A jump theorem with uniform estimates for $\bar{\partial}_{b}$-closed forms on real hypersurfaces

Bert Fischer and Jürgen Leiterer

Fachbereich Mathematik der Humboldt-Universität	Max-Planck-Institut für Mathematik Gotffried-Claren-Straße 26
O-1086 Berlin	D-5300 Bonn 3
	Germany

A jump theorem with uniform estimates for $\bar{\partial}_{b}$-closed forms on real hypersurfaces

by Bert Fischer and Jürgen Leiterer

1 The main result and reduction of the proof to estimates for $\bar{\partial}$

Let $\Omega \subset \subset \mathbb{C}^{n}$ be a C^{2}-domain and let $\varrho: U_{\Omega} \rightarrow \mathbb{R}$ be a C^{2}-function defined in a neighbourhood U_{Ω} of $\bar{\Omega}$ such that $\Omega=\left\{z \in U_{\Omega}: \varrho(z)<0\right\}$ and $d \varrho(z) \neq 0$ for all $z \in b \Omega$. Suppose that for some integer $0 \leq q \leq n-1$ the following convexity condition is fulfilled: For all $z \in b \Omega$ the Levi form of ϱ at z has at least $q+1$ positive eigenvalues.

Further let $M=\left\{z \in U_{\Omega}: \varrho_{0}=0\right\}$ be a real C^{2}-hypersurface in U_{Ω} defined by a second C^{2}-function $\varrho_{0}: U_{\Omega} \rightarrow \mathbb{R}$ with $d \varrho_{0}(z) \neq 0$ for all $z \in M$ such that the intersection $M \cap b \Omega$ is transversal in the real sense $\left(d \varrho_{0}(z) \wedge d \varrho(z) \neq 0\right.$ for all $z \in M \cap b \Omega)$.

Set

$$
\Omega_{+}=\left\{z \in \Omega: \varrho_{0}<0\right\} \quad \text { and } \quad \Omega_{-}=\left\{z \in \Omega: \varrho_{0}>0\right\}
$$

In this paper we prove the following
Theorem 1.1 For each continuous closed (n, r)-form f on $M \cap \bar{\Omega}$ with $r \geq n-q-1$, there exist continuous closed (n, r)-forms f_{+}on Ω_{+}and f_{-}on Ω_{-}such that, for some constant $C>0$ which is independent of f,

$$
\begin{equation*}
\left\|f_{ \pm}(z)\right\| \leq C\left(1+|\ln \operatorname{dist}(z, M)|^{3}\right) \max _{\zeta \in M \cap \Omega}\|f(\zeta)\|, z \in \Omega_{ \pm} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n+r} \int_{M \cap \Omega} f \wedge \varphi=\int_{\Omega_{+}} f_{+} \wedge d \varphi+\int_{\Omega_{-}} f_{-} \wedge f \varphi \tag{2}
\end{equation*}
$$

for each $C_{0, n-r-1}^{\infty}$-form φ with compact support in Ω, where M carries the orientation of $b \Omega_{+}$. Equation (2) means that $f=f_{+}-f_{-}$in the sense of distributions.

For the definition of the norm of a differential form at a point which appears in (1) see for instance Section 1.6.3 in [H/Le 1].

In the paper $[\mathrm{La} / \mathrm{Le}]$ it was proved that under certain additional convexity conditions on M, this theorem together with the main result of [La/Le] leads to uniform estimates for the tangential Cauchy-Riemann equation on $M \cap \bar{\Omega}$. This is the motivation for the present article.

In [$\mathrm{La} / \mathrm{Le}]$ it was also observed that the essence of Theorem 1.1 is contained in a special uniform estimate for the $\bar{\partial}$-equation on Ω which will be stated in Theorem 1.2 below. Let us repeat the corresponding arguments from [La/Le].

