REMARKS ON THE WEIERSTRASS POINTS

ON CURVES
by

Xu Mingwei

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26 5300 Bonn 3
Federal Republic of Germany

Institute of Mathematics
Academia Sinica
Beijing
China

REMARKS ON THE WEIERSTRASS POINTS ON CURVES

Xu Mingwei

Institute of Mathematics Academia Sinica
Max-Planck-Institut für Mathematik

§ 1. Introduction.

Let C be a smooth curve over an algebraically closed field of arbitrary characteristic and L a line bundle on C. Laksov gave a complete treatment of the theory of Weierstrass points of L on C in [1], [2]. In this paper we try to give a different version of his treatment by introducing the $i-t h$ differential line bundles of L . The difference is inessential, but our treatment is simpler in my point of view. For example the discussion on the Wronskian. Besides, we define the (total) i -th weight at any point and give an algorithm for computing the gap sequence of L and the weight at a point.

Though we could give an independent treatment without referring to [1], [2] we prefer to use them since actually our main idea comes from them.

§ 2. Weierstrass points

We shall adopt most of the notation in [1], [2] and [3].

Let C be as above and D a positive divisor with $L=O(D)$ of degree d and dimension r.

Denote by $P^{m}(D)$ the sheaf of m-th principal parts of D and by $a_{m}: V_{c}=$ $H^{0}(\mathrm{C}, \mathrm{L}) \otimes_{\mathrm{k}} \mathrm{O}_{\mathrm{C}} \longrightarrow \mathrm{P}^{\mathrm{m}}(\mathrm{L})$ the m -th canonical homomorphism. Let $\mathrm{B}^{\mathrm{m}}=\mathrm{Im} \mathrm{a}_{\mathrm{m}}$ and $A^{m}=$ coker a_{m} (see [1] § 1 for details).

Now we have the diagrams

and

where b^{m} is induced by $P^{m} \longrightarrow P^{m-1}$ and $G^{m}=$ ker b^{m}. Note that $G^{0}=B^{0}$ and B^{m} hence the G^{m} are locally free.

Proposition_2.1. There are integers $0=b_{0}<b_{1}<\ldots<b_{\gamma} \leq d<\infty \quad$ such that rk $G^{j}=0$ for $j \neq b_{j}$ and $r k G^{b_{i}}=1$ for all b_{i}.

Proof. Since there exists a sequence $0=b_{0}<\ldots<b_{r}<b_{r+1}=\infty$ such that, if $\mathrm{b}_{\mathrm{m}} \leq \mathrm{j}<\mathrm{b}_{\mathrm{m}+1}$ then $\mathrm{rk} \mathrm{B}^{\mathrm{j}}=\mathrm{m}+1$ by [1], so we have the conclusion.

We call $b_{0}, b_{1}, \ldots, b_{r}$ the gap sequence of L which is the same as in [1].

Remark. If we replace V by a subspace $V^{\prime} C V$ with $\operatorname{dim} V^{\prime}=1+r^{\prime}$. We shall get a corresponding b_{0}, \ldots, b_{r}, by the same way. We still call it the gap sequence for the linear system V^{\prime}.

Definition. Let $G^{b_{i}}=G_{i}$. We call G_{i} the i-th differential line bundle of L (or of V^{\prime}).

For G_{i} we have a natural morphism

$$
\mathrm{h}_{\mathrm{i}}: 0 \longrightarrow \mathrm{G}_{\mathrm{i}} \longrightarrow \Omega_{\mathrm{c}}^{\otimes \mathrm{b}_{\mathrm{i}}}(\mathrm{D})
$$

induced by $a_{b_{i}}$.

Definition. Let D_{i} be the degeneracy of h_{i} defined by the Fitting ideal F^{0} (coker h_{i}). For any point $x \in C$ we call the multiplicity $w_{i}(x)$ of x in D_{i} the $i-$ th weight of x with respect to L (or V^{\prime}) and $w(x)=\sum_{i=0}^{r} w_{i}(x)$ the weight of x and $W=\sum_{x \in C} w(x)$ the total weight.

A point x is a Weierstrass point for L (resp. a Wronski point for V^{\prime}) if for some i $w_{i}(x) \neq 0 . I=\bigcup_{i=0}^{T} D_{i}$ as a scheme-theoretic union is called as the Weierstrass locus of L (resp. the Wronski locus of V^{\prime}) and the invertible sheaf corresponding to I as the Wronskian for I (resp. for V^{\prime}).

