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1 Introduction

Let C be a eompact Riemann surface of genus 9 ~ 1. We embed C into a projeetive space IPn-g by a very
ample line bundle L of degree n ;::: 2g + 1:

«P!LI : C y nm-go

We denote by CL the image of <1'ILI' Let (Ipn-gr be the dual projective space of pn-g, and let Ch c (Ipn-gr be
the dual hypersurface of CL; that is ,

(:L := {H E (Ipn- 9r; H does not intersect CL transversely}.

Tbe purpose of this paper is to ealeulate the fundamental group of the eomplement to this dual hypersurfaee.
Tbe idea of the ealeulation sterns from [Z], where the fundamental group of such eomplernents was ealeulated
in the case 9 = 1.

Let Picn(C) be the Picard variety of line bundles of degree n on C, and let sn(c) be the symmetrie product
of n-eopies of C, which parameterizes all effective divisors on C of degree n. Then there exists a natural
homornorphism

4>: sn(c) ~ Picn(C)

which maps a divisor D to the associated line bundle Oc(D). Let V C sn(c) be the image of the big diagonal;

V := {(XII' .• , X n ) E sn(C)j Xi = Xj for sorne i i: j }.

The fundamental group of the cornplernent sn(c) \ V is, by definition, the braid group B(g, n) ~ 'TrlBO.nC (in
the notation of [B]) of C with n strings.

Theorem 1 For a general Une bundle L E Picn(C) 0/ degree n, the fundamental group 'TrI ((Wn-ur \ CL) is
isomorphie to the kernel 01 the natural homomorphism

induced by the restrietion 4>' 0/ 4> to the complement sn (C) \ V.

We denote thc kernel of 4>~ by Gg,n.

Theorem 2 The group Gg,n, n ;::: 2g + I, is generated by n + 3g - 1 generators. Denote these generators by

C2, C4 I

g2g, 92u+l ,

91,i,j I 93,i,j ,

, C2g-4 , C2g-2 ;

, 9n-2 , 9n-l ;

I g2g-3,i,i 1929-1,i,j,

1

i,j=Ü,l.



i, j = 0, 1,

i, j =0, 1,

i, j =0,1,
i, j = 0, 1,

The set 0/ defining relations consists 0/

[C2k' c2d = 1,
[C2k' g"i,i] = 1,
[C2k' 91] = 1,

[(C2k-2C2k~k~-2)'92k-l'i,jJ: 1,
[(C2g-2g2g~0-2),920-1,i,j - 1,
[92k-l,i,j,921-1,i,j] = 1,
[92k-l,i,j,9d = 1,
[9k,9z] = 1,
C2i C2i+2 C2i =C2i+2 C2i C2i+2 ,

C2k92k±l,i,jC2k = 92k±l,i,jC2k92k±I,i,j , i, j = 0, 1,
C2g-292gC29-2 = 92gC2g-292g ;

92992g-1,i,j929 = 9 29- 1,i,j92g929- 1,i,j ,

9i9i+19i = 9i+19i91+1 ,

(92j±1 ,I,092j±1 ,0,OC2j)2 = (C2j92j±1 ,I,092j±I,O,0)2 ,

(92j±I,0,192j±I,I,IC2j)2 = (C2j92j±I,0,192j±I,I,d
2

,

(92j±I,0,192j±I,O,OC2j)2 = (C2j92j±I,0,192j±I,0,0)2,

(929- 1,1,092g-1 ,0,0929)2 = (92g929- 1,1,092g-1,0,0)2 ;

(9:;10-1,0,1 92g-1 ,1,1 929)2 = (929929-1 ,0,192g-1 ,1,d
2

;

(920-1,O,192g-1,O,0920)2 = (920920-1,0,1929-1,0,0)2 ;

C2 ... C29-2929 ... 90-190-1 ... 92g(92g-1,O,192o-I,I,192g-1,1,092g-1,0,0)C2g-2

... (93,0,193, I ,193,I,093,O,O)C2 (91,0,191 ,1,1 91,1 ,091 ,0,0) = 1 .

Ik-ll:l=l;
2k :1= I ± 1;
(2k,l) :1= (29 - 2,29) j

2:5k:59- 1 j

i, j = 0,1;
k :1= 1;
1~ 2k + 1;
Ik-II:l=I;
1 :5 i :5 9 - 2;
l:5k:59- 1;

i, j = 0, 1;
29 :5 i :5 n - 2;
1 :5 j :5 9 - 1;
1 :5 j :5 9 - 1;
1 :5 j :5 9 - Ij

Proof of Theorem 2 is based essentially on the ideas contained in section 2 of [Z]. By this reason, we advise to
look through section 2 in [Z] before reading the proof of this Theorem.

Let pr : CL ---t p2 be a general projection, and denote by Ct its image. Then the dual curve (ctr c (IP 2 j
of ct is nothing hut a general plane section of (h. Therefore, we have the following theorem as an easy
eonsequenee:

Theorem 3 For a generalUne bundle L E Picn(C) 0/ degree n, the fundamental group 1rdIP2 \ (C~r) has the
same presentation as that 0/ Gg,n in Theorem 2.

The contents of this paper are as follows. In section 1, we prove Theorem 1. The main idea is to apply an
analogue of (Sh, Theorem 1] to the pull-back of 4>/ by the universal covering of Pic°(C). In seetion 2, we reeall
some properties of the presentations of the braid group B(9, n). In seetion 3, we prove Theorem 2 by applying
Reidemeister-Sehreier method and by reducing general ease to the case considered in [Z].

We would like to thank Max-Planck-Institut für Mathematik in Bonn for providing us with excellent research
environment.