Suppose f is as in Theorem 1.1. Further let

$$
B(z, \zeta)=\frac{(n-1)!}{(2 \pi i)^{n}} \sum_{j=1}^{n}(-1)^{j-1}\left(d \bar{\zeta}_{1}-d \bar{z}_{\mathfrak{z}}\right) \wedge . . j . \wedge\left(d \bar{\zeta}_{n}-d \bar{z}_{n}\right) \wedge d z_{1} \wedge \ldots \wedge d z_{n}
$$

be the Martinelli-Bochner-Koppelman kernel. Set

$$
\tilde{f}_{ \pm}(z)=(-1)^{r} \int_{\zeta \in M \cap \Omega} f(\zeta) \wedge B(z, \zeta) \text { for } z \in \Omega_{ \pm}
$$

and

$$
F(z)=(-1)^{r} \int_{\zeta \in M \cap\llcorner\Omega} f(\zeta) \wedge B(z, \zeta) \text { for } z \in \Omega
$$

Since $d_{z} B(z, \zeta)=-\bar{\partial}_{\zeta} B(z, \zeta)$ we get $d \tilde{f}_{ \pm}=F$ on $\Omega_{ \pm}$and, by the hypothesis on the Levi form of ϱ, it follows from the Andreotti-Grauert theory (see [A/G]) that $F=d u$ for some continuous (n, r) -form u on Ω. Setting

$$
f_{ \pm}=\tilde{f}_{ \pm}-u
$$

we obtain closed continuous (n, r)-forms $f_{ \pm}$on $\Omega_{ \pm}$. Then the relation (2) follows from the Martinelli-Bochner-Koppelman representation of the form $d \varphi$ It is clear that

$$
\begin{equation*}
\left\|\tilde{f}_{ \pm}(z)\right\| \leq C_{0}(1+|\ln \operatorname{dist}(z, M)|) \max _{\xi \in M \cap \Omega}\|f(\xi)\| \quad \text { for } \quad z \in \Omega_{ \pm} \tag{3}
\end{equation*}
$$

where $C_{0}>0$ is a constant which does not depend on f. Moreover for each compact set $K \subset \subset \Omega$ there is a constant $C_{K}>0$ (independent of f) with

$$
\begin{equation*}
\|u(z)\| \leq C_{K} \max _{\xi \in M \cap \Omega}\|f(\xi)\| \text { for } z \in K \tag{4}
\end{equation*}
$$

Hence, except of the validity of estimate (1) near $M \cap b \Omega$, the assertion of Theorem 1.1 may be considered as well-known. To obtain the complete Theorem 1.1 we have to estimate the solution u of $d u=F$ near $M \cap b \Omega$. For that we introduce the following abbreviations: $N=M \cap b \Omega, \delta(z)=\operatorname{dist}(z, N)$ and $\gamma(z)=\left\|\partial \varrho_{0}(z) \wedge \partial \varrho(z)\right\|$. Since f is of maximal holomorphic degree we get

$$
\begin{equation*}
\left\|\left.f(\zeta)\right|_{N}\right\| \leq C(\gamma(z)+|\zeta-z|) \max _{\xi \in M \cap \Omega}\|f(\xi)\| \tag{5}
\end{equation*}
$$

for all $\zeta \in N, z \in \Omega$, and therefore

$$
\begin{equation*}
\|F(z)\| \leq C^{\prime}\left(\frac{\gamma(z)}{\delta(z)}+1+|\ln \delta(z)|\right) \max _{\xi \in M \cap \Omega}\|f(\xi)\| \tag{6}
\end{equation*}
$$

for all $z \in \Omega$, where C and C^{\prime} are positive constants which do not depend on f. Therefore Theorem 1.1 is a consequence of the following

Theorem 1.2 Let g be a closed continuous (n, r)-form with $r \geq n-q$ on Ω such that

$$
\begin{equation*}
\|g(z)\| \leq \frac{\gamma(z)}{\delta(z)}+\frac{1}{\sqrt{\delta(z)}} \quad \text { for } \quad z \in \Omega \tag{7}
\end{equation*}
$$

