On the fundamental groups of complements to the dual hypersurfaces of projective curves

Vik. S. KULIKOV* and I. SHIMADA**

*

Department of Mathematics
Moscow State University of
Transport Communications (MIT)
Obraztcova str., 15
101475 Moscow, Russia
**
Department of Mathematics
Hokkaido University
Sapporo 060 Japan

Max-Planck-Institut
für Mathematik
Gotffried-Claren-Str. 26
53225 Bonn
Germany

On the fundamental groups of complements to the dual hypersurfaces of projective curves

Vik. S. Kulikov and I. Shimada
Max-Planck Institute für Mathematik, Gottfried-Claren Strasse 26, Bonn, 53225, Germany

March 20, 1996

1 Introduction

Let C be a compact Riemann surface of genus $g \geq 1$. We embed C into a projective space \mathbb{P}^{n-g} by a very ample line bundle L of degree $n \geq 2 g+1$:

$$
\Phi_{|L|}: C \rightarrow \mathbb{P}^{n-g}
$$

We denote by C_{L} the image of $\Phi_{|L|}$. Let $\left(\mathbb{P}^{n-g}\right)$ be the dual projective space of \mathbb{P}^{n-g}, and let $C_{L} \subset\left(\mathbb{P}^{n-g}\right)$ be the dual hypersurface of C_{L}; that is,

$$
\check{C}_{L}:=\left\{H \in\left(\mathbb{P}^{n-9}\right) ; H \text { does not intersect } C_{L} \text { transversely }\right\} .
$$

The purpose of this paper is to calculate the fundamental group of the complement to this dual hypersurface. The idea of the calculation stems from [Z], where the fundamental group of such complements was calculated in the case $g=1$.

Let $\operatorname{Pic}^{n}(C)$ be the Picard variety of line bundles of degree n on C, and let $S^{n}(C)$ be the symmetric product of n-copies of C, which parameterizes all effective divisors on C of degree n. Then there exists a natural homomorphism

$$
\phi: S^{n}(C) \longrightarrow \operatorname{Pic}^{n}(C)
$$

which maps a divisor D to the associated line bundle $\mathcal{O}_{C}(D)$. Let $V \subset S^{n}(C)$ be the image of the big diagonal;

$$
V:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in S^{n}(C) ; x_{i}=x_{j} \text { for some } i \neq j\right\} .
$$

The fundamental group of the complement $S^{n}(C) \backslash V$ is, by definition, the braid group $B(g, n) \cong \pi_{1} B_{0, n} C$ (in the notation of [B]) of C with n strings.

Theorem 1 For a general line bundle $L \in \operatorname{Pic}^{n}(C)$ of degree n, the fundamental group $\pi_{1}\left(\left(\mathbb{P}^{n-9}\right) \backslash \dot{C}_{L}\right)$ is isomorphic to the kernel of the natural homomorphism

$$
\phi_{*}^{\prime}: \pi_{1}\left(S^{n}(C) \backslash V\right) \quad \longrightarrow \quad \pi_{1}\left(\operatorname{Pic}^{n}(C)\right) \cong H_{1}(C ; \mathbf{Z})
$$

induced by the restriction ϕ^{\prime} of ϕ to the complement $S^{n}(C) \backslash V$.
We denote the kernel of ϕ_{*}^{\prime} by $G_{g, n}$.
Theorem 2 The group $G_{g, n}, n \geq 2 g+1$, is generated by $n+3 g-1$ generators. Denote these generators by

$$
\begin{array}{rll}
c_{2}, c_{4}, & \cdots & , c_{2 g-4}, c_{2 g-2} ; \\
g_{2 g}, g_{2 g+1}, & \cdots & , g_{n-2}, g_{n-1} ; \\
g_{1, i, j}, g_{3, i, j}, & \cdots & , g_{2 g-3, i, j}, g_{2 g-1, i, j},
\end{array} \quad i, j=0,1
$$

The set of defining relations consists of

$$
\begin{aligned}
& {\left[c_{2 k}, c_{2 l}\right]=1,} \\
& i, j=0,1, \quad \begin{array}{l}
|k-l| \neq 1 ; \\
2 k \neq l \pm 1 ;
\end{array} \\
& {\left[c_{2 k}, g_{l, i, j}\right]=1 \text {, }} \\
& {\left[c_{2 k}, g_{l}\right]=1 \text {, }} \\
& {\left[\begin{array}{l}
\left.\left(c_{2 k-2} c_{2 k} c_{2 k-2}^{-1}\right), g_{2 k-1, i, j}\right]=1, \\
\left(c_{2 g-2} g_{2 g} c_{2 g-2}^{-1}\right), g_{2 g-1, i, j}
\end{array}\right]=1,} \\
& {\left[g_{2 k-1, i, j}, g_{2 l-1, i, j}\right]=1 \text {, }} \\
& {\left[g_{2 k-1, i, j}, g_{l}\right]=1 \text {, }} \\
& {\left[g_{k}, g_{l}\right]=1 \text {, }} \\
& c_{2 i} c_{2 i+2} c_{2 i}=c_{2 i+2} c_{2 i} c_{2 i+2} \text {, } \\
& c_{2 k} g_{2 k \pm 1, i, j} c_{2 k}=g_{2 k \pm 1, i, j} c_{2 k} g_{2 k \pm 1, i, j} \text {, } \\
& c_{2 g-2} g_{2 g} c_{2 g-2}=g_{2 g} c_{2 g-2} g_{2 g} \text {; } \\
& g_{2 g} g_{2 g-1, i, j} g_{2 g}=g_{2 g-1, i, j} g_{2 g} g_{2 g-1, i, j}, \\
& g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1}, \\
& \left(g_{2 j \pm 1,1,0} g_{2 j \pm 1,0,0} c_{2 j}\right)^{2}=\left(c_{2 j} g_{2 j \pm 1,1,0} g_{2 j \pm 1,0,0}\right)^{2}, \\
& \left(g_{2 j \pm 1,0,1} g_{2 j \pm 1,1,1} c_{2 j}\right)^{2}=\left(c_{2 j} g_{2 j \pm 1,0,1} g_{2 j \pm 1,1,1}\right)^{2}, \\
& \left(g_{2 j \pm 1,0,1} g_{2 j \pm 1,0,0} c_{2 j}\right)^{2}=\left(c_{2 j} g_{2 j \pm 1,0,1} g_{2 j \pm 1,0,0}\right)^{2}, \\
& \left(g_{2 g-1,1,0} g_{2 g-1,0,0} g_{2 g}\right)^{2}=\left(g_{2 g} g_{2 g-1,1,0} g_{2 g-1,0,0}\right)^{2} ; \\
& \left(g_{2 g-1,0,1} g_{2 g-1,1,1} g_{2 g}\right)^{2}=\left(g_{2 g} g_{2 g-1,0,1} g_{2 g-1,1,1}\right)^{2} ; \\
& \left(g_{2 g-1,0,1} g_{2 g-1,0,0} g_{2 g}\right)^{2}=\left(g_{2 g} g_{2 g-1,0,1} g_{2 g-1,0,0}\right)^{2} ; \\
& c_{2} \cdots c_{2 g-2} g_{2 g} \cdots g_{n-1} g_{n-1} \cdots g_{2 g}\left(g_{2 g-1,0,1} g_{2 g-1,1,1} g_{2 g-1,1,0} g_{2 g-1,0,0}\right) c_{2 g-2} \quad \cdots \\
& \cdots\left(g_{3,0,1} g_{3,1,1} g_{3,1,0} g_{3,0,0}\right) c_{2}\left(g_{1,0,1} g_{1,1,1} g_{1,1,0} g_{1,0,0}\right)=1 .
\end{aligned}
$$

Proof of Theorem 2 is based essentially on the ideas contained in section 2 of [Z]. By this reason, we advise to look through section 2 in [Z] before reading the proof of this Theorem.

Let $p r: C_{L} \rightarrow \mathbb{P}^{2}$ be a general projection, and denote by C_{L}^{\prime} its image. Then the dual curve $\left(C_{L}^{\prime}\right) \subset\left(\mathbb{P}^{2}\right)$ of C_{L}^{\prime} is nothing but a general plane section of \dot{C}_{L}. Therefore, we have the following theorem as an easy consequence:

Theorem 3 For a general line bundle $L \in \operatorname{Pic}^{n}(C)$ of degree n, the fundamental group $\pi_{1}\left(\mathbb{P}^{2} \backslash\left(C_{L}^{\prime}\right)\right)$ has the same presentation as that of $G_{g, n}$ in Theorem 2.

The contents of this paper are as follows. In section 1, we prove Theorem 1. The main idea is to apply an analogue of [Sh, Theorem 1] to the pull-back of ϕ^{\prime} by the universal covering of $\operatorname{Pic}^{n}(C)$. In section 2, we recall some properties of the presentations of the braid group $B(g, n)$. In section 3, we prove Theorem 2 by applying Reidemeister-Schreier method and by reducing general case to the case considered in [$Z]$.

We would like to thank Max-Planck-Institut für Mathematik in Bonn for providing us with excellent research environment.

2 Proof of Theorem 1

Since $n \geq 2 g+1$, the morphism ϕ is a fiber bundle with fibers isomorphic to \mathbb{P}^{n-g}. For $L \in \operatorname{Pic}^{n}(C)$, we denote by $\mathbb{P}(L)$ the fiber $\phi^{-1}(L)$, which is canonically isomorphic to the projective space $\mathbb{P}_{*}\left(H^{0}(C, L)\right)$ of all lines in $H^{0}(C, L)$ passing through the origin. The embedding morphism $\Phi_{|L|}$ is, by definition, a morphism into the dual projective space $\mathbb{P}(L)=\mathbb{P}_{*}\left(H^{0}(C, L)\right)$. Therefore, we can consider the dual hypersurface \mathscr{C}_{L} to be a hypersurface in the projective space $\mathbb{P}(L)$ in a natural way. It is obvious that

$$
\begin{equation*}
\check{C}_{L}=\mathbb{P}(L) \cap V \tag{2.1}
\end{equation*}
$$