2 Proof of Theorem 1

Sinee n 2:: 29 + 1, the morphism 4> is a fiber bundle with fibers isomorphie to pn-g. For L E Picn(C), we
denote by P(L) the fiber (jJ-l (L), whieh is eanonieally isomorphie to the projeetive space IP. (HO (C, L)) of all
lines in HO(C, L) passing through the origin. The embedding morphism ~ILI is, by definition, a morphism into
the dual projeetive spaee IP(Lj= P,.(HO(C,L)j. Therefore, we ean consider the dual hypersurface CL to be a
hypersurfaee in the projective space IF(L) in a natural way. It is obvious that

CL = IP(L) n V.

Hy Nori's Lemma [N, Lemma 1.5 (C)], we have an exact sequenee

2
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for a general L E Pie"(C). Therefore, the point of the proof is to show the injeetivity of the homomorphism
7['1 (P(L) \ (h) -+ 7['1 (S" (C) \ V) induced by the inclusion of a general fiber of <p'. Let u : CD -+ Pie" (C) be the
universal covering of Pic"(C). We define E"(C) and V by the foHowing fiber produets:

-La
o lu

----7 Pie" (C)
t/J

and

V ~ cg

1 0 lu

V -+ Pic"(C).
t/Jlv

This V is an analytic divisor of E"(C). Then we have

7['1 (E"(C) \ V) ~ Ker( <P: : 7['1 (S"(C) \ V) -+ 7['1 (Pie"(C)) ). (2.2)

Claim 1 For all L E Pie"(C), the hypersur/ace CL is reduced 0/ constant degree 2(n + 9 - 1).

To prove this claim, we choose a linear subspace p"-g-3 in (P(L)jof eodimension 3 whieh is in general position
with respect to CL. Consider the projeetion pr of CL to p2 with the center being this nm - g - 3 • We fix a general
point on p2 and take the peneil P of lines passing through this point. This pencil P yields a line in P(L) whose
point eorresponds to a hyperplane of (P(L)jspanned by the p"-g-3 and a member of P. The intersection points
of this line with CL eorrespond to the lines in P whieh are tangent to the image pr(CL ) of CL by the projection.
Therefore the degree of CL is equal with the degree of the dual eurve of pr(CL). Sinee n 2:: 2g + 1, CL is
non-singular. Sinee pr is a general projeetion, pr(CL ) is a eurve of degree n with nodes as its only singularities.
The number of nodes is (n - l)(n - 2)/2 - g. Thus, by Plüeker formula, its dual is of degree 2(n + 9 - 1).

Now the holomorphie map ~ : E"(C) -+ C9 is a fiber bundle with fibers isomorphie to pu-go Therefore,
there exists a global trivialization

E"(C) ~ pn-g X a (2.3)

over (Y. \Ve fix this analytie isomorphism onee and for all. Let W be the analytic divisor of P"-g x C9
eorresponding to V via this isomorphism. For a point A of CD, we denote by W(A) the intersection of W with
IP"-g x {A}, and eonsider it as a hypersurface in pn-g. It is obviollS that W(A) is projeetively isomorphie to

CU(A) .

Now we shaH prove that, for a general A E C9 , the inclusion induces an isomorphism

(2.4)

This isomorphism, combined with (2.2), gives us the hoped-for isomorphism.
The proof of the isomorphism (2.4) is quite similar to the proof of [Sh, Theorem 1]. The reason why we

eamlOt apply [Sh, Theorem 1] to our situation is that the divisor W on IP'"-g x C9 is not algebraie but only
analytie. Henee we need to modify some parts of the proof in [Sh].

To be compatible with the notation of [Sh), we denotc by A the affine space CJl, and by p the projection
from (P"-g x A) \ W to A. As in [Sh, p.518], we construct the following data;

• a closed real semi-analytic subset 11 C A of real codimension ~ 3,

• a sequence of classically open subsets U1 C U2 C ... such that U~1Ui = A \ fl, and

• sections Si : Ui -+ p-l(Ui) of p over Ui.
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For a point a E A and a closed subset f C A, we use the symbols Ra(f) C A and Ra(f) C Sa in the same
meaning aB in [Sh, p.5I9]. Suppose that f is a closed analytic subset of complex codimension ;::: ein A. Then
Ra(f) is a closed real semi-analytic subset of real codimension ;::: 2c - I in A, while Ra(f) may faH even to be
closed in the (29 -I)-sphere Sa, and this latter is the main reason why we have to rewrite the proof in [Sh, §2].

For a positive real number r and a point b E A, we denote by f(b, r) the intersection of f with the closed
ball of radius r with the center b. Then Ra(f(b, r)) is a closed real semi-analytic subset of real codimension
2: 2c - 1 in Sa for any r E IR>o and b E A.

Since the projection sn(c) \ V -t Picn(C) is algebraic, there exists a Zariski closed subset ß C PicU(C) of
codimension I such that 8 n(C) \ V -t Picn(C) is locally trivial (in the category of differentiable manifolds) over
Picn(C) \~. Let DCA be the pull-back of ~ by tbe universal covering u : A -t Picn(C). For a line A C pn-g
and a point x E A, we put

{A E A; A does not intersect W(A) transeversely},

{A E A; xE W(A)}.

Then both of DA and Dx are closed analytic subsets of A of codimension 1 or possibly O. We shall prove the
following:

Claim 2 1/ x, A and a point 0 E A are chosen appropriately, then Ro(D) n Ro(DA) n Ro(Dx ) is a closed real
semi-analytic subset 0/ real codimension 2: 3 in A.

After proving this claim, we ean eonstruet the hoped-for data by applying the argument in [Sh, p.521-522]
verbatim.

ProO/o/ Claim 2. It is enough to prove that, if x, A and 0 are chosen appropriately, then Ro(D{o, r)) n
Ro(DA (o, r)) n Ro(Dz (o, r)) is a closed real semi-analytic subset of real eodimension 2: 3 in So for all r E lR.>o.

The number of the irreducible components of D is at most eountable. Let D1l D'J, ... be the irreducible
components of D, and let Ai be a point on D i . By Baire's category theorem, pn-g \ (UiW(Ai)) is non-empty.
Let y be a point of pn-g \ (Ui W(Ai)), and put

Gl/ := {A E Grass(pl, IPn-g) ; y E A}.

