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ON FACTORIZATION OF SEPARATING MAPS ON

NONCOMMUTATIVE Lp-SPACES

CHRISTIAN LE MERDY1 AND SAFOURA ZADEH

Abstract. For any semifinite von Neumann algebra M and any 1 ≤ p <∞, we intro-
duce a natutal S1-valued noncommutative Lp-space Lp(M;S1). We say that a bounded
map T : Lp(M) → Lp(N ) is S1-bounded (resp. S1-contractive) if T ⊗ IS1 extends to a
bounded (resp. contractive) map T⊗IS1 from Lp(M;S1) into Lp(N ;S1). We show that
any completely positive map is S1-bounded, with ‖T⊗IS1‖ = ‖T‖. We use the above as a
tool to investigate the separating maps T : Lp(M)→ Lp(N ) which admit a direct Yeadon
type factorization, that is, maps for which there exist a w∗-continuous ∗-homomorphism
J : M→N , a partial isometry w ∈ N and a positive operator B affiliated with N such
that w∗w = J(1) = s(B), B commutes with the range of J , and T (x) = wBJ(x) for any
x ∈ M ∩ Lp(M). Given a separating isometry T : Lp(M) → Lp(N ), we show that T
is S1-contractive if and only if it admits a direct Yeadon type factorization. We further
show that if p 6= 2, the above holds true if and only if T is completely contractive.

1. Introduction

LetM,N be two semifinite von Neumann algebras. For any 1 ≤ p <∞, let Lp(M) and
Lp(N ) denote their associated noncommutative Lp-spaces. A bounded map T : Lp(M)→
Lp(N ) is called separating if for any x, y ∈ Lp(M) such that x∗y = xy∗ = 0, we have
T (x)∗T (y) = T (x)T (y)∗ = 0. Separating maps are a noncommutative analog of Lamperti
operators, that is, operators on classical (=commutative) Lp-spaces preserving disjoint
supports. We refer to [4,18,19,23] for information and deep results on Lamperti operators.

In the noncommutative setting, pairs (x, y) such that x∗y = xy∗ = 0 were first consid-
ered on Schatten classes Sp in [1], as a tool to describe onto sujective isometries on Sp for
1 ≤ p 6= 2 < ∞. Later on, separating maps were used either implicitly or explicitly, and
with different names, in [2, 3] (see also [22]) and in Yeadon’s paper [34] providing a full
description of isometries Lp(M)→ Lp(N ), for 1 ≤ p 6= 2 <∞.

Recently the two authors [21] and, independently, G. Hong, S. K. Ray and S. Wang [11]
established the following characterization property. A bounded map T : Lp(M)→ Lp(N )
is separating if and only if there exist a w∗-continuous Jordan homomorphism J : M→N ,
a partial isometry w ∈ N and a positive operator B affiliated with N such that w∗w =
J(1) = s(B), the support of B, B commutes with the range of J , and

(1) T (x) = wBJ(x), x ∈M∩ Lp(M).

This remarkable factorization property was discovered by Yeadon in the above mentioned
paper. Indeed he showed in [34] that for p 6= 2, any linear isometry T : Lp(M)→ Lp(N ) is
separating and further admits a factorization of the type (1). In reference to this seminal
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work, we call (1) a Yeadon type factorization of T . It turns out that if T is separating,
the triple (w,B, J) in its Yeadon type factorization is unique.

We note that analogs of separating maps are currently investigated in other settings.
On the one hand, they are used on general noncommutative functions spaces, in order to
obtain a Yeadon type description of isometries on a large class of such spaces [12]. On
the other hand, they are investigated in operator algebras (the case p = ∞) and play a
fundamental role in the classification of nuclear C∗-algebras, see [33] and the references
therein.

The present paper looks at separating maps T : Lp(M) → Lp(N ) for which the Jor-
dan homomorphism J in the Yeadon type factorization is actually a ∗-homomorphism
(equivalently, is multiplicative). We say that T has a direct Yeadon type factorization
in this case. The first motivation for considering this notion is a result by M. Junge, D.
Sherman and Z.-J. Ruan [15, Proposition 3.2] which asserts that for p 6= 2, a linear isom-
etry Lp(M) → Lp(N ) is a complete isometry if and only if it has a direct Yeadon type
factorization. The second motivation is the L2-case. In [21, Theorem 4.2], we proved that
an isometry T : L2(M) → L2(N ) is separating (equivalently, has a Yeadon type factor-
ization) if and only if T ⊗ I`1 extends to a contractive map L2(M; `1)→ L2(N ; `1). Here
L2(M; `1) and L2(N ; `1) denote Junge’s `1-valued non commutative L2-spaces from [13].

We introduce S1-valued noncommutative Lp-spaces Lp(M;S1), which naturally extend
previous constructions from [13, 26]. We say that a bounded map T : Lp(M) → Lp(N )
is S1-bounded (resp. S1-contractive) if T ⊗ IS1 extends to a bounded (resp. contractive)
map

T⊗IS1 : Lp(M;S1) −→ Lp(N ;S1).

When M,N are hyperfinite, S1-boundedness coincides with complete regularity in the
sense of [27] (see also [5, 14]) and ‖T⊗IS1‖ = ‖T‖reg. We prove that any map with a
direct Yeadon type factorization is S1-bounded, with ‖T⊗IS1‖ = ‖T‖ (see Proposition
4.5). Our main result is that conversely, any S1-contractive separating isometry admits a
direct Yeadon type factorization (see Theorem 5.4). The resulting statement (see Corollary
5.9) that an isometry T : L2(M)→ L2(N ) is S1-contractive if and only if it admits a direct
Yeadon type factorization is both an L2-version of [15, Proposition 3.2] and a matricial
version of [21, Theorem 4.2].

The spaces Lp(M;S1) and S1-boundedness are investigated in Section 3. We prove
in passing that any completely positive map T : Lp(M) → Lp(N ) is S1-bounded, with
‖T⊗IS1‖ = ‖T‖ (see Theorem 3.13).

We also establish comparisons between direct Yeadon type factorizations and complete
boundedness. After observing that any separating map T : Lp(M)→ Lp(N ) with a direct
Yeadon type factorization is completely bounded, with ‖T‖cb = ‖T‖ (see Proposition 4.4),
we show that conversely if p 6= 2, any completely contractive isometry T : Lp(M)→ Lp(N )
admits a direct Yeadon type factorization (see Theorem 5.6). This result strengthens [15,
Proposition 3.2].

2. Noncommutative Lp-spaces and representations of matrix spaces

In this section, we give some background and preliminary facts on noncommutative
Lp-spaces built over semifinite von Neumann algebras.
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LetM be a semifinite von Neumann algebra equipped with a normal semifinite faithful
(n.s.f.) trace [31, Definition V.2.1]. Except otherwise stated, this trace will be denoted
by τM . Assume that M ⊂ B(H) acts on some Hilbert space H. Let L0(M) denote
the ∗-algebra of all closed densely defined (possibly unbounded) operators on H, which
are τM-measurable. Then for any 0 < p < ∞, the noncommutative Lp-space Lp(M),
associated with (M, τM), can be defined as

Lp(M) :=
{
x ∈ L0(M) : τM(|x|p) <∞

}
.

We set ‖x‖p := τM(|x|p)
1
p for any x ∈ Lp(M). If p ≥ 1, Lp(M) equipped with ‖ · ‖p is a

Banach space. The reader is referred to [16, 29, 32] and the references therein for details
on the algebraic operations on L0(M) and the construction of Lp(M), and for further
properties.

We let L∞(M) = M for convenience and for any x ∈ M, we let ‖x‖∞ denote its
operator norm. We recall that if 0 < p, q, r ≤ ∞ are such that 1

r = 1
p + 1

q , then for any

x ∈ Lp(M) and y ∈ Lq(M), the product xy belongs to Lr(M), with ‖xy‖r ≤ ‖x‖p‖y‖q.
In particular, for any 1 ≤ p < ∞, let p′ = p

p−1 be the conjugate number of p. Then xy

belongs to L1(M) for any x ∈ Lp(M) and y ∈ Lp′(M). Further the duality pairing

〈x, y〉 = τM(xy), x ∈ Lp(M), y ∈ Lp′(M),

yields an isometric isomorphism Lp(M)∗ = Lp
′
(M). In particular, we may identify L1(M)

with the (unique) predual of M. These duality results will be used without further refer-
ence in the paper.

For any 0 < p ≤ ∞, we let Lp(M)+ denote the cone of positive elements of Lp(M).

If A is a w∗-closed ∗-subalgebra ofM such that the restriction of τM to A+ is semifinite,
then for any 0 < p <∞, we may define Lp(A) using this restriction and Lp(A) isometrically
embeds in Lp(M). In particular, for any projection e in M, the restriction of τM to the
corner algebra eMe is semifinite, and therefore we have a natural embedding

Lp(eMe) ⊂ Lp(M).

For any two von Neumann algebrasM1,M2, we letM1⊗M2 denote their von Neumann
tensor product [31, Section IV.5]. If τM1 and τM2 are n.s.f. traces on M1 and M2,
respectively, then τM1 ⊗ τM2 uniquely extends to a n.s.f. trace onM1⊗M2. Then for any
any 0 < p <∞, we have a natural embedding Lp(M1)⊗ Lp(M2) ⊂ Lp(M1⊗M2), and

(2) ‖x⊗ y‖p = ‖x‖p‖y‖p, x ∈ Lp(M1), y ∈ Lp(M2).

We further recall that x⊗ y ∈ Lp(M1⊗M2)+ if x ∈ Lp(M1)+ and y ∈ Lp(M2)+.

We also note that the direct sum M1

∞
⊕M2 satisfies

(3) Lp
(
M1

∞
⊕M2

)
= Lp(M1)

p
⊕Lp(M2)

for any 0 < p <∞.

We now fix some notations regarding matrix spaces. Let H be a Hilbert space and let
tr be the usual trace on B(H). For any 0 < p < ∞, we let Sp(H) denote the Schatten
p-class of operators on H; this is the noncommutative Lp-space associated with (B(H), tr).
If H = `2, we simply denote these spaces by Sp. For any n ≥ 1, we let trn denote the
usual trace on Mn and we let Spn denote the Schatten p-class of n × n matrices. We let
Eij , 1 ≤ i, j ≤ n, denote the usual matrix units on Mn and we let In ∈Mn be the identity



4 C. LE MERDY AND S. ZADEH

matrix. Finally whenever M is a semifinite von Neumann algebra equipped with a n.s.f.
trace τM, we let τM,n = trn ⊗ τM denote the natural trace on Mn⊗M. We note that
Lp(Mn⊗M) can be naturally regarded as a space of n×n matrices with values in Lp(M).
This brings us to the algebraic identification

(4) Lp(Mn⊗M) ' Spn ⊗ Lp(M).