By Nori's Lemma [N , Lemma 1.5 (C)], we have an exact sequence

$$
\pi_{1}\left(\mathbb{P}(L) \backslash C_{L}\right) \longrightarrow \pi_{1}\left(S^{n}(C) \backslash V\right) \longrightarrow \pi_{1}\left(\operatorname{Pic}^{n}(C)\right) \longrightarrow\{1\}
$$

for a general $L \in \operatorname{Pic}^{n}(C)$. Therefore, the point of the proof is to show the injectivity of the homomorphism $\pi_{1}\left(\mathbb{P}(L) \backslash C_{L}\right) \rightarrow \pi_{1}\left(S^{n}(C) \backslash V\right)$ induced by the inclusion of a general fiber of ϕ^{\prime}. Let $u: \mathbb{C}^{g} \rightarrow \operatorname{Pic}^{n}(C)$ be the universal covering of $\operatorname{Pic}^{n}(C)$. We define $\Sigma^{n}(C)$ and \mathcal{V} by the following fiber products:

and

This \mathcal{V} is an analytic divisor of $\Sigma^{n}(C)$. Then we have

$$
\begin{equation*}
\pi_{1}\left(\Sigma^{n}(C) \backslash \mathcal{V}\right) \cong \operatorname{Ker}\left(\phi_{*}^{\prime}: \pi_{1}\left(S^{n}(C) \backslash V\right) \rightarrow \pi_{1}\left(\operatorname{Pic}^{n}(C)\right)\right) \tag{2.2}
\end{equation*}
$$

Claim 1 For all $L \in \operatorname{Pic}^{n}(C)$, the hypersurface C_{L} is reduced of constant degree $2(n+g-1)$.
To prove this claim, we choose a linear subspace \mathbb{P}^{n-g-3} in $(\mathbb{P}(L))$ of codimension 3 which is in general position with respect to C_{L}. Consider the projection $p r$ of C_{L} to \mathbf{P}^{2} with the center being this \mathbb{P}^{n-g-3}. We fix a general point on \mathbb{P}^{2} and take the pencil \mathcal{P} of lines passing through this point. This pencil \mathcal{P} yields a line in $\mathbb{P}(L)$ whose point corresponds to a hyperplane of $(\mathbb{P}(L))$ spanned by the \mathbb{P}^{n-g-3} and a member of \mathcal{P}. The intersection points of this line with \grave{C}_{L} correspond to the lines in \mathcal{P} which are tangent to the image $p r\left(C_{L}\right)$ of C_{L} by the projection. Therefore the degree of \dot{C}_{L} is equal with the degree of the dual curve of $p r\left(C_{L}\right)$. Since $n \geq 2 g+1, C_{L}$ is non-singular. Since $p r$ is a general projection, $p r\left(C_{L}\right)$ is a curve of degree n with nodes as its only singularities. The number of nodes is $(n-1)(n-2) / 2-g$. Thus, by Plücker formula, its dual is of degree $2(n+g-1)$.

Now the holomorphic map $\tilde{\phi}: \Sigma^{n}(C) \rightarrow \mathbb{C}^{g}$ is a fiber bundle with fibers isomorphic to \mathbf{P}^{n-g}. Therefore, there exists a global trivialization

$$
\begin{equation*}
\Sigma^{n}(C) \cong \mathbb{P}^{n-g} \times \mathbb{C}^{g} \tag{2.3}
\end{equation*}
$$

over \mathbb{C}^{g}. We fix this analytic isomorphism once and for all. Let \mathcal{W} be the analytic divisor of $\mathbb{P}^{n-g} \times \mathbb{C}^{g}$ corresponding to \mathcal{V} via this isomorphism. For a point λ of \mathbb{C}^{g}, we denote by $W(\lambda)$ the intersection of \mathcal{W} with $\mathbb{P}^{n-g} \times\{\lambda\}$, and consider it as a hypersurface in \mathbb{P}^{n-g}. It is obvious that $W(\lambda)$ is projectively isomorphic to $\check{C}_{u(\lambda)}$.

Now we shall prove that, for a general $\lambda \in \mathbb{C}^{g}$, the inclusion induces an isomorphism

$$
\begin{equation*}
\pi_{1}\left(\mathbb{P}^{n-g} \backslash W(\lambda)\right) \quad \cong \quad \pi_{1}\left(\left(\mathbb{P}^{n-g} \times \mathbb{C}^{g}\right) \backslash \mathcal{W}\right) \tag{2.4}
\end{equation*}
$$

This isomorphism, combined with (2.2), gives us the hoped-for isomorphism.
The proof of the isomorphism (2.4) is quite similar to the proof of [Sh, Theorem 1]. The reason why we cannot apply [Sh , Theorem 1] to our situation is that the divisor \mathcal{W} on $\mathbb{P}^{n-g} \times \mathbb{C}^{g}$ is not algebraic but only analytic. Hence we need to modify some parts of the proof in [Sh].

To be compatible with the notation of [Sh], we denote by A the affine space \mathbb{C}^{g}, and by p the projection from $\left(\mathbb{P}^{n-g} \times A\right) \backslash \mathcal{W}$ to A. As in [Sh, p.518], we construct the following data;

- a closed real semi-analytic subset $\Omega \subset A$ of real codimension ≥ 3,
- a sequence of classically open subsets $U_{1} \subset U_{2} \subset \cdots$ such that $\cup_{i=1}^{\infty} U_{i}=A \backslash \Omega$, and
- sections $s_{i}: U_{i} \rightarrow p^{-1}\left(U_{i}\right)$ of p over U_{i}.

For a point $a \in A$ and a closed subset $\Gamma \subset A$, we use the symbols $R_{a}(\Gamma) \subset A$ and $\widetilde{R}_{a}(\Gamma) \subset S_{a}$ in the same meaning as in [Sh, p.519]. Suppose that Γ is a closed analytic subset of complex codimension $\geq c$ in A. Then $R_{a}(\Gamma)$ is a closed real semi-analytic subset of real codimension $\geq 2 c-1$ in A, while $\widetilde{R}_{a}(\Gamma)$ may fail even to be closed in the $(2 g-1)$-sphere S_{a}, and this latter is the main reason why we have to rewrite the proof in [$\mathrm{Sh}, \S 2$].

For a positive real number r and a point $b \in A$, we denote by $\Gamma(b, r)$ the intersection of Γ with the closed ball of radius r with the center b. Then $\widetilde{R}_{a}(\Gamma\langle b, r\rangle)$ is a closed real semi-analytic subset of real codimension $\geq 2 c-1$ in S_{a} for any $r \in \mathbb{R}_{>0}$ and $b \in A$.

Since the projection $S^{n}(C) \backslash V \rightarrow \operatorname{Pic}^{n}(C)$ is algebraic, there exists a Zariski closed subset $\Delta \subset \operatorname{Pic}^{n}(C)$ of codimension 1 such that $S^{n}(C) \backslash V \rightarrow \operatorname{Pic}^{n}(C)$ is locally trivial (in the category of differentiable manifolds) over $\operatorname{Pic}^{n}(C) \backslash \Delta$. Let $D \subset A$ be the pull-back of Δ by the universal covering $u: A \rightarrow \operatorname{Pic}^{n}(C)$. For a line $\Lambda \subset \mathbb{P}^{n-g}$ and a point $x \in \Lambda$, we put

$$
\begin{aligned}
& D_{\Lambda}:=\{\lambda \in A ; \Lambda \text { does not intersect } W(\lambda) \text { transeversely }\} \\
& D_{x}:=\{\lambda \in A ; x \in W(\lambda)\} .
\end{aligned}
$$

Then both of D_{Λ} and D_{x} are closed analytic subsets of A of codimension 1 or possibly 0 . We shall prove the following:

Claim 2 If x, Λ and a point $o \in A$ are chosen appropriately, then $R_{o}(D) \cap R_{o}\left(D_{\Lambda}\right) \cap R_{o}\left(D_{x}\right)$ is a closed real semi-analytic subset of real codimension ≥ 3 in A.

After proving this claim, we can construct the hoped-for data by applying the argument in [Sh, p.521-522] verbatim.

Proof of Claim 2. It is enough to prove that, if x, Λ and o are chosen appropriately, then $\widetilde{R}_{o}(D\langle o, r\rangle) \cap$ $\widetilde{R}_{o}\left(D_{\Lambda}\langle o, r\rangle\right) \cap \widetilde{R}_{o}\left(D_{x}\langle o, r\rangle\right)$ is a closed real semi-analytic subset of real codimension ≥ 3 in S_{o} for all $r \in \mathbb{R}_{>0}$.

The number of the irreducible components of D is at most countable. Let D_{1}, D_{2}, \ldots be the irreducible components of D, and let λ_{i} be a point on D_{i}. By Baire's category theorem, $\mathbb{P}^{n-g} \backslash\left(\cup_{i} W\left(\lambda_{i}\right)\right)$ is non-empty. Let y be a point of $\mathbb{P}^{n-g} \backslash\left(\cup_{i} W\left(\lambda_{i}\right)\right)$, and put

$$
G_{y}:=\left\{\Lambda \in \operatorname{Grass}\left(\mathbf{P}^{\mathbf{l}}, \mathbb{P}^{n-g}\right) ; y \in \Lambda\right\} .
$$

Since $\lambda_{i} \notin D_{y}, D_{y}$ is a closed analytic subset of codimension 1 in A.
The number of the irreducible components of D_{y} is at most countable. Let $D_{y, 1}, D_{y, 2}, \ldots$ be the irreducible components of D_{y}, and let $\lambda_{y, j}$ be a point of $D_{y, j}$. We put

$$
\Gamma_{y, j}:=\left\{\Lambda \in G_{\nu} ; \Lambda \subset W\left(\lambda_{y, j}\right)\right\}
$$

Then $\Gamma_{y, j}$ is a Zariski closed subset of codimension ≥ 1 in G_{y}. We also put

$$
\Gamma_{i}:=\left\{\Lambda \in G_{y} ; \Lambda \text { does not intersect } W\left(\lambda_{i}\right) \text { transeversely }\right\}
$$

Since $y \notin W\left(\lambda_{i}\right)$ and $W\left(\lambda_{i}\right)$ is reduced by Claim $1, \Gamma_{i}$ is a Zariski closed subset of codimension ≥ 1 in G_{y}. Hence, by Baire's theorem again, the set

$$
G_{y} \backslash\left(\bigcup_{i} \Gamma_{i} \cup \bigcup_{j} \Gamma_{y, j}\right)
$$

is non-empty. We choose a line Λ from this set. By the definition of Γ_{i}, D_{Λ} does not contain λ_{i} for any i. Hence $D_{\Lambda} \cap D$ is of codimension ≥ 2 in A. By the definition of $\Gamma_{y, j}, \Lambda \cap W\left(\lambda_{y, j}\right)$ consists of finite number of points for all j. Hence there exists a point z on $\Lambda \backslash\left(\cup_{j} W\left(\lambda_{y, j}\right)\right)$. Then D_{z} does not contain $\lambda_{y, j}$ for any j. Hence $D_{z} \cap D_{y}$ is a closed analytic subset of codimension ≥ 2 in A. This implies that

$$
\Xi_{\Lambda}:=\{\lambda \in A ; \Lambda \subset W(\lambda)\}
$$

is contained in a closed analytic subset of codimension ≥ 2 in A.