Since Ai (j. D y , Dy is a closed analytic subset of codimension 1 in A.
The number of the irreducible components of DJI is at most countable. Let Dl/,l, D y ,2, ... be the irreducible

components of DJll and let Al/,j be a point of Dy,j. We put

Then f JI.j is a Zariski closed subset of eodimonsion 2: 1 in Gy. Wo also put

f i := {A E GJI; A does not intersect W("i) transeversely }.

Since y (j. W("i) and W(Ai) is reduced by Claim 1, f i is a Zariski closed subset of codimension 2: 1 in Gl/'
Hence, by Baire's theorem again, the set

Gy \ (Uf i U UfY,j)
i j

is non-empty. \Ve choose a line A from this set. By the definition of f i , DA does not contain Ai for any i. Hence
DA nD is of eodimension ~ 2 in A. By the definition of f lI,j, An W(AJI,j) eonsists of finite number of points
for all j. Hence there exists a point z on A \ (Uj W("v,j)). Then Dz does not eontain "Jld for any j. Hence
D;t n Dy is a closed analytic subset of codimension 2: 2 in A. This implies that

3A := {A E A; Ac W(A)}

is contained in a closed analytic subsot of codimension 2: 2 in A.
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Sinee DAn D is of eodimension 2::: 1 in D, there exists a set {al, a2, ...} of eountably many points on
D \ DA which is dense in D. Let EjJ(r) be thc union of all affine lines in A passing through GI' and intersecting
DA (al" r). Let EI' be the union UrER>oEjJ (r). Each EjJ(r) is a closed subset of A whieh is real semi-analytic of
real eodimension 2::: 1. Henee, by Baire's theorem again, we have

A \UjJEjJ

Let 0 be a point of A \ UjJEjJ. Then Ro(D(o, r)) n Ro(DA (0, r)) is a closed real semi-analytie subset of real
eodimension 2::: 2 in So for all r, beeause Ro(DA (0, r)) does not eontain the image of av by the projeetion

w : A \ {o} -t So, and the set {w(av ); a v E D(o, r)} is dense in Ra(D(o, r)).
Let Ro(D, DA, r) be the union of the irreducible eomponents of Ro(D, DA, r) whieh are of real eodimension

2 in So. Recall that 3 A is eontained in a closed analytic subset of codimension 2::: 2 in A. Henee RoC=.A (0, r)) is
eontained in a closed real semi-analytic subset of real eodimension 2::: 3 in So. Thus there exists a set {bI, b2 , ••• }

of countably many points of Ro{D,DA,r) \ Ro(3(0,r)) which is dense in Ro(D,DA,r). Let u/-' be the real
semi-line in A passing through 0 and bJ1 with the end-point o. Then the interseetion

An (U>.Eu,,(o,t) W(..\))

is a closed real semi-analytic subset of A of real codimension 2::: 1 for all t E IR>o. Hence A \ U/l(U).EU" W(A))
is a non-empty set, from which we choose a point x. Then Ro(Dz ) contains none of bw This implies that

Ro(D(o, r)) n Ro(DA(0, r)) n Ro(Dz(o, r)) is a closed real semi-analytic subset of real codimension 2::: 3. 0

Thus the construction of the boped-for data is eompleted.

The projection (pn- g x A) \ W --+ A is locally trivial (in the eategory of differentiable manifolds) over A \ D.
Moreover, when we are given a continuous map 10 : ]2 -t A such that 10(8]2) nD = 0, then we can perturb 10
to I~ : J2 --+ A homotopieally relative to 8P so that IE- 1(fE(P) n D) eonsists of finitely many points in ]2.

Now we ean apply the argument in tbe first paragraph of [Sh, p.519], and follow the proof of [Sh, Corollary]
to abtain the isomorphism (2.4). The assumption (C.l) in [Sh, Corollary] follows from Claim 1. The assumption
(S) in [Sh, p.511) follows from the above eonstruction. The assumptions (2.1), (2.2) and (3.1) in [Sh, Theorems
2 and 3] hold obviously. The assumption (3.2) in [Sb, Theorem 3] does not hold in our easc, at least literally,
because we have left the eategory of algebraic varieties when we take the universal covering of Picn (C). This
assumption, however, is used only in [Sh, §1.3]. All we have to da is to replace pM in [Sh, p.SI7] by the first
factor pn-g of the product IPn-g x CU, and to replace Zariski open subsets of B by classically open subsets of
B. 0

3 The braid groups B(g, n)

Consider the braid group B(g, n) of n strings on a surface Sg of genus g. We shall assume that n 2::: 2g + 1. The
presentation of B(g, n) was obtained in [Sc] . The sets of generators and defining relations of the presentation
in [Sc] (after correction misprints) ean be redueed to the following presentation of B(g, n). The generators of
B(g, n) are

Pi,j , 1 :5 i Sn, 1 ~ j ~ 2g ;
0"1,0"2, ,O"n-l·

The set of defining relations consists of

(1)
(2)

(3)
(4)

(5)

i < k, j < l, (j,l) =I (2t -1,2t) j

i :f. k nor k - 1 ;

l~k~n-l;

1 S i S n - 1, 1 S j ~ 2g ;

[i-jl:;il;

[pi,j, pk,d = 1,

[pi,j,O"k] = 1,
-I

Pk,j = O"kPk+l,jUk '

( -1)2 (-1 )2Pi,jU i = U i Pi,j ,

[Ui,Uj] = 1,
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1 ~ i ~ n - 2;

j = i 1 or i + 1;

(6)

(7)

(8)

Note that we read all words contained in thc prescntatiün given in [Sc] from right tü left and write down
them from left to right.