Let T : Lp(M) → Lp(N ) be a bounded operator between two noncommutative Lp-
spaces. Following usual terminology we say, using (4), that T is completely bounded if
there exists a constant C ≥ 0 such that∥∥ISpn ⊗ T : Lp(Mn⊗M)→ Lp(Mn⊗N )

∥∥ ≤ C

for any n ≥ 1. In this case we let ‖T‖cb denote the smallest C ≥ 0 satisfying this uniform
estimate; it is called the completely bounded norm of T . We say that T is completely
contractive if ‖T‖cb ≤ 1. Further we say that T is positive if it maps Lp(M)+ into Lp(N )+

and we say that T is completely positive maps if ISpn⊗T is positive for any n ≥ 1. We recall

that in the case p = 2, we have that any bounded T : L2(M) → L2(N ) is automatically
completely bounded, with ‖T‖cb = ‖T‖. This follows from the fact that L2(Mn⊗M)
(resp. L2(Mn⊗N )) coincides with the Hilbertian tensor product of S2

n and L2(M) (resp.
L2(N )).

A positive map T : (M, τM) → (N , τN ) is called trace preserving if τN ◦ T = τM on
M+.

Lemma 2.1. Let T : (M, τM) → (N , τN ) be a trace preserving ∗-homomorphism. Then
for any 1 ≤ p < ∞, the restriction of T to M∩ L1(M) extends to a complete isometry
Lp(M)→ Lp(N ).

Proof. Since T is a ∗-homomorphism, |(IMn ⊗ T )(x)|p = (IMn ⊗ T )(|x|p) for any x ∈
Mn⊗M. The result follows at once. �

We now give two elementary results on the representation of matrix spaces into semifi-
nite von Neumann algebras.

Lemma 2.2. Suppose that M is a semifinite von Neumann algebra, let n ≥ 1 and let
θ : Mn → M be a unital ∗-homomorphism. Then there exist a projection e ∈ M and a
bijective ∗-homomorphism ρ :M→Mn⊗(eMe) such that

(ρ ◦ θ) (a) = a⊗ e, a ∈Mn,

and ρ is trace preserving.

Proof. Let e = θ(E11), this is a projection. Since θ is a unital ∗-homomorphism, the family
{θ(Eij) : 1 ≤ i, j ≤ n} is a system of matrix units on M. Hence as is well-known (see
e.g. the proof of [31, Proposition IV.1.8]), xij := θ(E1i)xθ(Ej1) belongs to eMe for any
x ∈M and any 1 ≤ i, j ≤ n, and the mapping

ρ : M→Mn⊗(eMe), ρ(x) =
n∑

i,j=1

Eij ⊗ xij ,

is a bijective ∗-homomorphism. It is clear that (ρ ◦ θ)(a) = a⊗ e for every a in Mn.
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To check that ρ is trace preserving, let ui = θ(Ei1) and ei = θ(Eii) for all 1 ≤ i ≤ n.
Then uiu

∗
i = ei and e1 + · · ·+ en = 1. Hence for any x ∈M+, xii belongs to (eMe)+ for

any 1 ≤ i ≤ n and we have
n∑
i=1

τM(xii) =
n∑
i=1

τM(u∗ixui) =
n∑
i=1

τM(eix) = τM(x).

Therefore, (trn ⊗ τeMe) ◦ ρ = τM on M+. �

It is a classical fact that any non abelian von Neumann algebra contains a copy of M2.
Here is a more precise statement in the semifinite case.

Lemma 2.3. Let M be a non abelian semifinite von Neumann algebra. There exists a
non zero ∗-homomorphism γ : M2 →M valued in M∩ L1(M).

In the above statement, the condition that γ is valued in M∩ L1(M) does not come
for free. Consider for example an infinite dimensional Hilbert space H and let M =

B(H
2
⊕H) ' M2⊗B(H). Then the mapping a 7→ a ⊗ IH is a ∗-homomorphism from M2

into M and for any a ∈M2
+, a 6= 0, the trace of a⊗ IH is infinite.

Proof of Lemma 2.3. Let M = M1

∞
⊕M2 be the direct sum decomposition of M into a

type I summand M1 and a type II summand M2 (see e.g. [31, Section V]).

Assume that M2 6= {0}. According to [17, Lemma 6.5.6], there exist 2 equivalent
mutually orthogonal projections e, f inM2 such that e+ f = 1. Then by [31, Proposition
V.1.22] and its proof, M2 ' M2⊗(eM2e). Let ε ∈ eM2e be a non zero projection with
finite trace. Then τM2(a⊗ ε) = tr2(a)τeM2e(ε) <∞ for any a ∈M2

+. Hence the mapping
γ : M2 →M2 ⊂M defined by γ(a) = a⊗ ε is a non zero ∗-homomorphism taking values
in L1(M).

If M2 = {0}, then M = M1 is type I. Since M is non abelian, it follows from [31,
Theorem V.1.27] that there exists a Hilbert space H with dim(H) ≥ 2 and an abelian von
Neumann algebra W such that M contains B(H)⊗W as a summand. Let e ∈ B(H) be
a rank one projection and define τW : W+ → [0,∞] by τW (z) = τM(e⊗ z). Then τW is a
n.s.f. trace and τM coincides with tr ⊗ τW on B(H)+ ⊗W+. Let ε ∈ W be a non zero
projection with finite trace. Then it follows from above that τM(a⊗ ε) <∞ for any finite
rank a ∈ B(H)+. Now let (e1, e2) be an orthonormal family in H. Then the mapping
γ : M2 →M2 taking any [aij ]1≤i,j≤2 to

∑
i,j aij ej ⊗ ei ⊗ ε is a non zero ∗-homomorphism

and the restriction of τM to the positive part of its range is finite. Hence γ is valued in
L1(M). �

3. S1-boundedness

In this section we introduce S1-valued noncommutative Lp-spaces, in a way which ex-
tends the definition provided by [26, Chapter 3] in the hyperfinite case. Then we introduce
the notions of S1-boundedness and S1-contractivity for bounded maps between noncom-
mutative Lp-spaces, and we discuss the connection between S1-boundedness and complete
positivity.

We fix a semifinite von Neumann algebra M. We recall the definitions and basic
properties of column/row valued Lp(M)-spaces for which we refer to [28] (see also [13,21,
29]). Let Λ be an index set, and consider the Hilbert space `2Λ. For any 1 ≤ p ≤ ∞, let
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Lp(M; {`2Λ}c) denote the space of all families (bλ)λ∈Λ of elements in Lp(M) such that the

sums
∑

λ∈F b
∗
λbλ, for finite F ⊂ Λ, are uniformly bounded in L

p
2 (M). Then for any such

family, set ∥∥(bλ)λ
∥∥
Lp(M;{`2Λ}c)

= sup

{∥∥∥∑
λ∈F

b∗λbλ

∥∥∥ 1
2

p
2

}
,

where the supremum runs over all finite F ⊂ Λ. This defines a norm on Lp(M; {`2Λ}c) and
Lp(M; {`2Λ}c) is complete.

Likewise for any 1 ≤ p ≤ ∞, we let Lp(M; {`2Λ}r) denote the space of all families
(aλ)λ∈Λ of elements in Lp(M) such that the sums

∑
λ∈F aλa

∗
λ, for finite F ⊂ Λ, are

uniformly bounded in L
p
2 (M). This is a Banach space for the norm∥∥(aλ)λ

∥∥
Lp(M ;{`2Λ}r)

= sup

{∥∥∥∑
λ∈F

aλa
∗
λ

∥∥∥ 1
2

p
2

}
,

where the supremum runs over all finite F ⊂ Λ. It is plain that (aλ)λ∈Λ belongs to
Lp(M; {`2Λ}r) if and only if (a∗λ)λ∈Λ belongs to Lp(M; {`2Λ}c).

Let (Eλ,µ)λ,µ∈Λ be the matrix units in B(`2Λ) corresponding to the standard basis of `2Λ.
We may regard any z ∈ Lp(B(`2Λ)⊗M) as a matrix (zλ,µ)λ,µ∈Λ of elements in Lp(M), with
Eλ,µ⊗zλ,µ = (Eλ,λ⊗1)z(Eµ,µ⊗1). Then Lp(M; {`2Λ}c) can be identified with any column
subspace of Lp(B(`2Λ)⊗M). More precisely fix any µ0 ∈ Λ. If z ∈ Lp(B(`2Λ)⊗M) is such
that zλ,µ = 0 for any µ 6= µ0 and any λ, then (zλ,µ0)λ∈Λ belongs to Lp(M; {`2Λ}c) and its
norm in the latter space is equal to the norm of z in Lp(B(`2Λ)⊗M). Conversely for any
(bλ)λ∈Λ in Lp(M; {`2Λ}c), the matrix (zλ,µ)λ,µ∈Λ defined, for any λ ∈ Λ, by zλ,µ0 = bλ and
zλ,µ = 0 if µ 6= µ0, represents an element z of Lp(B(`2Λ)⊗M).

Likewise Lp(M; {`2Λ}r) can be identified with any row subspace of Lp(B(`2Λ)⊗M).

We will use the fact that if p ≥ 1 is finite, then for any (aλ)λ∈Λ in Lp(M; {`2Λ}r) and for

any (bλ)λ∈Λ in Lp(M; {`2Λ}c), the family (aλbλ)λ∈Λ is summable in L
p
2 (M) for the usual

topology. This allows to define the sums

(5)
∑
λ

aλbλ,
∑
λ

aλa
∗
λ and

∑
λ

b∗λbλ

as elements of L
p
2 (M).

In the case when p =∞, the spaces L∞(M; {`2Λ}r) and L∞(M; {`2Λ}c) coincide with the
row space RωΛ(M) and the column space CωΛ(M) from [6, 1.2.26-1.2.29], respectively. For
any (aλ)λ∈Λ in L∞(M; {`2Λ}r) and for any (bλ)λ∈Λ in L∞(M; {`2Λ}c), the family (aλbλ)λ∈Λ

is summable in the w∗-topology of M and the sums in (5) are defined in M according to
this topology.

The next lemma is a polar decomposition principle which will be used several times in
our arguments. We state it for column valued Lp(M)-spaces; a similar statement holds
for row valued Lp(M)-spaces.

Lemma 3.1. Let 1 ≤ p < ∞, let Λ be an index set and consider a family (bλ)λ∈Λ of
Lp(M). The following assertions are equivalent.