Since $D_{\Lambda} \cap D$ is of codimension ≥ 1 in D, there exists a set $\left\{a_{1}, a_{2}, \ldots\right\}$ of countably many points on $D \backslash D_{\Lambda}$ which is dense in D. Let $E_{\nu}\langle r\rangle$ be the union of all affine lines in A passing through a_{ν} and intersecting $D_{A}\left\langle a_{\nu}, r\right\rangle$. Let E_{ν} be the union $\cup_{r \in R}{ }_{>0} E_{\nu}\langle r\rangle$. Each $E_{\nu}\langle r\rangle$ is a closed subset of A which is real semi-analytic of real codimension ≥ 1. Hence, by Baire's theorem again, we have

$$
A \backslash \cup_{\nu} E_{\nu}=A \backslash \cup_{\nu}\left(\cup_{n=1}^{\infty} E_{\nu}\langle n\rangle\right) \neq \emptyset
$$

Let o be a point of $A \backslash \cup_{\nu} E_{\nu}$. Then $\widetilde{R}_{o}(D\langle o, r\rangle) \cap \widetilde{R}_{o}\left(D_{\Lambda}(o, r\rangle\right)$ is a closed real semi-analytic subset of real codimension ≥ 2 in S_{o} for all r, because $\widetilde{R}_{o}\left(D_{\Lambda}\langle o, r\rangle\right)$ does not contain the image of a_{ν} by the projection $\omega: A \backslash\{o\} \rightarrow S_{o}$, and the set $\left\{\omega\left(a_{\nu}\right) ; a_{\nu} \in D\langle o, r\rangle\right\}$ is dense in $\widetilde{R}_{o}(D\langle o, r\rangle)$.

Let $\widetilde{R}_{o}\left(D, D_{\Lambda}, r\right)$ be the union of the irreducible components of $\widetilde{R}_{o}\left(D, D_{\Lambda}, r\right)$ which are of real codimension 2 in S_{o}. Recall that Ξ_{Λ} is contained in a closed analytic subset of codimension ≥ 2 in A. Hence $\widetilde{R}_{o}\left(\Xi_{\Lambda}\langle o, r\rangle\right)$ is contained in a closed real semi-analytic subset of real codimension ≥ 3 in S_{o}. Thus there exists a set $\left\{b_{1}, b_{2}, \ldots\right\}$ of countably many points of $\widetilde{R}_{o}\left(D, D_{\Lambda}, r\right) \backslash \widetilde{R}_{o}(\Xi\langle o, r\rangle)$ which is dense in $\widetilde{R}_{o}\left(D, D_{\Lambda}, r\right)$. Let σ_{μ} be the real semi-line in A passing through o and b_{μ} with the end-point o. Then the intersection

$$
\Lambda \cap\left(\cup_{\lambda \in \sigma_{\mu}\langle o, t\rangle} W(\lambda)\right)
$$

is a closed real semi-analytic subset of Λ of real codimension ≥ 1 for all $t \in \mathbb{R}_{>0}$. Hence $\Lambda \backslash U_{\mu}\left(\cup_{\lambda \in \sigma_{\mu}} W(\lambda)\right)$ is a non-empty set, from which we choose a point x. Then $\widetilde{\widetilde{R}}_{o}\left(D_{x}\right)$ contains none of b_{μ}. This implies that $\widetilde{R}_{o}(D(o, r\rangle) \cap \widetilde{R}_{o}\left(D_{\Lambda}\langle o, r\rangle\right) \cap \widetilde{R}_{o}\left(D_{x}(o, r\rangle\right)$ is a closed real semi-analytic subset of real codimension ≥ 3.

Thus the construction of the hoped-for data is completed.
The projection $\left(\mathbb{P}^{n-g} \times A\right) \backslash \mathcal{W} \rightarrow A$ is locally trivial (in the category of differentiable manifolds) over $A \backslash D$. Moreover, when we are given a continuous map $f_{0}: I^{2} \rightarrow A$ such that $f_{0}\left(\partial I^{2}\right) \cap D=\emptyset$, then we can perturb f_{0} to $f_{\varepsilon}: I^{2} \rightarrow A$ homotopically relative to ∂I^{2} so that $f_{\varepsilon}^{-1}\left(f_{\varepsilon}\left(I^{2}\right) \cap D\right)$ consists of finitely many points in I^{2}.

Now we can apply the argument in the first paragraph of [$\mathrm{Sh}, \mathrm{p} .519$], and follow the proof of [Sh, Corollary] to obtain the isomorphism (2.4). The assumption (C.1) in [Sh, Corollary] follows from Claim 1. The assumption (S) in [Sh, p.511] follows from the above construction. The assumptions (2.1), (2.2) and (3.1) in [Sh, Theorems 2 and 3] hold obviously. The assumption (3.2) in [Sh, Theorem 3] does not hold in our case, at least literally, because we have left the category of algebraic varieties when we take the universal covering of $\mathrm{Pic}^{n}(C)$. This assumption, however, is used only in [Sh, §1.3]. All we have to do is to replace \mathbb{P}^{M} in [Sh, p.517] by the first factor \mathbb{P}^{n-g} of the product $\mathbb{P}^{n-g} \times \mathbb{C}^{g}$, and to replace Zariski open subsets of B by classically open subsets of B.

3 The braid groups $B(g, n)$

Consider the braid group $B(g, n)$ of n strings on a surface S_{g} of genus g. We shall assume that $n \geq 2 g+1$. The presentation of $B(g, n)$ was obtained in [Sc]. The sets of generators and defining relations of the presentation in [$\mathrm{Sc} c]$ (after correction misprints) can be reduced to the following presentation of $B(g, n)$. The generators of $B(g, n)$ are

$$
\begin{array}{cc}
& \rho_{i, j}, \\
\sigma_{1}, \sigma_{2}, & \\
\cdots
\end{array}, \sigma_{n-1} . \quad 1 \leq i \leq n, 1 \leq j \leq 2 g
$$

The set of defining relations consists of

$$
\begin{array}{cr}
{\left[\rho_{i, j}, \rho_{k, l}\right]=1,} & i<k, j<l,(j, l) \neq(2 t-1,2 t) ; \\
{\left[\rho_{i, j}, \sigma_{k}\right]=1,} & i \neq k \text { nor } k-1 ; \\
\rho_{k, j}=\sigma_{k} \rho_{k+1, j} \sigma_{k}^{-1}, & 1 \leq k \leq n-1 ; \\
\left(\rho_{i, j} \sigma_{i}^{-1}\right)^{2}=\left(\sigma_{i}^{-1} \rho_{i, j}\right)^{2}, & 1 \leq i \leq n-1,1 \leq j \leq 2 g ; \\
{\left[\sigma_{i}, \sigma_{j}\right]=1,} & |i-j| \neq 1 ; \tag{5}
\end{array}
$$

$$
\begin{array}{cc}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, & 1 \leq i \leq n-2 ; \\
{\left[\left(\sigma_{i} \rho_{j, 2 t} \sigma_{i}^{-1}\right), \rho_{j, 2 t-1}^{-1}\right]=\sigma_{i}^{2},} & j=i, \text { or } i+1 ; \\
\sigma_{1} \sigma_{2} \cdot \ldots \cdot \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdot \ldots \cdot \sigma_{1}=\left[\rho_{1,1}, \rho_{1,2}^{-1}\right]\left[\rho_{1,3}, \rho_{1,4}^{-1}\right] \cdots\left[\rho_{1,2 g-1}, \rho_{1,2 g}^{-1}\right] \tag{8}
\end{array}
$$

Note that we read all words contained in the presentation given in $[\mathrm{Sc}]$ from right to left and write down them from left to right.

Figure 1
The generators $\rho_{i, j}$ and σ_{k} have the following geometrical meaning: S_{g} minus a 2-disc can be thought as a 2-disc Δ union $2 g$ untwisted 1-handles. For each r the $(2 r-1)$ st and ($2 r$) th handles are linked and no other pair of handles is linked. We number the handles reading from left to right. We shall assume that n fixed points
lie on a circle which is the boundary of a smaller disc in Δ. We choose one of these points, say x, and number them (starting from x) consecutively moving along the circle in clockwise direction. The elements $\rho_{j, k}$ and σ_{i} are drawn in Figure 1.

Lemma 1 Put

$$
\begin{equation*}
\sigma_{n}=\sigma_{0}=\sigma_{1} \cdots \sigma_{n-2} \sigma_{n-1} \sigma_{n-2}^{-1} \cdots \sigma_{1}^{-1} \tag{9}
\end{equation*}
$$

and define σ_{k} for all $k \in \mathbf{Z}$ assuming $\sigma_{k}=\sigma_{n+k}$. Let

$$
\begin{equation*}
A_{k}=\sigma_{k} \sigma_{k+1} \cdot \ldots \cdot \sigma_{k+n-3} \sigma_{k+n-2}^{2} \sigma_{k+n-3} \cdot \ldots \cdot \sigma_{k} \tag{10}
\end{equation*}
$$

Then the following relations

$$
\begin{align*}
\sigma_{n} \sigma_{1} \sigma_{n} & =\sigma_{1} \sigma_{n} \sigma_{1} ; & & \tag{11}\\
\sigma_{n-1} \sigma_{n} \sigma_{n-1} & =\sigma_{n} \sigma_{n-1} \sigma_{n} ; & & \tag{12}\\
\sigma_{n} \sigma_{k} & =\sigma_{k} \sigma_{n}, & & 2 \leq k \leq n-2 ; \tag{13}\\
A_{k+1} & =\sigma_{k} A_{k} \sigma_{k}^{-1}, & & k \in \mathbb{Z} ; \tag{14}\\
A_{k} \sigma_{l} & =\sigma_{l} A_{k}, & & l \not \equiv k \operatorname{nor} k-1(\bmod n) \tag{15}
\end{align*}
$$

are consequences of (5) and (6).
Proof follows from the same assertion for the braid group of n strings on a disc.
Lemma 2 The presentation (1)-(8) of $B(g, n)$ is equivalent to the following presentation. The generators of $B(g, n)$ are

$$
\rho_{1,1}, \rho_{1,2}, \rho_{3,3}, \rho_{3,4}, \cdots, \quad \rho_{2 g-1,2 g-1}, \rho_{2 g-1,2 g}
$$

