhk.cJ
b a , J
- = 1 L]
L oc A 1 o 5 ACTC hij .

If a frame change is restricted in this way, formulas in (1.10)

become simpler. The last three of (1.10), in fact, are rewritten

as in
-0 k_ 3L 3, Ly, K 0
Awy o =ay wy +{d(b A ) b, Al " }ai +biw
+ipa lw' LR
i i ]Ak
N i 3., J JeaK, 3.:3¢,0
(1.26) Wheq @4 =x © 1 +dc“+cC wy " +C (w +dlogi)
+uw]_kc] k kn 1 ,
< 0_ -2 0, -1i  _1 i3 - .k
Upet T pyq (h CTLyym 5 STethy e
We put here
0 _ 3
(1.27) ©ipq = ” ij
Then the last of (1.26) implies
c o =2 -1i. _ 1 ik
(1.28) Yj = Yj+x c Lij 3 c'c h ik

This formula and the formula (1.25) say that {Lij} and

{yj} are also invariants on a hypersurface in a certain sense,



which will be explained in the next section.

We shall next briefly explain a relation of the above

reduction with an affine description of a hypersurface in the

n+1

affine space A of dimension n+1 . Let £ = (f1, ..... £

1

be a basis of a"" with the property

det (f ) =1 .

1’00-..'fn+1

This is called a unimodular affine frame. Let maB (Osasn+1,

1sfsn+1) be the Maurer-Cartan form of the unimodular affine

group. We write shortly w8=m08 as before. When given a

n+1

hypersurface in A , we associate a frame satisfying

This condition enables us also to write min+1=hijmj and to

define ¢2 in the same manner. Furthermore, under the assumption

of non-degeneracy of h=(hij) » it is able to restrict a local

frame field so that deth = 1 and ©h 1

n+1=0 . A cubic form

¢35 is defined by a similar reasoning. This fact implies that
¢3 is an affinely defined object. Let us here recall that the
Fubini-Pick form ¢3 measures the difference of a hypersurface

from a quadratic hypersurface (see, f. ex. [9] § 12; cf. Corollary

3

n+1 4390 ¢

lij=lji . This tensor lij is called the affine mean curvature

2.11). Since there is now no wao ;, we can put hijwj 1



1.1

tensor and lflijhljln is called the affine mean curvatuire.
It is known that the last vector fn+1 of a frame is affinely
invariant (up to * 1 in case index h=0 ) and it is called an

aggine normatl. (See [3]1, [7])

Let us now consider this hypersurface in the'projective
space. Assume An+1 is contained in Pn+1 as an open set
defined by the first coordinate xO*O . Let e=(1, 0, ....,0)
be a fixed vector and f0 be the tantological vector on the

hypersurface: fo(x)=x . We define a projective frame e by

ol
1]
Hh

-
Q
++
o
.

Then with respect to this frame the Maurer-~Cartan form looks

like
0 mj 0
(1.29) 0 o .0
1 1
J
0 ERg ¢] .

Perform a transformation by

[ 1




Then the frame obtained satisfies the condition (1) of Propo-

sition 1.4: namely the corresponding coframe is given by

[ 0 o 0 \

, ; ne1 i n+1
(1.30) : 704 0y !

1 1 ]

\ - 354l - Fe+e’ ., 0 )
so that
(1.31) Lig = 135 = 1 By,

v = 1 1 where dl = l.wj .

j 279 J

Example t.5. It is known that the equation lij-lhi =0 charac-

]
terizes an affine hypersphere and that in this case 1 1is con-
stant ([1]). Because a quadric is one of affine hyperspheres,
(1.31) tells that Lij=yj=0 in the above frame (for a direct
verification see § 2). Combining this with the fact ¢3=0 , it

holds L =0 always for a gquadric.