Proposition 2.2. The Weierstrass point, the Wronskian and the total weight defined above all of them are the same as that defined in [1], [2].

Proof. Recall that in [1] the Weierstrass point x is a point which satisfies the condition: there exists an integer i such that $r k A^{b_{i}}(x)>b_{i}-i$. In other words, for such $i \quad a_{b_{i}}$ degenerates at x.

Now from the diagram (*) we have a standard form of the matrix representing ${ }^{a_{b_{i}}}$ at x

Therefore, the degeneracy of $a_{b_{i}}$ is defined by that of h_{i} and the i-th minors of the matrix for $a_{b_{i}-1}$. Hence for every i the degenerateness of h_{i} implies the degenerateness of $\varepsilon_{b_{i}}$.

For the other direction, if $a_{b_{i}}$ degenerate at x and $h_{i}(x) \neq 0$ then $a_{b_{i}-1}$ degenerate at x; if now $a_{b_{i}-1} \neq a_{b_{i-1}}$ the matrix of $a_{b_{i}-1}$ at x has the following shape

$$
\left[\begin{array}{lll}
& & \cdot \\
\text { matr. of } \mathrm{a}_{\mathrm{b}_{\mathrm{i}}-2} & \cdot & \cdot \\
& \cdot & \cdot \\
& & *
\end{array}\right]
$$

Then in this case $a_{b_{i}-1}$ degenerates at x implies that ${ }^{a_{b_{i}}-2}$ degenerates at x. We proceed in this way until $a_{b_{i}-k}=a_{b_{i-1}}$. If now the degeneracy of $a_{b_{i-1}}$ at x is equivalent the degeneracy of h_{i-1} we are through: if not, we proceed further as above until we arrive at $B^{0}=G^{0}$. So the first assertion is proved.

As for the second assertion we note that the invertible sheaf corresponding to the degeneracy of h_{i} is

$$
\Omega_{\mathrm{c}}^{\otimes \mathrm{b}_{\mathrm{i}}}(\mathrm{~L}) \otimes \mathrm{G}_{\mathrm{i}}^{-1}
$$

and $G_{0}=B^{0}, B^{b}=O_{c}^{\oplus(r+1)}$, then the Wronskian

$$
O(\mathrm{I})=\Omega_{\mathrm{c}} \sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{~b}_{\mathrm{i}}{ }_{\mathrm{L}}(\mathrm{r}+1) \otimes\left(\mathrm{G}_{0}^{-1} \otimes \mathrm{G}_{1}^{-1} \otimes \ldots \otimes \mathrm{G}_{\mathrm{r}}^{-1}\right)
$$

But from (*)

$$
G_{i}=\left(\Lambda^{i+1} B^{b^{i}}\right)^{-1} \otimes \Lambda^{i_{B}} B^{b_{i}-1} \simeq\left(\Lambda^{i+1} B^{b_{i}}\right)^{-1} \otimes \Lambda^{i_{B} b_{i-1}},
$$

therefore

$$
O(\mathrm{I}) \simeq \Omega^{\otimes \sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{~b}_{\mathrm{i}}} \otimes \mathrm{~L}^{(\mathrm{r}+1)},
$$

the same expression as in [1], [2].

The third assertion comes from the second.

§ 3. i-th part of Weierstrass point

By introducing i -th differential line bundle we can define the $\mathrm{i}-\mathrm{th}$ part of Weierstrass points I_{i} by the degeneracy of h_{i}. Intuitively these points are that Weierstrass points which existness depends on the appearence of the new term of higher differentials.

In classical case i.e. the gap sequence being $0,1,2, \ldots, r$, the line bundle corresponding to $I_{i} \quad$ is $\quad G_{i}^{-1} \otimes \Omega^{\otimes b}(L) \simeq\left(\Lambda^{i+1} B^{i}\right)^{-1} \otimes \Lambda^{i+1} p_{p}^{i} \otimes\left(\left(\Lambda^{i} B^{i-1}\right) \otimes \Lambda_{p}^{i} p^{i-1}\right)^{-1} \quad$, which
corresponds the divisor of the degeneracy of a_{i} excluded by the degeneracy of a_{i-1}.

