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§O. Introduction.

In this paper we extend the theorem due to C. Fefferman [12] on boundary regularity of

hiholomorphic mappings f: 9J--+ !iJ' between smoothly bounded, strongly pseudoconvex

domains g, 9J' C (n to certain generic smooth Cauchy-lliemann manifolds in (n with

nondegenerate Levi form.

The Iocal. version of Fefferman's theorem can he stated as follows: Let M and M' be

smooth strongly pseudo-convex hypersurfaces in (n (n > 1) and f : M --+ M I a

homeomorphic mapping so that both f and 1 1 satisfy the tangential Cauchy-lliemann

equationa (in the weak sense). Then f is necessarily a smooth diffeomotphism. The point

ia that, under these conditions, f extends to a biholomorphic mapping from a domain
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.!i1( (n bounded in part by M to a similar domain .!A I bounded in part by MI, so we

are back in the usual setting.

Tms theorem has been generalized to much wider classes of hypersurfaces and was proved

under weaker hypotheses on f. For this development we refer the reader to the survey

papers by Bedford [6], Bell [7], and the author [13], and to the referenees therein.

In tms paper we consider another kind of generalization of Fefferman's theorem. Let M

and MI be Ioeal smooth, generic, Cauchy-Riemann (CR) manifolds in (n, of real

codimension d > 1 and of Cauchy-Riemann (eR) dimension m > 0 (m + d =n). A

CR-homeomorphism f: M --+ MI is a topological homeomorphism such that hath f and

r 1 are CR mappings, i.e., they satisfy the tangential Cauehy-Riemann equations in the

weak sense. Dur main result is that, under certain geometrie assumptions on M and MI,

every BUch mapping is a smooth diffeomorphism.

Dur hypotheses are of two kinds. First, we require that M and MI are strongly

pseudoeonvex (Definition 1, Seetion 1). This conwtion is a natural generalization of the

strang pseudoconvexity of hypersurfaees. The second condition, we call it

over-extendability, coneerns the holomorphic extendability of eR functions on M resp.

MI to wedges. We require that, at the chosen point p E M, every CR funetion h

defined on M nea.r p extends near p to a wedge .". = Y(r) with edge M so that the

cone r determining the wedge is strictly Iarger than the Levi cone of M at p (Definition

2).

The Main Theorem (Section 1) states that whenever M and MI are smooth, strongly

pseudoconvex and over-extendable at p E M resp. piE MI, then every IDeal CR

homeomorphism f: M --+ MI with f(p) = pi ia a smooth CR diffeomorphism near p.
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Mappings 01 this kind anse in the Iollowing situation. Suppose ~((n is a domain

containing a smooth generic CR manifold M in its boundary D~) and such that ~ is

wedge-like near M (Le., it contains a wedge with edge M). H M' ( DIA I satisfies a

similar condition, and il I: ~ UM --+ !i' I UM' is a homeomorphic map that is

holomorphic on !i', with I(M) = M' ) then I: M --+ M' is a eR homeomorphism.

This formulation also ma.kes sense when M and- M' have CR dimension zero, i.e., they

are maximal totally real 8ubmanifolds of (n. The smoothness of f on M then follows by

reflection on M and M' and applying the (smooth version oI) edge of the wedge

theorem, see Pinchuk and Hasanov [23].

It seems that the intermediate case when M,M' are not hypersurfaces but have positive

CR dimension has not been treated, except in the papers [28,29] by Webster in which he

assumed from the outset that the map f ia 01 class t4'1 on M. However, as is

well-known from the hypersurface case, the hard problem is exactly to obtain some initial

regularity of f.

The interesting point is that there is a deep connection between the mapping problem for

8trongly pseudoconvex CR manifolds of positive CR dimension and the mapping

problem for wedges with totally real edges. This has been discovered (in the hypersurfaces

case) by Lewy [21] and Pinchuk [22] and, in a more explicit form, by Webster [27]. Another

important ingredient are certain estimates of the derivative oI I, and these require most oI

the work. Among other things we use the generalized theorem oI Julia-earatheodory for f

on certain families of osculating balls. In the hypersurface case this approach has been

explained in the recent paper [15] by the author. The present prooI uses similar ideas, but

ia technically more involved.
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In section 2 we use results on microlocal hypoanaliticity due to Baouendi, Chang,

Rothschild, and Treves [1]-{4] in order to obtain some sufficient conditions for

over--extentability. In sections 3-5 we do the preparatory work concerning wedges and

mappings between them. Among other things, we prove the Hopf lemma on wedges

(Corollary 3.4), obtain information on the loeal polynomial hull of M (Proposition 4.2),

and prove the boundary distance preserving property of f (Proposition 5.2). In section 6

we prove the Main Theorem.

This work was supported in part by a grant !rom the Research Council of the Republic of

Slovenia, and in part by the Max-Planck-Institut für Mathematik in Bonn. I wish to

tha.nk this institution for Hs kind hospitality. I had the opportunity to repon on this work

at the AMS Summer Research Institute 1989 in Santa Cruz, and I wish to thank the

organizers for their kind invitation.
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§ 1. The Main Theorem.

In the space (n we shall use the coordinates (z,w), z = (zl' ... ,zm) E (m,

w = u+iv = (wl'... ,wd) E (d . Let M C(n be a smooth manifold oI real codimension d

defined near the origin by a set oI d real equationa

(1)

where «J = (<(Jl' ... ,rpd) is a smooth map with <P(O) = 0 and drp(O) = 0 . We shall use the

vector notation

v = rp(z,z,u) .