(2k - l)-st handle

O'ir. i+l
..J
t

. 2

. 1

\
\

'\
\

'\ ,

(2k)-th handle

j . j + 1

Figure 1

.n-l
·n

The generators Pi,j and O'k have the following geometrical meaning: 8g minus a 2-disc can be thought as a
2-disc ~ union 2g untwisted I-handles. Für each r thc (2r - l)st and (2r)th handles are linked and TIO other
pair of handles is linked. We number the handles reading from left to right. We shall assurne that n fixed points
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He on a circle which is the boundary of a smaller disc in .6.. Wc choose one of these points, say x, and number
them (starting from x) consecutively moving along the circle in clockwise direction. The elements pj,k and (Ti

are drawn in Figure 1. .

Lemma 1 Put
-1 -1

(Tn == (Ta == (Tl ..• (Tn-2(Tn-l(Tn_2 ..• (Tl .

and define (Tk tor all k E Z assuming (TI.: == (Tn+l.:. Let

AI; == (Tk(Tk+l ..... (Tk+n-3(T~+n_2(TI.:+n-3..... (TI;.

Then the /ollowing relations

(9)

(10)

(T1.:(Tn,

A -1
(TI.: Jr,uk ,

== u,AI.:,

2:5 k :5n-2;

k E Z;

I ~ k nor k - l(mod n)

(11)

(12)

(13)

(14)

(15)

are consequences 0/ (5) and (6).

Proo/ follows from the same assertion for the braid group of n strings on a disco o

Lemma 2 The presentation (1) - (8) 0/ B(g, n) is equivalent to the /ollowing presentation. The generators 0/
B(g, n) are

Pl,I, Pl,2, P3,3, P3,4,

U1 ,U2,

The set 0/ defining relations consists 0/

[Pi,., Pj,.]

[Pi,.,Uj]

[((Ti-l Pi,'" ui-\ ), Ui]

( -1 )2( -1 )-2
P2i-l,jU2i - 1 U2i _ 1PZi-l,j

[Ui,Uj]
-1 -1 -1

UiUHI U i UHl U i UHI

[( -I) -I ]-2
UjPZi+1,2iU j ,P2i+1,2i-l Uj

P2g-1,2g-1, P2g-1,2g,

U n -1·

1, i =I: j;
1, j =I: i nor i-I ;

1, i == 1, 3, ... , 2g - 1 ;

== 1, j == 2i - 1 or 2i j

== 1, li-jl=l:l;
1, 1 :5 i :5 n - 2;

1, j == 2i or 2i + 1;

(16)

(17)

(18)

(19)

(20)

(21)

(22)

2 [-1 ]-1
UI U2 ..... U n -2(Tn_1 U n -2 ..... UZg-l P2g-1,Zg-1, PZg-l,Zg UZg-ZUZg-3

[
-1 ]-1 [_1]-1 [ _1]-1 = ( )

. (12g-3 ,Zg -3, PZg-3,Zg-2 .•... U4 Ua Pa ,a, P3,4 Uz Ul PI ,1 , PI,2 1. 23

Prao/. To obtain relations (1) - (8), we define Pi,l by induction using (3). After that, to verify relations (2), we
need to show by induction that if relations (17), (18) hold for Pi,l, then the similar relations also hold for Pi±l,l.

The checking is the following.
[Pi-1,l, Uj] == [Ui-IPi,lui=,.:\, Uj] == 1

for j =I: i - 2 nor i-I by assumption of induction and by (20).

[(Ui-2Pi-1,IU~z),Ui-I] == [(Ui-2 Ui-1Pi,lUi_\ U~z),Ui-I] ==
-1 -1 -1 -1 -1 -1

(Ti-2 Ui-1Pi,I Ui_1 U i _ zUi-1 Ui-2 Ui-lPi I Ui - l U i - 2U i - 1 ==
-1 -1 ~1 -1 -1 -1

Ui-2Ui-1Pi,IUi _ 1U i _ ZUi-Z Ui-1 Ui-ZPi I Ui-l Ui_ZUi _ 1 ==
-1 -1 -1 -1 '

Ui-2 Ui-1Pi,IUi-2Pi I (Ti-1 Ui_ZUi _ 1 ==
~1 -1 -1 -1 -1 -1 -1 1

Ui-2 Ui-1 U i-2Pi,lPi,1 (Ti-1 (Ti_ZUi_1 == Ui-Z(Ti-1Ui-Zui_1 u i - 2u i - 1 = .

The detailed check of the remaining relations is left to the reader.
Denote C2i == (T2i~1 (TZiO'Zi+1 for 1 :5 i :5 9 - 1.

7

o



Lemma 3 The group B(g, n) is generated by

PI,l, Pl,2, P3,3, P3,4, "', P2g-l,2g-l1 P2g-l,2g,

The set 0/ defining relations consists 0/

(24)

(25)

Rl,i,j :=

R2 ,i,j :=

R3,i,j :=

I4,i,i :=

R5 ,i,j :=

R5 ,2j,2j-2 :=

Ra,i,j :=

R7 ,2g,2g-2 :=

RS,i,j :=

R9,i,i :=

RlO,i,i :=

Rll,i,i :=

R l2 ,i,j :=

R13 :=

[pi,., pj,.} = I, i "I j j

[Pi,.,aj] =1, i"lj;
[P2H 1,. , C2j] = I, 0 ~ i :5 9 - 1, 1 :5 j ~ 9 - 1 i

(p2i-l,.a2j~1)2(a2j~1P2i-l,.)-2 = 1, 1 ~ i ~ g;

(ai,aj] = 1, I i - j 1"11 ;
[C2j, (C;"/_20"2j-1C2j-2)] =1;

[17 i , Cj) = 1, i "I j ± 1 ;

[a2g, (c2g1_2a2g-1C2g-2)] = 1 j

[C2i 1 C2jI = 1, I i - j 1"1 1 j

-I -1 -1 1 l' 2
O"iO"Hl a i aH1 a i aHI = 1 ~ 1. :5 n - j

-1 -1 -1 1 l' 2
C2iC2i+2C2i~H2~i C-.li+2 = 1 :5 z :5 9 - ;

-1 -I -1 1 l' 1
C2i a 2i±1c2ia2i±1G...2i a 2i±1 = 1 :s 1. :s 9 - j

[(0"2i-1P2i-l,2ia2i~I)' P2i~1,2i-l] 0"2i~1 = I, 1 ~ i :5 g;

C2C4'" C2g-20"2g a 2g+1 ... 170 -2 17;_10"0-2 ... 1729 .