13773
We close this section by giving a corollary of the projec-

tive invariance of F¢2 . Assume nz2 and the hypersurface M

is closed and strictly convex, i.e. ¢, is definite. Then, on

the set N where F does not vanish, the form F¢2 defines

a Riemannian metric. Since any projective transformation which

leave M invariant is an isometry with respect to this metric

and keeps the set N , Theorem 3.2 in [13, chapter I] implies



Corollary 1.6 ([22]1,[25]). Let M be a closed strictly convex

hypersurface in Pn+1 , n22 . Then the connected component of

the group of projective transformations which leave M in-
variant is compact unless F vanishes everywhere, namely

unless M 1is a guadric.

The above argument is due to Obata [16], Proposition 4.1.

Note that the above proof is simple but needs some smoothness
condition on M . Under a less restrictive condition this
corollary was already known by Vinberg and Kats in [22] and by
J. Benzécri in [25] with a close look on nrojective transfor-

mations.






§ 2. A normal conformal connection of a non-degenerate hyper-

surface

Because of the conformal invariance of a fundamental two
form ¢2 , one can derive an associated normal conformal connec-
tion on a hypersurface satisfying Assumption 1.7. The aim of
this section is to construct this connection and, by use of
this connection, fo formulate the fundamental theorem of hyper-

n+1

surfaces in the projective space P . We assume the dimension

nz3 throughout this section.

Let h=(hij) be a non-degenerate nxn symmetric matrix

and put

Let G1 denote the orthogonal group with respect to I moduls

its center: G, = {g € GL(n+2, R); gItg = I}/center. Its Lie

algebra is denoted by 3, - Let H1 " be the subgroup of G1

whose element has a representative



2.2

Then the homogeneous space G1/H1 is a gquadric which is
canonically embedded in Pn"'1 . The derivation of a normal
conformal connection is now stated as follows: to find cano-
nically a 91-valued 1-form nm satisfying a certain curva-
ture condition., Since a general process how to obtain = is
well-known (see [(13] Theorem 4.2 in p. 135 ~ 136), it is simply

necessary to relate =t using ®» . Assume 1 has the following

form with an unknown 1-form =t .
(2.1) T = w + T
The curvature from Q of 7 is defined by

(2.2) Q dnr - mwAT .

We want to determine 1t so that Qij is written as

(2.3) g 3= 1e 3 k1 o3

s R
i 3%k *C 0 .

1kl "1 1k

and has a property

o=
(2.4) Icy 5100
J
From now on, the rule of réising and lowering indices with

respect to h will be used. We first define



2.3

-
o
1]
—
|
o
-
-
t
|
E
o

From this definition follows

(2.6) Bt = w

The remaining components of 1t are tentatively supposed to

have a form

(2.7) T, = M,_.w
i _ _ij k _ :

n+1 = h Mjkw —Mkw .

Then 7 has wvalues in 91 relative to h . We next see

Lemma 2.7. 9] = Q = Q = 0

Proof. These are shown by the symmetry of h h ’

i3 ¢ M5k o7 iy
and Mij . As an illustration

0 i 0 3 j ,
wyo A (mi +Lijm +Mijw ) (definition of )



2.4

mi A (Lij + Mij)mj (structure equation of w)

=0 (structure of L.,. and M..)
ij ij

. 8ince others are similarly shown, we do not reproduce them

here.

The tensor ﬂiJ is by definition -

i i
- N i _ k jo_ .-k J
= dri Tl A Wy ws A Tk Ti A rk
-, Dt Jo_ j
wy AT (Lik + Mik) WA W

Since a calculation shows

k 1 k n+1 k
+hjk1m AW 1+ijui AW

1
- d {k1Y A 3

. k )

using this to compute dr J one has a formula

i - jm. o pdm
Ci'k1 h h,. h”" )

By 10l &

Bj—

1 1
(2.8) (M) + gLjp) 8= (Myp+ gLy )81

1 1

J 1.3 IRV B
M7+ Ly dhy g (M7 5L

+

TR AR

Hence,



. - 1 j
c.7. Kil+(n 2)(Mi * 3 Lil)+ M

1
i jl 4 Bip

1 ji1

where we have put

ik

Therefore the condition (2.4) is satisfied only when

(2.10) M., = - — %, -

1] 4 (n-2) 3

Li' + F h.. .
3 .8(n-2) (n-1) 13

N —

We introduce a new invariant fij by

(2.11) £, = - — K., + F h.. .