For each p EM , the maximal complex tangent space T~M = TpM ni TpM has

complex dimension m, so M ia a generic Cauchy-Riemann (CR) manifold of .QR

dimension m. Conversely, every such manifold is locally of the form (1).

Recall that a '61 function f on M is called eR if df(p) ia (--linear on the maximal

complex tangent space T~M for each p EM . EquivalenUy, JMf 7}a = 0 for all smooth

forms a of type (nJm-I) on (n such that supp an M is compact; this is used as the

definition of eR when f is merely continuous on M.

We shall now define the Levi form of M at O. According to [8], Proposition 3.1, we can

find local holomorphic coordinates near the origin in (n such that M ia given by
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v = Q(z,Z) + R(z,z,u) ,

where Q = (Ql' ... ,Qd) is a hermitian quadratic form on (m with values in (Rd and

The form Q is uniquely determined by M up to transformations of the form

(3) QI (Az,AZ) = B. Q(z,Z), z E (m ,

where A EGL(m,[) and B EGL(d,IR) . We call Q the Levi form of M at O. Far an

intrinsic definition in terms of commutators of complex tangential vector fields see [8].

*We aBsociate to Q the Levi cone C(Q) and ita dual cone C (Q) (also called the polar)

by

C(Q) = ~a{Q(z,Z) : z E (m,{O}} C[Rd J

(4) * dC (Q) = {u E [R : u· x ~ 0 for all x E C(Q)} .

d
Here, u· x = 1: uj xj is the usual real inner product, and ~a denotes the (linearly)

j=l

convex hull. Clearly C(Q) U{O} and C*(Q) are closed convex cones in IRd . When

C(Q) is all of IRd, C*(Q) is the trivial cone {O}. However, when C(Q) f (Rd , the

*Hahn-Banach theorem implies that C (Q) is nantrivial, but it may still have empty

interior. This will happen whenever C(Q) contains a complete straight line through the

*origin, since C (Q) is then contained in the orthogonal complement of that line.
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Definition 1. The manifold M given by (2) is said to be strongl! pseudoconvex at the

origin if there exists a vector u E IRd such that u· Q is strongly positive definite on (m,

that is,

(5)
d

l u j Qj(z,i) > 0 for an z E (m,{O} .

j=l

Clearly this property is preserved by the transformations (3).

It is not hard to see that the strong pseudoconvexity of M at 0 is equivalent to any of

the following conditions:

(i) C(Q) is contained in an open half space of IRd determined by a real

hyperplane through the origin.

(ü) C(Q) does not contain the origin.

(iii) Q is non-degenerate in the sense that Q(z,·) =0 for some z E (m implies

z = 0 ,and C(Q) contains no complete straight line.

*(iv) Q is non-degenerate and C (Q) has nonempty interior.

(v) Locally near 0, M is contained in a strongly pseudoconvex hypersurface

(Proposition 4.4).

Apropos (iv), we remark that the set of vector u E [Rd satisfying (5) is precisely the

*interlor of the dual Levi cone Int C (Q) , as follows immediately from the definition of

*C (Q) . We Ieave out the simple proof of these equivalences since we will not need them in

the sequel. The same condition has been used by Khenkin and Tumanov in [18] and [26]

where they proved that Ioeal CR homeoIDorphisIDS of strongly pseudoconvex quadries

whose tevi cones have nonempty interior extend to birational mappings on (n.
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See also [16] for related results.

We remark that when Q has the property that for each u E IRd\ {O}, u· Q has at least

one negative eigenvalue, then C(Q) = IRd
» so every eR function (or distribution) on M

extends holomorphically to an open neighborhood of 0 in (n [1], [8]. In this case our

mapping problem is not interesting, so we do not loose much generality by reatricting our

attention to the strongly pseudoconvex caae.

To every open connected cone r C IRd with vertex 0 and a neighborhood U of 0 in (n

we aB80ciate the wedge Y(r,U) with edge M by

(6) Y(r,U) = {(z,w) EU: Im w - tp(z,z,Re w) Er} .

We say that a continuoua CR function f on M extends holomorphically to Y(r,U) if

there is a holomorphic function on Y(r,U) that ia continuous up to M n U and

matches with f on M n U .

Let S ( IRd be the unit sphere. We say that a cone r C IRd ia finer than r' (lRd if

r n S is relatively compact in Int r' n S . We denote this by r < r I OI r I > r . A

wedge Y Y(r,U) ia finer than Y' = 7Y(r / ,U / ) ( 11"< V') if r < r' and

U ce u' .

Definition 2. The manifold M defined by (2) ia oyer:::extendable at the origin if every CR

function h defined in a neighborhood of 0 in M can be extended holomorphically to a

wedge y(r,U) with r > C(Q) (= the Levi cone of M at 0).

Remark. For every cone r < C(Q) , h cau be extended holomorphically to Y(r,U) for
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a eufficiently email U [1], [8]. When M ia the quadric

(7) Im. w = Q(z,Z} ,

every h can be extended near 0 to a wedge y(r,U) with r = Int C(Q) , and in

general to no larger wedge. We are requiring the extendability to wedges whose cones are

slightly larger than the Levi cone. We shall give some sufficient conditions for

over-extendability in Section 2. Dur use of over--extendability will become clear in

Proposition 5.1 in Section 5.

Definition 3. Let M and M' be manifolds of the form (2), of the same type (m,d) . A

local CR-homeomotphism f: M --+ M' at the origin is a homeomorphism f: CI) --+ CI)'

of open neighborhood 0 E CI) (M, 0 E CI)' (M' , with f(O) = 0 , such that both f and

1 1 are CR mappings (i.e., they satisfy the tangential Cauchy-Riemann equations in the

weak sense).