In general case it is not so simple. From the matrix of $a_{b_{b}}$ namely
we see the degeneracy of $a_{b_{i}}$ is defined by the ideal $h_{i} \mathfrak{A}$, where \mathfrak{A} is generated by the (i-1)-th minors of ${ }^{a_{b_{i}-1}}$. Therefore the $i-t h$ part I_{i} in this case is the difference of the degeneracy of $a_{b_{i}}$ and that of $a_{b_{i}-1}$ and generally the degeneracy of $a_{b_{i}-1}$ is different from that of ${ }^{a_{b_{i-1}}}$.

In fact, from the following diagram

if $m=b_{i}$ we have $F^{b_{i}-i}\left(A^{b_{i}}\right)=F^{0}\left(C^{b_{i}}\right) \cdot F^{b_{i}-i}\left(A^{b_{i}-1}\right)$, where $F^{k}(M)$ denotes the k-th Fitting ideal of M. Therefore I_{i} is the difference of divisor determined by $F^{b_{i}-i}\left(A^{b_{i}}\right)$ and that by $F^{b_{i}-i}\left(A^{b_{i}-1}\right)$, but generally $F^{b_{i}-i}\left(A^{b_{i}-1}\right) \neq$ $F^{b_{i-1}-(i-1)}\left(A^{b_{i-1}}\right)$. There is an example in [1] which explains this situation, so we only know that I_{i} includes the difference of the degeneracy of $a_{b_{i}}$ and that of $a_{b_{i-1}}$.

It is clear that $\sum_{x \in C} w_{i}(x)=\operatorname{deg} I_{i}=b_{i}(2 g-2)+d-\operatorname{deg} G_{i}$ and we call it the $\underline{i-t h}$ total weight.

§4. Local computation

By our description for Weierstrass points, at an arbitrary point $x \in C$ the b_{r}-truncated Taylor series of all the sections of $\mathrm{H}^{0}(\mathrm{C}, \mathrm{D})$ in the local ring O_{x} can be reduced to a "standard form"

$$
\left[\begin{array}{cccccc}
\mathbf{t}^{\nu_{0}}, \ldots & * & * & \ldots & \ldots . . & * \\
0 & \ldots & \mathfrak{t}^{\nu_{1}} & * & * & \ldots \ldots
\end{array}\right]
$$

and which can be pasted as the morphism of sheaves, where the row means $t^{\nu_{i}}{ }_{d t} b_{i}+* d t{ }^{\left(b_{i}+1\right)}+\ldots$ and $1, \mathrm{dt}^{\prime}, \ldots, \mathrm{dt}^{\mathrm{b}_{\mathrm{r}}}$ is a basis for $\mathrm{P}^{\mathrm{b}^{\mathrm{r}}}(\mathrm{D})$ at x . Therefore, $\nu_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}(\mathrm{x})$ and a Weierstrass point implies that $\nu_{\mathrm{i}}(\mathrm{x})>0$ for some i .

In other words, one could start from a k-linearly independent basis f_{0}, \ldots, f_{r} for $H^{0}(C, D)$ and a basis for $P^{b^{r}}(D)$ at x then using the elementary transformation in O_{x} we get this standard form.

So we may derive from this an algorithm for computing the gap sequence of D and the i-th weight at any point. Perhaps it will be never used for actual computation except for using a computer.

At the beginning we choose a basis f_{0}, \ldots, f_{r} for $H^{0}(C, D)$ such that the formal series of them in the completion of O_{x} have the form:

$$
\begin{aligned}
& \mathrm{f}_{0}=\mathrm{t}^{\mu_{00}}+\mathrm{ct}^{\mu_{01}}+\ldots \\
& \cdots \\
& \mathrm{f}_{\mathrm{r}}=\mathrm{t}^{\mu_{\mathrm{r} 0}}+\ldots
\end{aligned}
$$

and $\mu_{00}<\mu_{10}<\ldots<\mu_{\mathrm{r} 0} \leq \mathrm{d}$.

We assume

$$
\mathrm{T}_{\mathrm{b}_{\mathrm{r}}}\left(\mathrm{f}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=0}^{\mathrm{b}_{\mathrm{r}}}\left(\mathrm{c}_{\mathrm{ij}} \mathrm{t}^{\nu_{\mathrm{ij}}}+\ldots\right)(\mathrm{dt})^{\mathrm{j}}, \mathrm{c}_{\mathrm{ij}} \neq 0
$$

(1) $\nu_{0}=\mu_{00}$.