Then there exists an ($n, r-1$)-form u which is Hölder continuous with exponent $1 / 2$ on $\bar{\Omega} \backslash N^{1}$ such that $d u=g$ on Ω and

$$
\begin{equation*}
\|u(z)\| \leq C\left(1+|\ln \delta(z)|^{3}\right) \quad \text { for } \quad z \in \Omega \tag{8}
\end{equation*}
$$

where $C>0$ is a constant which is independent of g.
Note that in $[\mathrm{BF}]$ already a similar result is proved for the more general situation where instead of N appears a submanifold of arbitrary codimension in $b \Omega$. However in the special case of codimension 1 this result is not strong enough to obtain Theorem 1.1. The main point is that in $[\mathrm{BF}]$ the "angle" $\gamma(z)$ between the _ , \ldots, \ldots complex tangent planes of $b \Omega$ and M is not considered. The proof of Theorem 1.2 given in the present paper is a development of the arguments from $[B F]$ taking into account the role of ' $\gamma(z)$.

For the proof of Theorm 1.2 we use as in [BF] a version of the classical integral operator constructed by Grauert and Lieb [G/L], Henkin [H] and W. Fischer and Lieb [WF/L]. A certain technical difference to [BF] consists in the following: In [BF] only the strictly pseudoconvex case ($q=n-1$) is considered and threrffore global integral formulas can be used. In the case of a general q we have only local operators which immediately give only the following local version of Theorem 1.2:

Theorem 1.3 For each $\xi \in b \Omega$ there exists a neighbourhood U of ξ such that Theorem 1.2 becomes true after replacing Ω by $U \cap \Omega$.

By the well-known arguments which are known as Grauert's "Beulenmethode" (see, e.g., the proof of Theorem 2.3.5 in [H/Le 1]), Theorem 1.3 and the global results without estimates from the Abdreotti-Grauert theory $[\mathrm{A} / \mathrm{G}]$ lead to Theorem 1.2. We omit these arguments.

Remark 1.4 Let $\underline{\varrho}, \tilde{\varrho}_{0}: U_{\Omega} \rightarrow \mathbb{R}$ two other C^{2}-functions with

$$
N=\left\{z \in U_{\Omega}: \tilde{\varrho}(z)=\tilde{\varrho}_{0}(z)=0\right\}
$$

and

$$
d \varrho_{0}(z) \wedge d \varrho(z) \neq 0 \quad \text { for } \quad z \in N .
$$

Then in Theorems 1.2 and 1.3 the function $\gamma(z)$ can be replaced by

$$
\tilde{\gamma}(z):=\left\|\partial \tilde{\varrho}_{0}(z) \wedge \partial \tilde{\varrho}(z)\right\| .
$$

[^0]In fact then there is a non-vanishing function φ on N such that $\partial \varrho_{0}(z) \wedge \partial \varrho(z)=$ $\varphi(z) \partial \tilde{\varrho}_{0}(z) \wedge \partial \tilde{\varrho}(z)$ for $z \in N$. Hence we get

$$
\tilde{\gamma}(z) \leq K(\gamma(z)+\delta(z)) \quad \text { and } \quad \gamma(z) \leq K^{\prime}(\tilde{\gamma}(z)+\delta(z))
$$

with some constant $K>0$ for all $z \in \Omega$, and therefore

$$
\frac{1}{2 K}\left(\frac{\tilde{\gamma}(z)}{\delta(z)}+\frac{1}{\sqrt{\delta(z)}}\right) \leq \frac{\gamma(z)}{\delta(z)}+\frac{1}{\sqrt{\delta(z)}} \leq 2 K\left(\frac{\tilde{\gamma}(z)}{\delta(z)}+\frac{1}{\sqrt{\delta(z)}}\right)
$$

for all $z \in \Omega$.