MAIN THEOREM. Let M and M' be manifolds of the form (2) in (n, of the same

type (m,d), and smooth of order k > 3 . If M and M' are strongly pseudoconvex and

over-exf.endable at the origin, then every loeal CR homeomorphism f: M --+ M' with

f(O) = 0 is a smooth diffeomorphism of class ~k-1-{) near the origin. When M and

M' are real-analytic, then f extends to a biholomorphic mapping in a neighborhood of 0

. A"nIn 'lo •

Here, k need not be integer; if k = [k] +a with 0 < a < 1 , then 'ifk = 'if [k] ,0 is

the usua! Hölder class. As usua!, ~k-{) means ~k if k ~ 11.+ ' and

'6k-{) = U '6k- 1,0 if k E 1l. .
0<0<1 +
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As in the dassical Fefferman's theorem for hypersurfa.ces, the hard problem is only to show

that f ia of dass ~1 (see Webater [27], [28]). Our theorem contains the hypersurfa.ce

situation a.-a a very special case, since the condition of over-enendability is then vacuously

satisfied.

When M and MI have CR dimension m = 1 , it suflices to assume that they are Levi

non-degenerate (and over--extendable), since the Levi cone ia then a ray in IRd\ {O}

whence they are strongly pseudoconvex. This case is just the opposite to the hypersurface

case when the CR dimension is the maximal possible. Of course we have the whole range

of intermediate cases where both m ~ 2 and d ~ 2 .

Since a strongly pseudoconvex quadric (7) is never over-extendable yet the analogous

result for CR homeomorphisms f: M ---+ MI holds whenever the Levi cones of M and

MI have non-empty interior according to [18], our condition on over-extendability is

certainly not the best possible one. However, as we will see in Section 2, it holds in may

cases, especially when the third order part in the Taylor expansion of M at 0 is

sufficiently independent of the Levi form Q (Corollary 2.3). Over--extendability even

holds in certain cases when the Levi cone C(Q) has empty interior. For instance, if the

CR dimension of M equals one, and if M is semirigid at 0 with all the higher

Hörmander numbers being odd, then M is over-extendable (Corollary 2.4). For smooth

rigid CR manifolds

Im w = cP(z,i)

we give a rather specific procedure for checking the over--extendability by using the line

seetor property from [2] and [3]. (See Theorem 2.2.)

Before making any guesses as to what the optimal condition in our problem might 00, we
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consider the following example. Let M = M1 )( IR ,where M1 ( (n-1 ia a atrongly

pseudoconvex eR manifold (2). Every CR mapping f: M ---+ M is of the form

f(z,t) = (gt(z),h(t)) ,

where ~ : M1 -----+ M1 is CR, but the dependenee of gt and h on t is completely

arbitrary, in spite of the strong pseudoconvexity of M . This is essentially the only known

counter--example to the regularity problem within the class of strongly pseudoconvex CR

manifolds.

In this case eR funetions on M do not extend to any nontrivial wedge in (n. The

neeessary and sufficient condition for extendability to wedges near 0 E M is that M ia

minimal at 0, in the sense that there exists no CR manifold N (M passing through 0,

of the same CR dimension as M but of smaller real dimension (Tumanov [25],

Baouendi and Rothsehild [5]). The following eonjecture seems plausible:

CONJECTURE. If M and M' are smooth strongly pseudoconvex CR manifolds (2)

that are minimal at the origin, then every loeal CR homeomorphisms f: M ---+ M',

f(O) = 0 , ia a smooth diffeomorphism near 0 .

Every manifold M (2) whose Levi cone C(Q) at the origin has non--empty interior ia

minimal at O. We expeet that the conjecture may be easier to prove in this case, perhaps

by a reduction to the hypersurface situation as in Khenkin and Tumanov [18].

Another remark concerning the lass of smoothness in the Main Theorem is appropriate.

Just as in Lempert [20] one can abtain a. more precise result by introducing a different

smoothness class that measures the smoothness of both M and the
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associated manifold :&t (6.1). H M E 'ifk J then Ei E ~s for some s between k-1 and

k . If both :&t and :&t I are oI class ~s, k-1 ~ s 5 k ,then f E ~s--{) . Also, in the

hypersurlace case, the lass oI smoothness is no more than 1/2 + 0 , and the lass of 1/2

can actually occur.
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§2. Sufficient conditions for over-extendability.

Let M C (ID+d be a generic sIDooth CR manifold of real codimension d given by (1.2),

i.e.,

(1) v =Q(z,Z) + R(z,z,u) = ~z,z,u),

where w = u + iv E (d, the Levi form Q= (Ql'... ,Qd) is strongly pseudoconvex in the

sense of Definition 1 (section i), and R contains only terms of order ~ 3. Let C(Q) and

C*(Q) be the Levi cone and its dual cone aB defined by (1.4).

We will show how the microlocal results of Baouendi, Chang, Rothschild, and Treves

[1]-[4] can be used to get some sufficient conditions for over--extendability of the manifold

(1) at the origin. For this purpose we must recall the notion of the mini-FBI

transformation and the hypoanalytic BE front m. from [3].

To every CR function (or distribution) h on M one associates its mini-FB1

transformation Fh(z,w,O') as in [3], (6.3). The explicit form of this transformation will not

be important for our purposes. Recall that this is an analogue of the Fourier transform, hut

with an additional factor in the kerne! that ia essentially the complex Gaussian kernel,

whose purpose ia to improve the convergence of the transform. 1t has been invented by

Bros and Iagolnitzer and was 8ubsequently used, with certain modifications, by the authors

named above and by others in problems concerning the approximation and extension of

CR functions. (See the references in [1] and [3].)