. (0"2g-1 ['];91_10"2g-dC2g-2 ... (173 [.];1 0"3)C2(0"1 [.]~1 ad = 1,

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

where [']2i-l = [P2i-l,2i-l1 P2"Ll,2i]'

Proof. The elements 0"2i can be expressed through 0"2Hl and C2i :

and

(40)

(41)

If we substitute these expressions into (16) - (23), then we obtain relations (26) - (39). For example, relations
(18) (applying (21) and (17)) gives rise to (28). In fact, for j = i

(by (21))

If j :j:. i , then (28) is a consequence of (18) 1 sincc 0"2j and 0"2j+l are commutative with P2i+l,•.

Conversely, if we substitute 0"2i~10"2ia2i-l in (26) - (39) instead of C2i we obtain relations (16) - (23). The
detailes are left to the reader. 0

For the presentation of B(g, n) given in Lemma 3, the following elements will be called the additional
generators: 0"2i defined by (41), 1 :5 i :5 9 - 1; 0"0 defined by (9); A k defined by (10); Pi,j recurrently defined
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by (3), (i, j) f; (2t - 1, 2t - 1) nor (2t - 1, 2t); Ei,j = [Pi,Zj-l, Pi,Zj]i and C{J = O"l l
O"nO"l' It is easy to check that

the following relations hold.

-1O"n = C{JO"lCo ;

C{J0"1 C{J = 0"1 C{J0"1 ;

C{JO"nC{J = O"nC{JO"n j

[O"j, C{J] = 1,

[P2j-l,.,C{J] = 1,

[BZi-l,j, CZk] = I,

(Bi,j,O"k] = 1,

Bk,j = akBk+1 ,jO"kl t

The following lemma is a corollary from Lemmas 1 - 3.

2~j::5n-l;

l::5j::5gj

for all i, j, k;

i # k nor k - 1 i

l::5k::5n-l;

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

Lemma 4 Relations (2), {11} - (15), (42) - (49) are consequences of (27), (28), (30) - (37), (39).

Denote relations (2), (11) - (15), (42) - (49), respectively, by R1 , •• • ,R15 •

4 Proof of Theorem 2

In the sequel we use presentation (24) - (39) of B(g, n). Consider the homomorphism

a : B(g, n) --+ ZZg

sending PZi-l,j to I j = (0, ... ,0, 1,0 ... ,0), where 1 is in jth place, and sending all O"i and CZj to zero. Obviously,
a ~ eP~. Denote by G = Gg,n the kernel of a. Put Pj = P2i-l,j, where P2i-l,j are the generators of B(g,n) from
presentation (24) - (39).

By Reidemeister - Schreier Theorem [R], [Seh], the following elements are generators of G :

ak,T = (pl)Pk(pl+h)-I,

~j,l (pT)cZj(pT)-l,

gt,T (pT )al (pT) -I,

where 1= (i l , ... , izg ) and

1 ~ k :s 2g;

l~j:::;g-l;

l = 1, 3, ... , 2g - 1, 2g, .. . , n - 1,

(50)

(51)

(52)

I _ i 1 i:lgP - PI ..... PZg .

The defining relations of G are

k=I,,,.,13, (53)

where each R! .. is written as a word in the generators a., c... and g....... ,J,J

Remark 1 1f a relation R is a consequence of relations R 1 ••• , R k , then for fixed I the relation RT is a
consequence of the relations R[ ... , RI.

Decrease the number of generators of G. It follows from (26) that

aZj,T = 1

for 1 ~ i ~ 9 and all l. Similarly,

for all sets of integers (i l , ... i zj - I , iZj+I, ... ,izg ).

9
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Relations (26) give rise to

j # l, (56)

and
a a . a- 1 a- 1 = 1

2I-1,f 2J-l,l+hl-l 21-1,!+I:li - 1 2j-l,! ,

It follows from (54) - (57) that

j=f.l. (57)

(58)

that is, a2j-l,i1, ... ,i:li-:l,i'Ji-1 ,i:li ,i:li+1, ... ,i'Jl1 does not depend on i 11 ... , i 2j - 21 i 2j+ 1 , ... ,i2g . In particular, by (55),

(59)

Similarly, it follows from (27) and (28) that

9~j-l,i1>... ,i'Ji-'J,i'JJ-1 ,i:li ,i'Ji+l ,... ,i:l 11 = 92j-l ,0, ... ,O,i:li-l ,i:li ,0, ... ,0 = 92j-l ,i:li-l ,hi' j:5 9; (60)

9j,il, ... ,i:l11 = 9)",0, ... ,0 =9j , j ~ 29j (61)

C2j,i 1 , .•. ,i:;l, = C2j,0, ... ,0 = C2j , (62)

that is, 9j,i1, ... ,i:l ll ' j ~ 29, and C2j, i} , ... ,i'Jl1 do not depend on i 1 , • - . , i 2g .

Similarly, it follows from (46) that the generators Co T corresponding to the additional generator CD do not
depend on I, that is, Co,! = CD. Hy (41), the generators 92j,! corresponding to the additional generator (72j :

(63)

(64)

do not depend on i 1 , ... 1 i 2j - 2 , i 2j+ 11 ... 1 i 2g , and it follows from (42) that the generators 9n,1 corresponding to
the additional generator (7n :

do not depend on i 3 , ••• , i 2g .