2 Proof of Theorem 1.3

For the proof of Theorem 1.3 we shall use the same integral operator as in [BF/Le]. Recall the following definition from Section 3 in [$\mathrm{BF} / \mathrm{Le}$]: $D \subset \subset \mathbb{C}^{n}$ will be called a local q-convex C^{2}-domain, $0 \leq q \leq n-1$, if there exist a biholomorphic map h from some neighbourhood of \bar{D} onto an open set $W \subseteq \mathbb{C}^{n}$ as well as a C^{2}-function $\varphi: W \rightarrow \mathbb{R}$ such that
(i) $h(D)=\{z \in W: \varphi(z)<0\}$;
(ii) $d \varphi(z) \neq 0 \quad$ for $\quad z \in h(b D)$;
(iii) φ is strictly convex with respect to z_{1}, \ldots, z_{q+1}.

Repeating the proof of Lemmas 3.1 in [BF/Le] one obtains: If Ω, M and q are as in Theorem 1.3 then for each $\xi \in b \Omega$ one can find a neighbourhood U of ξ such that $U \cap \Omega$ is a local q-convex C^{2}-domain and moreover the intersection $M \cap b(U \cap \Omega)$ is transversal. Therefore and by Theorem 4.1 in [BF/Le], Theorem 1.3 is a consequence of the following

Theorem 2.1 Suppose that
(i) $D \subset \subset \mathbb{C}^{n}$ is a local q-convex C^{2}-domain, $0 \leq q \leq n-1$;
(ii) H is the integral operator constructed for D in Section \& of $[B F / L e]$;
(iii) θ_{D} is a neighbourhood of \bar{D};
(iv) $\varrho: \theta_{D} \rightarrow \mathbb{R}$ is a C^{2}-function with $D=\left\{z \in \theta_{D}: \varrho(z)<0\right\}$ and $d \varrho(z) \neq 0$ for $z \in b D ;$
(v) $\varrho_{0}: \theta_{D} \rightarrow \mathbb{R}$ is a second C^{2}-function with $d \varrho_{0}(z) \wedge d \varrho(z) \neq 0$ for all $z \in b D$ with $\varrho_{0}(z)=0 ;$
(vi) $N:=\left\{z \in \bar{D}: \varrho_{0}(z)=\varrho(z)=0\right\}$;
(vii) $\delta(z):=\inf _{\zeta \in N}|\zeta-z|$ for $z \in \theta_{D}$;
(viii) $\gamma(z):=\left\|\partial \varrho_{0}(z) \wedge \partial \varrho(z)\right\|$ for $z \in \theta_{D}$.

Then for each continuous differential form f on D with

$$
\begin{equation*}
\|f(z)\| \leq \frac{\gamma(z)}{\delta(z)}+\frac{1}{\sqrt{\delta(z)}} \quad \text { for } \quad z \in D \tag{9}
\end{equation*}
$$

the form $H f$ is Hölder continuous with exponent $1 / 2$ on $\bar{D} \backslash N$ and moreover

$$
\begin{equation*}
\|H f(z)\| \leq C\left(1+|\ln \delta(z)|^{3}\right) \quad \text { for } \quad z \in D \text {, } \tag{10}
\end{equation*}
$$

where C is a positive constant which is independent of f.
Proof. Let f be a continuous differential form on D satisfying estimate (9). In the following we denote by C and C^{\prime} positive constants which are independent of f, where the same letter C or C^{\prime} in different places may denote different constants.

In view of Remark 1.4 we may assume that ϱ is the same function as in Section 4 of $[\mathrm{BF} / \mathrm{Le}]$. Let also $G, V_{D}, h, \Phi(z, \zeta)$ and $t(z, \zeta)=\operatorname{Im} \Phi(z, \zeta)$ be as in Section 4 of [BF/Le]. Then we may moreover asssume that $D=G, \theta_{D}=V_{D}$ and h is the identical map.