One says that a CR function h on M is hypoanalytic at a vector q 0 E IRd\ {O} if Fh

has the exponential decay
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(2)

uniformly for (z,w) in a neighborhood of 0 in (n and for u in a conical neighborhood

of Uo in (d. The set of all directions UoEIRd\ {o} at which h is n21 hypoanalytic is

called the hypoanalytic~ front ~ of h at 0, and ia denoted by WFO(h). This ia a

closed cone in IRd\ {O}. For related notions of the wave front set see Hörmander [30] and

Treves [31].

The imponance of tbis notion is evident from the following result of Baouendi and

Rothschild [3] (see also [1]). Let r CIRd be a strict1y convex closed cone and h a CR

distribution on M. The following are equivalent ([3], Theorem 7):

(a) WFO(h) ( r.

(b) For every open cone A < r* (where r* ia the polar of r) there ia an open

neighborhood U of 0 in (n such that hextends holomorphically to the wedge

Y(A,U) with edge M.

The following is a microlocal characterization of over-extendability (see Definition 2 in

Section 1).

2.1 THEOREM Let M ((n be a strongly pseudoconvex CR manifold (1). The following

are equivalent:

(i) M is over-extendable at the origin.

(ii) Every CR function h on M is hypoanalytic at every vettor

u E OC*(Q)\{O}. (Here, C*(Q) is the dual Levi cone, and OC*(Q) is its

boundary.)
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Proof. Recall from [2] or [3] that a real-valued homogeneous polynomial qk( (;n (( E G:)

of degree k ~ 2 satisfies the sector property if we can find a jJ E ( and a sector (eone)

etI in the eomplex plane satisfying

(3)

Notice that when qk is harmonie, qk = Re(a(k), it does not have the seetor property,

since in tbis ease we only have sectors r!/ as above with angle (etI) = ~/k. On the other

hand, if qk is non-harmonie and of odd degree, it always satisfies the sector property.

If u E IRd is any vector not in C*(Q), then by definition of C*(Q) we can find a

zO E (ID such thai a = u · Q(zO,zO) < O. Henee for (E ( we have

o ""7"""Ü 3
(T • ~ (z ,~z ,0) = a· ,~+ {7(I 'I ),

and a· (~ clearly has the sector property since a < O. Corollary 8.3 in [3] implies that

every CR function h on M is hypoanalytic at such a vector u at 0 EM. Thus

for all CR functions h on M.

Recall that WFO(h) is a closed cone in [Rd\{O}, and c*(Q) is a closed convex cone

contained in a closed half-space in IRd. H (ii) holds, then WFO(h) ( Int C*(Q), so we can

find a strongly convex closed cone r with WFO(h) ( r < C*(Q). Then
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* * *r > (C (Q)) = C(Q), and hextends near 0 to a wedge Y(A) for same cone A

satisfying C(Q) < A < r*, according to the implication (a) ~ (b). Thus (i) holds.

Clearly we can turn this around: if h over-extends at 0, say to a wedge Y(A,U) for

some open convex cone A > C(Q), then WFO(h) must be contained in A* < C*(Q), so

(ii) holds. Theorem 2.1 is proved.

In certain cases one can test the hypoanalyticity of h at a given vector q E OC*(Q)\{O}

by using the sector property as in [2] or [3]. We shall assume that the smooth eR

manifold M (1) is rigid, i.e., it can be represented in the form

(4) Imw = ~z,Z) = Q(z,Z) + R(z,Z)

that does not depend on Re w. The power series R(z,Z) has a unique decomposition

where R(p) contains all the pure (pluriharmonie) terms Re(aaza), and

(aß =& ß)',a B,

Recall from [3] that a real-valued homogeneaus polynomial qk( (,'D (( E G:) of degree k

is said to have the extension prooerty if every CR function defined near the origin on the

hypersurface
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extends holomorphically to the side of E defined by Im" < qk( (,n· If qk has the

seetor property (3), then it also has the extension property [2].

Using Theorem ill.4 from [2] and the Theorem 2.1 above we get the following sufficient

condition for over-extendability on rigid CR manifolds.

2.2 THEOREM. Let M be a smooth rigid CR manifold (4) that is strongly pseudoconvex

at the origin. Suppose that for every vector tT E ac*(Q)\{o} we ca.n find zo E (m\{o}

such that

(i) tT· Q(zO,zO)=O,and

(ü) u • R(n)( (zO,-rzO) = qk( (,n + O( I(I k+l),

where qk is a homogeneous polynomial of degree k ~ 3 that has the extension property

(or the seetor propeny). Then M is over--extendable at the origin. In particular, if we

can choose zO 80 that qk is of odd degree, then qk has the sector property.

Remark. Hy definition of C*(Q) we know that for each (f E ac*(Q)\{O}, tT· Q(z,Z) ~ °
on (m, and there is at least one direction zO E (m\{O} such that tT· Q(zO,zO) =0.

Thus, what is required is that the lowest order homogeneous part in u· R(n)( (zO:~zO)

haB the extension (or the sector) property.

As a very special case we obtain the following Corollary. Denote by Q(k)(z,i) the

non-pure homogeneous terms of degree k in R, so Q(2):: Q is the Levi form and

m

R(n) = l Q(k).
k=3
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2.3 COROLLARY. (Same hypotheses aB in Theorem 2.2).

Suppose that there is an odd number k ~ 3 such that Q(S);:; 0 for 358 < k, and the

polynomial

does not vanish identically for any (J' E Be*(Q) and z E (m\ {O} . Then M iS

over--extendable at the origin.