] 4(n-2) I 8(n-2) (n-1) I3

Then the definition (2.7) is rewritten as

0 _ 1 i
Ty = (fij + 5 lJ)w ’
(2.7
3j _ ik _ i
T = h (fjk 3 Lik)m

Proposition 2.2, Let 1 denote the form 1t for a new frame

ge . Then

Proof. By the definition (2.11) and by (1.10) it holds



Using this identity and putting = hjkl clmk for a moment,

%5

we can see following equalities from Lemma 1.2, (1.11), (1.25)

and (1.26):

~0 _ .=-1_3_ 0 _ 1 3
TyOT A a.i Tj 5 ai Cj
i A B P k, 1.3 .k
n+1 = A AT T 7 ATyt
- 0_ -2 1.1 31 .3
n+1 A Tl +A C Lij” c cj .

The definition of Tij gives a formula

It is now immediate to see that these formulas together imply

the result.

This proposition shows that if we define = by (2.17)
making use of 1 derived above, it has a following invariance
by a chnage of frame:

(2.12) = dg.g”' + gng”| for g € H,.
This implies that = defines a normal conformal connection.
To be more precise, we assume h=(hij) is a fixed constant

non-degenerate matrix (cf.(1.11). Let P be the set of all



frames satisfying the condition (1) of Proposition 1.6. Then
‘the second part of this proposition means that P 1is a prin-
cipal bundle over the hypersurface M with H1 as a fibre
group. Now the formula (2.12} says that there exists a P
valued 1-form on P whose restriction to every local section
e 1s exactly = . We write again by = this formon P . On
the other hand Proposition 2.2 implies that =+t comes also

from an intrinsic form on P , which we denote also by =

This is a tensorial 1-form on P . So we have proved

Proposition 2.3. Let 17 and P be defined as above. Then

m 1s a normal conformal connection on a hypersurface M

This 1s a Cartan connection on P of type G1/H1 .

As for a Cartan connection we refer to (13]. The bundle
P is a subbundle of G|M ——> M defined in § 1. The relation
(2.1) lifts to P

The above reasoning enables us to say that the form =
is the second fundamental form in the projective case. The Gauf
equation which expresses the curvature tensor by use of this form

is given as follows.

Proposition 2.4. Let Q -1 c
@ 2 Ta

Then



2.8

_ m
(1 Cigx1 = Byp €1 k1
1 m m
=7 (yepbyy = Byighyx )
1 .
*amezy (BypKax T BgkRiy t BakKyp 7By Ry
1
I ey PaaPyx T BP0 -
0
(2) Cip 3% Cy 5k
_ ) 1 1. 1
= ik, 47Fig,6t 3 By Dyethy g g)
where
k_ _ X_ k 0 -
(2.13) fij,kﬂ = dfij fik“j f'k“i +2fijw
j o 3i 0
(3) 9n+1 h Q" .

%= Proof. (1) is direct from (2.8) and (2.9). (3) is obvious by

definition. For (2), we see by definition

0_ 0__ 1 0__ 0 O0_ n+1 0
Qi -dri Ty ATj Ty AT Cuwy AT a1
- jAT 0—1 OAm 0
i ] i n+l
First show
0o_1 k3 - n+1 k k O
dTi = 2(hijkm AOT Ly Zwi AWLLy Foy Aijm +Likw AwT)

. k 0 k
+(dfikAwk-fijwjkAw +fikw AR

and then insert this to the above equation. Several cancelations



2.9

by use of idebtities defining =t and L will prove (2). Here

note that the right handside of (2.13) is the covariant derivative

of fij with respect to wi]—sijno and defines a tensorial form

on M .