Since $\nu_{\mathrm{i} 0}=\mu_{10}$, the first column of the matrix can be reduced to $\left[\begin{array}{c}\mathbf{t}^{\mu_{00}} \\ 0 \\ \vdots \\ 0\end{array}\right]$.
(2) Now we consider f_{1}, \ldots, f_{r}.

We select an integer ℓ (if exists) such that $\mu_{\ell 0}<p$ but $\mu_{(\ell+1) 0} \geq p$. Then $\nu_{\mathrm{i}}=\mu_{10}-\mathrm{i}$ for $\mathrm{i}=1, \ldots, \ell$, where we take $\mathrm{p}=\infty$ if chark $=0$. Note that $\ell<\mathrm{p}$.

Under this assumption
$\mathrm{T}_{\mathrm{b}_{\mathrm{r}}}\left(\mathrm{f}_{\mathrm{i}}\right)=(\mathrm{t}+\mathrm{dt})^{\mu_{10}}+\mathrm{c}(\mathrm{t}+\mathrm{dt})^{\mu_{11}}+\ldots=\mathrm{f}_{\mathrm{i}}+\ldots+\left[\left[\begin{array}{c}\mu_{10} \\ \mathrm{i}\end{array}\right]^{\left.\mathrm{t}^{\mu_{10-i}}+\ldots\right] \mathrm{dt}}+\ldots\right.$
where C is a constannt and $\left[\begin{array}{c}\mu_{10} \\ i\end{array}\right] \neq 0$. Therefore the submatrix corresponding to $\mathrm{f}_{0}, \ldots, \mathrm{f}_{\ell}$ is

$$
\left[\begin{array}{llll}
\mathfrak{t}^{\mu_{00}} & & & \\
& { }^{\mu_{10}-1} & & \\
& \cdot & * \\
& 0 & & \boldsymbol{t}_{\ell 0}-\ell
\end{array}\right]
$$

and $b_{0}=0, b_{1}=1, \ldots, b_{\ell}=\ell$.

In particular, if chark $=0$ or $\mathrm{p}>\mathrm{d}$ we have the classical gap sequence and the $\mathrm{i}-\mathrm{th}$ weight $w_{i}(x)=\mu_{i}-\mathrm{i}$.
(3) Assume $\ell<p-1$. We consider $f_{\ell+1}, \ldots, f_{r}$ and the set $S_{\ell+1}=\left\{\mu_{i j} \mid i \geq \ell+1\right.$ and $\left.\mu_{i j}(\bmod p) \geq \ell+1\right\}$.

If $S_{\ell+1} \neq \phi$ let $\mu_{1_{1} \mathrm{j}_{1}}=\min S_{\ell+1}$, then $\nu_{\ell+1}=\mu_{1_{1} \mathrm{j}_{1}}-(\ell+1)$. Now if still $\ell+1<\mathrm{p}-1 \quad$ and $\quad \mathrm{S}_{\ell+2} \neq \phi \quad$ where $\quad \mathrm{S}_{\ell+2}=\left\{\mu_{\mathrm{ij}} \mid \mathrm{i} \geq \ell+1, \mathrm{i} \neq \mathrm{i}_{1} \quad\right.$ and $\left.\mu_{1 j}(\bmod p) \geq \ell+2\right\} \quad$ then $\quad \nu_{\ell+2}=\mu_{\mathrm{i}_{2} \mathrm{j}_{2}}-(\ell+2)$, where $\mu_{\mathrm{i}_{2} \mathrm{j}_{2}}=\min \mathrm{S}_{\ell+2}$. We continue this process until $\ell^{\prime} \geq \mathrm{p}-1$ or $\mathrm{S}_{\ell^{\prime}}=\phi$. In this case $b_{\ell+1}=\ell+1, \ldots, b_{\ell^{\prime}-1}=\ell^{\prime}-1$.

The reason for doing 80 is obvious if we note the non-zero terms of all the Taylor expansions.

Of course we may include Step (1) and (2) in Step (3) if we like.