Example 1. We take m = 2, d = 2, M ((4 a rigid strongly pseudoconvex CR manifold

(4). By a linear change of coordinates we can normalize its Levi form Q = (Ql'Q2) so

that one of the following two cases holds:

In the first case we have

so OC*(Q) = {(O'0"2) : 0"2 ER}.

Thus we must check the hypoanalyticity at the two vector (11 = (0,1) , (12 = (0,-1). If the

equations of Mare

223
Im w1 = Izll + Iz2 1 + O( Iz I )
Im w

2
= Q(k)(z,Z) + O( Iz Ik+l) + (pure terms),
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then the hypoanalyticity at (7'1 holds when Q(k) restricted to same complex line through

° in (2 has the extension propertYi for (T2 we must check -Q(k). In particular, if k is

odd, then both %Q(k) satisfy the seetor property (whence the extension property) along

any line (. z for which Q(k)(z,i) '* 0, so M is over-extendable.

In case (B) we have

so C*(Q) = C(Q), and we must check hypoanalyticity at the vectors

(7'2 = (0,1). Suppose the equations of M are

Im w1 = Izll2 + Q(k)(z,Z) + O( Iz Ik+l) + (pure terms) ,

Im w2 = Iz212 + p(s)(z,Z) + 0(1 z Is+1) + (pure terms).

The hypoanalyticity at (7'1 holds when

1(7' = (1,0),

has the extension property (which is true if k ia odd). The hypoanalyticity at (T2 holds

when

~ (s)( -)
~ 3 zl ---t P zl ,0,zl ,0

has the extension property.

Thus, if both k and s are odd, M ia over~tendable at O.
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A siInilar analysis can be carried out whenever d = 2 and m ia arbitrary. When d ~ 3,

the analysis is more difficult since we roust check hypoanalyticity at a set of vectors of

positive dimension.

Example 2. We consider CR manifolds of .QR dimension ~ and of arbitrary

codiroension. We shall &Ssume in addition that at the origin M is strongly pseudoconvex,

of finite type, and semirigid (see [3]). This means, that in suitable local holoIDorphic

coordinates, we can represent M by

Imw1 =zz+ 0(3),

(5)

Im wk = Pm
k

(z,Z) + O(mk+1), k = 2,oo.,r,

lk lk
where wk E ( , Pm

k
is a homogeneoUB polynomial in z E ( with values in IR , mk's

are the higher Hörmander numbers of M at 0 of multiplicity lk (the first number is

m1 = 2 with (I = 1), and the components of Pm
k

are independent in the sense that for

l
any 1] E IR k\{O}, 1]. p ia not M-harmonic of degree m (see [3, p. 435]). SemirigidityIDk

means that the variables Rewj do not enter the leading order terms Pm
k

' We have

1 + 12 + l3 +".+ lr = d. For every such manifold we have

Q(z,Z) = (zz,O,... ,O),
dC(Q) = {(O'l'0,,,.,O) E IR : 0'1 > O},

OC*(Q) = {O} )( IRd- 1 .
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From Theorem 2.1 we see that M is over--extendable at the origin when for ea.ch

lk
k = 2,... ,r and eaeh 1] E IR \ {O}, the polynomial 1]. p (z,Z) satisfies the extensionmk

property (or the seetor property). In partieular, we have

2.4 COROLLARY. If M ((1+d is a semirigid CR manifold (5) of CR dimension one,

with the first Hörmander number at the origin m1 = 2 and with all the higher Hörmander

numbers being odd, then M ia over~endable at the origin.

Analogons result holds whenever the first Hörmander number m1 = 2 has multiplicity

one. (See the ease A in Example 1 above.)

Example 3. Here is a very simple example of a manifold M ((3 of CR dim M = 1 that

is strongly pseudoconvex and minimal at the origin, but is !!Q1 over--extendable at 0:

2 4
Imw1 = Izl ,Imw2 = Izi .

The Levi cone is C = {(O'"l'0) : 0"1 ). O} =IR+ x {O}. If 0 E w(M and Y(r,u) is any

wedge to which all CR funetions on w extend holomorphieally, then we must have

r C IR+ x IR+' so r can not eontain C.

Ta get a slightly more general example we replace the seeond equation by

2 -2 3- 4 5
Im w2 = Az z + Re(Bz z + Cz ) + O( Iz I ).
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To get over--extendability it suffiees to check the sector property of :I: the polynomial

above. The term involving Cz4 is irrelevant. Also, by rotation in z coordinate we may

assume B E IR. Setting z = eiu, we must consider the longest interval for (j on whieh the

2iexpression A + B· Re e (f = A + B · cos 2lT is negative resp. positive. A simple

calculation shows that the longest such interval has length > '1:14 i! and only if

IAlB I < 1112. In trus case M is over-extendable. On the other hand, when

IAlB I > 1, we can see just aB be!ore that M is not over-extendable at 0, since

A + B C08 20' is then always of the same sign.

The sufficient conditions for over--extendability presented above are far from satisfactory.

Most of them only hold for smooth rigid manifolds, and they depend in a rather

complicated way on higher order terms in the Taylor expansion of the defining function.

Our feeling ia that this condition is related to the behavior of the Levi cone Cp(M) of M

at points p E M near the origin. Intuitively speaking, i! Cp(M) turns rather generically

in all directions in (Rd as we pass through points p E M near 0, we expect to get

over--extendability at the origin. At the moment we do not know how to make this

observation precise, but we hope to return to this question in a future publication.

Be!ore concluding this seetion we note that the over-extendability is equivalent to the

following, apparently stronger condition that will be used in Proposition 5.1 below.