We next derive the Codazzi-Minardi equation. Define covariant

derivatives of 1t Dby

(2.14) Dt = dt = TAT = TAT ,

then, from the.structure equation (1.3)
(2.15) Q = DT + TAT .

In order to write down explicitly this equation, we will introduce

~covariant derivatives of coefficients of +t by the following equa-

tions
1. 1 1 1 0
Bigk, 1™ TPy ™ iRk 3R T kPR
kK .. .k _ X 0. 1 0
(2.16) Lij,k“ -dLij ijn i Likﬂj +2Lijn +hij LER
o - 3 0 ]
Vi, TAY YT T3 AL T

Because of the transformation rule of 1t which is explicitly
written in Lemma 1.2., (1.25) and (1.28), these definitions are
natural in the sense that the right handsides become again ten-

sorial forms. We now have



Proposition 2.5. (Codazzi-Minardi). The equation (2.15) is

equivalent to the symmetry of hijk and Lij and the equa-

tions

() hy e 1™ 91,71 5 B ikP 1 ey P ik kP

ol 1
=hy"Fpmhyy CE 442 (h
1
i

- Y - Y
(2) Liy ik 3755 k!

- = 1 _
Yi,3 7Y5,1  “LypfTyLy,f

Proof. The (0,0)-th component of the right handside of (2.15) is

0 0
dt 0 - taTAT -7 aAT +T.mAT 0
0 0 o

n

1l
= T AT.
1

1 i 3j
- (fij+ 5 Lij)w AT,

"

Similarly the (n+1, n+1)=-, (0,i)=- and (j, n+1)=-th components
are _(fij_ lLij)“iAﬂj, - %hljkaAwk and - %hijknlAwk respec-

2
tively. So the vanishing of QOG and an+1 implies the symmetry.

To get (1) calculate first
k

Dt ={1 (£. .+

1 1 1 k
Byl =150 g, 17 Byt 30y P Byt (507 3Ry )by dman

and then use the formula (1) of Propasition 2.4. Similarly the

(i,0)-th and the (n+1,j)~th components give the same equation

(2) and the remaining (n+1,0)~th component gives (3).

I
1
jon

Corollary 2.6. (1)



S B j 1 jk
(2) vy = 7m=1y YigrT P Fmen ey P Kk

Proof. Take a contraction of (2.16) relative to hij and use the
apolarity condition (1.18) and the trace condition (1.23) to get
ij. _ 45

h™hiik,1 =B
Then the contraction of (1) and (2) of Proposition 2.5 gives the

result.

The first relation of this corollary says that the curvature
tensor Cijk is expressible in terms of covariant derivatives of

hijk . In special case we have

i __1
Corollary 2.7. C iy " 1 h. Lkl

Proof. By the definition (2.13) of f£..
e ij,k

i - - -1 0 _ 3
£, .3 noT) F,j where dF + 2Frn° = F,j"
i - . ] i L opg,, i Pq Pl
£51 =27 P pq, it TR pdts Lilt smen e

Then (1) of Proposition 2.5 shows

-hipq ) +hi h. P4

pg’j i 0] pqg i,

r

nt nP? - pl (n.PC
pq 3

=2n.P9,_ + 1 F . .
i Ypa 2 .3
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Thus we have

The previous corollary then implies the result.

The fundamental theorem of a hypersurface in the projective

case can now be stated as follows.

Theorem 2.8. Let M be a n-dimensional manifold with a normal
conformai connection © (n 2 3) . Let 1t be a tensorial 1-form
with symmetric coefficients of the form as illustrated in (2.5)

and (2.7). Assume that +t satisfies the covariant relation in
Proposition 2.5 and the curvature tensor of = satisfies the
relation in Lemma 2.1 and Proposition 2.4. Then, for a given point
p of M , there exists a neighborhood of p which can be embedded
as a non-degenerate hypérsurface in the projective space of dimen-
sion n+1 so that n and =t are the connection and the invariant
induced by this embedding respectively. This embedding is unique

up to a projective transformation.