The set of defining relations consists of

$$
\begin{align*}
& {\left[\rho_{i, *}, \rho_{j, *}\right] }=1, i \neq j ; \tag{16}\\
& {\left[\rho_{i, *}, \sigma_{j}\right] }=1, j \neq i \text { nor } i-1 ; \tag{17}\\
& {\left[\left(\sigma_{i-1} \rho_{i, *} \sigma_{i-1}^{-1}\right), \sigma_{i}\right] }=1, i=1,3, \ldots, 2 g-1 ; \tag{18}\\
&\left(\rho_{2 i-1, j} \sigma_{2 i-1}^{-1}\right)^{2}\left(\sigma_{2 i-1}^{-1} \rho_{2 i-1, j}\right)^{-2}=1, j=2 i-1 \text { or } 2 i ; \tag{19}\\
& {\left[\sigma_{i}, \sigma_{j}\right] }=1,|i-j| \neq 1 ; \tag{20}\\
& \sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1,1 \leq i \leq n-2 ; \tag{21}\\
& {\left[\left(\sigma_{j} \rho_{2 i+1,2 i} \sigma_{j}^{-1}\right), \rho_{2 i+1,2 i-1}^{-1}\right] \sigma_{j}^{-2} }=1, j=2 i \text { or } 2 i+1 ; \tag{22}\\
& \sigma_{1} \sigma_{2} \cdot \ldots \cdot \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdot \ldots \cdot \sigma_{2 g-1}\left[\rho_{2 g-1,2 g-1}, \rho_{2 g-1,2 g}^{-1}\right]^{-1} \sigma_{2 g-2} \sigma_{2 g-3} \quad . \\
& \cdot\left[\rho_{2 g-3,2 g-3}, \rho_{2 g-3,2 g-2}^{-1}\right]^{-1} \cdot \ldots \cdot \sigma_{4} \sigma_{3}\left[\rho_{3,3}, \rho_{3,4}^{-1}\right]^{-1} \sigma_{2} \sigma_{1}\left[\rho_{1,1}, \rho_{1,2}^{-1}\right]^{-1}=1 \tag{23}
\end{align*}
$$

Proof. To obtain relations (1) - (8), we define $\rho_{i, l}$ by induction using (3). After that, to verify relations (2), we need to show by induction that if relations (17), (18) hold for $\rho_{i, l}$, then the similar relations also hold for $\rho_{i \pm 1, l}$. The checking is the following.

$$
\left[\rho_{i-1, l}, \sigma_{j}\right]=\left[\sigma_{i-1} \rho_{i, l} \sigma_{i-1}^{-1}, \sigma_{j}\right]=1
$$

for $j \neq i-2$ nor $i-1$ by assumption of induction and by (20).

$$
\begin{aligned}
& {\left[\left(\sigma_{i-2} \rho_{i-1, l} \sigma_{i-2}^{-1}\right), \sigma_{i-1}\right]=\left[\left(\sigma_{i-2} \sigma_{i-1} \rho_{i, l} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1}\right), \sigma_{i-1}\right]=} \\
& \sigma_{i-2} \sigma_{i-1} \rho_{i, 1} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \frac{\sigma_{i-1} \sigma_{i-2} \sigma_{i-1} \rho_{i, l}^{-1} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \sigma_{i-1}^{-1}=}{\sigma_{i-2} \sigma_{i-1} \rho_{i, 1} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \sigma_{i-2} \sigma_{i-1} \sigma_{i-2} \rho_{i, l}^{-1} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \sigma_{i-1}^{-1}=} \\
& \sigma_{i-2} \sigma_{i-1} \rho_{i, l} \sigma_{i-2} \rho_{i, l}^{-1} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \sigma_{i-1}^{-1}= \\
& \sigma_{i-2} \sigma_{i-1} \sigma_{i-2} \rho_{i, l} \rho_{i, l}^{-1} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \sigma_{i-1}^{-1}=\sigma_{i-2} \sigma_{i-1} \sigma_{i-2} \sigma_{i-1}^{-1} \sigma_{i-2}^{-1} \sigma_{i-1}^{-1}=1
\end{aligned}
$$

The detailed check of the remaining relations is left to the reader.
Denote $c_{2 i}=\sigma_{2 i+1}^{-1} \sigma_{2 i} \sigma_{2 i+1}$ for $1 \leq i \leq g-1$.

Lemma 3 The group $B(g, n)$ is generated by

$$
\begin{gather*}
\rho_{1,1}, \rho_{1,2}, \rho_{3,3}, \rho_{3,4}, \cdots, \rho_{2 g-1,2 g-1}, \rho_{2 g-1,2 g} \tag{24}\\
\sigma_{1}, c_{2}, \sigma_{3}, c_{4} \cdots, \sigma_{2 g-3}, c_{2 g-2}, \sigma_{2 g-1}, \sigma_{2 g}, \cdots, \sigma_{n-1} \tag{25}
\end{gather*}
$$

The set of defining relations consists of

$$
\begin{array}{rcc}
R_{1, i, j}:= & {\left[\rho_{i, *}, \rho_{j, *}\right]=1, \quad i \neq j ;} \\
R_{2, i, j} & = & {\left[\rho_{i, *}, \sigma_{j}\right]=1, \quad i \neq j ;} \\
R_{3, i, j} & := & {\left[\rho_{2 i+1, *}, c_{2 j}\right]=1, \quad 0 \leq i \leq g-1, \quad 1 \leq j \leq g-1 ;} \\
R_{4, i, i} & := & \left(\rho_{2 i-1, *} \sigma_{2 i-1}^{-1}\right)^{2}\left(\sigma_{2 i-1}^{-1} \rho_{2 i-1, *}\right)^{-2}=1, \quad 1 \leq i \leq g ; \\
R_{5, i, j}:= & {\left[\sigma_{i}, \sigma_{j}\right]=1, \quad|i-j| \neq 1 ;} \\
R_{5,2 j, 2 j-2} & = & {\left[c_{2 j},\left(c_{2 j-2}^{-1} \sigma_{2 j-1} c_{2 j-2}\right)\right]=1 ;} \\
R_{6, i, j} & = & {\left[\sigma_{i}, c_{j}\right]=1, \quad i \neq j \pm 1 ;} \\
R_{7,2 g, 2 g-2} & := & {\left[\sigma_{2 g},\left(c_{2 g-2}^{-1} \sigma_{2 g-1} c_{2 g-2}\right)\right]=1 ;} \\
R_{8, i, j}:= & {\left[c_{2 i}, c_{2 j}\right]=1, \quad|i-j| \neq 1 ;} \\
R_{9, i, i}:= & \sigma_{i} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}=1, \quad 1 \leq i \leq n-2 ; \\
R_{10, i, i}:= & c_{2 i} c_{2 i+2} c_{2 i} c_{2 i+2}^{-1} c_{2 i}^{-1} c_{2 i+2}^{-1}=1, \quad 1 \leq i \leq g-2 ; \\
R_{11, i, i}:= & c_{2 i} \sigma_{2 i \pm 1} c_{2 i} \sigma_{2 i \pm 1}^{-1} c_{2 i}^{-1} \sigma_{2 i \pm 1}^{-1}=1, \quad 1 \leq i \leq g-1 ; \\
R_{12, i, j}:= & {\left[\left(\sigma_{2 i-1} \rho_{2 i-1,2 i} \sigma_{2 i-1}^{-1}\right), \rho_{2 i-1,2 i-1}^{-1}\right] \sigma_{2 i-1}^{-2}=1,} \\
R_{13}:= & c_{2} c_{4} \cdots c_{2 g-2} \sigma_{2 g} \sigma_{2 g+1} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \ldots \sigma_{2 g} \\
& \left.\left.\cdot\left(\sigma_{2 g-1}[\cdot]_{2 g-1}^{-1} \sigma_{2 g-1}\right) c_{2 g-2} \cdots\left(\sigma_{3}[\cdot]\right]_{3}^{-1} \sigma_{3}\right) c_{2}\left(\sigma_{1}[\cdot]\right]_{1}^{-1} \sigma_{1}\right)=1, \tag{39}
\end{array}
$$

where $[\cdot]_{2 i-1}=\left[\rho_{2 i-1,2 i-1}, \rho_{2 i-1,2 i}^{-1}\right]$.
Proof. The elements $\sigma_{2 i}$ can be expressed through $\sigma_{2 i+1}$ and $c_{2 i}$:

$$
\sigma_{2 i}=\sigma_{2 i+1} c_{2 i} \sigma_{2 i+1}^{-1}
$$

Since $\sigma_{2 i} \sigma_{2 i+1} \sigma_{2 i}=\sigma_{2 i+1} \sigma_{2 i} \sigma_{2 i+1}$, it is easy to check that

$$
\begin{equation*}
c_{2 i} \sigma_{2 i+1} c_{2 i}=\sigma_{2 i+1} c_{2 i} \sigma_{2 i+1} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2 i}=c_{2 j} \sigma_{2 i+1} c_{2 i}^{-1} \tag{41}
\end{equation*}
$$

If we substitute these expressions into (16) - (23), then we obtain relations (26) - (39). For example, relations (18) (applying (21) and (17)) gives rise to (28). In fact, for $j=i$

$$
\begin{aligned}
\sigma_{2 j+1} \sigma_{2 j} \rho_{2 j+1, *} \sigma_{2 j}^{-1} & =\sigma_{2 j} \rho_{2 j+1, *} \sigma_{2 j}^{-1} \sigma_{2 j+1} \Rightarrow \\
\sigma_{2 j}^{-1} \sigma_{2 j+1} \sigma_{2 j} \rho_{2 j+1, *} & =\rho_{2 j+1, *} \sigma_{2 j}^{-1} \sigma_{2 j+1} \sigma_{2 j} \Rightarrow \\
\sigma_{2 j}^{-1}\left(\sigma_{2 j+1} \sigma_{2 j} \sigma_{2 j+1}\right) \sigma_{2 j+1}^{-1} \rho_{2 j+1, *} & =\rho_{2 j+1, *} \sigma_{2 j}^{-1}\left(\sigma_{2 j+1} \sigma_{2 j} \sigma_{2 j+1}\right) \sigma_{2 j+1}^{-1} \Rightarrow \text { (by (21)) } \\
\sigma_{2 j}^{-1}\left(\sigma_{2 j} \sigma_{2 j+1} \sigma_{2 j}\right) \sigma_{2 j+1}^{-1} \rho_{2 j+1, *} & =\rho_{2 j+1, *} \sigma_{2 j}^{-1}\left(\sigma_{2 j} \sigma_{2 j+1} \sigma_{2 j}\right) \sigma_{2 j+1}^{-1} \Rightarrow \\
c_{2 j} \rho_{2 j+1, *} & =\rho_{2 j+1, *} c_{2 j}
\end{aligned}
$$

If $j \neq i$, then (28) is a consequence of (18), since $\sigma_{2 j}$ and $\sigma_{2 j+1}$ are commutative with $\rho_{2 i+1, *}$.
Conversely, if we substitute $\sigma_{2 i-1}^{-1} \sigma_{2 i} \sigma_{2 i-1}$ in (26) - (39) instead of $c_{2 i}$ we obtain relations (16) - (23). The detailes are left to the reader.