2.5 PROPQSITION Let M be a strongly pseudoconvex CR manifold (1), with the Levi

cone C(Q) at the origin. Then M is over--extendable at 0 if and only if for
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every neighborhood 0 E w(M of 0 we can find a cone r > C(Q) and a neighborhood

U of 0 in (n such that every eR function on tV extends holomorphically to the wedge

y(r,U).

Proof follows the same lines as the proof of Theorem 7 in [4]. It is an application of the

extendability criteria by the mini-FBI transformation and a Baire category argument.
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§ 3. Geometry of wedges.

In this section we shall first obtain some geometrie information about the wedges (1.6)

whoae edge ia an arbitrary eR IDanifold (1.1). Trus will enable us to prove aversion of the

Hopf lemma on wedges (Corollary 3.4) and a distance estimate for holomorphic mappings

of wedges (Corollary 3.5).

In wedges (1.6) the origin 0 E M has a special role eince the cone r determining the

wedge lies in the normalspace NOM. The wedge ia obtained by parallel translations of r

along M. If CE M is different trom the origin, the translated cone C+r lies in areal

d-plane that is tilted with respect to the normal space N CM to M at C. Thus, a

unitary change of coordinates that brings T ,M into (m"lRd (= TOM) transforms our

wedge into a wedge-like domain that ia no langer of the form (1.6).

Thua we rollSt also consider the "tilted" wedges with edge M. Let :E ((n be areal

d-dimensional subspa.ce that is transverse to TOM. For each open connected cone r ( :E

with vertex 0 and each sufficiently small neighborhood U of 0 in (n we define the

tilted wedge with edge M by

(1) Y»r,U) = {C+t EU: CE M, t Er} .

When ~ = NoM we shall de1ete the index E and write Y(r,U) as beIore. In this case

the new definition (1) agrees with the old one (1.6), provided that we make the obvious

identification of NOM = {O}IDxilRd with [Rd , which we shall freely do in the sequel.

Let A ( NOM = {Olm x ilRd be the orthogonal projection of the cone r onto NoM. The

following lemma shows that it suffices to consider the "straight" wedges (1.6), provided
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that we have some freedom in choosing the cones.

3.1 LEMMA. For each pair of cones Al' A2 (NOM 8:;Ltisfying Al < A < A2 there is a

neighborhood V of the origin in (n such that

(2)

The size of the largest such V depends on U , on the angle between E and NOM, on the

size of second derivatives of the defining function of M , and on the number

Here, B(t,c) denotes the Euclidean ball in NOM = IRd with center t and radius c.

(Clearly d(A1,A2) > 0 if and only if Al < A2 .)

Proof. Fix a point (= (z,w) and a vector t E NOM such that (+t E Y»r,U). Then

there is a point (' = (Zl ,w / ) EMn U and a vector t ' Er so that (+t = (' +t' .' .

Thus

t ' = (Z-Z/,Re w-Re w / ) + [i(O,Im w-Im w / ) + t] ..

The first vector on the right hand aide is in TOM, the second in NOM , 80 the second

vector lies in the cone A ( NoM . Hence

(3)

for sorne toEA .

t = to+ i(O,Im w/-Im w)
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We would like to show that t E A2 ' provided that I(I = E ia aufficiently aIDall. To do

this we IDust estimate IIm w' -Im w I in terms of It I = 6 .

First we have I(-(' I ~ Cl Itl = Cl 6 {ar same Cl < m depending on the curvature of

M and on the angle between :E and NOM . Also,

11m w-Im w' I ~ suplVepl·1 (-(' I

where the sup IVepl ia taken on the interval from (z,Re w) to (z' ,Re w') in (m x IRd .

This can be estimated by C2( I 'I + I(-(' I) ~ C3(E+O) for same constant C3
independent of f and 0, so

We can make C4 arbitrary small by requiring that '+t lies in a aufficiently small

neighborhood V of the origin in a:n (so E+ 6' ia small). We determine V so that

Then (3) impliea

ItoI ~ It I - IIm w-Im w' I
~ 6-C46~ 6/2

and
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Hence t lies in the ball B(to,d(A,A2) ItoI) CA2 ' so C+t E Y(A2,V). This proves the

right indusion in (2).

The proof of the lett indusion in (2) ia obtained by reversing the roles of ~ and NOM in

the proof given abovej we ahall omit the details. Lemma 3.1 ia proved.

3.2 PROPOSITION. Let Y' < 11" be wedges (1.6) with edge M and with cones

r' < r . For any pair of cones A' < A in IRd satisfying

r' <A' <A<r

there is a neighborhood U of 0 in (n and a family of unitary maps" Up E U(n),

depending continuously on p E M n U , so that the associated affine transformations

'" (C) = U · ( C-p)p p

aatisfy:

(a) 'p(p) = 0 ,

(b) n, (p) = U maps T M anto (mxlRd (= TOM) and N M anto {Q}mxilRd
p p p p

(= NOM) .

(c) The wedges Y p = 'p( Y) n U, y~ = 'p( V') n U satisfy

V~ C Y(A' ,U) C Y(A,U) C Yp' p E U n M .
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Here, Y(A I ,U) and Y(A,U) are wedges (1.6) with edge Mp = 'p(M) n U .

Proof. Choose any continuous family p EM -----+ CUp E U(n) of unitary maps satisfying

(a) and (b). For p EM elose to 0, tPp( "1 is a tilted wedge with edge 'p(M) and

with cone Up({O}d)(ir) ( Up(NOM) . The orthogonal projection r p of this cone onto

NOM is very elose to the original cone r = r 0 if p is elose to O. Similar property holds

for 'p( yl). Thus, if U is chosen sufficiently small, we have

r/<A/<A<r pEMnU.p p'

The property (c) now follows from Lemma 3.1, provided that we shrink U further if

necessary. This proves Proposition 3.2.