(i) The family (bλ)λ∈Λ belongs to Lp(M; {`2Λ}c) and ‖(bλ)λ‖Lp(M;{`2Λ}c)
≤ 1.
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(ii) There exist a family (wλ)λ∈Λ in L∞(M; {`2Λ}c) and b in Lp(M) with

‖(wλ)λ‖L∞(M;{`2Λ}c)
≤ 1 and ‖b‖p ≤ 1,

such that for all λ ∈ Λ, bλ = wλb.

Proof. Assume (i). Following the above discussion we fix µ0 ∈ Λ and consider the element
z ∈ Lp(B(`2Λ)⊗M) such that zλ,µ0 = bλ and zλ,µ = 0 for any µ 6= µ0. Then we have

z =
∑
λ

Eλ,µ0 ⊗ bλ,

with norm convergence in Lp(B(`2Λ)⊗M). Consider the polar decomposition z = w|z| of
z, with w ∈ B(`2Λ)⊗M and |z| ∈ Lp(B(`2Λ)⊗M). Then we have

|z| = Eµ0,µ0 ⊗ b, with b =
(∑

λ

b∗λbλ

) 1
2
.

We note that ‖b‖p = ‖(bλ)λ‖Lp(M;{`2Λ}c)
≤ 1.

Now if (wλ,µ)λ,µ∈Λ is the family of M representing w, then for any λ ∈ Λ, we have
bλ = wλ,µ0b and wλ,µ = 0 if µ 6= µ0. Hence the family (wλ,µ0)λ∈Λ belongs to L∞(M; {`2Λ}c)
and its norm in the latter space is ‖w‖ ≤ 1. This yields (ii).

The converse implication “(ii)⇒ (i)” folows from the fact that for any finite F ⊂ Λ, we
have ∑

λ∈F
(wλb)

∗(wλb) = b∗
(∑
λ∈F

w∗λwλ

)
b.

�

Definition 3.2. Let 1 ≤ p < ∞. We let Lp(M;S1) denote the space of all infinite
matrices [xij ]i,j≥1 in Lp(M) for which there exist families

(aik)i,k≥1 ∈ L2p(M; {`2N2}r) and (bkj)k,j≥1 ∈ L2p(M; {`2N2}c)

such that for all i, j ≥ 1,

xij =

∞∑
k=1

aikbkj .

We equip Lp(M;S1) with the following norm,

(6) ‖[xij ]‖Lp(M;S1) = inf
{
‖(aik)i,k‖L2p(M;{`2

N2}r)
‖(bkj)k,j‖L2p(M;{`2

N2}c)

}
,

where the infimum is taken over all families (aik)i,k≥1 and (bkj)k,j≥1 as above.

When applying (6), we will use the fact that we both have

‖(aik)i,k‖L2p(M;{`2
N2}r)

=
∥∥∥∑
i,k

aika
∗
ik

∥∥∥ 1
2

p
and ‖(bkj)k,j‖L2p(M;{`2

N2}c)
=
∥∥∥∑
j,k

b∗kjbkj

∥∥∥ 1
2

p
.

The above definition is a natural extension of Junge’s spaces Lp(M; `1) introduced
in [13]. A similar argument as in the proof of [13, Lemma 3.5] shows that Lp(M;S1) is a
vector space and that (6) is indeed a norm. Moreover Lp(M;S1) endowed with this norm
is a Banach space.
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For any integer n ≥ 1, let Nn = {1, . . . , n}. We let Lp(M;S1
n) be the subspace of

Lp(M;S1) of matrices [xij ]i,j≥1 with support in Nn × Nn. We note that
⋃
n L

p(M;S1
n) is

dense in Lp(M;S1).

Remark 3.3. Identifying a finite matrix [xij ]1≤i,j≤n of elements in Lp(M) with the sum∑n
i,j=1 xij ⊗ Eij , we see that at the algebraic level, Lp(M;S1

n) = Lp(M) ⊗ S1
n. More

generally we have a natural embedding

(7) Lp(M)⊗ S1 ⊂ Lp(M;S1).

More precisely, consider a matrix c = [cij ]i,j≥1 in S1 and x ∈ Lp(M). Let c′ = [c′ik]i,k≥1 and
c′′ = [c′′kj ]k,j≥1 in S2 such that c′c′′ = c and let x′, x′′ ∈ L2p(M) such that x′x′′ = x. Then

(c′ikx
′)i,k≥1 and (c′′kjx

′′)k,j≥1 belong to L2p(M; {`2N2}r) and L2p(M; {`2N2}c), respectively,

and cijx =
∑

k(c
′
ikx
′)(c′′kjx

′′) for all i, j ≥ 1. Thus [cijx]i,j≥1 belongs to Lp(M;S1).

Identifying this matrix with x ⊗ c, this yields (7). It is clear that with this convention,
Lp(M)⊗ S1 is a dense subspace of Lp(M;S1).

Lemma 3.4 below shows that for elements of Lp(M;S1
n), the infimum in (6) can be taken

over finite families only. This will turn out to be very convenient in future arguments. To
obtain this property we will use a natural connection between the definition of the norm
on Lp(M;S1) and decomposable operators.

Let A and B be C∗-algebras. A linear map θ : A → B is said to be decomposable if θ is
a linear combination of completely positive maps from A into B. In this case, θ may be
written as θ = (θ1 − θ2) + i(θ3 − θ4), for four completely positive maps θj : A → B. Note,
for example, that any finite rank operator between C∗-algebras is decomposable. In [9],
Haagerup introduced a norm ‖ · ‖dec on the space of all decomposable maps from A into
B. We refer to the latter paper and also to [25, Chap. 11 & 14] for basic properties of this
norm. (This norm is given in Remark 3.14, however we will not need it explicitly here.)

Let n ≥ 1 and let θ : Mn →M be a linear map. According to [20, Prop. 4.5],

‖θ‖dec = inf
{
‖(vik)i,k‖L∞(M;{`2Nn×N}r)

‖(wkj)k,j‖L∞(M;{`2N×Nn}c)

}
,

where the infimum runs over all families (vik)i,k and (wkj)k,j in M such that θ(Eij) =∑∞
k=1 vikwkj for any 1 ≤ i, j ≤ n. Applying Lemma 3.1 and its row counterpart, we

deduce that for any linear map u : Mn → Lp(M),

(8)
∥∥[u(Eij)

]∥∥
Lp(M;S1

n)
= inf {‖a‖2p‖θ‖dec‖b‖2p} ,

where the infimum runs over all a, b ∈ L2p(M) and all linear maps θ : Mn →M such that

u(s) = aθ(s)b, s ∈Mn.

We will use Pisier’s delta norm δ onM⊗S1
n introduced in [25, Chapter 12] (see also [6,

Sections 6.4-6.5]). Given a matrix [yij ]1≤i,j≤n of elements in M, consider the associated
operator θ : Mn →M defined by θ(Eij) = yij for any 1 ≤ i, j ≤ n. By [25, Corollary 12.4],
we have ‖θ‖dec = ‖[yij ]‖δ . Combining with (8), we deduce that for any matrix [xij ]1≤i,j≤n
of elements in Lp(M), we have

‖[xij ]‖Lp(M;S1
n) = inf

{
‖a‖2p‖[yij ]‖δ‖b‖2p

}
,(9)

where the infimum is taken over all factorizations of [xij ] of the form

xij = ayijb, 1 ≤ i, j ≤ n,
with a, b in L2p(M) and yij in M.
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Lemma 3.4. Let 1 ≤ p < ∞ and let n ≥ 1. For any [xij ]1≤i,j≤n in Lp(M;S1
n), the

following assertions are equivalent.

(i) ‖[xij ]‖Lp(M;S1
n) < 1.

(ii) There exist an integer m ≥ 1 and families (aik)1≤i≤n,1≤k≤m and (bkj)1≤k≤m,1≤j≤n
in L2p(M) such that xij =

∑m
k=1 aikbkj, for all 1 ≤ i, j ≤ n, and∥∥∥ n∑

i=1

m∑
k=1

aika
∗
ik

∥∥∥
p
< 1 and

∥∥∥ n∑
j=1

m∑
k=1

b∗kjbkj

∥∥∥
p
< 1.

Proof. Assume (i), that is, ‖[xij ]‖Lp(M;S1
n) < 1. By (9), there exist a matrix [yij ]1≤i,j≤n of

elements in M and a, b ∈ L2p(M) such that

‖a‖2p < 1, ‖b‖2p < 1, ‖[yij ]‖δ < 1,

and xij = ayijb for all 1 ≤ i, j ≤ n. According to [6, Proposition 6.5.2] there exist m ≥ 1,
and families (vik)1≤i≤n,1≤k≤m and (wkj)1≤k≤m,1≤j≤n in M such that yij =

∑m
k=1 vikwkj

for any 1 ≤ i, j ≤ n, and∥∥∥ n∑
i=1

m∑
k=1

vikv
∗
ik

∥∥∥
∞
< 1,

∥∥∥ n∑
j=1

m∑
k=1

w∗kjwkj

∥∥∥
∞
< 1.

For any 1 ≤ i, j ≤ n and any 1 ≤ k ≤ m, set aik = avik and bkj = wkjb. Then they satisfy
the assertion (ii).

The converse implication “(ii) ⇒ (i)” is obvious. �

Remark 3.5. We may naturally identify Lp(M;S1
n) with Lp(Mn⊗M) as vector spaces

(the norms on these two spaces are however different). Let Lp(M;S1
n)+ be the set of all

the [xij ]1≤i,j≤n ∈ Lp(M;S1
n) which belong (under this identification) to the positive cone

Lp(Mn⊗M)+. For such a matrix, we have

(10) ‖[xij ]‖Lp(M;S1
n) =

∥∥∥ n∑
i=1

xii

∥∥∥
p
.

Indeed since [xij ]1≤i,j≤n belongs to Lp(M;S1
n)+, there exist a matrix B = [bkj ]1≤k,j≤n of

elements in L2p(M) such that [xij ] = B∗B, which reads

xij =
n∑
k=1

b∗kibkj , 1 ≤ i, j ≤ n.

Then with aik = b∗ki, we have∥∥∥ n∑
i,k=1

aika
∗
ik

∥∥∥
p

=
∥∥∥ n∑
k,j=1

b∗kjbkj

∥∥∥
p

=
∥∥∥ n∑
i=1

xii

∥∥∥
p
.

This implies the inequality ≤ in (10).

The converse inequality (which is true without any positivity assumption) follows from
the fact that if xij =

∑
k aikbkj for any 1 ≤ i, j ≤ n and some aik, bkj ∈ L2p(M), then∥∥∥ n∑

i=1

xii

∥∥∥
p

=
∥∥∥∑
i,k

aikbki

∥∥∥
p
≤
∥∥∥ n∑
i,k=1

aika
∗
ik

∥∥∥ 1
2

p

∥∥∥ n∑
i,k=1

b∗kibki

∥∥∥ 1
2

p
,

by Hölder’s inequality.
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We now establish an injectivity property of the Lp(M;S1
n)-norms.