Since $d \varrho(z) \neq 0$ for $z \in b D$ there is a neighbourhood $\theta_{b D}$ of $b D$ with

$$
\begin{equation*}
\left.d_{\zeta} t(z, \zeta)\right|_{\zeta=z} \wedge d \varrho(z) \neq 0 \quad \text { for } \quad z \in \theta_{b D} \tag{11}
\end{equation*}
$$

Since $d \varrho_{0}(z) \wedge d \varrho(z) \neq 0$ for $z \in N$ we can find a neighbourhood $\theta_{N} \subset \subset \theta_{b D}$ with

$$
\begin{equation*}
d \varrho_{0}(z) \wedge d \varrho(z) \neq 0 \quad \text { for } \quad z \in \theta_{N} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{\prime} \delta(z) \leq\left|\varrho_{0}(z)\right|+|\varrho(z)| \leq C \delta(z) \quad \text { for } \quad z \in \theta_{N} \tag{13}
\end{equation*}
$$

Since

$$
\left.d_{\zeta} t(z, \zeta)\right|_{\zeta=z}=i \bar{\partial} \varrho(z)-i \partial \varrho(z)
$$

we have the estimate

$$
\begin{equation*}
C^{\prime} \gamma(z) \leq\left\|\left.d \varrho_{0}(z) \wedge d \varrho(z) \wedge d_{\zeta} t(z, \zeta)\right|_{\zeta=z}\right\| \leq C \gamma(z) \quad \text { for } \quad z \in \theta_{N} \tag{14}
\end{equation*}
$$

From (13) in [BF/Le] one obtains that

$$
\begin{equation*}
|\Phi(z, \zeta)| \geq C\left(|t(z, \zeta)|+|\varrho(\zeta)|+|\zeta-z|^{2}\right) \quad \text { for } \quad z, \zeta \in D \tag{15}
\end{equation*}
$$

Further it is clear that

$$
\begin{equation*}
|\gamma(\zeta)-\gamma(z)| \leq C|\zeta-z| \quad \text { for } \quad z, \zeta \in D \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|d_{\varsigma} t(z, \zeta)-d_{\varsigma} t\left(z^{\prime}, \zeta\right)\right\| \leq C\left|z-z^{\prime}\right| \text { for } z, z^{\prime} \in D . \tag{17}
\end{equation*}
$$

That $H f$ is Hölder continuous with exponent $1 / 2$ on $\bar{D} \backslash N$ follows by the same arguments as in the beginning of the proof of Theorem 4.3 in [BF/Le]. It remains to prove estimate (10). As usual (cf., e.g., Section 3.2.7 in [H/Le 1]) one obtains that

$$
\begin{equation*}
\|H f(z)\| \leq C \sum_{k=0}^{n} \int_{\zeta \in D} \frac{\|f(\zeta)\| d \lambda(\zeta)}{|\Phi(z, \zeta)|^{k}|\zeta-z|^{2 n-1-k}} \quad \text { for } \quad z \in D \tag{18}
\end{equation*}
$$

where $d \lambda$ is the Lebesgue measure on D. For each open set $W \subseteq D, z \in D$ and $k=0,1,2$ we set

$$
I_{k}^{1}(W, z):=\int_{\zeta \in W} \frac{\gamma(\zeta) d \lambda(\zeta)}{\left(|t(z, \zeta)|+|\varrho(\zeta)|+|\zeta-z|^{2}\right)^{k}|\zeta-z|^{2 n-k-1} \delta(\zeta)}
$$

and

$$
I_{k}^{2}(W, z):=\int_{\zeta \in W} \frac{d \lambda(\zeta)}{\left(|t(z, \zeta)|+|\varrho(\zeta)|+|\zeta-z|^{2}\right)^{k}|\zeta-z|^{2 n-k-1} \sqrt{\delta(\zeta)}}
$$

