A jump theorem with uniform estimates for $\bar{\partial}_b$ -closed forms on real hypersurfaces

Bert Fischer and Jürgen Leiterer

Fachbereich Mathematik der Humboldt-Universität

O-1086 Berlin

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

MPI/92-70

and a second second

A jump theorem with uniform estimates for $\bar{\partial}_b$ -closed forms on real hypersurfaces

by Bert Fischer and Jürgen Leiterer

1 The main result and reduction of the proof to estimates for $\bar{\partial}$

Let $\Omega \subset \mathbb{C}^n$ be a C^2 -domain and let $\varrho : U_{\overline{\Omega}} \to \mathbb{R}$ be a C^2 -function defined in a neighbourhood $U_{\overline{\Omega}}$ of $\overline{\Omega}$ such that $\Omega = \{z \in U_{\overline{\Omega}} : \varrho(z) < 0\}$ and $d\varrho(z) \neq 0$ for all $z \in b\Omega$. Suppose that for some integer $0 \leq q \leq n-1$ the following convexity condition is fulfilled: For all $z \in b\Omega$ the Levi form of ϱ at z has at least q+1 positive eigenvalues.

Further let $M = \{z \in U_{\overline{\Omega}} : \varrho_0 = 0\}$ be a real C^2 -hypersurface in $U_{\overline{\Omega}}$ defined by a second C^2 -function $\varrho_0 : U_{\overline{\Omega}} \to \mathbb{R}$ with $d\varrho_0(z) \neq 0$ for all $z \in M$ such that the intersection $M \cap b\Omega$ is transversal in the real sense $(d\varrho_0(z) \wedge d\varrho(z) \neq 0$ for all $z \in M \cap b\Omega$).

Set

$$\Omega_{+} = \{ z \in \Omega : \rho_0 < 0 \}$$
 and $\Omega_{-} = \{ z \in \Omega : \rho_0 > 0 \}.$

In this paper we prove the following

Theorem 1.1 For each continuous closed (n,r)-form f on $M \cap \Omega$ with $r \ge n-q-1$, there exist continuous closed (n,r)-forms f_+ on Ω_+ and f_- on Ω_- such that, for some constant C > 0 which is independent of f,

$$||f_{\pm}(z)|| \le C(1+|\ln \operatorname{dist}(z,M)|^3) \max_{\zeta \in M \cap \Omega} ||f(\zeta)||, \ z \in \Omega_{\pm}, \tag{1}$$

and

$$(-1)^{n+r} \int_{M \cap \Omega} f \wedge \varphi = \int_{\Omega_+} f_+ \wedge d\varphi + \int_{\Omega_-} f_- \wedge f\varphi$$
(2)

for each $C_{0,n-r-1}^{\infty}$ -form φ with compact support in Ω , where M carries the orientation of $b\Omega_+$. Equation (2) means that $f = f_+ - f_-$ in the sense of distributions.

For the definition of the norm of a differential form at a point which appears in (1) see for instance Section 1.6.3 in [H/Le 1].

In the paper [La/Le] it was proved that under certain additional convexity conditions on M, this theorem together with the main result of [La/Le] leads to uniform estimates for the tangential Cauchy-Riemann equation on $M \cap \overline{\Omega}$. This is the motivation for the present article.

In [La/Le] it was also observed that the essence of Theorem 1.1 is contained in a special uniform estimate for the $\bar{\partial}$ -equation on Ω which will be stated in Theorem 1.2 below. Let us repeat the corresponding arguments from [La/Le].

Suppose f is as in Theorem 1.1. Further let

$$B(z,\zeta) = \frac{(n-1)!}{(2\pi i)^n} \sum_{j=1}^n (-1)^{j-1} (d\bar{\zeta}_1 - d\bar{z}_1) \wedge .._{\hat{j}} .. \wedge (d\bar{\zeta}_n - d\bar{z}_n) \wedge dz_1 \wedge ... \wedge dz_n$$

be the Martinelli-Bochner-Koppelman kernel. Set

$$\tilde{f}_{\pm}(z) = (-1)^r \int_{\zeta \in M \cap \Omega} f(\zeta) \wedge B(z,\zeta) \text{ for } z \in \Omega_{\pm}$$

and

$$F(z) = (-1)^r \int_{\zeta \in \mathcal{M} \cap b\Omega} f(\zeta) \wedge B(z,\zeta) \text{ for } z \in \Omega.$$