For the presentation of $B(g, n)$ given in Lemma 3, the following elements will be called the additional generators: $\sigma_{2 i}$ defined by (41), $1 \leq i \leq g-1 ; \sigma_{n}$ defined by (9); A_{k} defined by (10); $\rho_{i, j}$ recurrently defined
by (3), $(i, j) \neq(2 t-1,2 t-1)$ nor $(2 t-1,2 t) ; B_{i, j}=\left[\rho_{i, 2 j-1}, \rho_{i, 2 j}\right] ;$ and $c_{0}=\sigma_{1}^{-1} \sigma_{n} \sigma_{1}$. It is easy to check that the following relations hold.

$$
\begin{array}{cc}
\sigma_{n}=c_{0} \sigma_{1} c_{0}^{-1} ; & \\
c_{0} \sigma_{1} c_{0}=\sigma_{1} c_{0} \sigma_{1} ; & \\
c_{0} \sigma_{n} c_{0}=\sigma_{n} c_{0} \sigma_{n} ; & 2 \leq j \leq n-1 ; \\
{\left[\sigma_{j}, c_{0}\right]=1,} & 1 \leq j \leq g ; \\
{\left[\rho_{2 j-1, *}, c_{0}\right]=1,} & \text { for all } i, j, k ; \\
{\left[B_{2 i-1, j}, c_{2 k}\right]=1,} & i \neq k \text { nor } k-1 ; \\
{\left[B_{i, j}, \sigma_{k}\right]=1,} & 1 \leq k \leq n-1 ; \\
B_{k, j}=\sigma_{k} B_{k+1, j} \sigma_{k}^{-1}, &
\end{array}
$$

The following lemma is a corollary from Lemmas 1-3.
Lemma 4 Relations (2), (11) - (15), (42) - (49) are consequences of (27), (28), (30) - (37), (39).
Denote relations (2), (11)-(15), (42) - (49), respectively, by $\widetilde{R}_{1}, \ldots, \widetilde{R}_{15}$.

4 Proof of Theorem 2

In the sequel we use presentation (24)-(39) of $B(g, n)$. Consider the homomorphism

$$
\alpha: B(g, n) \rightarrow \mathbf{Z}^{2 g}
$$

sending $\rho_{2 i-1, j}$ to $\overrightarrow{1}_{j}=(0, \ldots, 0,1,0 \ldots, 0)$, where 1 is in j th place, and sending all σ_{i} and $c_{2 j}$ to zero. Obviously, $\alpha \simeq \phi_{*}^{\prime}$. Denote by $G=G_{g, n}$ the kernel of α. Put $\rho_{j}=\rho_{2 i-1, j}$, where $\rho_{2 i-1, j}$ are the generators of $B(g, n)$ from presentation (24) - (39).

By Reidemeister - Schreier Theorem [R], [Sch], the following elements are generators of G :

$$
\begin{align*}
a_{k, I} & =\left(\rho^{I}\right) \rho_{k}\left(\rho^{I}+\mathrm{I}_{k}\right)^{-1}, \quad 1 \leq k \leq 2 g \tag{50}\\
c_{2 j, \bar{I}} & =\left(\rho^{I}\right) c_{2 j}\left(\rho^{I}\right)^{-1}, \quad 1 \leq j \leq g-1 \tag{51}\\
g_{l, I} & =\left(\rho^{I}\right) \sigma_{l}\left(\rho^{I}\right)^{-1}, \quad l=1,3, \ldots, 2 g-1,2 g, \ldots, n-1 \tag{52}
\end{align*}
$$

where $\bar{I}=\left(i_{1}, \ldots, i_{2 g}\right)$ and

$$
\rho^{I}=\rho_{1}^{i_{1}} \cdot \ldots \cdot \rho_{2 g}^{i_{2_{g}}}
$$

The defining relations of G are

$$
\begin{equation*}
R_{k, i, j}^{I}=\left(\rho^{I}\right) R_{k, i, j}\left(\rho^{I}\right)^{-1}, \quad k=1, \ldots, 13 \tag{53}
\end{equation*}
$$

where each $R_{k, i, j}^{I}$ is written as a word in the generators a_{*}, c_{*} and g_{*}.
Remark 1 If a relation R is a consequence of relations $R_{1} \ldots, R_{k}$, then for fixed \bar{I} the relation R^{I} is a consequence of the relations $R_{1}^{I} \ldots, R_{k}^{I}$.

Decrease the number of generators of G. It follows from (26) that

$$
\begin{equation*}
a_{2 j, I}=1 \tag{54}
\end{equation*}
$$

for $1 \leq i \leq g$ and all \bar{I}. Similarly,

$$
\begin{equation*}
a_{2 j-1, i_{1}, \ldots, i_{2 j-1}, 0, i_{2 j+1}, \ldots, i_{2 g}}=1 \tag{55}
\end{equation*}
$$

for all sets of integers $\left(i_{1}, \ldots i_{2 j-1}, i_{2 j+1}, \ldots, i_{2 g}\right)$.

Relations (26) give rise to

$$
\begin{equation*}
a_{2 j-1, I} a_{2 l, I+\mathrm{I}_{2 j-1}} a_{2 j-1, \tilde{I}+\mathrm{I}_{2 l}}^{-1} a_{2 l, I}^{-1}=1, \quad j \neq l \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2 l-1, I} a_{2 j-1, I+\mathrm{I}_{2 l-1}} a_{2 l-1, I+\mathrm{I}_{2 j-1}}^{-1} a_{2 j-1, I}^{-1}=1, \quad j \neq l . \tag{57}
\end{equation*}
$$

It follows from (54) - (57) that

$$
\begin{equation*}
a_{2 j-1, i_{1}, \ldots, i_{2 j-2}, i_{2 j-1}, i_{2 j}, i_{2 j+1}, \ldots, i_{2 g}}=a_{2 j-1,0, \ldots, 0, i_{2 j-1}, i_{2 j}, 0, \ldots, 0}=a_{2 j-1, i_{2 j-1}, i_{2 j}} \tag{58}
\end{equation*}
$$

that is, $a_{2 j-1, i_{1}, \ldots, i_{j-2}, i_{2 j-1}, i_{j j}, i_{2 j+1}, \ldots, i_{2 g}}$ does not depend on $i_{1}, \ldots, i_{2 j-2}, i_{2 j+1}, \ldots, i_{2 g}$. In particular, by (55),

$$
\begin{equation*}
a_{2 j-1, i_{2 j-1}, 0}=1 \tag{59}
\end{equation*}
$$

Similarly, it follows from (27) and (28) that

$$
\begin{gather*}
g_{2 j-1, i_{1}, \ldots, i_{2 j-2}, i_{2 j-1}, i_{2 j}, i_{2 j+1}, \ldots, i_{2 g}}=g_{2 j-1,0, \ldots, 0, i_{2 j-1}, i_{2 j}, 0, \ldots, 0}=g_{2 j-1, i_{2 j-1}, i_{2 j}}, \quad j \leq g ; \tag{60}\\
g_{j, i_{1}, \ldots, i_{2 g}}=g_{j, 0, \ldots, 0}=g_{j}, \quad j \geq 2 g \tag{61}\\
c_{2 j, i_{1}, \ldots, i_{2},}=c_{2 j, 0, \ldots, 0}=c_{2 j} \tag{62}
\end{gather*}
$$

that is, $g_{j, i_{1}, \ldots, i_{2 g}}, j \geq 2 g$, and $c_{2 j, i_{1}, \ldots, i_{2 g}}$ do not depend on $i_{1}, \ldots, i_{2 g}$.
Similarly, it follows from (46) that the generators $c_{0, I}$ corresponding to the additional generator c_{0} do not depend on \bar{I}, that is, $c_{0, I}=c_{0}$. By (41), the generators $g_{2 j, I}$ corresponding to the additional generator $\sigma_{2 j}$:

$$
\begin{equation*}
g_{2 j, I}=c_{2 j} g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j}^{-1} \tag{63}
\end{equation*}
$$

do not depend on $i_{1}, \ldots, i_{2 j-2}, i_{2 j+1}, \ldots, i_{2 g}$, and it follows from (42) that the generators $g_{n, I}$ corresponding to the additional generator σ_{n} :

$$
\begin{equation*}
g_{n, I}=c_{0} g_{i, i_{1}, i_{2}} c_{0}^{-1} \tag{64}
\end{equation*}
$$

do not depend on $i_{3}, \ldots, i_{2 g}$.
Denote by $A_{k, I}, \rho_{j, k, I}$, and $B_{j, k, I}$ the generators corresponding respectively to the additional generators A_{k}, $\rho_{j, k}$, and $B_{j, k}$. The relations defining $B_{j, k}$ give rise to the relations

$$
B_{j, k, I}=\rho_{j, 2 k-1, I} \rho_{j, 2 k, I+\mathrm{I}_{2 k-1}} \rho_{j, 2 k-1, I+\mathrm{I}_{2 k}}^{-1} \rho_{j, 2 k, I}^{-1},
$$

in particular,

$$
\begin{equation*}
B_{2 k-1, k, I}=a_{2 k-1, i_{24-1}, i_{2 k}} a_{2 k-1, i_{2 k-1}, i_{2 k}-1}^{-1}, \tag{65}
\end{equation*}
$$

and relations (47) and (48) yield the following relations

$$
\begin{array}{rc}
{\left[B_{l, j, I}, c_{k, I}\right]=1,} & \text { for all } l, j, k \\
{\left[B_{l, j, I}, \sigma_{k, I}\right]=1,} & l \neq k \text { nor } k-1 . \tag{67}
\end{array}
$$

Let us write down relations (53).