Lemma 3.6. Assume that e ∈M is a projection with finite trace. Let n ≥ 1 be an integer.
For any matrix [xij ]1≤i,j≤n of elements in Lp(eMe), we have

‖[xij ]‖Lp(eMe;S1
n) = ‖[xij ]‖Lp(M;S1

n).(11)

Proof. The inequality ≥ is obvious. To prove the converse, it suffices, by density of eMe
in Lp(eMe), to verify the inequality ≤ in (11) when each xij belongs to eMe. Assume
this property, along with ‖[xij ]‖Lp(M;S1

n) < 1.

By (9), there exist a and b in L2p(M) and a matrix [yij ]1≤i,j≤n of elements in M
such that xij = ayijb for any 1 ≤ i, j ≤ n, ‖a‖2p < 1, ‖b‖2p < 1 and ‖[yij ]‖

δ
< 1. By

assumption, exije = xij hence we actually have xij = eayijbe for any 1 ≤ i, j ≤ n. Using
polar decompositions we can write be = wb′ and ea = a′v, with b′ = |be|, a′ = |a∗e|
and v, w ∈ M such that ‖v‖ ≤ 1 and ‖w‖ ≤ 1. Note that a′, b′ ∈ L2p(eMe)+ and that
‖a′‖2p < 1 and ‖b′‖2p < 1. It follows from these factorizations that

xij = a′vyijwb
′, 1 ≤ i, j ≤ n.(12)

Since e has a finite trace, it belongs to L2p(M) hence we can choose ε > 0 such that

(13) ‖a′ + εe‖2p < 1 and ‖b′ + εe‖2p < 1.

Both a′ + εe and b′ + εe have an inverse in eMe. Then we can define

(14) zij = (a′ + εe)−1xij(b
′ + εe)−1, 1 ≤ i, j ≤ n.

Since each xij belongs to eMe, each zij belongs to eMe as well. Further we have

(15) xij = (a′ + εe)zij(b
′ + εe), 1 ≤ i, j ≤ n.

Let us now show that

(16) ‖[zij ]‖δ ≤ ‖[yij ]‖δ .

Here the delta norm on the left-hand side is computed in eMe⊗S1
n whereas the delta norm

on the right-hand side is computed in M⊗ S1
n. We observe that since a′ ∈ L2p(eMe)+,

(a′ + εe)−1a′ belongs to eMe and we have ‖(a′ + εe)−1a′‖∞ ≤ 1. Likewise, we have
‖b′(b′ + εe)−1‖∞ ≤ 1. This implies that

(17) ‖(a′ + εe)−1a′v‖∞ ≤ 1 and ‖wb′(b′ + εe)−1‖∞ ≤ 1.

Let θ : Mn → M be the linear map associated with [yij ] and let ϕ : Mn → eMe be
associated with [zij ]. By (12) and (14), we have zij = (a′ + εe)−1a′vyijwb

′(b′ + εe)−1 for
any 1 ≤ i, j ≤ n. Hence

ϕ(s) =
[
(a′ + εe)−1a′v

]
θ(s)

[
wb′(b′ + εe)−1

]
, s ∈Mn.

It therefore follows from e.g. [25, (11.4)] and (17) that ‖ϕ‖dec ≤ ‖θ‖dec.
Since ‖θ‖dec = ‖[yij ]‖δ and ‖ϕ‖dec = ‖[zij ]‖δ , by [25, Corollary 12.4], this yields (16).

Now combining (15), (13) and (16), and using (9) in Lp(eMe;S1
n), we obtain that∥∥[xij ]

∥∥
Lp(eMe;S1

n)
< 1. This proves the result. �

For any semifinite and hyperfinite von Neumann algebraM, and for any operator space
E, Pisier [26, Chapter 3] introduced a vector valued noncommutative Lp-space, denoted
by Lp(M)[E]. The next statement shows that Definition 3.2 is consistent with [26].
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Proposition 3.7. Let M be a semifinite and hyperfinite von Neumann algebra, and let
1 ≤ p <∞. Equip the spaces S1 and S1

n with their natural operator space structures (see
e.g. [6, 1.14.5]). Then

Lp(M;S1) = Lp(M)[S1] and Lp(M;S1
n) = Lp(M)[S1

n]

isometrically, for all n ≥ 1.

Proof. We assume that the semifinite von Neumann algebraM is hyperfinite. By density
it suffices to prove that for any n ≥ 1 and for any matrix [xij ]1≤i,j≤n of elements in Lp(M),
we have

(18) ‖[xij ]‖Lp(M;S1
n) = ‖[xij ]‖Lp(M)[S1

n].

Assume first thatM is finite. For any matrix [yij ]1≤i,j≤n of elements inM, let ‖[yij ]‖min

denote its norm in the minimal tensor productM⊗minS
1
n. It follows from the definition of

Λp(E) in [26, p.41] and from [26, Theorem 3.8] that for any matrix [xij ]1≤i,j≤n of elements
in Lp(M), we have

‖[xij ]‖Lp(M)[S1
n] = inf

{
‖a‖2p‖[yij ]‖min‖b‖2p

}
,

where the infimum runs over all a, b ∈ L2p(M) and all matrices [yij ] of elements in M
such that xij = ayijb for any 1 ≤ i, j ≤ n. SinceM is hyperfinite, hence injective, we have

‖[yij ]‖δ = ‖[yij ]‖min

for any such [yij ]. This follows from the fact that if θ : Mn → M is the linear map
associated with [yij ], then ‖[yij ]‖min = ‖θ‖cb, ‖[yij ]‖δ = ‖θ‖dec, as mentioned above, and
‖θ‖cb = ‖θ‖dec (see [9]). Applying (9), we deduce the equality (18) in that case.

For a possibly non finite M, consider V = ∪eMe , where the union runs over all
projections e in M with finite trace. The finite case considered above shows that

Lp(eMe;S1
n) = Lp(eMe)[S1

n]

isometrically, for any such e. Applying Lemma 3.6 and [25, Theorem 3.4], this implies
that (18) holds true whenever xij ∈ V for all 1 ≤ i, j ≤ n. Since V is dense in Lp(M),
this yields (18) for any xij ∈ Lp(M). �

In the sequel we consider a second semifinite von Neumann algebra N . Recall the
embedding (7) from Remark 3.3.

Definition 3.8. Let 1 ≤ p <∞ and let T : Lp(M)→ Lp(N ) be a bounded map. We say
that T is

(i) S1-bounded if T ⊗ IS1 extends to a bounded map

T⊗IS1 : Lp(M;S1) −→ Lp(N ;S1).

In this case, the norm of T⊗IS1 is called the S1-bounded norm of T and is denoted
by ‖T‖S1 ;

(ii) S1-contractive if it is S1-bounded and ‖T‖S1 ≤ 1.

Remark 3.9. It is plain that T : Lp(M) → Lp(N ) is S1-bounded if and only if there
exists a constant K ≥ 0 such that∥∥T ⊗ IS1

n
: Lp(M;S1

n) −→ Lp(N ;S1
n)
∥∥ ≤ K

for any n ≥ 1. In this case, ‖T‖S1 is the smallest K ≥ 0 satisfying this property.
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Remark 3.10. We have natural isometric identifications

L2(M; {`2N2}r) = L2(M; {`2N2}c) = L2(B(`2)⊗M).

They imply that
L1(M;S1) = L1(B(`2)⊗M) isometrically.

Consequently, a bounded map T : L1(M) → L1(N ) is S1-bounded if and only if T is
completely bounded and ‖T‖S1 = ‖T‖cb is this case.

Assume that M,N are two semifinite and hyperfinite von Neumann algebras, and let
T : Lp(M) → Lp(N ) be a bounded map. We say that T is completely regular if there
exists a constant K ≥ 0 such that for any n ≥ 1,∥∥T ⊗ IMn : Lp(M)[Mn] −→ Lp(N )[Mn]

∥∥ ≤ K.
In this case, the completely regular norm ‖T‖reg is defined as the least possible K satisfying
this property. This concept was introduced in [27]. It is shown in the latter paper that
if T is completely regular, then for any operator space E, T ⊗ IE extends to a bounded
operator T⊗IE from Lp(M)[E] into Lp(N )[E], with

(19)
∥∥T⊗IE : Lp(M)[E] −→ Lp(N )[E]

∥∥ ≤ ‖T‖reg.
We refer to [14] and [5] for developments and further results.

Proposition 3.11. Suppose that M and N are semifinite and hyperfinite von Neumann
algebras, let 1 ≤ p < ∞ and let T : Lp(M) → Lp(N ) be a bounded operator. Then T is
S1-bounded if and only if T is completely regular and in this case, we have ‖T‖S1 = ‖T‖reg.

Proof. Suppose that T is S1-contractive. By Proposition 3.7, we have

‖T ⊗ IS1
n

: Lp(M)[S1
n] −→ Lp(N )[S1

n]‖ ≤ ‖T‖S1 .(20)

for every n ≥ 1. Assume that p > 1 and let p′ = p/(p− 1) be the conjugate number of p.
By [26, Theorem 4.1], we both have(

Lp(M)[S1
n]
)∗ ∼= Lp

′
(M)[Mn] and

(
Lp(N )[S1

n]
)∗ ∼= Lp

′
(N )[Mn].

isometrically. Passing to the adjoint in (20), we obtain that

‖T ∗ ⊗ IMn : Lp
′
(N )[Mn] −→ Lp

′
(M)[Mn]‖ ≤ ‖T‖S1

for every n ≥ 1. Thus T ∗ is completely regular, with ‖T ∗‖reg ≤ ‖T‖S1 . It now follows
from [27, Lemma 2.3] that T is completely regular as well, with ‖T‖reg ≤ ‖T‖S1 . The case
p = 1 is proved similarly, using Remark 3.10.

The converse is clear, using Proposition 3.7 again. �

Remark 3.12. Junge’s space Lp(M; `1) from [13] coincides with the subspace of Lp(M;S1)
of matrices [xij ]i,j≥1 such that xij = 0 for any i 6= j. In [21, Definition 2.5], we intro-
duced `1-boundedness by saying that a bounded map T : Lp(M)→ Lp(N ) is `1-bounded
if T ⊗ I`1 extends to a bounded map from Lp(M; `1) into Lp(N ; `1). It is plain that any
S1-bounded map T is `1-bounded, with ‖T‖`1 ≤ ‖T‖S1 . However [21, Example 2.7] shows
that the converse is not true.