Denote by Ak,T, Pj,k,T, and Bj,k,I the generators corresponding respectively to the additional generators A k ,
Pj,k, and Bj,k- The relations defining Bj,k give rise to the relations

B. =. -. -:-1 -:-1
],k,l P),2k-l,lP),2k'!+I;a_l P,,2k-l ,l+I:./o P),2k,!'

in particular,
(65)

and relations (47) and (48) yield the following relations

[BI,j,!' Ck,T] = 1,

[Bl,j,l, (7k,1] = 1,

Let us write down relations (53).

for all I, j, kj

l ::I k nor k - 1.

(66)

(67)

R l .-l,j,( .-

RT ._
"'''2,j,1 .-

RT ._
"'''2,j,1 .-

RT .-3,j,1 .-

RT .
4,2j-l,2j-l .-

[a2j-l,., a2I-1,.] = 1, j ::I 1;

[a2j-l,.,921-1,.] = 1, j ::I I;

[a2j-l,.,9,] =1, l~29;

[a2j-l,., c2d = 1, 1 :5 j ~ 9, 1:5 1 :5 9 - 1;
-1 -1

a2j-l ,i'Ji-1 ,i'Ji 92j-l ,i:;li-l +I,i:'i a2j-l,i'JJ_1 +l,i'JJ 92j-l,i'Ji-t +~,i'Ji

(68)

(69)

(70)

(71)

(72)
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C2g-292g C2g-2 = 9 20 C2g-292g ;

-1 -1 1
92j-l ,i::lj -1 ,i::lj + 192j-1, i::lj -1 ,i::lj +2 92j-1, i::lj -1 ,i::lj + 192j-1 ,i::lj -1, i::lj :::: ,

(86)

(87)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

2g :5 j :5 n - 2;9j9j+19j = 9j+19j9j+l ,

[gi,9j]:::: 1, li - j 1# 1, i,j ~ 29;

[92j-1 ,i::Zi-l i::Zj' 921-1 ,i::lI- 1 ,i::l l ] :::: 1, I # j;

[g29-1,i~"-1,i:;l11,9j] :::: 1, j > 2g;

[C2j, (c2/-292j-l,i::li-l ,i2iC2j-2)] :::: 1, 1::5 j ::5 9 - 1 j

[92j-l,i2i_l,i::li,C21] =1, j # I and j # I + 1;

[929' (c2gl_2929-I,i211-1,i2"C29-2)] :::: 1 j

[C2i,C2j] = 1, li - j 1# 1 j

92g-1,i2"-1,i::l1192gg2g-1,i~"_1,i'J" = 92g92g-1,i'J11-1,i::l,,92g;

C2i C2i+2 C2i = C2i+2 C2iC2i+2 , 1::5 i ::5 9 - 2;

a2j-l,i::lJ-l,i2i+1 ::::

-1 -1-1
92j-l,i:li-1 ,i:;lj+l 92j-l ,i2i-l ,i2i a2j-l,i2j-1,i2i 92j-l,i2J_l +1 ,i~j 92j-l ,i~j-l +1,i~j+1 ;

2
C2 C4 •.. C2g-292g92g+1 .•. 9n-29n-19n-2 .. ·92g .

. (92g-1,i 2,,_1 ,i::l l1 (a2g-1,i2,,_1 ,i::l" a2g
1
_ 1,i::l 11 -1 ,i'J,,-I) -I 92g-1 ,i211-1 ,i::l" )C2g-2 .•.

• . . (9a,i:'! ,i4 (aa,i:'!,4 a3,~3,i4-I) -1 93 ,i:,! ,i4 )C2 (91,i l ,i2 (al,h ,i::z a~~1 ,i::l-l )-1 91,h ,i::l) = 1 .

RT .la .-

RT .4,2j-l,2j .-

RT .-
5,i,j .-

RT .-5,j,l .-

RT .-5,2g-1,j .-

RT 52"2'-2 , ), )

R1 .-6,j,l .-

QT _
.. "7,2g,20-2 -

QT ._
""S,i,j .-

m .-,j,j .-

Qf ._
"<-g,2g-1,2g .-

RT
10 " . :::::

,1,1

R 1
f

1 .. :::::
,),)

Rf .-
11,g,g .-

RT '12,j,1 .-

Each relation depends on at most two parameters and the set of relations is similar to thc relations in [Z] in
the case 9 :::: 1. Now we shall show how to obtain a finite presentation of G usin'g the arguments of [Z].

Relations (73) imply that 92j-l,i2i-1 ,i::Zi+lg2j-l,i~i-1,i::Zi is independent of i 2j • Let for brevity,

92j-l,i::lJ-1 ,i2j+1 92j-l,i2i-l,i::Zi = S2j-I,i'Jj_l . (88)

The recurrence relations (86) allow us to express all a2j-l,i2i-l ,i2i 's in terms of the 92j-l,i2J-l ,i2i 's, since
a2j-l,i2j_l'0 = 0 by (55). We obtain

a' . "- . " . .. s-i:;lj
2)-1 ,'::lj-1 ,''li - 92;-1 ,'2j-1 ,''li 92)-I"2i-1 ,0 2j-l,i::Zi-l +1 . (89)

Substituting these expressions of a2j-l,i2j_1,i::Zj 's into relation (87) and taking into account (88) we find in a
straightforward manner that relations (87) can be replaced by the following relations:

C2 •.. C2g-292g .. ·9n-19n-l ..• 92g (92g-1 ,i'J11 -1 ,192g-1,i::l11 -1 +1,1 92g-1 ,i211 - 1+1,092g-1 ,i2,,-1 ,0)C2g-2 .•.