Next we will show that, given any pair of wedges ".' < Y (1.6) with edge M, we can

exhaust the finer wedge ,,-' in a suitably small neighborhood of the origin by linearly

embedded (m+1)--dimensional complex balls of uniform radius R > 0 , contained entirely

in the larger wedge Y.

For each point ( outside M but elose to M there is a. unique elosest point 1"( () E M so

that (-7l{ () belongs to the normal space Nw-( ()M . Since T 1"( ()M is a generating

subspace of (n , it follows that i( (-I"( (n ET 1"( ()M . Let d( () = I (-Il"( () I .

For each such , we denote by TT( ((u the complex affine subspace

of complex dimension m+1, passing through 1"( () E M . Let t( c) = «(-r( ())/d( () be
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the unit vector in direction (-7r{ () . We choose a (-orthonormal frame Xl""JXm in

T~ ()M and let !p( : {m+l ----; TI( be the affine parametrization of TI( given by

m

t/J ((zJ Tl) = r( () + l ZjXj + Tl· t( ()
1

B((R) = t/J ((B(R)) CTT(

be the image ball of radius R contained in TT( ,with r( () E aB ((R) . Notice that the

vector 2Rt( () is the diameter of B ((R) , passing through 7r{ () and the center

~ () + Rt( () of B ((R) .

3.3 PROPOSITION. (Balls in wedges.) Given wedges Y' < Y of the form (1.6) with

edge M J there is a neighborhood U of 0 E (n and an R > 0 so that B ((R) ( .". for

each (E .".' n U . The number R can be chosen so that it only depends on the

curvature of M and on the number d(r' ,r) associated with the cones r' ,r ( NOM

determining "..' resp. 1f'.

Proof. By Proposition 3.2 it suffices to consider the points (= (O~t) E NOM with

t E r I, It I = 1 . Then r( () =0 , we may take {Xj } to be the standard basis in (m,

and we have

Writing 1] =x+iy, w = 1] it = u + iv , we have u = -yt J v = xt . On the ball B(R)
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we have

x = ( I z 1
2+y2) IR + x I , X I > 0 .

To prove that the image belongs to the wedge Y we must consider the expression

Im w - ~z,z,Re w) = v - fP(z,z,u) = xt - (j}{z,z,-yt) .

We can estimate the second term by

and write

where 1~ 1 ~ 1 . Thus

H we choose R so thatelR < d(r I ,r) , then the vector (t + ClR~) belongs to r for

all t Er 1 n s ,so v - rp(z,z,u) Er. This proves that for this choice of R we have
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Bt{R) C Y for all t Er' n S . Proposition 3.3 ia proved.

Remark. If we denote by &,(R) CB,(R) the complex disc of radius R passing through

the center of B,(R) t with r( ,) E 8& ,(R) , then we obtain a family of complex discs in

Y that exhaUBt every finer wedge Y' < Y. near the origin, provided that R > 0 is

chosen sufficiently small. This already suffices in several applications; we shall state some

of them here.

3.4 COROLLARY. (Hopf lemma on wedges.) Let p be a continuous function on 11' UM

that is zero on M and negative plurisubharmonic on Y. Then for every finer wedge

y' < Y and every sufficiently small neighborhood U of 0 in (n there is a constant

C > 0 such that

p{') ~ -e dist{',M) J 'E ,,-' n u .

Proof. Apply the one variable Hopf lemma to p on each disc &,(R) (see the Remark

above). We may assume that the union of discs &,(R) for 'E ".' n U is contained in

a wedge finer than Y, so the standard proof of the Hopf lemma shows that the constant

C above can be chosen independent of ,.

Remark. A similar result has been proved in [23].

3.5 COROLLARY. Suppose that n C(N is a domain with a plurisubharmonic defining

'functi~n near 8fl. If Y ((n is a wedge (1.6) with edge M and f: Y -----t n ia a

holomorphic mapping that ia continuous on Y UM and maps M into 8fl, then for

every finer wedge Y' < Y there are a constant C > 0 and a neighborhood U of

oE (n 80 that
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dist(f( C), 80) ~ C dist( (,M) , (E .".' nu .

Proof. Apply the previous Corollary to the negative plurisubharmonic function pof on

the wedge Y.

Remark.If n is an arbitrary pseudoconvex domain with ~2 boundary, we can find a

~2 defining function p such that T = -(-p)€ is plurisubharmonic on n for € > 0

sufficiently small [11]. Applying the Hopf lemma to Tof we obtain the estimate

dist(f( (), 80) ~ C dist( (,M)l/ €, (E y' n u .

This kind of estimatea are well-known when M ia a hypersurface.
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§ 4. Conyex harriers and estimates of thc Iocal huH of M .

Let Y be a wedge (1.6) with edge M and U C (n a neighhorhood of the origin. Every

real-valued function p E ~l(U) satisfying pI MnU ;: 0, dp *0 on M n U , and

p < 0 on Y n U will be called a harner for the wedge Y in U . Ciearly every wedge

Y with an acute cone has plenty of harriers.

In the rest of this section we assume that the manHold M defined by

(1) Im w = Q(z,Z) + R(z,z,Re w)

is strongly pseudoconvex at the origin, and we shall he interested in strongly

*plurisuhhannonic and even strongly convex barriers. Let C(Q) and C (Q) be the Levi

cone and its dual cone as defined by (1.4).

d
For vectors U,T E IRd we denote U· T = 1: UjTj . For each vector U E IRd , Iu 1= 1 , we

j=l

define the function

(2) 2pO'(z,w) = -q. Im w + (0'. Q(z,Z) + IIm w I )
+ (0". R(z,z,Re w) - I Q(z,Z) + R(z,z,Re w) 1

2) .