$$
\begin{array}{rlcl}
R_{1, j, l}^{I} & := & {\left[a_{2 j-1, *}, a_{2 l-1, *}\right]=1,} & j \neq l ; \\
R_{2, j, l}^{I} & := & {\left[a_{2 j-1, *}, g_{2 l-1, *}\right]=1,} & j \neq l ; \\
R_{2, j, l}^{I} & := & {\left[a_{2 j-1, *}, g_{l}\right]=1,} & l \geq 2 g ; \\
R_{3, j, l}^{I} & := & {\left[a_{2 j-1, *}, c_{2 l}\right]=1,} & 1 \leq j \leq g, 1 \leq l \leq g-1 ; \\
R_{4,2 j-1,2 j-1}^{I} & := & a_{2 j-1, i_{2 j-1, i_{2 j}} g_{2 j-1, i_{2 j-1}+1, i_{2 j}}^{-1} a_{2 j-1, i_{2 j-1}+1, i_{2 j}} g_{2 j-1, i_{2 j-1}+2, i_{2 j}}^{-1}} & \\
& a_{2 j-1, i_{2 j-1}+1, i_{2 j}}^{-1} g_{2 j-1, i_{2 j-1}+1, i_{2 j}} a_{2 j-1, i_{2 j-1, i_{2 j}}^{-1} g_{2 j-1, i_{2 j-1}, i_{2 j}}=1,}=1 \leq j \leq g ;
\end{array}
$$

$$
\begin{align*}
& R_{4,2 j-1,2 j}^{I}:=g_{2 j-1, i_{2-1}, i_{2 j}+1}^{-1} g_{2 j-1, i_{2 j-1}, i_{2 j}+2}^{-1} g_{2 j-1, i_{j-1}, i_{2 j}+1} g_{2 j-1, i_{2 j-1}, i_{2 j}}=1, \quad 1 \leq j \leq g ; \tag{73}\\
& R_{5, i, j}^{I}:=\quad\left[g_{i}, g_{j}\right]=1, \quad|i-j| \neq 1, i, j \geq 2 g ; \tag{74}\\
& R_{5, j, l}^{\bar{I}}:=\quad\left[g_{2 j-1, i_{2 j-1} i_{2 j}}, g_{2 l-1, i_{2 i-1}, i_{2 i}}\right]=1, \quad l \neq j ; \tag{75}\\
& R_{5,2 g-1, j}^{I}:=\quad\left[g_{2 g-1, i_{2 g-1}, i_{2}}, g_{j}\right]=1, \quad j>2 g ; \tag{76}\\
& R_{5,2 j, 2 j-2}^{\eta}=\quad\left[c_{2 j},\left(c_{2 j-2}^{-1} g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2}\right)\right]=1, \quad 1 \leq j \leq g-1 ; \tag{77}\\
& R_{6, j, l}^{\bar{I}}:=\quad\left[g_{2 j-1, i_{2 j-1}, i_{2 j}}, c_{2 l}\right]=1, \quad j \neq l \text { and } j \neq l+1 ; \tag{78}\\
& R_{7,2 g, 2 g-2}^{I}=\quad\left[g_{2 g},\left(c_{2 g-2}^{-1} g_{2 g-1, i_{2 g-1}, i_{2 g}} c_{2 g-2}\right)\right]=1 \text {; } \tag{79}\\
& R_{8, i, j}^{I}:=\quad\left[c_{2 i}, c_{2 j}\right]=1, \quad|i-j| \neq 1 ; \tag{80}\\
& R_{9, j, j}^{I}:=\quad g_{j} g_{j+1} g_{j}=g_{j+1} g_{j} g_{j+1}, \quad 2 g \leq j \leq n-2 ; \tag{81}\\
& R_{9,2 g-1,2 g}^{I}:=\quad g_{2 g-1, i_{2 g-1}, i_{2 g}} g_{2 g} g_{2 g-1, i_{2 g-1}, i_{2 g}}=g_{2 g} g_{2 g-1, i_{2 g-1}, i_{2 g}} g_{2 g} ; \tag{82}\\
& R_{10, i, i}^{I}:=\quad c_{2 i} c_{2 i+2} c_{2 i}=c_{2 i+2} c_{2 i} c_{2 i+2}, \quad 1 \leq i \leq g-2 ; \tag{83}\\
& R_{11, j, j}^{I}:=\quad c_{2 j} g_{2 j \pm 1, i_{2 j \pm 1}, i_{2 j \pm 1+1}} c_{2 j}=g_{2 j \pm 1, i_{2 j \pm 1, i_{2 j \pm 1+1}} c_{2 j} g_{2 j \pm 1, i_{2 j \pm 1}, i_{2 j \pm 1+1}}, \quad j \leq g-1 ; ~ ; ~ ; ~}^{\text {; }} \text {, } \tag{84}\\
& R_{11, g, g}^{\bar{I}}:=\quad c_{2 g-2} g_{2 g} c_{2 g-2}=g_{2 g} c_{2 g-2} g_{2 g} \text {; } \tag{85}\\
& R_{12, j, 1}^{I}:= \\
& a_{2 j-1, i_{2 j-1, i_{2 j}+1}}= \\
& g_{2 j-1, i_{2 j-1}, i_{2 j}+1} g_{2 j-1, i_{2 j-1}, i_{2 j}}^{-1} a_{2 j-1, i_{2 j-1}, i_{2 j}} g_{2 j-1, i_{2 j-1}+1, i_{2 j}}^{-1} g_{2 j-1, i_{2 j-1}+1, i_{2 j}+1}^{-1} ; \tag{86}\\
& R_{13}^{I}:=\quad c_{2} c_{4} \cdots c_{2 g-2} g_{2 g} g_{2 g+1} \cdots g_{n-2} g_{n-1}^{2} g_{n-2} \ldots g_{2 g} . \\
& \cdot\left(g_{2 g-1, i_{2 g-1}, i_{g g}}\left(a_{2 g-1, i_{2 g-1}, i_{g g}} a_{2 g-1, i_{2 g-1, i_{2 g}-1}}\right)^{-1} g_{2 g-1, i_{2 g-1}, i_{2 g}}\right) c_{2 g-2} \cdots \\
& \cdots\left(g_{3, i_{s}, i_{4}}\left(a_{3, i_{3}, i_{4}} a_{3, i_{3}, i_{4}-1}^{-1}\right)^{-1} g_{3, i_{3}, i_{4}}\right) c_{2}\left(g_{1, i_{1}, i_{2}}\left(a_{1, i_{1}, i_{2}} a_{1, i_{1}, i_{2}-1}^{-1}\right)^{-1} g_{1, i_{1}, i_{2}}\right)=1 . \tag{87}
\end{align*}
$$

Each relation depends on at most two parameters and the set of relations is similar to the relations in [Z] in the case $g=1$. Now we shall show how to obtain a finite presentation of G using the arguments of [Z].

Relations (73) imply that $g_{2 j-1, i_{2 j-1}, i_{2 j}+1} g_{2 j-1, i_{j-1}, i_{j}}$ is independent of $i_{2 j}$. Let for brevity,

$$
\begin{equation*}
g_{2 j-1, i_{2 j-1}, i_{2 j}+1} g_{2 j-1, i_{2 j-1}, i_{2 j}}=s_{2 j-1, i_{2 j-1}} \tag{88}
\end{equation*}
$$

The recurrence relations (86) allow us to express all $a_{2 j-1, i_{2 j-1}, i_{2 j}}$'s in terms of the $g_{2 j-1, i_{2 j-1}, i_{2 j}}$'s, since $a_{2 j-1, i_{2 j-1}, 0}=0$ by (55). We obtain

$$
\begin{equation*}
a_{2 j-1, i_{2 j-1}, i_{2 j}}=g_{2 j-1, i_{2 j-1}, i_{2 j}} g_{2 j-1, i_{2 j-1}, o} s_{2 j-1, i_{2 j-1}+1}^{-i_{2 j}} \tag{89}
\end{equation*}
$$

Substituting these expressions of $a_{2 j-1, i_{2 j-1}, i_{2 j}}$'s into relation (87) and taking into account (88) we find in a straightforward manner that relations (87) can be replaced by the following relations:

$$
\begin{gather*}
c_{2} \cdots c_{2 g-2} g_{2 g} \ldots g_{n-1} g_{n-1} \ldots g_{2 g}\left(g_{2 g-1, i_{2}-1,1} g_{2 g-1, i_{2 g-1}+1,1} g_{2 g-1, i_{2 g-1}+1,0} g_{2 g-1, i_{2 g-1}, 0}\right) c_{2 g-2} \ldots \\
\cdots\left(g_{3, i_{3}, 1} g_{3, i_{s}+1,1} g_{3, i_{g}+1,0} g_{3, i_{3}, 0}\right) c_{2}\left(g_{1, i_{1}, 1} g_{1, i_{1}+1,1} g_{1, i_{1}+1,0} g_{1, i_{1}, 0}\right)=1 . \tag{90}
\end{gather*}
$$

By (55), relation (72) for $i_{2 j}=0$ yields the following relation

$$
\begin{equation*}
g_{2 j-1, i_{2 j-1}+2,0} g_{2 j-1, i_{2 j-1}+1,0}=g_{2 j-1, i_{2 j-1}+1,0} g_{2 j-1, i_{2 j-1}, 0} \tag{91}
\end{equation*}
$$

Since, by (90), the product

$$
g_{2 j-1, i_{2 j-1}, 1} g_{2 j-1, i_{2 j-1}+1,1} g_{2 j-1, i_{2 j-1}+1,0} g_{2 j-1, i_{2 j-1}, 0}
$$

is independent of $i_{1}, \ldots, i_{2 g-1}$, we deduce, as a cosequence of (91), the following relation

$$
\begin{equation*}
g_{2 j-1, i_{2 j-1}, 1} g_{2 j-1, i_{2 j-1}+1,1}=g_{2 j-1, i_{2 j-1}-1,1} g_{2 j-1, i_{2 j-1}, 1} \tag{92}
\end{equation*}
$$

Lemma 5 The defining relations (72) are consequences of the set of relations (68) - (71), (73) - (87), (91), (92), where the elements $a_{2 j-1, i_{2 j-1}, i_{2 j}}$ are defined by (88) and (89).

Proof. Denote by

$$
\begin{equation*}
\tau_{2 j-1}=\left(g_{2 j-1, i_{2 j-1}, 1} g_{2 j-1, i_{2 j-1}+1,1} g_{2 j-1, i_{2 j-1}+1,0} g_{2 j-1, i_{2 j-1}, 0}\right)^{-1} \tag{93}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\tau_{2 j-1}=g_{2 j-1, i_{2 j-1}, i_{j}}^{-1}\left(a_{2 j-1, i_{2 j-1}, i_{2 j}} a_{2 j-1, i_{j-1}, i_{2 j-1}}^{-1}\right) g_{2 j-1, i_{2 j-1, i_{2 j}}}^{-1} \tag{94}
\end{equation*}
$$

By (90), we have

$$
\begin{equation*}
\tau_{2 j-1}=c_{2 j-2} \tau_{2 j-3}^{-1} \ldots c_{2} \tau_{1}^{-1} c_{2} \cdots c_{2 g-2} g_{2 g} \ldots g_{n-2} g_{n-1}^{2} g_{n-2} \ldots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \ldots \tau_{2 j+1}^{-1} c_{2 j} \tag{95}
\end{equation*}
$$

By (69) - (71) and due to (93) and the previous equation, each element $a_{2 t-1, i_{1 i-1}, i_{21}}, 1 \leq l \leq g$, and $\tau_{2 j-1}$ commute, hence $\tau_{2 j-1}$ and $a_{2 j-1, i 2 j-1, i_{2 j}} a_{2 j-1, i 2 j-1, i_{2 j}-1}^{-1}$ commute, i.e. in view of (94), $\tau_{2 j-1}$ and $g_{2 j-1, i_{2 j-1}, i_{2 j}} \tau_{2 j-1} g_{2 j-1, i_{2 j-1}, i_{2 j}}$ commute:

$$
\left(\tau_{2 j-1} g_{2 j-1, i_{2 j-1}, i_{2 j}}\right)^{2}=\left(g_{2 j-1, i_{2 j-1}, i_{2 j}} \tau_{2 j-1}\right)^{2}
$$

The rest of the proof of Lemma coincides with the proof of the same assertion in the case $g=1$ and is contained in [Z] pp. 347-349 (starting from equation (14) in [Z]).
Lemma 6 The set of relations (68) - (71), (73) - (87), (91), (92) is equivalent to the set (73) - (85), (90), (91), (92), where the elements $a_{2 j-1, i_{2 j-1}, i_{2 j}}$ are defined by (88) and (89).