We now state the main result of this section.

Theorem 3.13. Suppose that T : Lp(M)→ Lp(N ) is a completely positive operator. Then
T is S1-bounded and ‖T‖S1 = ‖T‖.
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Proof. Let T : Lp(M) → Lp(N ) be a completely positive operator. Fix some n ≥ 1.
Let x = [xij ]1≤i,j≤n be a matrix of elements in Lp(M) with ‖x‖Lp(M;S1

n) < 1. Ac-
cording to Lemma 3.4, there exist an integer m ≥ 1 and families (aik)1≤i≤n,1≤k≤m and
(bkj)1≤k≤m,1≤j≤n in L2p(M) such that∥∥∥∑

i,k

aika
∗
ik

∥∥∥
p
< 1,

∥∥∥∑
k,j=1

b∗kjbkj

∥∥∥
p
< 1 and xij =

m∑
k=1

aikbkj

for any 1 ≤ i, j ≤ n. We introduce

rij =

m∑
k=1

aika
∗
jk, sij =

m∑
k=1

b∗kibkj and zij =

(
rij xij
x∗ji sij

)
for any 1 ≤ i, j ≤ n. Then we set

r = [rij ], s = [sij ] and z = [zij ].

With x∗ = [x∗ji], we may write

z =

(
r x
x∗ s

)
.

Following Remark 3.5 and (4) we regard x, x∗, r, s as elements of Spn⊗Lp(M) = Lp(Mn⊗M)
and we regard z as an element of Sp2n ⊗ Lp(M) = Lp(M2n⊗M).

Now consider a = [aik]1≤i≤n,1≤k≤m and b = [bkj ]1≤k≤m,1≤j≤n, regarded as elements of

Spn,m ⊗ Lp(M) and Spm,n ⊗ Lp(M), respectively, and let c =

(
a
b∗

)
∈ Sp2n,m ⊗ Lp(M). It

follows from the above definitions that

z =

(
a
b∗

)(
a∗ b

)
= cc∗,

hence z ∈ Lp(M2n⊗M)+.

Let us write Tn = ISpn ⊗ T for simplicity. By assumption, T2n is positive hence

T2n(z) =

(
Tn(r) Tn(x)
Tn(x∗) Tn(s)

)
∈ Lp(M2n⊗M)+.

Consider the positive square root (T2n(z))1/2, which belongs to L2p(M2n⊗M)+. We may
write it as

(T2n(z))1/2 =

(
α β
β∗ δ

)
,

with α, β, δ in L2p(Mn⊗M), and α ≥ 0, δ ≥ 0. Then,

Tn(r) = α2 + ββ∗;(21)

Tn(s) = β∗β + δ2;(22)

Tn(x) = αβ + βδ.(23)

Write α = [αij ], β = [βij ] and δ = [δij ]. Using (23), we have

T (xij) =

n∑
k=1

αikβkj +

n∑
k=1

βikδkj , 1 ≤ i, j ≤ n.
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Let

a =

∑
i,k

αikα
∗
ik +

∑
i,k

βikβ
∗
ik

1/2

and b =

∑
j,k

β∗kjβkj +
∑
k,j

δ∗kjδkj

1/2

,

then the above factorization implies that

‖[T (xij)]‖Lp(N ;S1
n) ≤ ‖a‖2p‖b‖2p.

Now observe that by (21) and (22), and the fact that α∗ = α and δ∗ = δ, we have

T (rii) =
∑
k

αikα
∗
ik + βikβ

∗
ik and T (sjj) =

∑
k

β∗kjβkj + δ∗kjδkj

for any 1 ≤ i, j ≤ n. Consequently,

‖a‖2p2p =
∥∥∥∑
i,k

αikα
∗
ik +

∑
i,k

βikβ
∗
ik

∥∥∥p
p

=
∥∥∥∑

i

T (rii)
∥∥∥p
p

≤ ‖T‖p
∥∥∥∑

i

rii

∥∥∥p
p

= ‖T‖p
∥∥∥∑
i,k

aika
∗
ik

∥∥∥p
p
≤ ‖T‖p.

Similarly, we can show that ‖b‖2p2p ≤ ‖T‖p, and therefore

‖[T (xij)]‖Lp(N ;S1
n) ≤ ‖T‖.

The result follows at once. �

Remark 3.14. Let 1 ≤ p ≤ ∞. Following [5,14] we say that a bounded map T : Lp(M)→
Lp(N ) is decomposable if there exist two bounded maps S1, S2 : Lp(M) → Lp(N ) such
that the mapping

ΓS1,S2 :=

(
S1 T
T∗ S2

)
: Lp(M2⊗M) −→ Lp(M2⊗N )

taking any

(
r x
y s

)
to

(
S1(r) T (x)
T (y∗)∗ S2(s)

)
, with x, y, r, s ∈ Lp(M), is completely posivive.

This is equivalent to T being a linear combination of completely positive maps Lp(M)→
Lp(N ). In this case, the decomposable norm of T is defined by

(24) ‖T‖dec = inf
{

max{‖S1‖, ‖S2‖}
}
,

where the infimum is taken over all possible pairs (S1, S2) such that ΓS1,S2 is completely
positive . When T is completely positive, ΓT,T is completely positive and we have ‖T‖dec =
‖T‖ in this case.

With these definitions in mind, it is clear from the proof of Theorem 3.13 that the latter
generalizes as follows, for any 1 ≤ p <∞:

(25) Any decomposable map T : Lp(M)→ Lp(N ) is S1-bounded, with ‖T‖S1 ≤ ‖T‖dec.

In the special case when M,N are hyperfinite, the converse is true, that is, any S1-
bounded map T : Lp(M) → Lp(N ) is decomposable, with ‖T‖S1 ≤ ‖T‖dec. This follows
from Proposition 3.11 and [5, Theorem 3.23]. We do not know if this property is true for
general semifinite von Neumann algebras.
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We finally mention that Proposition 3.11 together with [27, Proposition 2.2] show that
when M, N are semifinite and hyperfinite von Neumann algebras, every S1-bounded
operator T : Lp(M) → Lp(N ) is completely bounded. We do not know whether this
property is true for general semifinite von Neumann algebras, except in the trivial cases
p = 2 and p = 1 (see Remark 3.10).

4. Separating maps with a direct Yeadon type factorization

The notion of Yeadon type factorization was introduced in [21], in reference to Yeadon’s
characterization of isometries on noncommutative Lp-spaces for 1 ≤ p 6= 2 < ∞ [34]. In
this section, we introduce the notion of direct Yeadon type factorization and we discuss
the relationship between the norm, the completely bounded norm and the S1-bounded
norm of operators which admit such a factorization.

First we recall some prerequisite concepts and results. A Jordan homomorphism be-
tween von Neumann algebras M and N is a linear map J : M → N that preserves
involution and the Jordan product (x, y) 7→ 1

2(xy + yx). The interested reader is referred
to [10, Chapter 7], [30] and [17, Exercises 10.5.21-10.5.31] for information on these maps.
We note for further use that any Jordan homomorphism is positive.

We assume that (M, τM) and (N , τN ) are semifinite and we let 1 ≤ p <∞. Following
[21], we say that an operator T : Lp(M)→ Lp(N ) has a Yeadon type factorization if there
exist a w∗-continuous Jordan homomorphism J : M→N , a partial isometry w ∈ N , and
a positive operator B affiliated with N , which satisfy the following conditions:

(a) w∗w = J(1) = s(B), the support projection of B;
(b) every spectral projection of B commutes with J(x), for all x ∈M;
(c) T (x) = wBJ(x) for all x ∈M

⋂
Lp(M).

In this case, w, B and J are uniquely determined by T and we call (w,B, J) the Yeadon
triple associated with T .

Yeadon’s Theorem [34] asserts that if p 6= 2, any isometry T : Lp(M)→ Lp(N ) admits
a Yeadon type factorization.

Following [21], we say that an operator T : Lp(M)→ Lp(N ) is separating if it preserves
disjointness of elements; that is, if for x, y ∈ Lp(M) such that x∗y = xy∗ = 0, then we
have T (x)∗T (y) = T (x)T (y)∗ = 0. It is shown in [11, 21] that T admits a Yeadon type
factorization if and only if it is separating.

Let J : M → N be a Jordan homomorphism and let D ⊂ N be the von Neumann
algebra generated by J(M). Then J(1) is the unit of D. By e.g. [30, Theorem 3.3], there
exist projections e and f in the center of D such that

(i) e+ f = J(1).
(ii) x 7→ J(x)e is a ∗-homomorphism.

(iii) x 7→ J(x)f is an anti-∗-homomorphism.

Let N 1 = eN e and N 2 = fN f . We let π : M → N 1 and σ : M → N 2 be defined by

π(x) = J(x)e and σ(x) = J(x)f , for all x ∈ M. Then J is valued in N 1

∞
⊕N 2 and

J(x) = π(x) + σ(x), for all x ∈M. As in [21] we use the notations

J =

(
π 0
0 σ

)
and J(x) =

(
π(x) 0

0 σ(x)

)
(26)
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to refer to such a decomposition.

Definition 4.1. We say that a separating map T : Lp(M)→ Lp(N ) admits a direct (resp.
anti-direct) Yeadon type factorization if the Jordan homomorphism of its Yeadon triple is
a ∗-homomorphism (resp. an anti-∗-homomorphism).

The above definition is partly motivated by a result due to Junge-Ruan-Sherman [15,
Proposition 3.2] which asserts that if p 6= 2, an isometry T : Lp(M) → Lp(N ) admits
a direct Yeadon type factorization if and only if T is a 2-isometry, if and only if T is a
complete isometry.

Remark 4.2. Let T : Lp(M) → Lp(N ) be a separating map and let (w,B, J) be its
Yeadon triple.

(a) The mapping w∗T ( · ), which maps any x ∈ M ∩ Lp(M) to BJ(x), is also a sep-
arating map. Its Yeadon triple is (J(1), B, J). Since J is positive, B is positive and B
commutes with the range of J , the mapping w∗T ( · ) is positive.

(b) Assume that J = π is a ∗-homomorphism, so that T has a direct Yeadon type
factorization. For any n ≥ 1, IMn ⊗ π is a ∗-homomorphism from Mn⊗M into Mn⊗N .
Hence ISpn ⊗ T : Lp(Mn⊗M) → Lp(Mn⊗N ) admits a Yeadon type factorization. Indeed
the Yeadon triple of ISpn ⊗T is equal to (In⊗w, In⊗B, IMn ⊗ π). It follows from (a) that
in this case, w∗T ( · ) is completely positive.