. . . (9a,i3,1 9a,i:,!+I,1 9a,i:'!+1,09a,i3,0)C2 (91 ,i 1 ,1 91,i1 +1 ,191 ,i1+I,091,i 1 ,O) :::: 1 . (90)

By (55), relation (72) for i 2j :::: 0 yields the following relation

92j-l ,i::lj-1 +2,092j-l ,i::li-1 +1,0 :::: 92j-1 ,i2j-l +1,092j-I,hj_l,0 . (91)

Since, by (90), the product

92j-l,i2j_l,1 92j-l,i2i-l +1,1 92j-l,i::lj-1 +1,092j-l,i'Jj-1 ,0

is independent of i l , ... ,i2g - 1 , we deduce, aB a cosequence of (91), thc following relation

92j-l ,i::lj-l,1 92j-l ,i::li-l +1,1 =92j-1 ,i::lj-1 -1 ,192j-l ,i2j-1 ,I . (92)
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Lemma 5 The defining relati0113 (72) are c0113equences 0/ the set 01 relations (68) - (71), (78) - (87), (91),
(92), where the elements a2j-l,i2;-1,i2i are defined by (88) and (89).

Pro0f. Denote by

or, equivalently,

By (90), we have

12j-l :;::: (92j-l ,i2;-1 ,1 92j-1 ,i2;-1 +1 ,192j-l ,i2;-1 +1 ,092j-l ,i2;-1.0 ) -1. (93)

(94)

-1 -1 2 -1 -1 (95)
12j-l :;::: C2j-212j_3 ... C211 C2'" C29-2929 ... 9n-29n -19n-2 ... 929129-1 C2g-2 ... 12j+l C'lj

By (69) - (71) and due to (93) and thc previous equation, each element U21-1,i21_1,i2/l 1 :::; I < 9, and
12j-l commute, hence 12j-l and a2j-l,i2j-l,i:J;a;/-I,i2j-l.i2i-1 commute, Le. in view of (94), 12j-1 and
92j -1 ,i2i -1, i2; 12j-192j -1, i2; -1 ,i2; commute:

(l'lj -192j-I, i2; -1, i2J 2
:;::: (g2j -1, i2; -1 ,i2i 12j _ d2

.

The rest of the proof of Lemma coincides with the proof of the same assertion in the case 9 :;::: 1 and is contained
in [Z] pp. 347 - 349 (starting from equation (14) in [ZD. 0

Lemma 6 The set 0/ relations (68) - (71), (73) - (87), (91), (92) is equivalent to the set (73) - (85), (90),
(91), (92), where the elements a2j-l,i2;_1,i2j are defined by (88) and (89).

Proof. Relations (68) and (69) are cosequences of (75) due to (89).
Relations (71), 1 :j; j and 1 :j; j + 1, are cosequences of (78) in view of (89). Deduce (71) from (73) - (84),

(90), (91), (92) in the case 1 :;::: j. By (87) (which is cosequence of (90), (88) and (89)),

-1
a2j-l ,i2;-1 ,i2; a 2j - 1,i2;-1 ,i2i -I :;:::

-1 -1 2 -1 -1
92j-l,i2;-1 ,i2;C2j-2T2j_3 ... C211 C2'" C29-292g •.. 9 n -1 ... 92g129- 1C2g-2 ... 12j+l C2j92j-l,i'J;_1 ,i2; .

Since a2)'-1 i .. · 1 0 :;::: 1, it is sufficient to deduce that C2)' and a2)'-1 i .. " 1 i .. "a 2-)"1 1 ," j i 1 cornmute. Note that, .. J - , , "J - '''J -, 2 -1, .2; -

relations (77) and (79), in view of (82) and (84), are equivalent respectively to

and

(96)

(97)

We have

12



The deducting of (70) and (71) (in the case 1 ;:::; j + 1) from (73) - (84), (90), (91), (92) is the same as the
previous one and will be omitted. 0

The relations (73):

(98)

for a fixed value of i2j-ll can be considered as recurrence relations defining the elements 92j-1,i'lj_l,i2j in terms
of the two free elements 9Zj-1,i'lj_I,0 and 9Zj-1,i2J-l,l' The~ the relations (91) and (92) can be used in order
to express all the elements 9Zj-1,i2j-l'0 and 9Zj-1,i2j_I,l in terms of 9Zj-l ,0,0, 92j-1,l,O and 92j-1,O,11 9Zj-1,1,1

respectively. ConsequentlYI our group Gy,n is generated by 39 + n - 1 elements:

9Zj-1,0,O, 92j-1 ,1,0, 92j-1,O,I, 9Zj-I,l,1 ,

929 ,9Z9+1 , ..• 190-1·

(99)

(100)

(101)

Relations (75) - (79) follow from the same relations for 9Zj-1,0,O, 92j-1,1 ,0 1 92j-1,O,I, 9Zj-1 ,1 ,I (respectively,
929-1,0,0, 929-1,1,0, 929-1,0,11 929-1,1 ,d, since aB 9zj-1 ,i2j-1 ,i2j (respectively, 9Z9-1 ,i211-1 ,i2 11 ) belang to a subgroup
generated by these elements, and since relations (77) (respectivelYl (79)) can be written as

(102)

(103)

Applying Zariski's Lemma ([Z), p.350), we obtain that relations (84) (for (82) the arguments are the same)
are consequences of any three of them relative to three consecutive indices i 2j, say i 2 j ;:::; 0, 1, 2. By (91) and
(92), we conclude, on tbe basis of Zariski's Lemma, that for iZj ;:::; 0, 1 relations (84) are consequences of three
of these relations relative to three consecutive values of i 2j-1, say i2j-1 ;:::; 0, I, 2. To decrease the number of
relations (84) for i2j ;:::; 2, we change, as in [Z], these relations to equivalent relations

(92j±l,i2j±l,l 92j±I,i2j± 1 ,OC2j)2 ;:::; (C2j92j±I,i'lj±1 ,192j±1 ,i2J±l,O)2.