Then it follows from (9), (15) and (18) that

$$
\begin{equation*}
\|H f(z)\| \leq C \sum_{\nu=1}^{2} \sum_{k=0}^{2} I_{k}^{\nu}(D, z) \quad \text { for } \quad z \in D \tag{19}
\end{equation*}
$$

Now we choose some neighbourhood θ_{N}^{0} of N with $\theta_{N}^{0} \subset \subset \theta_{N}$. Then it is clear that $I_{k}^{\nu}\left(D \backslash \theta_{N}^{0}, z\right)$ is bounded by

$$
C \int_{\zeta \in D} \frac{d \lambda(\zeta)}{\left(|t(z, \zeta)|+|\varrho(\zeta)|+|\zeta-z|^{2}\right)^{k}|\zeta-z|^{2 n-k-1}}
$$

Therefore, integrating with respect to $t(z, \cdot)$ and ϱ which is possible by (11), one obtains that

$$
\begin{equation*}
I_{k}^{\nu}\left(D \backslash \theta_{N}^{0}, z\right) \leq C \quad \text { for } \quad z \in D \tag{20}
\end{equation*}
$$

for $k=0,1,2$ and $\nu=1,2$. Also it is clear that

$$
\begin{equation*}
I_{k}^{\nu}\left(D \cap \theta_{N}^{0}, z\right) \leq C \quad \text { for } \quad z \in D \backslash \theta_{N} \tag{21}
\end{equation*}
$$

for $k=0,1,2$ and $\nu=1,2$. In view of (19)-(21) it remains to prove that

$$
\begin{equation*}
I_{k}^{\nu}\left(D \cap \theta_{N}^{0}, z\right) \leq C\left(1+|\ln \delta(z)|^{3}\right) \quad \text { for } \quad z \in D \cap \theta_{N} \tag{22}
\end{equation*}
$$

for $k=0,1,2$ and $\nu=1,2$. For all $z \in D \cap \theta_{N}$ we set

$$
W^{1}(z)=\left\{\zeta \in D \cap \theta_{N}^{0}:|\zeta-z|<\delta(z) / 2\right\}
$$

and

$$
W^{2}(z)=\left\{\zeta \in D \cap \theta_{N}^{0}:|\zeta-z|>\delta(z) / 2\right\} .
$$

To prove (22) now it is sufficient to show that

$$
\begin{equation*}
I_{k}^{\nu}\left(W^{m}(z), z\right) \leq C\left(1+|\ln \delta(z)|^{3}\right) \tag{23}
\end{equation*}
$$

for all $z \in D \cap \theta_{N}, k=0,1,2, \nu=1,2$ and $m=1,2$.
The case $m=1$: Since $|\zeta-z|<\delta(z) / 2$ and therefore $\delta(\zeta)>\delta(z) / 2$ for $\zeta \in W^{1}(z)$ it follows from (11) that

$$
\begin{aligned}
I_{k}^{\nu}\left(W^{1}(z), z\right) & \leq \frac{C}{\delta(z)} \int_{\substack{x \in \mathbb{K}^{2 n} \\
|x|<\delta(x) / 2}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{1}\right|+\left|x_{2}\right|+|x|^{2}\right)^{k}|x|^{2 n-k-1}} \\
& \leq \frac{C}{\delta(z)} \int_{\substack{x \in \ln -k \\
|x|<\delta(x) / 2}} \frac{1+|\ln | x| |}{|x|^{2 n-k-1}} d x_{1} \wedge \ldots \wedge d x_{2 n-k} \\
& \leq C(1+|\ln \delta(z)|),
\end{aligned}
$$

for all $z \in D \cap \theta_{N}, k=0,1,2$ and $\nu=1,2$. Hence (23) holds for $m=1$.
The case $m=2$ and $\nu=1$: In view of (13),(14) and (17) the integrals $I_{k}^{1}\left(W^{2}(z), z\right)$ $\left(z \in D \cap \theta_{N}, k=0,1,2\right)$ are bounded by