Remark 4.3. Let T : Lp(M) → Lp(N ) be a separating operator, with Yeadon triple
(w,B, J). Assume that w = J(1), so that

T (x) = BJ(x), x ∈M∩ Lp(M).

Consider a decomposition of J as in (26). This induces a direct/anti-direct decomposition
of T , as follows.

Recall N 1 = eN e and N 2 = fN f . Then N 1,N 2 are semifinite and we have

Lp(N 1)
p
⊕Lp(N 2) = Lp(N 1

∞
⊕N 2) ⊂ Lp(N ).

Set B1 = Be and B2 = Bf . Since B = BJ(1), we have B = B1 + B2. Moreover B
commutes with the range of J , that is, B is affiliated with J(M)′. This implies that B
commutes with e and f . Consequently, B1 is affiliated with N 1 and B2 is affiliated with
N 2. Now define

T1 : Lp(M) −→ Lp(N 1) and T2 : Lp(M) −→ Lp(N 2)

by setting

T1(x) = T (x)e and T2(x) = T (x)f, x ∈ Lp(M).

Then

T = T1 + T2.

Further T1 is a separating operator and its Yeadon triple is equal to (1N1 , B1, π). Likewise
T2 is a separating operator and its Yeadon triple is equal to (1N2 , B2, σ). In particular,
T1 has a direct Yeadon type factorization whereas T2 has an anti-direct Yeadon type
factorization.

In the case when w 6= J(1), one can apply the following decomposition principle to the
mapping w∗T ( · ) from Remark 4.2 (a).
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Proposition 4.4. Let T : Lp(M) → Lp(N ) be a bounded operator with a direct Yeadon
type factorization. Then T is completely bounded and ‖T‖cb = ‖T‖.

Proof. Suppose that T has a direct Yeadon type factorization, with Yeadon triple (w,B, π)
and fix some integer n ≥ 1. Set πn = IMn ⊗π, wn = In⊗w and Bn = In⊗B. By Remark
4.2 (b), ISpn ⊗ T is separating with Yeadon triple equal to (wn, Bn, πn).

We note that for any x ∈M∩ Lp(M), we have |T (x)|p = Bpπ(|x|p), hence

(27) ‖T (x)‖pp = τN
(
Bpπ(|x|p)

)
.

Let y ∈ (Mn⊗M) ∩ Lp(Mn⊗M). Then similarly we have

‖(ISpn ⊗ T )(y)‖pp = τN ,n
(
Bp
nπn(|y|p)

)
.

Write x = |y|p and decompose it as x = [xij ]1≤i,j≤n. Then

τN ,n
(
Bp
nπn(|y|p)

)
=

n∑
i=1

τN
(
Bpπ(xii)

)
.

For any 1 ≤ i ≤ n, we have

τN
(
Bpπ(xii)

)
= ‖T (x

1
p

ii)‖
p
p ≤ ‖T‖p‖x

1
p

ii‖
p
p = ‖T‖pτM(xii),

by (27). We infer that

‖(ISpn ⊗ T )(y)‖pp ≤ ‖T‖p
n∑
i=1

τM(xii) = ‖T‖p τM,n(x).

This yields ‖(ISpn ⊗T )(y)‖p ≤ ‖T‖‖y‖p, which proves that T is completely bounded, with
‖T‖cb = ‖T‖. �

Proposition 4.5. Let T : Lp(M) → Lp(N ) be a bounded operator with a direct Yeadon
type factorization. Then T is S1-bounded and ‖T‖S1 = ‖T‖.

Proof. Suppose that T has a direct Yeadon type factorization, with Yeadon triple (w,B, π).
By Remark 4.2 (b), U := w∗T ( · ) is completely positive. Hence by Theorem 3.13, U is S1-
bounded, with ‖U‖S1 = ‖U‖. Since wU(x) = T (x) for any x ∈ Lp(M), this immediately
implies that T is also S1-bounded, with ‖T‖S1 = ‖U‖S1 . Further we have ‖T‖ = ‖U‖,
which yields the result. �

In the case when M,N are hyperfinite, it follows from [5, 27] that any completely
positive map T : Lp(M) → Lp(N ) is automatically completely bounded, with ‖T‖cb =
‖T‖. We do not know if this holds true in general. If this were true, Proposition 4.4 would
be a direct consequence of Remark 4.2 (b).

5. Direct Yeadon type factorization and isometries

We proved in the previous section (Propositions 4.4 and 4.5) that if a contraction
T : Lp(M)→ Lp(N ) admits a direct Yeadon type factorization, then it is both completely
contractive and S1-contractive. The purpose of this section is to establish converse state-
ments for isometries. Namely we will show that an isometry T : Lp(M)→ Lp(N ) admits
a direct Yeadon type factorization provided that either T is completely contractive and
p 6= 2, or T is S1-contractive.
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We need three preparatory lemmas.

Lemma 5.1. Let 1 ≤ p <∞. Let M and N be semifinite von Neumann algebras and let
b ∈ Lp(N ). Consider a matrix [xij ]1≤i,j≤n of elements in Lp(M). We have

‖[xij ⊗ b]‖Lp(M⊗N ;S1
n) = ‖b‖p ‖[xij ]‖Lp(M;S1

n).(28)

Proof. The case p = 1 follows from Remark 3.10, so we may assume that p 6= 1. Let
p′ = p

p−1 be the conjugate number of p. Let b ∈ Lp(N ) and let c ∈ Lp
′
(N ) such that

‖c‖p′ = 1 and τN (bc) = ‖b‖p. Define

T : Lp
′
(M)→ Lp

′
(M⊗N ), T (z) = z ⊗ c.

We claim that T is decomposable, with ‖T‖dec ≤ 1, see (24) for the definition. To check
this, consider the polar decomposition c = u|c| of c. Then |c∗| = u|c|u∗. In the space

Lp
′
(M2⊗N ), the matrix

(
|c| |c|
|c| |c|

)
=

(
1 1
1 1

)
⊗ |c| is positive, hence

C :=

(
|c∗| c
c∗ |c|

)
=

(
u 0
0 1

)(
|c| |c|
|c| |c|

)(
1 0
0 u∗

)
≥ 0.

Consequently the operator

Lp
′
(M2⊗M) −→ Lp

′
(M2⊗M)⊗ Lp′(M2⊗N ) ⊂ Lp

′
(M4⊗M⊗N )

taking X to X ⊗ C for any X ∈ Lp′(M2⊗M) is completely positive. For any r, x, y, s in

Lp
′
(M), and X =

(
r x
y s

)
, the matrix

(
r ⊗ |c∗| x⊗ c
y ⊗ c∗ s⊗ |c|

)
is an extracted square matrix

of X ⊗ C. We deduce that the mapping Γ: Lp
′
(M2⊗M)→ Lp

′
(M2⊗M⊗N ) defined by

Γ

(
r x
y s

)
=

(
r ⊗ |c∗| x⊗ c
y ⊗ c∗ s⊗ |c|

)
, r, x, y, s ∈ Lp′(M),

is completely positive. Since r 7→ r ⊗ |c∗| and s 7→ s ⊗ |c| are contractive from Lp
′
(M)

into Lp
′
(M⊗N ), this proves the claim.

Next the adjoint T ∗ : Lp(M⊗N )→ Lp(M) is also decomposable, with ‖T ∗‖dec ≤ 1. By
(25), this implies that T ∗ is S1-contractive. The inequality ≥ in (28) follows since for any
x ∈ Lp(M), we have T ∗(x ⊗ b) = ‖b‖p x. The reverse inequality ≤ in (28) is immediate
from the definitions. �

The next result extends (3) to S1-valued spaces.

Lemma 5.2. Let 1 ≤ p < ∞ and let N 1 and N 2 be semifinite von Neumann algebras.
For any n ≥ 1, for any [x1

ij ]1≤i,j≤n in Lp(N 1;S1
n) and for any [x2

ij ]1≤i,j≤n in Lp(N 2;S1
n),

we have

(29) ‖[x1
ij , x

2
ij ]‖Lp(N1

∞
⊕N2;S1

n)
=
(
‖[x1

ij ]‖
p
Lp(N1;S1

n)
+ ‖[x2

ij ]‖
p
Lp(N2;S1

n)

) 1
p
.

Proof. Let ε > 0. By Lemma 3.4, there exist an integer m ≥ 1, families [a1
ik]1≤i≤n,1≤k≤m

and [b1kj ]1≤k≤m,1≤j≤n in L2p(N 1), and families [a2
ik]1≤i≤n,1≤k≤m and [b2kj ]1≤k≤m,1≤j≤n in

L2p(N 2) such that we have x1
ij =

∑
k a

1
ikb

1
kj and x2

ij =
∑

k a
2
ikb

2
kj for all 1 ≤ i, j ≤ n, as

well as norm estimates

‖(a1
ik)i,k‖L2p(N1;{`2nm}r) = ‖(b1kj)kj‖L2p(N1;{`2mn}c) ≤

(
‖[x1

ij ]‖Lp(N1;S1
n) + ε

) 1
2
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and

‖(a2
ik)i,k‖L2p(N2;{`2nm}r) = ‖(b2kj)kj‖L2p(N2;{`2mn}c) ≤

(
‖[x2

ij ]‖Lp(N2;S1
n) + ε

) 1
2

Let N = N 1

∞
⊕N 2. Using (3), we have

‖(a1
ik, a

2
ik)i,k‖L2p(N ;{`2nm}r) =

∥∥∥(∑
k

a1
ika

1∗
ik ,
∑
k

a2
ika

2∗
ik

)∥∥∥ 1
2

Lp(N )

=

(∥∥∥∑
k

a1
ika

1∗
ik

∥∥∥p
Lp(N1)

+
∥∥∥∑

k

a2
ika

2∗
ik

∥∥∥p
Lp(N2)

) 1
2

=
(
‖(a1

ik)i,k‖
2p
L2p(N1;{`2nm}r)

+ ‖(a2
ik)i,k‖

2p
L2p(N2;{`2nm}r)

) 1
2

≤
((
‖[x1

ij ]‖Lp(N1;S1
n) + ε

)p
+
(
‖[x2

ij ]‖Lp(N2;S1
n) + ε

)p) 1
2
.

Likewise,

‖(b1kj , b2kj)i,k‖L2p(N ;{`2mn}c) ≤
((
‖[x1

ij ]‖Lp(N1;S1
n) + ε

)p
+
(
‖[x2

ij ]‖Lp(N2;S1
n) + ε

)p) 1
2
.

Since (x1
ij , x

2
ij) =

∑
k(a

1
ik, a

2
ik)(b

1
kj , b

2
kj) for all 1 ≤ i, j ≤ n and ε > 0 is arbitrary, the

above two estimates imply the inequality ≤ in (29). The proof of the reverse inequality is
similar. �

The next result may be known to operator space specialists. We include a proof for the
sake of completeness.