Since $d_z B(z,\zeta) = -\bar{\partial}_{\zeta} B(z,\zeta)$ we get $d\tilde{f}_{\pm} = F$ on Ω_{\pm} and, by the hypothesis on the Levi form of ρ , it follows from the Andreotti-Grauert theory (see [A/G]) that F = du for some continuous (n, r)-form u on Ω . Setting

$$f_{\pm} = \tilde{f}_{\pm} - u$$

we obtain closed continuous (n, r)-forms f_{\pm} on Ω_{\pm} . Then the relation (2) follows from the Martinelli-Bochner-Koppelman representation of the form $d\varphi$ It is clear that

$$||\tilde{f}_{\pm}(z)|| \le C_0(1+|\ln \operatorname{dist}(z,M)|) \max_{\xi \in \mathcal{M} \cap \bar{\Omega}} ||f(\xi)|| \quad \text{for} \quad z \in \Omega_{\pm},$$
(3)

where $C_0 > 0$ is a constant which does not depend on f. Moreover for each compact set $K \subset \subset \Omega$ there is a constant $C_K > 0$ (independent of f) with

$$||u(z)|| \le C_K \max_{\xi \in M \cap \Omega} ||f(\xi)|| \quad \text{for} \quad z \in K.$$
(4)

Hence, except of the validity of estimate (1) near $M \cap b\Omega$, the assertion of Theorem 1.1 may be considered as well-known. To obtain the complete Theorem 1.1 we have to estimate the solution u of du = F near $M \cap b\Omega$. For that we introduce the following abbreviations: $N = M \cap b\Omega$, $\delta(z) = \operatorname{dist}(z, N)$ and $\gamma(z) = ||\partial \varrho_0(z) \wedge \partial \varrho(z)||$. Since fis of maximal holomorphic degree we get

$$||f(\zeta)|_{N}|| \le C(\gamma(z) + |\zeta - z|) \max_{\xi \in M \cap \overline{\Omega}} ||f(\xi)||$$
(5)

for all $\zeta \in N$, $z \in \Omega$, and therefore

$$||F(z)|| \le C'(\frac{\gamma(z)}{\delta(z)} + 1 + |\ln \delta(z)|) \max_{\xi \in \mathcal{M} \cap \Omega} ||f(\xi)||,$$
(6)

for all $z \in \Omega$, where C and C' are positive constants which do not depend on f. Therefore Theorem 1.1 is a consequence of the following **Theorem 1.2** Let g be a closed continuous (n, r)-form with $r \ge n - q$ on Ω such that

$$||g(z)|| \leq \frac{\gamma(z)}{\delta(z)} + \frac{1}{\sqrt{\delta(z)}} \quad for \quad z \in \Omega.$$
(7)

Then there exists an (n, r-1)-form u which is Hölder continuous with exponent 1/2 on $\overline{\Omega} \setminus N^1$ such that du = g on Ω and

$$||u(z)|| \le C(1+|\ln \delta(z)|^3) \quad for \quad z \in \Omega.$$
(8)

where C > 0 is a constant which is independent of g.

Note that in [BF] already a similar result is proved for the more general situation where instead of N appears a submanifold of arbitrary codimension in $b\Omega$. However in the special case of codimension 1 this result is not strong enough to obtain Theorem 1.1. The main point is that in [BF] the "angle" $\gamma(z)$ between the complex tangent planes of $b\Omega$ and M is not considered. The proof of Theorem 1.2 given in the present paper is a development of the arguments from [BF] taking into account the role of $\gamma(z)$.

For the proof of Theorm 1.2 we use as in [BF] a version of the classical integral operator constructed by GRAUERT and LIEB [G/L], HENKIN [H] and W. FISCHER and LIEB [WF/L]. A certain technical difference to [BF] consists in the following: In [BF] only the strictly pseudoconvex case (q = n - 1) is considered and threffore global integral formulas can be used. In the case of a general q we have only local operators which immediately give only the following local version of Theorem 1.2:

Theorem 1.3 For each $\xi \in b\Omega$ there exists a neighbourhood U of ξ such that Theorem 1.2 becomes true after replacing Ω by $U \cap \Omega$.