Proof. Given 7 and =+t , define w=r-t . The conditions on =
and t imply that dw=wAw . This says that one can solve the
differential equation (1.2):de = we and we have Theorem. The

ambiguity depends on the choice of initial conditions.

Corollary 2.9. Assume ¢, = 0 and n 2 3 . Then the hypersurface



is locally a quadric.

Proof. From = 0 follows @ =0 and <t = 0 . Then Theorem

*3
2.10 implies the result since ¢4 = 0 for a quadric.

The Bianchi identity is as usual given by differentiating

the defining equation of the curvature tensor. That is,

(2.17) daq

I

TAR = QAT

We here define covariant derivatives of the curvature tensor by

m m m m

(2.718)  Cix1,m™ “9Ci9x1 %n3k1™s Cimk1™§ ~Ciim1Tk

m 0
“Ci4km™s *2Cisk1™ v

1 1

1 3
(2.19) C 'Cilk"j ‘Cijl"k

1_
19%,1™ "9 5%C19x ™1

0 1 0
+3Cijkw +Ci jkﬂl

Proposition 2.10. The Bianchi identity (2.17) implies

(1} S(jkl)c,

i3kl = 0r S(E3KIC 5, = 0,
(2) S(klm)(cijkl,m_himcjk1+hjmcik1) =0,
S(jkl)cC, = 0,

ijk,1



where S(i...Jj) means a operator to take a cyclic summation

from i to 3 .

Proof. The identity (2.17) for indices (0,0) and (0,i) are

This implies (1) as usual. Components with indices (n+1,n+1)
and (i,n+1) give the same result. The (i,j)-th component

and the (i,0)-th component are respectively

n+1 g O

J.
A9n+1. 0,

i__k o 3., Kk, J_
dﬂi Ty Aﬂk +9i AT " =Ty g ATTE

i —n.JAQ.0+QiJij0—win+1Aﬂn+10+QiOAﬁ0=0.
Then (2.18) and (2.19) imply (2). The (n+1,1i)-th component
gives also the second of (2). The component with index (0,n+1)

is trivial and that with index (n+1,0) is also trivial in view

of the relation (3) of Proposition 2.4.

By taking contractions of (1) and (2), we have

1 1 1

Corollary 2.11. (1) (n_3)cijkzclijk, -hijC lk+hikC 1j
(2) When nz4 Q j=0 implies @ 0=nj =0
rri i n+1

Applying these calculations we will prove
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Theorem 2.12. Assume that a hypersurface is strictly convex, i.e.

h is definite, and that Qij=0 in case nzd4 and Qio=0 in

case n=3 . Then the hypersurface is locally a quadric.

Proof. The assumption says that the connection 1 is flat due
kl

5
any choice of a normalized frame. However the formula (1.25) im-

to Corollary 2.11. Then, from Corollary 2.8, h =0 for

plies

% kg,

A h = a . Ph Iy - 2a.Pxk_cq .-

j "kl "3 7p Tar J pg
Hence qu=0 and F=Kpp=0 . This shows ¢3=0 by the definiteness

of h and Corollary 2.9 proves the theorem.

This theorem can be regarded as a rigidity theorem of a spe-
cial kind. Note that this theorem and a theorem by Obata [16,

Theorem I] together imply Corollary 1.6 for nz23 .






§ 3. The case F # 0

In this section we treat a hypersurface whose Fubini-Pick
invariant does not vanish everywhere. This is the case that attrac-
ted classically much interest. As we shall soon see, the formulation

becomes extremely simple in this case.
Recall first the identity A2§=F . Taking derivatives, .
dlog F = dlog F - 2 dlogix ,

hence the first formula of (1.10) is rewritten as

- 0

o o+ % dlog F = o +

dlog F - b.A )

1
2 j

This allows us to choose bi so that the left handside is zero.
Renaming a frame we may assume

o__ 1 -
(3.1) w'=- 3 dlog F , bi =0 .