$$
\begin{aligned}
& C \int_{\zeta \in W^{2}(z)} \frac{\| d \varrho_{0}(\zeta) \wedge d \varrho(\zeta) \wedge d_{\zeta} t(z, \zeta)| | d \lambda(\zeta)}{\left(|t(z, \zeta)|+|\varrho(\zeta)|+|\zeta-z|^{2}\right)^{k}|\zeta-z|^{2 n-k-1}\left(\left|\varrho_{0}(\zeta)\right|+|\varrho(\zeta)|\right)} \\
+ & C \int_{\zeta \in W^{2}(x)} \frac{d \lambda(\zeta)}{\left.|t t(z, \zeta)|+|\varrho(\zeta)|+|\zeta-z|^{2}\right)^{k}|\zeta-z|^{2 n-k-2}\left(\left|\varrho_{0}(\zeta)\right|+|\varrho(\zeta)|\right)}
\end{aligned}
$$

By (12), ϱ_{0} and ϱ are local coordinates on $\bar{\theta}_{N}$. Therefore we can use the Range-Siu trick (see the proof of Proposition (3.7) in $[\mathrm{R} / \mathrm{S}]$) which allows us to consider ϱ_{0}, ϱ and $t(z, \cdot)$ as coordinates. In this way it follows that the integrals $I_{k}^{1}\left(W^{2}(z), z\right)\left(z \in D \cap \theta_{N}\right.$, $k=0,1,2$) are bounded by

$$
\begin{aligned}
& C \int_{\substack{x \in \in x^{2 n} \\
(x) / 2<1 \mid<C^{\prime}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{3}\right|+\left|x_{2}\right|+|x|^{2}\right)^{k}|x|^{2 n-k-1}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)} \\
+ & C \int_{\substack{x \in \in^{2 n} \\
\delta(x) / 2<|x|<C^{\prime}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{2}\right|+|x|^{2}\right)^{k}|x|^{2 n-k-2}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
I_{2}^{1}\left(W^{2}(z), z\right) \leq & C \int_{\substack{x \in \mathbb{Z} 2 n-3 \\
\delta(x) / 2<|x|<C^{\prime}}} \frac{1+|\ln | x| |^{2}}{|x|^{2 n-3}} d x_{1} \wedge \ldots \wedge d x_{2 n-3} \\
& +C \int_{\substack{x \in \ln 2 \\
\delta(x)\left|2<|x|<C^{\prime}\right.}} \frac{1+|\ln | x| |}{|x|^{2 n-2}} d x_{1} \wedge \ldots \wedge d x_{2 n-2} \\
\leq & C\left(1+|\ln \delta(z)|^{3}\right)
\end{aligned}
$$

for $z \in D \cap \theta_{N}$,

$$
\begin{aligned}
I_{1}^{1}\left(W^{2}(z), z\right) \leq & C \int_{\substack{x=12 n-2 \\
\delta(z) / 2<|x|<C^{\prime}}} \frac{1+|\ln | x| |^{2}}{|x|^{2 n-2}} d x_{1} \wedge \ldots \wedge d x_{2 n-2} \\
& +C \int_{\substack{x \in \mathbb{R}^{2 n-2} \\
\delta(x) 2<|x|<C^{\prime}}} \frac{1+|\ln | x| |^{2}}{|x|^{2 n-3}} d x_{1} \wedge \ldots \wedge d x_{2 n-2} \\
\leq & C\left(1+|\ln \delta(z)|^{3}\right)
\end{aligned}
$$

for $z \in D \cap \theta_{N}$, and

$$
\begin{aligned}
& I_{0}^{1}\left(W^{2}(z), z\right) \leq C \int_{\substack{x \in \mathbb{K}^{2 n} \\
\delta(x) / 2<|s|<C^{\prime}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{|x|^{2 n-1}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)}
\end{aligned}
$$