By the well-known arguments which are known as GRAUERT's "Beulenmethode" (see, e.g., the proof of Theorem 2.3.5 in [H/Le 1]), Theorem 1.3 and the global results without estimates from the Abdreotti-Grauert theory [A/G] lead to Theorem 1.2. We omit these arguments.

Remark 1.4 Let $\tilde{\varrho}, \tilde{\varrho}_0: U_{\bar{\Omega}} \to \mathbb{R}$ two other C^2 -functions with

$$N = \{ z \in U_{\bar{\Omega}} : \tilde{\varrho}(z) = \tilde{\varrho}_0(z) = 0 \}$$

and

$$d\varrho_0(z) \wedge d\varrho(z) \neq 0$$
 for $z \in N$.

Then in Theorems 1.2 and 1.3 the function $\gamma(z)$ can be replaced by

$$ilde{\gamma}(z) := ||\partial ilde{arrho}_0(z) \wedge \partial ilde{arrho}(z)||.$$

¹This means u is Hölder continuous with exponent 1/2 on each compact set $K \subset \overline{\Omega} \setminus N$ with a Hölder constant depending on K.

In fact then there is a non-vanishing function φ on N such that $\partial \varrho_0(z) \wedge \partial \varrho(z) = \varphi(z)\partial \tilde{\varrho}_0(z) \wedge \partial \tilde{\varrho}(z)$ for $z \in N$. Hence we get

$$ilde{\gamma}(z) \leq K(\gamma(z) + \delta(z)) \quad ext{and} \quad \gamma(z) \leq K(ilde{\gamma}(z) + \delta(z))$$

with some constant K > 0 for all $z \in \Omega$, and therefore

$$\frac{1}{2K} \left(\frac{\tilde{\gamma}(z)}{\delta(z)} + \frac{1}{\sqrt{\delta(z)}} \right) \le \frac{\gamma(z)}{\delta(z)} + \frac{1}{\sqrt{\delta(z)}} \le 2K \left(\frac{\tilde{\gamma}(z)}{\delta(z)} + \frac{1}{\sqrt{\delta(z)}} \right)$$

for all $z \in \Omega$.

2 Proof of Theorem 1.3

For the proof of Theorem 1.3 we shall use the same integral operator as in [BF/Le]. Recall the following definition from Section 3 in [BF/Le]: $D \subset \mathbb{C}^n$ will be called a local q-convex C^2 -domain, $0 \leq q \leq n-1$, if there exist a biholomorphic map hfrom some neighbourhood of \tilde{D} onto an open set $W \subseteq \mathbb{C}^n$ as well as a C^2 -function $\varphi: W \to \mathbb{R}$ such that

- (i) $h(D) = \{z \in W : \varphi(z) < 0\};$
- (ii) $d\varphi(z) \neq 0$ for $z \in h(bD)$;
- (iii) φ is strictly convex with respect to $z_1, ..., z_{q+1}$.

Repeating the proof of Lemmas 3.1 in [BF/Le] one obtains: If Ω , M and q are as in Theorem 1.3 then for each $\xi \in b\Omega$ one can find a neighbourhood U of ξ such that $U \cap \Omega$ is a local q-convex C^2 -domain and moreover the intersection $M \cap b(U \cap \Omega)$ is transversal. Therefore and by Theorem 4.1 in [BF/Le], Theorem 1.3 is a consequence of the following

Theorem 2.1 Suppose that

- (i) $D \subset \mathbb{C}^n$ is a local q-convex C^2 -domain, $0 \leq q \leq n-1$;
- (ii) H is the integral operator constructed for D in Section 4 of [BF/Le];
- (iii) $\theta_{\bar{D}}$ is a neighbourhood of \bar{D} ;
- (iv) $\varrho: \theta_D \to \mathbb{R}$ is a C²-function with $D = \{z \in \theta_D : \varrho(z) < 0\}$ and $d\varrho(z) \neq 0$ for $z \in bD$;
- (v) $\varrho_0: \theta_D \to \mathbb{R}$ is a second C²-function with $d\varrho_0(z) \wedge d\varrho(z) \neq 0$ for all $z \in bD$ with $\varrho_0(z) = 0$;
- (vi) $N := \{z \in \overline{D} : \varrho_0(z) = \varrho(z) = 0\};$
- (vii) $\delta(z) := \inf_{\zeta \in N} |\zeta z|$ for $z \in \theta_D$;

(viii) $\gamma(z) := ||\partial \varrho_0(z) \wedge \partial \varrho(z)||$ for $z \in \theta_D$.