Proof. Relations (68) and (69) are cosequences of (75) due to (89).
Relations (71), $l \neq j$ and $l \neq j+1$, are cosequences of (78) in view of (89). Deduce (71) from (73) - (84), (90), (91), (92) in the case $l=j$. By (87) (which is cosequence of (90), (88) and (89)),

$$
\begin{aligned}
& a_{2 j-1, i_{2 j-1}, i_{2 j}} a_{2 j-1, i_{2 j-1}, i_{2 j}-1}^{-1}= \\
& g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2} \tau_{2 j-3}^{-1} \ldots c_{2} \tau_{1}^{-1} c_{2} \ldots c_{2 g-2} g_{2 g} \ldots g_{n-1}^{2} \ldots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \ldots \tau_{2 j+1}^{-1} c_{2 j} g_{2 j-1, i_{2 j-1}, i_{2 j}}
\end{aligned}
$$

Since $a_{2 j-1, i_{2 j-1}, 0}=1$, it is sufficient to deduce that $c_{2 j}$ and $a_{2 j-1, i_{2 j-1}, i_{2 j}} a_{2 j-1, i_{2 j-1}, i_{2 j-1}}^{-1}$ commute. Note that relations (77) and (79), in view of (82) and (84), are equivalent respectively to

$$
\begin{equation*}
\left[c_{2 j},\left(g_{2 j-1, i_{2 j-1}, i_{j}} c_{2 j-2} g_{2 j-1, i_{2 j-1}, i_{2 j}}^{-1}\right)\right]=1 \tag{96}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[g_{2 g},\left(g_{2 g-1, i_{2 g-1}, i_{2 g}} c_{2 g-2} g_{2 g-1, i_{2 g-1}, i_{2 g}}^{-1}\right)\right]=1 \tag{97}
\end{equation*}
$$

We have

$$
\begin{aligned}
& c_{2 j}\left(a_{2 j-1, i_{j-1}, i_{2 j}} a_{2 j-1, i_{2 j-1}, i_{2 j}-1}^{-1}\right)= \\
& \frac{c_{2 j} g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2} \tau_{2 j-3}^{-1} \cdots c_{2} \tau_{1}^{-1} c_{2} \cdots c_{2 g-2} g_{2 g} \cdots}{\cdots g_{n-1}^{2} \cdots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \cdots \tau_{2 j+1}^{-1} c_{2 j} g_{2 j-1, i_{2 j-1, i 2 j}}=(\text { by (96)) }} \\
& \begin{array}{l}
g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2}\left(g_{2 j-1, i_{2 j-1, i_{2 j}}^{-1}} c_{2 j} g_{\left.2 j-1, i_{2 j-1, i_{2 j} j}\right)}\right) \tau_{2 j-3}^{-1} \cdots c_{2} \tau_{1}^{-1} c_{2} \cdots c_{2 g-2} g_{2 g} \cdots \\
\cdots g_{n-1}^{2} \cdots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \cdots \tau_{2 j+1}^{-1} c_{2 j} g_{2 j-1, i_{2 j}, i_{2 j}}=\text { (by (74)-(80)) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots g_{n-1}^{2} \cdots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \cdots \tau_{2 j+1}^{-1} c_{2 j} g_{2 j-1, i_{2 j-1}, i_{2 j}}=(\text { by (96)) } \\
& g_{2 j-1, i_{2 j-1}, i_{j} j} c_{2 j-2} \tau_{2 j-3}^{-1} \cdots c_{2} \tau_{1}^{-1} c_{2} \cdots \underline{c_{2 j-2} c_{2 j}\left(g_{2 j-1, i_{2 j-1, i_{2 j}}}\right) \cdots c_{2 g-2} g_{2 g} \cdots .} \\
& \cdots g_{n-1}^{2} \cdots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \cdots \tau_{2 j+1}^{-1} c_{2 j} g_{2 j-1, i_{2 j-1, i_{2 j}}}=\text { (by (74) - (80)) } \\
& g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2} \tau_{2 j-3}^{-1} \cdots c_{2} \tau_{1}^{-1} c_{2} \cdots c_{2 j-2} c_{2 j} \cdots c_{2 g-2} g_{2 g} \cdots g_{n-1}^{2} \cdots \\
& \cdots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \cdots \tau_{2 j+1}^{-1}\left(g_{2 j-1, i_{2 j-1}, i_{2 j}}\right) c_{2 j} g_{2 j-1, i_{2 j-1}, i_{2 j}}=(\mathrm{by}(84)) \\
& g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2} \tau_{2 j-3}^{-1} \cdots c_{2} \tau_{1}^{-1} c_{2} \cdots c_{2 j-2} c_{2 j} \cdots c_{2 g-2} g_{2 g} \cdots g_{n-1}^{2} \cdots \\
& \cdots g_{2 g} \tau_{2 g-1}^{-1} c_{2 g-2} \cdots \tau_{2 j+1}^{-1} c_{2 j} g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j}= \\
& \left(a_{2 j-1, i_{2 j-1}, i_{2}} a_{2 j-1, i_{2 j-1}, i_{2 j}-1}^{-1}\right) c_{2 j} .
\end{aligned}
$$

The deducting of (70) and (71) (in the case $l=j+1)$ from (73) $-(84),(90),(91),(92)$ is the same as the previous one and will be omitted.

The relations (73):

$$
\begin{equation*}
g_{2 j-1, i_{2 j-1}, i_{2 j}+2}=g_{2 j-1, i_{2 j-1}, i_{2 j}+1} g_{2 j-1, i_{2 j-1}, i_{2 j}} g_{2 j-1, i_{2 j-1}, i_{2 j}+1}^{-1} \tag{98}
\end{equation*}
$$

for a fixed value of $i_{2 j-1}$, can be considered as recurrence relations defining the elements $g_{2 j-1, i_{2 j-1}, i_{2 j}}$ in terms of the two free elements $g_{2 j-1, i_{j-1}, 0}$ and $g_{2 j-1, i_{2 j-1}, 1}$. Then the relations (91) and (92) can be used in order to express all the elements $g_{2 j-1, i_{2 j-1}, 0}$ and $g_{2 j-1, i_{2 j-1,1}}$ in terms of $g_{2 j-1,0,0}, g_{2 j-1,1,0}$ and $g_{2 j-1,0,1}, g_{2 j-1,1,1}$ respectively. Consequently, our group $G_{g, n}$ is generated by $3 g+n-1$ elements:

$$
\begin{gather*}
g_{2 j-1,0,0}, g_{2 j-1,1,0}, g_{2 j-1,0,1}, g_{2 j-1,1,1}, \quad 1 \leq j \leq g ; \tag{99}\\
c_{2}, c_{4}, \ldots, c_{2 g-2} ; \tag{100}\\
g_{2 g}, g_{2 g+1}, \ldots, g_{n-1} \tag{101}
\end{gather*}
$$

Relations (75) - (79) follow from the same relations for $g_{2 j-1,0,0}, g_{2 j-1,1,0}, g_{2 j-1,0,1}, g_{2 j-1,1,1}$ (respectively, $\left.g_{2 g-1,0,0}, g_{2 g-1,1,0}, g_{2 g-1,0,1}, g_{2 g-1,1,1}\right)$, since all $g_{2 j-1, i_{2 j-1}, i_{2 j}}$ (respectively, $g_{2 g-1, i_{2 g-1}, i_{2 g}}$) belong to a subgroup generated by these elements, and since relations (77) (respectively, (79)) can be written as

$$
\begin{align*}
& {\left[\left(c_{2 j-2} c_{2 j} c_{2 j-2}^{-1}\right), g_{2 j-1, i_{2 j-1}, i_{2 j}}\right]=1} \tag{102}\\
& {\left[\left(c_{2 g-2} g_{2 g} c_{2 g-2}^{-1}\right), g_{2 g-1, i_{2 g-1}, i_{2 g}}\right]=1} \tag{103}
\end{align*}
$$

Applying Zariski's Lemma ([Z], p.350), we obtain that relations (84) (for (82) the arguments are the same) are consequences of any three of them relative to three consecutive indices $i_{2 j}$, say $i_{2 j}=0,1,2$. By (91) and (92), we conclude, on the basis of Zariski's Lemma, that for $i_{2 j}=0,1$ relations (84) are consequences of three of these relations relative to three consecutive values of $i_{2 j-1}$, say $i_{2 j-1}=0,1,2$. To decrease the number of relations (84) for $i_{2 j}=2$, we change, as in [Z], these relations to equivalent relations

$$
\begin{equation*}
\left(g_{2 j \pm 1, i_{2 j \pm 1}, 1} g_{2 j \pm 1, i_{2 j \pm 1}, 0} c_{2 j}\right)^{2}=\left(c_{2 j} g_{2 j \pm 1, i_{j \not j \pm 1}, 1} g_{2 j \pm 1, i_{2 j \pm 1}, 0}\right)^{2} . \tag{104}
\end{equation*}
$$