We next consider F as a function given in advance, then |i]|=1
and the group H reduces the orthogonal group module its centre.
This means that the hypersurface admits locally a pseudo-Riemannian
structure which is projectively invariant. The fundamental tensor
gij (assume index gija 0) and the connection form cij are

given by



3.2

j .
(3.2) gij= 1Fihij Py =wij—w°6i3 .

Usually we take *1 as F to simplify the formula. In this case

0_ - Jo. 3
{(3.3) w =0 , gij_hij R PR

We shall consider this case hereafter. Then e0 and e are

n+1

uniquely determined up to sign %1 . The vector  h 41 is called

a projective noamal vector of a hypersurface. Refer the book [2].

The formulas of a frame change are now reduced to

. i s . K

wj = AiJ , win+1 - ai wkn+1 ,

-~k _ j. k 1 3k ~ 0 _ j 0
(3.4) wy = dai Aj + a; wy Aj Powy = Ay wj '

= i _ j. 1 - 0 _ 0

n+l T “ne1 Ry 7 ®neq T tneq o
So we may put

0 _ k j _ ik 1
(3.5) wj = Tjkm P W T h Sklw R
s¢ that from'(3.3),
e _ k 1 " _ k 1 - 3

(3.6} Tij =a, 'I'klaj ' sij = hi Sklaj PoYy = oAy Yy -

The invariant Lij is given by



(3.7) Lij = sij - Tij .
We put
(3.8) Uij = sij + Tij .

The next proposition gives a relation connecting the normal

vector e 1 and the first vector ey 7 this is a projective

analogue of the relation in the affine geometry (see [9]1, [19]).

Proposition 3.1. Let A be the Laplacian of the metric gij .
Then
e =
A 0 ne ., + 'I‘r(T)e0
Proocf. Since de0 = miei , the covariant derivative of eq is
ei . The derivative of ey is
_ B n+1 _ k
dei ejci w;eq + wy e 1 Ty € s
1 k .
e = e - = e e
SO i,3 Tij 0" 3 hij k+gij n+l Then taking traces, we have

the formula.

Remark 3.2. Let us consider an affinely homogeneous hyperbolic

n+1
H

affine hypersphere which is not a quadric; f. ex. M={x€A

x1 ..... xn+1=1, xi>0} (nz3) . Then the coframe (1.29) already

satisfies |F|=const # 0 , so does the coframe (1.30). There-



fore {(1.30) 1s the normalized coframe in the sense above. Then
it 1s seen that Tr(T) = const.l , in particular Tr(T)*0 , i.e.

Tr(T) is a nontrivial absoclute invariant.
The Codazzi-Minardi equation is summarized in the next

Proposition 3.3. (1)Sij, Tij' Lij and Uij are all symmetric

tensors.

(2) h i1,k 91k 31791 kP Ikl 17951 Mk

o o1 1 1 Y o_.. Y
(3) Tyg 1 Tik,57 2Piy ToPax T15) 0955k 94k ) -

15k,1°

s.. .=— (.. ts.. -n,.1s

S ik,3"" 2Biy S1x7Bix

- - Y . Y
"ij,k 1477955 k9 4

- -1 1 1 - Y .Y
Lig,kDix, 3™ 34 UppmPyp U140 =209 5 5795y 4) o

1, 1. 1
Usg,x7%sq9,k™" 303y Tag™hyp "Ly y)

o <k o ok
V1,373,171

{(4) h

L, = lndky
50y

13 ECACCIPRER
!

j.