Then for each continuous differential form f on D with

$$||f(z)|| \le \frac{\gamma(z)}{\delta(z)} + \frac{1}{\sqrt{\delta(z)}} \quad for \quad z \in D$$
(9)

the form Hf is Hölder continuous with exponent 1/2 on $D \setminus N$ and moreover

$$||Hf(z)|| \le C(1+|\ln \delta(z)|^3) \quad for \quad z \in D,$$
 (10)

where C is a positive constant which is independent of f.

Proof. Let f be a continuous differential form on D satisfying estimate (9). In the following we denote by C and C' positive constants which are independent of f, where the same letter C or C' in different places may denote different constants.

In view of Remark 1.4 we may assume that ρ is the same function as in Section 4 of [BF/Le]. Let also G, V_D , h, $\Phi(z,\zeta)$ and $t(z,\zeta) = \text{Im }\Phi(z,\zeta)$ be as in Section 4 of [BF/Le]. Then we may moreover assume that D = G, $\theta_D = V_D$ and h is the identical map.

Since $d\varrho(z) \neq 0$ for $z \in bD$ there is a neighbourhood θ_{bD} of bD with

$$d_{\zeta}t(z,\zeta)|_{\zeta} = z \wedge d\varrho(z) \neq 0 \quad \text{for} \quad z \in \theta_{bD}.$$
⁽¹¹⁾

Since $d\varrho_0(z) \wedge d\varrho(z) \neq 0$ for $z \in N$ we can find a neighbourhood $\theta_N \subset \subset \theta_{bD}$ with

$$d\varrho_0(z) \wedge d\varrho(z) \neq 0 \quad \text{for} \quad z \in \theta_N,$$
 (12)

and

$$C'\delta(z) \le |\varrho_0(z)| + |\varrho(z)| \le C\delta(z) \quad \text{for} \quad z \in \theta_N.$$
 (13)

Since

$$d_{\zeta}t(z,\zeta)|_{\zeta} = z = i\bar{\partial}\varrho(z) - i\partial\varrho(z),$$

we have the estimate

$$C'\gamma(z) \le ||d\varrho_0(z) \wedge d\varrho(z) \wedge d\zeta t(z,\zeta)|_{\zeta = z} || \le C\gamma(z) \quad \text{for} \quad z \in \theta_N.$$
(14)

From (13) in [BF/Le] one obtains that

$$|\Phi(z,\zeta)| \ge C(|t(z,\zeta)| + |\varrho(\zeta)| + |\zeta - z|^2) \quad \text{for} \quad z,\zeta \in D.$$
(15)

Further it is clear that

$$|\gamma(\zeta) - \gamma(z)| \le C|\zeta - z| \quad \text{for} \quad z, \zeta \in D,$$
(16)

and

$$||d_{\zeta}t(z,\zeta) - d_{\zeta}t(z',\zeta)|| \le C|z-z'| \quad \text{for} \quad z,z' \in D.$$
(17)

That Hf is Hölder continuous with exponent 1/2 on $\overline{D}\setminus N$ follows by the same arguments as in the beginning of the proof of Theorem 4.3 in [BF/Le]. It remains to prove estimate (10). As usual (cf., e.g., Section 3.2.7 in [H/Le 1]) one obtains that

$$||Hf(z)|| \le C \sum_{k=0}^{n} \int_{\zeta \in D} \frac{||f(\zeta)|| d\lambda(\zeta)}{|\Phi(z,\zeta)|^{k} |\zeta - z|^{2n-1-k}} \quad \text{for} \quad z \in D,$$
(18)

. . .