To show that these relations are equivalent to one of thern, say

(92j±1 ,O,192j±I,O,OC2j)2 ::::: (C2j92j±1 ,0,1 9"2j±I,O,O)Z,

it is sufficient to show that the expressions

(104)

(105)

are all transforms of each other, for iZj±1 ::::: 0, ±1, ±2, ... , as a consequence of relations (74) - (84) (izj = 0 or
I, 1 :::; j :::; 9 - I), (73), (87), (91), (92) (where the elements a2j-l,i2J-l,i2J are defined by (88) and (89)), and
additional relations defining additional generators. Hence, we ahall be able to take the relations corresponding
to i Zj - 1 ;:::; O. For this we need, in order to apply Zariski's arguments (see the computation on p. 351 in [Zn, to
show that

b"j,± ::::: b"2j±1,i2j±1 ::::: CZj9Zj±1 ,i2j±1 ,19zj±1 ,i2j±1 +1,I9"2j±l,i2j±1 +1 ,09Zj±I,i'lj±1 ,0CZj

are commutative respectively with 9Zj+l,hi+l,hi+2 and 92j-l,i2j_l,i2j in the case i Zj+ 2 and iZj ::::: 0 or 1. Let us
check that b"j-l,+ and 92j-l,i2J-l,i2J commute. For this, denote by

A ::::: (9Zj-3,i2j_:ol ,19zj-3,i2j-s+1 ,192j-3,i2J-:ol+I ,092j-3,i2J-:ol ,O)C2j-4 ... C2 (91 ,il ,191,il +1 ,191,il +1 ,0'
'91,il +1,091 ,il ,0)C2 ... C2j-4 ;

B ::::: CZj+2'" Cz 9-z9Zg'" 90-190-1 ... 9Zg(92g-1,h,,_1,19Zg-1,i2,,_I+I,192g-1,i2,,_I+l,092g-l,i2,,-1,0)'
'C29-Z ... (92j+l,i2J+l ,192j+1 ,i2i+l +1,19Zj+l ,i2i+l +1 ,092j+l,i2i+l ,0) .
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(by (90))
(by (74) - (76))

(by (77) l (83), (84))

(by (74) - (76), (78), (80))

(by (77), (83), (84))

We have
92 ' l' . 6-1 J- ,~:lj-l ,~2j j-l,+ -

(92j-l ,i2j-l ,i:lj )AC2j-2C2jBC2jC:;/_2 =
A(92j-l,i2j_l,hj )C2j-2C2jBC2jC:;;~2=
A ( -I )B -1

C2j-2 C2j ~j-292j-l,i2j-l ,i2j C2j-2 C2j~j_2 =

A B( -1 ) -1
C2j-2 C2j ~j-292j-l,i2j-l,i2j C2j-2 C2j~j_2 =

AC2j-2C2j BC2jC:;j~292j-l,i2j_l,i2 j =
6;!I,+g2~-I,i:lj_l,i2j •

To prove that 92j-l,i2 j-l,i2j and 6;:~ commute in the case i2j = 0 or 1, we need the following lemma.

Lemma 7 Par fixed I = (i 1, ... l i29 ), where i 2j = 0 ar 1, the /01l0win9 relation

AB. . -1 -1 B.. -1 -1 . . -I -I B .
2j-l,1 = 2J-l ,J,192j - 1,19 2j,1 2J+l,J+l,192j+l,192j+2,1 ... 9 2g - 3,19 2g-2,1 29-1,9,1

-1 -I A-1 B B A
'92g - 1,19 2g,1 2g+1,1 20+ 1,1,1..... 2g+1,j-l,1 20+1,192g,/····· 92j-l'/

is a consequence 0/ relations (68) - (71), (73) - (85), (87) with the same set I.

Prao/. By (8),
AI = B 1,1 ..... B 1,g.

Hence,
AI = BI,j ..... B I ,gA11

BI,I ..... B I ,j- I A1 .

By (14) and (49), this relation can be written in the form

A2j- 1 = B 2j-l,j B2j-l,gA2;~1B2j- 1,1 ...•. B 2j - 1,j-1 A 2j-l.

If we substitute in the last relation CT2;~1 CT2kl_2B2k-l,kCT2k-2 ... CT2j-1 instead of B2j - 1,k for k > j;

CT2;~1 .•• CT"201 A2g+1CT29 ... CT2j-1 instead of A 2j - l ; and for k < j, substitute

CT;/_I ... G';9
1

B2g+I,i;CT20 ..• CT2j-l instead of B2j - l ,k, we obtain the following relation

A B -I -IB -1 -I -1 -1 B
2j-l = 2j-l,j0'2j_1 CT2j 2j+I,;+1 CT2j+l CT2j+2 •...• CT2g-3CT2g-2 2g-l,g'

-I -IA-1 B B A'G'29- 1CT2g 2g+1 2g+I,I····· 29+1,;-1 29+1 CT2g ..... CT2j-1

(106)

(107)

Now Lemma follows from Lemma 4 and Remark 1. 0

Since, by (65), B 2k - 1,k,1 = a2k-l,i:l"_I,i:l"a2kl-l,in_loi:l,,-lJ therefore, by (89), (91), (92), and (63), relation
(107) can be witten in the form

o;:~ =c:;] (92j-1 ,i2j-l ,192j-l ,hj-l +1 ,192;-1 ,i::lj-l +I,092j-l,hj-1 ,0) -1 c:;/ =
A-1 B-1 B- I A

92j+2,1' .. 929-1,1920' .. 9n+2j-3,19n+2j-3,f' .• 9 29+ 1 29+1,1 2g+1,j-l,1'" 20+1,1,1 29+1,1'

B-1 B-1
'920 92g-1 ,i:lg-l ,i2g 2g-1 ,g,r92g- 2 ,i2g- s, i:lg-:l .•. 92j+2,i2J+l ,hJ+2 2j+l ,;+I,192j+ l,i:lJ+l ,i:lJ+2 . (108)

Now, by Lemma 4, Remark 1, and by (13) - (15), (30), (45) - (48), it is obvious that 92j-l,i2j-l,i2 j and 8;:~
commute.

Finally, by (91) and (92), we observe that thc infinite set of relations (87) reduces to one relation, aay
i2j - 1 = 0 for all j. This completes the proof of Theorem 2.
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