We rearrange the indices for f_{i} by $f_{\ell+1}^{\prime}=f_{i_{1}}, f_{\ell+2}^{\prime}=f_{i_{2}}, \ldots . f_{\ell}^{\prime}=f_{i_{\ell},-\ell}$.
(4) We assume that after Step (3) there leaves $f_{\ell}{ }^{\prime}+1^{\prime}, \ldots, f_{r}$ unmoved. Suppose $\ell^{\prime}+1<\mathrm{p}^{2}-1$.

Let $\quad S_{\ell^{\prime}+1}=\left\{\mu_{i j} \mid \mathrm{i} \geq \ell^{\prime}+1 \quad\right.$ and $\left.\quad \mu_{\mathrm{ij}}\left(\bmod \mathrm{p}^{2}\right) \geq \ell^{\prime}+1\right\}$. If $S_{\ell^{\prime}+1} \neq \phi \quad$ and $\mu_{1}{ }^{\prime} j^{\prime}=\min S_{\ell^{\prime}}+1$ then

$$
\nu_{\ell^{\prime}+1}= \begin{cases}\mu_{1}^{\prime} j^{\prime}-\left(\ell^{\prime}+1\right) & \text { if } \ell^{\prime}+1 \geq p \\ \mu_{1^{\prime} j}-\left(\ell^{\prime}+1+p\right) & \text { if } \ell^{\prime}+1<p\end{cases}
$$

We continue like this until $\ell^{\prime \prime} \geq \mathrm{p}^{2}-1$ or $\mathrm{S}_{\ell}=\phi$. In this case $\mathrm{b}_{\ell^{\prime}+1}=\ell^{\prime}+1$
or $\ell^{\prime}+1+\mathrm{p}$ depending on $\ell^{\prime}+1 \geq \mathrm{p}$ or not.

The reason for doing so is the same as in Step (3).
(5) Now suppose $\ell^{\prime \prime}+1<\mathrm{p}^{3}-1$, and repeat the same process as in (4).

In this way we shall exhaust all the sections of D (resp. V^{\prime}) and finally arrive the standard form.

But we have to determine how many terms of Taylor series of f_{i} 's we need in this algorithm.

Since the total weight $\left(\sum_{b_{i}}^{r}\right)(2 g-2)+(r+1) d \leq(2 d-r) r(g-1)+(r+1) d \quad$ and since we worked in $P^{b_{r}}$ where $b_{r} \leq d$, then every $\mu_{i j}$ which appears in ν_{ℓ} is less than $(2 d-r) r(g-1)+(r+2) d$. This means we only need to expanse every f_{i} to $(2 d-r) r(g-1)+(r+2) d$ order.

References

[1] D. Laksov: Weierstrass points on curves, Astér. 87-88 (1981) 221-247.
[2] : Wronskian and Plücker formulas for linear system on curves, Ann. scient. Ec. Norm. sup. 4^{0} series t. 17 (1984) 45-66.
[3] R. Piene: Numerical characters of a curve in projective n-space, in Real and Complex singularities, Oslo (1976) 475-495.

```
Voraussichtliche Aufenthaltsdauer am Institut: von ............. bis
(Anticipated duration of stay) (from) (to)
```

III. BERUFLICHE ANGABEN (VOCATIONAL DATA)

Fachgebiet:
(Field of research)
Zeitpunkt der Promotion:
(When did the scientist take his/her degree (doctorate ?)
Tatigkeiten seit der promotion
oder dem HochschulabschluB:
(ggf. auf separatem Blatt
angeben)

```
(Employments since taking the degree:
(please use separate sheet, if necessary))
```

Gegenwartige berufliche Stellung:
(Present professional position)
a) Bezeichnung:
(Titile)
b) Seit wann in dieser Stellung tātig:
(Since when has this position been held?)
c) Institut (Anschrift):
(Institution, address)
IV. ANGABEN UBER DAS GEPLANTE GEMEINSAME FORSCHUNGSVORHABEN: (ggf. auf separatem Blatt erlautern)
(IN WHICH JOINT RESEARCH PROJECT WILL THE SCIENTIST BE INVOLVED DURING HIS STAY AT THE INSTITUTE ? please use separate sheet, if necessary)

Name des Wissenschaftlers, mit dem der Stipendien- oder Honorarempfanger in erster Linie zusammenarbeiten soll:
(Name of the German scientist with whom the visiting scientist will work together in the first line)