where $d\lambda$ is the Lebesgue measure on D. For each open set $W \subseteq D$, $z \in D$ and k = 0, 1, 2 we set

$$I_k^1(W,z) := \int_{\zeta \in W} \frac{\gamma(\zeta)d\lambda(\zeta)}{(|t(z,\zeta)| + |\varrho(\zeta)| + |\zeta - z|^2)^k |\zeta - z|^{2n-k-1}\delta(\zeta)}$$

and

$$I_k^2(W,z) := \int_{\zeta \in W} \frac{d\lambda(\zeta)}{(|t(z,\zeta)| + |\varrho(\zeta)| + |\zeta - z|^2)^k |\zeta - z|^{2n-k-1} \sqrt{\delta(\zeta)}}.$$

Then it follows from (9), (15) and (18) that

$$||Hf(z)|| \le C \sum_{\nu=1}^{2} \sum_{k=0}^{2} I_{k}^{\nu}(D, z) \quad \text{for} \quad z \in D.$$
(19)

Now we choose some neighbourhood θ_N^0 of N with $\theta_N^0 \subset \subset \theta_N$. Then it is clear that $I_k^{\nu}(D \setminus \theta_N^0, z)$ is bounded by

$$C\int_{\zeta\in D}\frac{d\lambda(\zeta)}{(|t(z,\zeta)|+|\varrho(\zeta)|+|\zeta-z|^2)^k|\zeta-z|^{2n-k-1}}.$$

Therefore, integrating with respect to $t(z, \cdot)$ and ρ which is possible by (11), one obtains that

$$I_k^{\nu}(D \setminus \theta_N^0, z) \le C \quad \text{for} \quad z \in D,$$
(20)

for k = 0, 1, 2 and $\nu = 1, 2$. Also it is clear that

$$I_{k}^{\nu}(D \cap \theta_{N}^{0}, z) \leq C \quad \text{for} \quad z \in D \setminus \theta_{N},$$
(21)

for k = 0, 1, 2 and $\nu = 1, 2$. In view of (19)-(21) it remains to prove that

$$I_{k}^{\nu}(D \cap \theta_{N}^{0}, z) \leq C(1 + |\ln \delta(z)|^{3}) \quad \text{for} \quad z \in D \cap \theta_{N},$$
(22)

for k = 0, 1, 2 and $\nu = 1, 2$. For all $z \in D \cap \theta_N$ we set

$$W^1(z) = \{\zeta \in D \cap \theta^0_N : |\zeta - z| < \delta(z)/2\}$$

and

$$W^{2}(z) = \{ \zeta \in D \cap \theta_{N}^{0} : |\zeta - z| > \delta(z)/2 \}.$$

To prove (22) now it is sufficient to show that

$$I_{k}^{\nu}(W^{m}(z), z) \leq C(1 + |\ln \delta(z)|^{3})$$
(23)

for all $z \in D \cap \theta_N$, $k = 0, 1, 2, \nu = 1, 2$ and m = 1, 2.

The case m = 1: Since $|\zeta - z| < \delta(z)/2$ and therefore $\delta(\zeta) > \delta(z)/2$ for $\zeta \in W^1(z)$ it follows from (11) that

$$\begin{split} I_{k}^{\nu}(W^{1}(z),z) &\leq \frac{C}{\delta(z)} \int\limits_{\substack{x \in \mathbf{R}^{2n} \\ |x| < \delta(x)/2}} \frac{dx_{1} \wedge \ldots \wedge dx_{2n}}{(|x_{1}| + |x_{2}| + |x|^{2})^{k} |x|^{2n-k-1}} \\ &\leq \frac{C}{\delta(z)} \int\limits_{\substack{x \in \mathbf{R}^{2n-k} \\ |x| < \delta(x)/2}} \frac{1 + |\ln|x||}{|x|^{2n-k-1}} dx_{1} \wedge \ldots \wedge dx_{2n-k} \\ &\leq C(1 + |\ln\delta(z)|), \end{split}$$

for all $z \in D \cap \theta_N$, k = 0, 1, 2 and $\nu = 1, 2$. Hence (23) holds for m = 1.