The proof is similar to that of Proposition 2.5 and Corollary
2.6. The calculation of the Riemann curvature tensor Rijkl is

also a routine. Namely one has

- =1 - -
Proposition 3.4. (1) Rijkl-z(Uikgjl Uilgjk+Ujlgik Ujkgil)




3.5
;
¥ Z(hikmhjlm_hjkmhilm)

(2) The Ricci tensor Rij=Rikkj and the scalar curvature

R=Ril are given by

1 1
(n=2)U; 5= 3T, (U)g 4% 7Kyg o

Nl —

Rij=-

== (n- 1
R =-(n-1)T_(U) + 7 F .






§ 4. Some remarks

In this section we shall make four remarks. The first one
is té remark to § 3. The second remark is to interpret the re-
duction in § 1 in terms of coefficients of a defining equation
of a hypersurface. Using this we list an explicit expression in

the third remark. The final remark treats the case n=1 .

1. Fubini frame and Wilczynski frame. The normalized frame in

§ 3 was first considered by Fubini. Let x=x(u,v) be a parametric
representation of a two-dimensional surface. Assume the surface

is of hyperbolic type and the coordinate (u,v) 1is chosen so

29

that e““:=|det .(x, Xyr Xyr xuv)|¢0 , det (x, Xyt Xy xuu)= det

(x, X1 Xy xvv)=0 . Then the surface satisfies

b
1]
Le>)
»
+
w
]
+
o)
x

X

= ¥X + 6. X + gx
vv Y u vw !

Fubini's normalization 1is, in this situatiop, ee=BIsyl {see
[10] Chapter IV, [15] p. 123). To be more precise, we choose a

projective frame given by

where



4,2

Then we have

01
Joa 2 oa o (33)

e¢dudv, ¢3 = -2ee(6du3+ydv3)

R
[ 8]
1]

U11 and U22 .

In some cases another choice of a frame is useful. Suppose

also n=2 and F#0 , h=(? 8) . Note that the apclarity condition

The invariants p and g are invelved in

implies h12*=0 . Then the formula (1.25) shows that we may

. = i - 1 = =

assume Lij-O , because the equation L11 o h111 22 2292
k

is always solvable with respect to ¢ . A frame with this pro-

L -czh 0
_perty is called a Wilczynski frame (see(118,11) and (118,13) in
[2]). It has played a fundamental role in Bols' book, especially
in Chapter VIIXI. However, it is not possible to generalize this

choice in higher dimension.

2. A normal form of a hypersurface. Consider a hypersurface

given by an equation

y = ¢p({x} x = (x1, Lo, %X

in the affine space An+1 . The problem here is to derive a
certain normalization of vy Which corresponds to the reduction

in § 1. Assume the hypersurface is non-degenerate and passes



through the origin (x,y)=(0,0) . Then the above expression

has a formal development like as
(4.2) vy = <X, X>+ )

where < , > 1is a certain non-degenerate bilinear form and
Vg is a homogeneous polynominal of degree d . (Make an affine

change of coordinates if necessary). Define coefficients of Vg

by

. i
1 d
sarlag e X oxS

which are symmetric with respect to indices. Then, putting <x,x>

= % xhtx  for a non-degenerate matrix h=(hij) , we define

= § pid
Try, = ) h a3k

2 i3, k1l
Troy, =} h*Jn 351 *

Proposition 4.1. (1) For every point of & non-degenerate hyper-
surface, there exists a projective change of coordinates such

that the hypersurface has an expression at that point
Tr = Tr2 =0
KU3 11’4 -

(2} Every projective transformation which keeps this expression

invariant belongs to the isotropy group at the origin of the



quadric y = < X,X >

We shall sketch how to calculate to show this proposition.

A projective transformation that keeps the origin has a form

~ -~

vy ax+cy
X

= X = = =
+ Uy A+bx+uy

¥

where a=(aij), b=(bi) and c=(cj) as before. Assume the ex-

“pression (4.2) is transformed into
; = < ;, X > + Z &d
Then the comparison of the second-degree terms gives

(4.3) ahta = 1 v h .