Lemma 5.3. Let 1 ≤ p ≤ ∞, let n ≥ 2 and let t : Spn → Spn denote the transposition
operator. We have

(i) ‖t : Spn → Spn‖cb = ‖ISpn ⊗ t : S
p
n[Spn]→ Spn[Spn]‖ = n

2| 1
2
− 1
p
|
;

(ii) ‖t : Spn → Spn‖reg = ‖t⊗ IS1
n

: Spn[S1
n]→ Spn[S1

n]‖ = n.

Proof. We will use the the Haagerup tensor product
h
⊗, the row and column operator spaces

Rn and Cn, the interpolation spaces Rn(θ) = (Cn, Rn)θ for θ ∈ [0, 1], introduced in [24],
and the construction of operator space valued Sp-spaces from [26, Chapter 1]. We will
also use the crucial fact that the Haagerup tensor product commutes with interpolation
(see [24, Theorem 2.3] for a precise statement). We refer to the above references and
to [6, 25] for some background.

Let (e1, . . . , en) be the standard basis of `2n. It follows from [26, Theorem 1.1] that for
any operator space E, the mapping Eij⊗x 7→ ei⊗x⊗ej , 1 ≤ i, j ≤ n and x ∈ E, uniquely
extends to a completely isometric isomorphism

Spn[E] ' Rn
(

1
p

) h
⊗E

h
⊗Rn

(
1− 1

p

)
.(30)

(i) : First we note that ‖t : Mn →Mn‖cb = n, see e.g. [8, Proposition 2.2.7]. Since we have
‖t : S2

n → S2
n‖cb = 1, we obtain by interpolation that

‖t : Spn → Spn‖cb ≤ n
2| 1

2
− 1
p
|
.
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We now turn to lower estimates. Consider the matrix [Eij ] in Spn[Spn] and note that ISpn⊗ t
maps [Eij ] to [Eji] and [Eji] to [Eij ]. Applying (30) with E = Spn equipped with its
canonical operator space structure, we have isometric identifications

Spn[Spn] ' Rn
(

1
p

) h
⊗Rn

(
1
p

) h
⊗Rn

(
1− 1

p

) h
⊗Rn

(
1− 1

p

)
' Rn2

(
1
p

) h
⊗Rn2

(
1− 1

p

)
' Sp

n2 .

In the first of these identifications, [Eij ] corresponds to
∑

i,j ei ⊗ ei ⊗ ej ⊗ ej , which may

be written as
(∑

i ei⊗ ei
)
⊗
(∑

j ej ⊗ ej
)
. Since the ei⊗ ei are pairwise orthogonal in `2n2 ,

we deduce that

‖[Eij ]‖Spn[Spn] =
∥∥∥ n∑
i=1

ei ⊗ ei
∥∥∥
Rn2 ( 1

p
)

∥∥∥ n∑
j=1

ej ⊗ ej
∥∥∥
Rn2 (1− 1

p
)

= n
1
2n

1
2 = n.

Similarly, [Eji] corresponds to
∑

i,j ei ⊗ ej ⊗ ei ⊗ ej . Further {ei ⊗ ej : 1 ≤ i, j ≤ n} is

an orthonormal basis of `2n2 . Hence through the identification of Spn[Spn] with Sp
n2 , [Eji]

corresponds to the identity map on `2n2 . Its Sp-norm is equal to n
2
p , hence

‖[Eji]‖Spn[Spn] = n
2
p .

These computations show that ‖ISpn ⊗ t : S
p
n[Spn] → Spn[Spn]‖ ≥ n2|1/2−1/p|. Since the cb-

norm of t is greater than or equal to ‖ISpn ⊗ t : S
p
n[Spn] → Spn[Spn]‖, this proves the double

equality in (i).

(ii) : Note that

‖t : Mn →Mn‖reg = ‖t : Mn →Mn‖cb = n

and that ‖t : S1
n → S1

n‖reg = ‖t : Mn →Mn‖reg by duality. Hence by interpolation,

‖t : Spn → Spn‖reg ≤ n.

We now turn to lower estimates. We have S1
n ' Rn

h
⊗Cn completely isometrically hence

applying (30) with E = S1
n, we have an isometric identification

Spn[S1
n] ' Rn

(
1
p

) h
⊗Rn

h
⊗Cn

h
⊗Rn

(
1− 1

p

)
.

According to e.g. [8, Proposition 1.5.14 (6) & (8)], we have

Rn
(

1
p

) h
⊗Rn '

(
Cn

h
⊗Rn, Rn

h
⊗Rn

)
1
p
' (Mn, S

2
n) 1

p
= S2p

n .

Likewise,

Cn
h
⊗Rn

(
1− 1

p

)
'
(
Cn

h
⊗Cn, Cn

h
⊗Rn

)
1− 1

p
' (S2

n,Mn)1− 1
p

= S2p
n .

Hence arguing as in the proof of (i), we have

‖[Eij ]‖Spn[S1
n] =

∥∥∥ n∑
i=1

ei ⊗ ei
∥∥∥
Rn( 1

p
)
h
⊗Rn

∥∥∥ n∑
j=1

ej ⊗ ej
∥∥∥
Cn

h
⊗Rn(1− 1

p
)

=
∥∥In : `2n → `2n

∥∥2

S2p
n

= n
1
p .
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Next using as in (i) the correspondance between [Eji] and
∑

i,j ei⊗ ej ⊗ ei⊗ ej , as well as

the functorial property of the Haagerup tensor product (see e.g. [6, 1.5.5]), we have∥∥∥ n∑
i,j=1

ei ⊗ ej⊗ei ⊗ ej
∥∥∥
Rn

h
⊗Rn

h
⊗Cn

h
⊗Cn

≤
∥∥In : Rn

(
1
p

)
→ Rn

∥∥
cb

∥∥In : Cn → Rn
(
1− 1

p

)∥∥
cb
‖[Eji]‖Spn[S1

n].

Using the facts that CB(Cn, Rn) ' S2
n and CB(Cn, Cn) 'Mn (see e.g. [7, Section 4]), we

both have
∥∥In : Cn → Rn

∥∥
cb

= n
1
2 and

∥∥In : Cn → Cn
∥∥
cb

= 1. Hence∥∥In : Rn
(

1
p

)
→ Rn

∥∥
cb
≤ n

1
2

(1− 1
p

)
,

by interpolation. Likewise,∥∥In : Cn → Rn
(
1− 1

p

)∥∥
cb
≤ n

1
2

(1− 1
p

)

Further Rn
h
⊗Rn

h
⊗Cn

h
⊗Cn ' Rn2

h
⊗Cn2 ' S1

n2 hence∥∥∥ n∑
i,j=1

ei ⊗ ej ⊗ ei ⊗ ej
∥∥∥
Rn

h
⊗Rn

h
⊗Cn

h
⊗Cn

=
∥∥In2 : `2n2 → `2n2

∥∥
1

= n2.

These estimate yield

‖[Eji]‖Spn[S1
n] ≥ n

1+ 1
p .

Hence we obtain that

‖t⊗ IS1
n

: Spn[S1
n]→ Spn[S1

n]‖ ≥ n
1+ 1

p

n
1
p

= n.

Since ‖t : Spn → Spn‖reg ≥ ‖t⊗ IS1
n

: Spn[S1
n]→ Spn[S1

n]‖, (ii) follows at once. �

Theorem 5.4. Let T : Lp(M) → Lp(N ) be an isometry. The following statements are
equivalent.

(i) T admits a direct Yeadon type factorization.
(ii) T is S1-contractive.

Proof. The implication “(i)⇒ (ii)” follows from Proposition 4.5 so we only need to prove
“(ii)⇒ (i)”.

We first show this implication in the case when M = Mn, with n ≥ 2. Let T : Spn →
Lp(N ) be an isometry and assume that T is S1-contractive. By Remark 3.12 and [21,
Theorem 4.2], T admits a Yeadon type factorisation. Let (w,B, J) be its Yeadon triple.
Changing T into w∗T ( · ), see Remark 4.2 (a), we can assume that w = J(1). Consider a

decomposition J =

(
π 0
0 σ

)
as in (26). We aim at showing that σ = 0.

Let us apply Remark 4.3 to T . In the sequel we use the elements N 1,N 2, B1, B2 and

T1 : Spn −→ Lp(N 1), T2 : Spn −→ Lp(N 2)

from this remark. By construction we have T1(x) = B1π(x) and T2(x) = B2σ(x) for any
x ∈ Spn.
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Applying Lemma 2.2 to the unital ∗-homomorphism π : Mn → N 1, we obtain a projec-
tion ε1 in N 1 and a bijective ∗-homomorphism ρπ : N 1 →Mn⊗(ε1N 1ε1) such that

(ρπ ◦ π) (x) = x⊗ ε1, x ∈Mn,

and ρπ is trace preserving. By Lemma 2.1, ρπ induces an isometry (still denoted by)

ρπ : Lp(N 1) −→ Lp(Mn⊗(ε1N 1ε1)) ' Spn ⊗ Lp(ε1N 1ε1).

We have B1 = T1(In), hence B1 ∈ Lp(N 1). Further for any x ∈ Spn, we have

(ρπ ◦ T1) (x) = ρπ (B1π(x))

= ρπ(B1)ρπ(π(x))

= ρπ(B1)(x⊗ ε1).

Since B1π(x) = π(x)B1, a similar computation shows that we also have (ρπ ◦ T1) (x) =
(x⊗ε1)ρπ(B1). This shows that ρπ(B1) commutes with x⊗ε1 for any x ∈ Spn. Consequently
there exists b1 in Lp(ε1N 1ε1) such that ρπ(B1) = In ⊗ b1. Then the above computation
shows that

(31) (ρπ ◦ T1) (x) = x⊗ b1, x ∈ Spn.

Recall that we let t : Mn →Mn denote the transposition map. The mapping σ◦t : Mn →
N 2 is a unital ∗-homomorphism. Hence arguing as above, we obtain a projection ε2 in
N 2, a trace preserving bijective ∗-homomorphism ρσ : N 2 → Mn⊗(ε2N 2ε2), inducing an
isometry

ρσ : Lp(N 2) −→ Lp(Mn⊗(ε2N 2ε2)) ' Spn ⊗ Lp(ε2N 2ε2),

and some b2 in Lp(ε2N 2ε2), such that

(32) (ρσ ◦ T2) (x) = t(x)⊗ b2, x ∈ Spn.