The case m = 2 and $\nu = 1$: In view of (13),(14) and (17) the integrals $I_k^1(W^2(z), z)$ $(z \in D \cap \theta_N, k = 0, 1, 2)$ are bounded by

$$C \int_{\zeta \in W^{2}(z)} \frac{||d\varrho_{0}(\zeta) \wedge d\varrho(\zeta) \wedge d\zeta t(z,\zeta)||d\lambda(\zeta)}{(|t(z,\zeta)| + |\varrho(\zeta)| + |\zeta - z|^{2})^{k}|\zeta - z|^{2n-k-1}(|\varrho_{0}(\zeta)| + |\varrho(\zeta)|)} + C \int_{\zeta \in W^{2}(z)} \frac{d\lambda(\zeta)}{(|t(z,\zeta)| + |\varrho(\zeta)| + |\zeta - z|^{2})^{k}|\zeta - z|^{2n-k-2}(|\varrho_{0}(\zeta)| + |\varrho(\zeta)|)}.$$

By (12), ρ_0 and ρ are local coordinates on $\bar{\theta}_N$. Therefore we can use the Range-Siu trick (see the proof of Proposition (3.7) in [R/S]) which allows us to consider ρ_0 , ρ and $t(z, \cdot)$ as coordinates. In this way it follows that the integrals $I_k^1(W^2(z), z)$ ($z \in D \cap \theta_N$, k = 0, 1, 2) are bounded by

$$C \int_{\substack{x \in \mathbb{R}^{2n} \\ \ell(x)/2 < |x| < C'}} \frac{dx_1 \wedge \dots \wedge dx_{2n}}{(|x_3| + |x_2| + |x|^2)^k |x|^{2n-k-1}(|x_1| + |x_2|)} \\ + C \int_{\substack{x \in \mathbb{R}^{2n} \\ \delta(x)/2 < |x| < C'}} \frac{dx_1 \wedge \dots \wedge dx_{2n}}{(|x_2| + |x|^2)^k |x|^{2n-k-2}(|x_1| + |x_2|)}.$$

This implies that

$$I_{2}^{1}(W^{2}(z), z) \leq C \int_{\substack{x \in \mathbb{Z}^{2n-3} \\ \delta(x)/2 < |x| < C'}} \frac{1 + |\ln|x||^{2}}{|x|^{2n-3}} dx_{1} \wedge \dots \wedge dx_{2n-3}$$
$$+ C \int_{\substack{x \in \mathbb{Z}^{2n-2} \\ \delta(x)/2 < |x| < C'}} \frac{1 + |\ln|x||}{|x|^{2n-2}} dx_{1} \wedge \dots \wedge dx_{2n-2}$$
$$\leq C(1 + |\ln \delta(z)|^{3})$$

for $z \in D \cap \theta_N$,

$$I_{1}^{1}(W^{2}(z), z) \leq C \int_{\substack{x \in \mathbb{R}^{2n-2} \\ \delta(x)/2 < |x| < C'}} \frac{1 + |\ln |x||^{2}}{|x|^{2n-2}} dx_{1} \wedge \dots \wedge dx_{2n-2} + C \int_{\substack{x \in \mathbb{R}^{2n-2} \\ \delta(x)/2 < |x| < C'}} \frac{1 + |\ln |x||^{2}}{|x|^{2n-3}} dx_{1} \wedge \dots \wedge dx_{2n-2} \leq C(1 + |\ln \delta(z)|^{3})$$

1

for $z \in D \cap \theta_N$, and

$$\begin{split} I_{0}^{1}(W^{2}(z),z) &\leq C \int_{\substack{x \in \mathbb{R}^{2n} \\ \delta(x)/2 < |x| < C'}} \frac{dx_{1} \wedge \ldots \wedge dx_{2n}}{|x|^{2n-1}(|x_{1}| + |x_{2}|)} \\ &\leq C \int_{\substack{x \in \mathbb{R}^{2n} \\ \delta(x)/2 < |x| < C' \\ |x_{1}| + |x_{2}| > |x|/2}} \frac{dx_{1} \wedge \ldots \wedge dx_{2n}}{|x|^{2n}} + C \int_{\substack{x \in \mathbb{R}^{2n-2} \\ \delta(x)/2 < |x| < C' \\ \delta(x)/2 < |x| < C'}} \frac{dx_{1} \wedge \ldots \wedge dx_{2n-2}}{|x|^{2n-2}} \\ &\leq C(1 + |\ln \delta(z)|) \end{split}$$