for $z \in D \cap \theta_{N}$. Hence (23) is proved for $m=2$ and $\nu=1$.
The case $m=2$ and $\nu=2$: From (11) it follows that

$$
I_{k}^{2}\left(W^{2}(z), z\right) \leq C \int_{\substack{x \in \mathbb{E}^{2 n} \\ \delta(x)\left|2<|x|<C^{\prime}\right.}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{1}\right|+\left|x_{2}\right|+|x|^{2}\right)^{k}|x|^{2 n-k-1} \sqrt{\left|x_{1}\right|}}
$$

for all $z \in D \cap \theta_{N}$ and $k=0,1,2$. This implies that

$$
\begin{aligned}
& I_{2}^{2}\left(W^{2}(z), z\right) \leq C \int_{\substack{x \in \mathbb{Z}_{2 n-1} \\
\delta(x)<1<1 \mid<C^{\prime}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-1}}{\left(\left|x_{1}\right|+|x|^{2}\right)^{3 / 2}|x|^{2 n-3}} \\
& \begin{array}{l}
\leq C \int_{\substack{x \in \mathbf{1}^{2 n-2} \\
\delta(x) / 2<|<|<C^{\prime}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-2}}{|x|^{2 n-2}} \\
\leq C(1+|\ln \delta(z)|)
\end{array}
\end{aligned}
$$

for $z \in D \cap \theta_{N}$,

$$
\begin{aligned}
I_{1}^{2}\left(W^{2}(z), z\right) & \leq C \int_{\substack{x \in \operatorname{zan} \\
\delta(x) / 2<1 z=C^{\prime}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-1}}{|x|^{2 n-1}} \\
& \leq C(1+|\ln \delta(z)|)
\end{aligned}
$$

for $z \in D \cap \theta_{N}$, and
for $z \in D \cap \theta_{N}$. Hence (23) is proved also for $m=2$ and $\nu=2$.

3 References

[A/G] A. Andreotti, H. Grauert:
Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 193-259.
[BF] B. Fischer:
Cauchy-Riemann equation in spaces with uniform weights. Math. Nachr. 156 (1992), 45-55.
[BF/Le] B. Fischer, J. Leiterer
A local Martinelli-Bochner formula on hypersurfaces. to appear.
[WF/L] W. Fischer, I. Lieb:
Lokale Kerne und beschränkte Lösungen für den $\bar{\delta}$-Operator auf q-konvexen Ge bieten. Math. Ann. 208 (1974), 249-265.
[G/L] H. Grauert, I. Lieb:
Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial} f=\alpha$ im Bereich der beschränkten Formen. Rice Univ. Studies 56, 2 (1970), 29-50.
[H] G.M. Henkin:
Integral representation of functions in strongly pseudoconvex domains and applications to the $\bar{\partial}$-problem (Russ.). Mat. Sb. 82 (1970), 300-308.
[H/Le 1] G.M. Henkin, J. Leiterer:
Theory of functions on complex manifolds. Akademie-Verlag Berlin 1984 and Birkhäuser-Verlag Boston 1984.
[La/Le] C. Laurent-Thiébaut, J. Leiterer:
Uniform estimates for the Cauchy-Riemann equation on q-convex wedges. Prépublication de l'Institut Fourier no. 186, 1991.
[R/S] R.M. Range, Y.T. Siu:
Uniform estimates for the $\bar{\partial}$-equation on domains with piecewise smooth strictly pseudoconvex boundaries. Math. Ann. 206 (1973), 325-354.

Fachbereich Mathematik der Humboldt-Universität O-1086 Berlin

[^0]: ${ }^{1}$ This means u is Hölder continuous with exponent $1 / 2$ on each compact set $K \subset \subset \bar{\Omega} \backslash N$ with a Hölder constant depending on K.