Observe that ρπ : Lp(N 1)→ Lp(Mn⊗(ε1N 1ε1)) and ρσ : Lp(N 2)→ Lp(Mn⊗(ε2N 2ε2))
are completely positive. Hence by Theorem 3.13, they are S1-contractive.

Let m ≥ 1 and let [xij ]1≤i,j≤m in Spn[S1
m]. Since ρπ is S1-contractive, we have

‖[ρπ ◦ T1(xij)]‖Lp(Mn⊗(ε1N1ε1);S1
m) ≤ ‖[T1(xij)]‖Lp(N1;S1

m).

On the other hand, using (31), (32) and Lemma 5.1, we have

‖[ρπ ◦ T1(xij)]‖Lp(Mn⊗(ε1N1ε1);S1
m) = ‖[xij ⊗ b1]‖Lp(Mn⊗(ε1N1ε1);S1

m) = ‖[xij ]‖Spn[S1
m]‖b1‖p.

Hence we obtain that

‖b1‖p‖[xij ]‖Spn[S1
m] ≤ ‖[T1(xij)]‖Lp(N1;S1

m).

Similarly, we have

‖b2‖p‖[t(xij)]‖Spn[S1
m] ≤ ‖[T2(xij)]‖Lp(N2;S1

m).

Taking the p-th powers and summing the above inequalities, we obtain that

‖b1‖pp‖[xij ]‖
p
Spn[S1

m]
+‖b2‖pp‖[t(xij)]‖

p
Spn[S1

m]

≤ ‖[T1(xij)]‖pLp(N1;S1
m)

+ ‖[T2(xij)]‖pLp(N2;S1
m)
.

According to Lemma 5.2, the right-hand side in the above inequality coincides with
‖[T (xij)]‖pLp(N ;S1

m)
. Since T is assumed S1-contractive, we infer that

(33) ‖b1‖pp‖[xij ]‖
p
Spn[S1

m]
+ ‖b2‖pp‖[t(xij)]‖

p
Spn[S1

m]
≤ ‖[xij ]‖pSpn[S1

m]
.
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Using (31) and (32) again, we note that for any x ∈ Spn,

‖T (x)‖pp = ‖T1(x)‖pp + ‖T2(x)‖pp
= ‖x⊗ b1‖pp + ‖t(x)⊗ b2‖pp,

and hence

(34) ‖T (x)‖ = ‖x‖pp
(
‖b1‖pp + ‖b2‖pp

)
.

Since T is an isometry, this implies that

‖b1‖pp + ‖b2‖pp = 1.

Replacing ‖b1‖pp by (1− ‖b2‖pp) in (33), we obtain that

‖b2‖p‖[t(xij)]‖Spn[S1
m] ≤ ‖b2‖p‖[xij ]‖Spn[S1

m]

for any m ≥ 1 and any [xij ]1≤i,j≤m in Spn[S1
m]. By Lemma 5.3 (ii), the above inequality

holds only if b2 = 0. In this case, we have σ = 0, and hence J is a ∗-homomorphism.

We now consider the general case. We let T : Lp(M) → Lp(N ) be an isometry and
assume that T is S1-contractive. As in the first part of the proof, this implies that T has a
Yeadon type factorisation. Let J : M→ N be the Jordan homomorphism in the Yeadon

triple of T and let J =

(
π 0
0 σ

)
be a decomposition of J as in (26). Let M1 = Ker(σ).

Since σ is w∗-continuous, M1 is a w∗-closed ideal of M. Hence we have a direct sum
decomposition

M =M1

∞
⊕M2.

Moreover σ|M2
is one-to-one. To prove that J is a ∗-homomorphism, it suffices to show

that M2 is abelian.

If not, then by Lemma 2.3, there exists a non zero ∗-homomorphism γ : M2 → M2

taking values inM2 ∩L1(M2). Let τ ′ = τM ◦ γ : M2 → C. Then τ ′ is a non zero trace on
M2 hence there exists δ > 0 such that τ ′ = δtr2. This readliy implies that

δ
− 1
pγ : Sp2 −→ Lp(M2)

is an isometry. Further δ
− 1
pγ is completely positive. Hence by Theorem 3.13, δ

− 1
pγ is S1-

contractive. By composition, we obtain that δ
− 1
pT ◦ γ is an S1-contractive isometry from

Sp2 into Lp(N ). According to the first part of this proof, δ
− 1
pT ◦ γ has therefore a direct

Yeadon type factorization. We observe that the Jordan homomorphism of its Yeadon
triple is equal to J ◦ γ. The latter is therefore multiplicative, hence σ ◦ γ is multiplicative.
Since σ ◦ γ also is anti-multiplicative, we actually have

σ ◦ γ(ab) = [σ ◦ γ(b)][σ ◦ γ(a)] = σ ◦ γ(ba)

for any a, b ∈ M2. However σ ◦ γ is one-to-one, hence the above property implies that
ab = ba for any a, b ∈ M2, a contradiction. Hence M2 is abelian as expected, which
concludes the proof. �

Remark 5.5. Let 1 ≤ p < ∞ and let N be a semifinite von Neumann algebra. The
argument in the first part of the proof of Theorem 5.4 shows that for any n ≥ 1 and
for any non zero separating map T : Spn → Lp(N ), the operator ‖T‖−1T is an isometry.
Indeed this follows from (34).

Likewise for any Hilbert space H and for any non zero separating map T : Sp(H) →
Lp(N ), the operator ‖T‖−1T is an isometry.
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Theorem 5.6. Let 1 ≤ p 6= 2 < ∞ and let T : Lp(M) → Lp(N ) be an isometry. The
following statements are equivalent.

(i) T admits a direct Yeadon type factorization.
(ii) T is completely contractive.

Proof. The implication “(i)⇒ (ii)” follows from Proposition 4.4 so we only need to prove
“(ii)⇒ (i)”. It turns out that the proof of the similar implication in Theorem 5.4 applies
for this case, up to a few changes that we now explain.

Assume first that M = Mn, with n ≥ 2, and consider T1, T2, ρπ, ρσ, b1, b2 given by the
proof of Theorem 5.4. By Lemma 2.1, ρπ : Lp(N 1)→ Lp(Mn⊗(ε1N 1ε1)) and ρσ : Lp(N 2)→
Lp(Mn⊗(ε2N 2ε2)) are complete isometries. Further for any m ≥ 1 and any [xij ]1≤i,j≤m
in Spm[Spn], we have

‖[xij ⊗ b1‖Lp(Mm⊗Mn⊗(ε1N1ε1)) = ‖[xij‖Spm[Spn]‖b1‖p,
by (2). Hence

‖b1‖p‖[xij ]‖Spm[Spn] ≤ ‖[T1(xij)]‖Lp(Mm⊗N1).

Similarly
‖b2‖p‖[xij ]‖Spm[Spn] ≤ ‖[T2(xij)]‖Lp(Mm⊗N2).

Moreover by (3),

‖[T (xij)]‖pLp(Mm⊗N )
= ‖[T1(xij)]‖pLp(Mm⊗N1)

+ ‖[T2(xij ]‖pLp(Mm⊗N2)
.

Then using Lemma 5.3 (i), the argument in the proof Theorem 5.4 shows that b2 = 0 and
hence that T has a direct Yeadon type factorization.

In the general case, the proof of Theorem 5.4 applies almost verbatim, using the simple

fact that δ
− 1
pγ is a complete isometry. �

Remark 5.7. Let n ≥ 2 and consider T : Spn
p
⊕Spn → Spn

p
⊕Spn defined by

T (x, y) =
(
x, n

− 1
p t(x)

)
, x, y ∈ Spn.

Then T is a separating map and by Lemma 5.3, we have ‖T‖ = ‖T‖S1 = ‖T‖cb. However
T does not have a direct Yeadon type factorization. This shows that Theorems 5.4 and
5.6 cannot hold true if we remove the isometric assumption on T .

Remark 5.8. Let T : Lp(M)→ Lp(N ) be an isometry. The proof of Theorem 5.4 actually
shows that T admits a direct Yeadon type factorization if and only if T is S1

2 -contractive,
that is, ∥∥T ⊗ IS1

2
: Lp(M;S1

2) −→ Lp(N ;S1
2)
∥∥ ≤ 1.

Likewise if p 6= 2, the proof of Theorem 5.6 shows that T admits a direct Yeadon type
factorization if and only if T is 2-contractive.

Note that Theorem 5.6 and the above remark extend [15, Proposition 3.2]. Theorem
5.4 can be regarded as a variant of the latter. Its main feature is that it also applies to
p = 2. We emphasize this in the next statements.

Corollary 5.9. An isometry T : L2(M)→ L2(N ) admits a direct Yeadon type factoriza-
tion if and only if it is S1-contractive.

Corollary 5.10. Any completely positive isometry T : L2(M) → L2(N ) admits a direct
Yeadon type factorization.



ON FACTORIZATION OF SEPARATING MAPS ON NONCOMMUTATIVE Lp-SPACES 25

Proof. This follows from Theorem 3.13 and Theorem 5.4. �

Remark 5.11. Assume here that M,N are semifinite and hyperfinite von Neumann al-
gebras. In the case when p 6= 2, Theorem 5.4 follows from Theorem 5.6, by Proposition
3.11 and [27, Proposition 2.2]. Moreover the L2-case of Theorem 5.4, and hence Corol-
laries 5.9 and 5.10, have a much simpler proof. Indeed under the hyperfinite assumption,
suppose that T : L2(M) → L2(N ) is an S1-contractive isometry. By Proposition 3.11, T
is completely regular with ‖T‖reg ≤ 1. Applying (19) with the specific operator space
E = S2

2 [Max(`12)] we obtain that

(35)
∥∥T ⊗ IS2

2
⊗ I`12 : L2(M)

[
S2

2 [Max(`12)]
]
−→ L2(N )

[
S2

2 [Max(`12)]
]∥∥ ≤ 1.

According to [26, Theorem 1.9], we have a Fubini type isometric identification between
L2(M)

[
S2

2 [Max(`12)]
]

and L2(M2⊗M)[Max(`12)]. Combining with [21, (7)], we then have

L2(M)
[
S2

2 [Max(`12)]
]
' L2(M2⊗M; `12).

We have a similar result for N . Consequently (35) implies that

IS2
2
⊗ T : L2(M2⊗M) −→ L2(M2⊗N )

is `12-contractive. Further L2(M2⊗M) (resp. L2(M2⊗N )) coincides with the Hilbertian
tensor product of S2

2 and L2(M) (resp. L2(N )). Hence ISp2 ⊗ T is an isometry. It

therefore follows from [21, Theorem 4.2] that IS2
2
⊗ T admits a Yeadon type factorization.

By [11, Theorem 3.6], this implies that T admits a direct Yeadon type factorization.
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