for $z \in D \cap \theta_N$. Hence (23) is proved for m = 2 and $\nu = 1$. The case m = 2 and $\nu = 2$: From (11) it follows that

$$I_k^2(W^2(z), z) \le C \int_{\substack{x \in \mathbf{Z}^{2n} \\ \delta(x)/2 < |x| < C'}} \frac{dx_1 \wedge \dots \wedge dx_{2n}}{(|x_1| + |x_2| + |x|^2)^k |x|^{2n-k-1} \sqrt{|x_1|}}$$

for all $z \in D \cap \theta_N$ and k = 0, 1, 2. This implies that

$$I_{2}^{2}(W^{2}(z), z) \leq C \int_{\substack{x \in \mathbb{R}^{2n-1} \\ \delta(x)/2 < |x| < C'}} \frac{dx_{1} \wedge \dots \wedge dx_{2n-1}}{(|x_{1}| + |x|^{2})^{3/2} |x|^{2n-3}}$$

$$\leq C \int_{\substack{x \in \mathbb{R}^{2n-2} \\ \delta(x)/2 < |x| < C'}} \frac{dx_{1} \wedge \dots \wedge dx_{2n-2}}{|x|^{2n-2}}$$

$$\leq C(1 + |\ln \delta(z)|)$$

for $z \in D \cap \theta_N$,

$$I_{1}^{2}(W^{2}(z), z) \leq C \int_{\substack{x \in \mathbb{R}^{2n-1} \\ \delta(x)/2 < |x| < C' \\ \leq C(1 + |\ln \delta(z)|)}} \frac{dx_{1} \wedge \dots \wedge dx_{2n-1}}{|x|^{2n-1}}$$

for $z \in D \cap \theta_N$, and

$$I_{0}^{2}(W^{2}(z), z) \leq C \int_{\substack{x \in \mathbb{R}^{2n} \\ \delta(z)/2 < |x| < C' \\ |x_{1}| > |x|/2}} \frac{dx_{1} \wedge \dots \wedge dx_{2n}}{|x|^{2n-1/2}} + C \int_{\substack{x \in \mathbb{R}^{2n-1} \\ \delta(z)/2 < |x| < C' \\ \delta(z)/2 < |x| < C'}} \frac{dx_{1} \wedge \dots \wedge dx_{2n-1}}{|x|^{2n-3/2}}$$

$$\leq C$$

for $z \in D \cap \theta_N$. Hence (23) is proved also for m = 2 and $\nu = 2$.

3 References

- [A/G] A. ANDREOTTI, H. GRAUERT: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 193-259.
 - [BF] B. FISCHER: Cauchy-Riemann equation in spaces with uniform weights. Math. Nachr. 156 (1992), 45-55.
- [BF/Le] B. FISCHER, J. LEITERER A local Martinelli-Bochner formula on hypersurfaces. to appear.
- [WF/L] W. FISCHER, I. LIEB: Lokale Kerne und beschränkte Lösungen für den ð-Operator auf q-konvexen Gebieten. Math. Ann. 208 (1974), 249-265.
 - [G/L] H. GRAUERT, I. LIEB: Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial}f = \alpha$ im Bereich der beschränkten Formen. Rice Univ. Studies 56, 2 (1970), 29-50.
 - [H] G.M. HENKIN: Integral representation of functions in strongly pseudoconvex domains and applications to the $\bar{\partial}$ -problem (Russ.). Mat. Sb. 82 (1970), 300-308.
- [H/Le 1] G.M. HENKIN, J. LEITERER: Theory of functions on complex manifolds. Akademie-Verlag Berlin 1984 and Birkhäuser-Verlag Boston 1984.
- [La/Le] C. LAURENT-THIÉBAUT, J. LEITERER: Uniform estimates for the Cauchy-Riemann equation on q-convex wedges. Prépublication de l'Institut Fourier no. 186, 1991.
 - [R/S] R.M. RANGE, Y.T. SIU: Uniform estimates for the \(\overline{\Delta}\)-equation on domains with piecewise smooth strictly pseudoconvex boundaries. Math. Ann. 206 (1973), 325-354.

Fachbereich Mathematik der Humboldt-Universität O-1086 Berlin

٢

·

.