To show that these relations are equivalent to one of them, say

$$
\begin{equation*}
\left(g_{2 j \pm 1,0,1} g_{2 j \pm 1,0,0} c_{2 j}\right)^{2}=\left(c_{2 j} g_{2 j \pm 1,0,1} g_{2 j \pm 1,0,0}\right)^{2} \tag{105}
\end{equation*}
$$

it is sufficient to show that the expressions

$$
s_{2 j \pm 1, i_{2 j \pm 1}}=\left(g_{2 j \pm 1, i_{2 j \pm 1}, 1} g_{2 j \pm 1, i_{2 j \pm 1}, 0} c_{2 j}\right)^{2}\left(c_{2 j} g_{2 j \pm 1, i_{2 j \pm 1}, 1} g_{2 j \pm 1, i_{2 j \pm 1}, 0}\right)^{-2}
$$

are all transforms of each other, for $i_{2 j \pm 1}=0, \pm 1, \pm 2, \ldots$, as a consequence of relations (74) - (84) ($i_{2 j}=0$ or $1,1 \leq j \leq g-1),(73),(87),(91)$, (92) (where the elements $a_{2 j-1, i_{2 j-1}, i_{2 j}}$ are defined by (88) and (89)), and additional relations defining additional generators. Hence, we shall be able to take the relations corresponding to $i_{2 j-1}=0$. For this we need, in order to apply Zariski's arguments (see the computation on p. 351 in [Z]), to show that

$$
\delta_{j, \pm}=\delta_{2 j \pm 1, i_{2 j \pm 1}}=c_{2 j} g_{2 j \pm 1, i_{2 j \pm 1,1}} g_{2 j \pm 1, i_{2 j \pm 1}+1,1} g_{2 j \pm 1, i_{2 j \pm 1}+1,0} g_{2 j \pm 1, i_{2 j \pm 1,0}} c_{2 j}
$$

are commutative respectively with $g_{2 j+1, i_{2 j+1, i_{2 j+2}}}$ and $g_{2 j-1, i_{2 j-1, i_{2 j}}}$ in the case $i_{2 j+2}$ and $i_{2 j}=0$ or 1 . Let us check that $\delta_{j-1,+}$ and $g_{2 j-1, i_{2 j-1}, i_{2 j}}$ commute. For this, denote by

$$
\begin{aligned}
& A=\left(g_{2 j-3, i_{2 j-}, 1} g_{2 j-3, i_{2 j-3}+1,1} g_{2 j-3, i_{2 j-3}+1,0} g_{2 j-3, i_{2 j-3}, 0}\right) c_{2 j-4} \cdots c_{2}\left(g_{1, i_{1}, 1} g_{1, i_{1}+1,1} g_{1, i_{1}+1,0}\right. \\
& \left.\cdot g_{1, i_{1}+1,0} g_{1, i_{1}, 0}\right) c_{2} \cdots c_{2 j-4} ; \\
& B=c_{2 j+2} \cdots c_{2 g-2} g_{2 g} \cdots g_{n-1} g_{n-1} \cdots g_{2 g}\left(g_{2 g-1, i_{2}-1,1} g_{2 g-1, i_{2 g-1}+1,1} g_{2 g-1, i_{2}-1+1,0} g_{2 g-1, i_{2 g-1}, 0}\right) \\
& \cdot c_{2 g-2} \cdots\left(g_{2 j+1, i_{2 j+1}, 1} g_{2 j+1, i_{2 j+1}+1,1} g_{2 j+1, i_{2 j+1}+1,0} g_{2 j+1, i_{2 j+1}, 0}\right)
\end{aligned}
$$

We have

$$
\begin{align*}
& g_{2 j-1, i_{2 j-1}, i_{2 j}} \delta_{j-1,+}^{-1}= \tag{90}\\
& \left(g_{2 j-1, i_{2 j-1}, i_{2 j}}\right) A c_{2 j-2} c_{2 j} B c_{2 j} c_{2 j-2}^{-1}= \tag{74}\\
& A\left(g_{2 j-1, i_{2 j-1}, i_{2 j}}\right) c_{2 j-2} c_{2 j} B c_{2 j} c_{2 j-2}^{-1}= \tag{77}\\
& A c_{2 j-2} c_{2 j}\left(c_{2 j-2}^{-1} g_{2 j-1, i_{2 j-1}, i_{2 j}} c_{2 j-2}\right) \tag{74}\\
& A c_{2 j} c_{2 j-2}^{-1}= \\
& A c_{2 j-2} c_{2 j} B\left(c_{2 j-2}^{-1} g_{2 j-1, i_{2 j-1, i, i_{2 j}} c_{2 j-2}}^{-1}\right) c_{2 j} c_{2 j-2}^{-1}= \\
& A c_{2 j-2} c_{2 j} B c_{2 j} c_{2 j-2}^{-1} g_{2 j-1, i_{2 j-1}, i_{2 j}}= \\
& \delta_{j-1,+}^{-1} g_{2 j-1, i_{2 j-1}, i_{2 j}}^{-1} .
\end{align*}
$$

(by (77), (83), (84))

To prove that $g_{2 j-1, i_{2 j-1}, i_{2 j}}$ and $\delta_{j,-}^{-1}$ commute in the case $i_{2 j}=0$ or 1 , we need the following lemma.
Lemma 7 For fixed $\bar{I}=\left(i_{1}, \ldots, i_{2 g}\right)$, where $i_{2 j}=0$ or 1 , the following relation

$$
\begin{align*}
A_{2 j-1, I}= & B_{2 j-1, j, I} g_{2 j-1, I}^{-1} g_{2 j, I}^{-1} B_{2 j+1, j+1, I} g_{2 j+1, I}^{-1} g_{2 j+2, I}^{-1} \cdot \cdots \cdot g_{2 g-3, I}^{-1} g_{2 g-2, I}^{-1} B_{2 g-1, g, I} \\
& \cdot g_{2 g-1, I}^{-1} g_{2 g, I}^{-1} A_{2 g+1, I}^{-1} B_{2 g+1,1, I} \cdot \cdots \cdot B_{2 g+1, j-1, I} A_{2 g+1, I} g_{2 g, I} \cdot \ldots \cdot g_{2 j-1, I} \tag{106}
\end{align*}
$$

is a consequence of relations (68) - (71), (73) - (85), (87) with the same set \bar{I}.
Proof. By (8),

$$
A_{1}=B_{1,1} \cdot \ldots \cdot B_{1, g} .
$$

Hence,

$$
A_{1}=B_{1, j} \cdot \ldots \cdot B_{1, g} A_{1}^{-1} B_{1,1} \cdot \ldots \cdot B_{1, j-1} A_{1}
$$

By (14) and (49), this relation can be written in the form

$$
A_{2 j-1}=B_{2 j-1, j} \cdot \ldots \cdot B_{2 j-1, g} A_{2 j-1}^{-1} B_{2 j-1,1} \cdot \ldots \cdot B_{2 j-1, j-1} A_{2 j-1}
$$

If we substitute in the last relation $\sigma_{2 j-1}^{-1} \cdots \sigma_{2 k-2}^{-1} B_{2 k-1, k} \sigma_{2 k-2} \cdots \sigma_{2 j-1}$ instead of $B_{2 j-1, k}$ for $k>j$; $\sigma_{2 j-1}^{-1} \cdots \sigma_{2 g}^{-1} A_{2 g+1} \sigma_{2 g} \cdots \sigma_{2 j-1}$ instead of $A_{2 j-1}$; and for $k<j$, substitute $\sigma_{2 j-1}^{-1} \cdots \sigma_{2 g}^{-1} B_{2 g+1, k} \sigma_{2 g} \cdots \sigma_{2 j-1}$ instead of $B_{2 j-1, k}$, we obtain the following relation

$$
\begin{align*}
A_{2 j-1}= & B_{2 j-1, j} \sigma_{2 j-1}^{-1} \sigma_{2 j}^{-1} B_{2 j+1, j+1} \sigma_{2 j+1}^{-1} \sigma_{2 j+2}^{-1} \cdot \ldots \cdot \sigma_{2 g-3}^{-1} \sigma_{2 g-2}^{-1} B_{2 g-1, g} . \\
& \cdot \sigma_{2 g-1}^{-1} \sigma_{2 g}^{-1} A_{2 g+1}^{-1} B_{2 g+1,1} \cdot \ldots \cdot B_{2 g+1, j-1} A_{2 g+1} \sigma_{2 g} \cdot \ldots \cdot \sigma_{2 j-1} \tag{107}
\end{align*}
$$

Now Lemma follows from Lemma 4 and Remark 1.
Since, by (65), $B_{2 k-1, k, I}=a_{2 k-1, i_{24-1}, i_{2 k}} a_{2 k-1, i_{2 k-1}, i_{2 k}-1}^{-1}$, therefore, by (89), (91), (92), and (63), relation (107) can be witten in the form

$$
\begin{gather*}
\delta_{j,-}^{-1}=c_{2 j}^{-1}\left(g_{2 j-1, i_{2 j-1}, 1} g_{2 j-1, i_{2 j-1}+1,1} g_{2 j-1, i_{2 j-1}+1,0} g_{2 j-1, i_{2 j}, 0}\right)^{-1} c_{2 j}^{-1}= \\
g_{2 j+2, I} \cdots g_{2 g-1, I} g_{2 g} \cdots g_{n+2 j-3, I} g_{n+2 j-3, I} \cdots g_{2 g+1} A_{2 g+1, I}^{-1} B_{2 g+1, j-1, I}^{-1} \cdots B_{2 g+1,1, I}^{-1} A_{2 g+1, I} . \\
g_{2 g} g_{2 g-1, i_{2 g-1, i_{2 g}}} B_{2 g-1, g, I}^{-1} g_{2 g-2, i_{2 g-3}, i_{2 g-2}}^{-1} \cdots g_{2 j+2, i_{2 j+1, i_{2 j+2}} B_{2 j+1, j+1, I}^{-1} g_{2 j+1, i_{2 j+1}, i_{2 j+2}}} . \tag{108}
\end{gather*}
$$

Now, by Lemma 4, Remark 1, and by (13) - (15), (30), (45) - (48), it is obvious that $g_{2 j-1, i_{j-1}, i_{j}}$ and $\delta_{j,-}^{-1}$ commute.

Finally, by (91) and (92), we observe that the infinite set of relations (87) reduces to one relation, say $i_{2 j-1}=0$ for all j. This completes the proof of Theorem 2.

References

[B] J.S. Birman, Braids, Links, and Mapping Class Groups, Annals of Math. studies, vol. 82 Princeton Univ. Press, Princeton, 1975.
[N] M. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup., vol. 16 (1983), pp. 308-344.
[R] K. Reidemeister, Knoten und Gruppen, Abhandl. Math. Sem. Univ. Hamburg vol. 5, (1927), pp. 8-23.
[Sch] O. Schreier, Die Untergruppen der freien Gruppen, Abhandl. Math. Sem. Univ. Hamburg vol. 5, (1927), pp. 161-183.
$[\mathrm{Sc}] \quad$ G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc. vol. 68, (1970) pp. 605-617.
[Sh] I. Shimada, Fundamental groups of open algebraic varieties, Topology, vol. 34, (1995), pp. 509-531.
[Z] O. Zariski, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math., vol. 59 (1937) pp. 335-358.

Current address
Department of Mathematics
Moscow State University
of Transport Communications (MIIT)
Obraztcova str., 15 ,
101475 Moscow, Russia
e-mail address: victor@olya.ips.ras.ru
Department of Mathematics
Hokkaido University
Sapporo 060 Japan
e-mail address: shimada@hokudai.ac.jp