Since we are concerned with a projective transformation, we may

assume

(4.4) [av] = 1

The comparison of the third-degree terms then gives

P, 9, T

where ~ 1is used to denote quantities associated to &d . The



notation Sym denotes a symmetrization. Take a trace of (4.5),
then one sees that a suitable choice of < makes Tr$3=0 .
Assuming next Trw3=0 also, compute the fourth-degree terms.

Then

(4.6) 6(pv-<c,c>)Sym(hijhkl)+kvaijk1
- -2 P, 9. r_  s_,,~2 P. 9. r
A apqrsai aj a, ay 4 Sym(biapqraj a, “a; )

Take traces twice times :

(4.7) 2n(n+2)(pv-<c,c>)+AvTr2&4=A-2Tr2¢4 .

Then a suitable choice of u proves the first part of Proposi-
tion. The second part can be seen from (4.5) and (4.7) together

with (4.3) and (4.4).

3. Explicit expression of invariants. Let y=y(x)}) be an equa~-

tion of a hypersurface, which is normalized as in the previous

remark. We use a following normalized frame:

& = (1, 1, o xR, w(x))

(4.8) ey = al0, ..., 0, 1,0, .., 0,'¢i(x))
e = -k e +c.e +a (0 0, 1)
n+ 1 2 0 i roeeer Oy ’

where



4.6

e = (det wij)'1/n(n+2’ , da = adx

j

-1

ji _
- (Il»’ij) r

l = é-n—z(aaij—(n+1)aiaj-aakwklwlij)wij

Subindices mean derivatives with respect to (xi):wi= EEI '
X

= &2, .... . The dual frame w is given by

o
} o x

[ 0 wl 0
i i n+1 n+1

(4.9) w = %wjn+1 dlogasj c oy oy

k %dl -%ml+dci+cidloga 0
where

wl = a“ldxl ’ mjn+1 = an+2wjkwk .
Then we have
_ n+2

(4.10) hij = g wij

_ n+2
CBpge T e e getnlay by gragyg tagi g ))
Assume, for simplicity, wij(0)=aij . The apolarity condition
at the origin is |} wiij=0 , hence aj(0)=0 . This shows, at

the origin




(4.11) hij(O) = 5fj ’ hijk(0)=aijk ’ F(0)=aijkaijk
A further calculation shows

- 1 - -
Li319= 557 @pqi%pq3®ppij) ~ ninvay FOij

- 1 - - : .
Y10 == ey Bii491 zaijkaijkluzéijla}jkk+3aijkajkmamll)

(Take summations for repeated indices)

4, The case n=1 . The reduction in §‘1 shows h111=0 as well

as L=L11=0 if n=1 . So the treatments in § 2 and § 3 cannot

apply for a curve. We will reproduce a part of [5] in our nota-

ticn. The connection form w has a form

0-30 =d log X + « - buw
N 4

v - A Wy e

2

A point where w2=0 is called a sextactic point. If we write



4.8

a curve locally as

(see Proposition 4.1), then (4.11) shows that (0,0) is a sextactic
point if and only if e=0 , It is known that if m2=0 every-

where, then a curve is a conic ({51, [15])

Proposition 4.2. Assume the curve has no sextactic points. Then

there is a unique frame such that w takes a form

[ O w 0
W, 0 w1
1
L -w w4 o /.

Proof. Since m2$0 by assumption, we can choose ) so that
Wy = —w1 . Choose next b so that m0=0 . Uniqueness can be seen
readily from (1.10).

When we choose a frame as above, w1 is called the parojective
£ine element. When we write m1=km1 , the coefficient k 1is called
the profecitive curvature of a curve. The above reduction corres-
ponds to the expression of a curve as

y = % x2 - lﬁ x5 + %T x7 + 0(x8) .

]



Then, at the origin, the projective line element is dx and
the projective curvature is equal to g/i18 . Refer [5] for a

variational problem concerning the projective curvature.
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