Notice that p ia obtained by taking the inner product of 0" with the defining equation (1)

(with Im w moved to the right hand side) and adding the squares of the equations in (1).

We have arranged the terms 80 that 0". Q + 1Im w 1
2 is the quadratic part, and the terms

in the last parentheses are smaIl of order 2.
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Clearly Pu is a barrier for each wedge y(r) whose cone r is contained in the half

space u+ = {T E IRd : U· T > o} , at least in some neighborhood of the origin. Moreover, if

*u EInt C (Q) ,then u· Q is positive definite on (m, so p is stronglyu
plurisubharmonic near the origin.

Recall that for each cone r c IRd its dual cone r* is defined by

* dr = {u E IR : U· T ~ 0 for all T Er} .

Let S denote the unit sphere in IRd .

4.1 LEMMA. Let r CIRd be an open convex cone whose closure r contains the Levi cone

*C(Q) of M at O. Then for every compact subset K ce Int r n S there is a

neighborhood U of 0 in (n such that every function in the family {p : (f E K} ia au

strongly plurisubharmonic barner for the wedge Y(r,U) .

* *Proof. The condition r) C(Q) implies r C C (Q) ,so Pu is a plurisubharmonic

*barrier for Y(r) for every u EInt r in some neighborhood Uu of the origin. Clearly

*U can be chosen to be independent of u E K ce Int r n S . This proves Lemma 4.1.u

Orten it will be useful to have strongl! conyex barners. In fact, a quadratic change of

w-variables turns every function in {p : (f E K} into a strongly convex one in someu

smaller neighborhood U1 of 0 E (n . By a rotation in IRd we may assume that

*r ( {u1 > O} U {O} (otherwise r has no interior!). We introduce new w-eoordinates

* * *w = u +iv by
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(3)

In the new coordinates Pu is given by

(4) * * * u1 * 2 u1 * 2pu(z,w ) = -q-v + (u- Q(z,Z) + r lu I + (1- 2 ) Iv I ) + a(2) ,

*so the quadratic part is strongly positive definite whenever u E (Int r ) n S (since then

*o< u1 ~ 1 ). On each compact set u E K C( (Int r ) nS we have 0 < c ~ (j1 ~ 1 , so

*the functions in {pu: (J EK} are strong1y convex on a fixed neighborhood U1 of

OE (n.

*Let M denote M in the new coordinates. The above implies that the polynomially

* *convex hull of M n U1 is contained in n {pu ~ 0 : u E K} . Since a po1ynomial change

of coordinates maps po1ynomial hulla to po1ynomial hulla, it follows that for al1 sufficient1y

small balls 0 EU C(n , the hull of M nU ia contained in the set {C EU: pu( C) 5 0

for all u E K} .

H we now fix a cone r > C(Q) , we can find finitely many vectors

*u1"" ,uk E Int C (Q) n S such that

(5)
k

C(Q) ( n u-t < r .
j=1 J

If p. = p (1 ~ j ~ k) are the corresponding functions (2) and B ia a sufficiently small
J u j
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closed ball in (n centered at the origin, then the polynomial hull M n B is contained in

The last inclusion is elementary and follows !rom (5). This proves

4.2 PROPOSITION. If M is a strongly pseudoconvex manifold (1) with the Levi cone

C(Q) at the origin, then for every cone r > C(Q) there is a closed ball B C (n centered

at the origin such that the polynomial hull of M n B is contained in the wedge

y(r,B) U(MnB) .

The same proof shows the following

4.3 PROPOSITION. Let M be a strongly pseudoconvex ~2 manifold (1) with the Levi

cone C(Q) at O. For every strongly convex cone r cIRd satisfying r) C(Q) we can

*find a small neighborhood U of 0 E (n so that the image ".. of the wedge

*Y = Y(r,U) (1.6) in the coordinates (z,w ) defined by (3) satisfies

(6) * *.". nU C ~1 n ~2 n ... n 9Jd

*in some neighborhood U of 0 E (n , where each 9J j is a strongly convex domain

* *
9J . = {( EU: pu .( () < 0, 1 ~ j ~ d} ,

J J

* *
every pu. is of the form (4), and the vectors u1,... ,ud E (Int r ) n S are linearly

J
independent.
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* *If we denote the image of M in coordinates (z,w ) by M , the condition on

q 1'... ,0-d implies that

* * *M nu =89J1 n ... n89Jd nU

*and the intersection is transverse, provided that U is sufficiently small.

We have seen that a strongly pseudoconvex manifold (1) lies locally near 0 in many

strongly pseudoconvex hypersurfaces. This property characterizes strongly pseudoconvex

CR manifolds:

4.4 PROPOSITION. Let M ((n be a 'if2 manifold of the form (1.1) near the origin, of

real codimension cl > 1 . Then M is strongly pseudoconvex at 0 if and only if it is

locally near 0 contained in a strongly pseudoconvex hypersurface.

Proof. It remains to prove the "ir' part. Write M in the form (1). After a linear change

of w-roordinates the strongly pseudoconvex hypersurlace E containing M is given locally

by an equation

(7) Im wd = A(z,Z) + B(z,w' ,Re wd) ,

where A contains quadratic terms involving z and z, and B contains the remaining

quadratic terms and terms of higher order. We substitute the first d-l equationB (1) for

M into the right hand aide of (7). Clearly this does not affect the quadratic part A of (7).

The condition M (E implies that the last equation of M now agrees with the new

equation for E. Comparing the quadratic parts involving z or z we conelnde
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A(z,Z) = Qd(z,Z) ,so A is hermitian. Since A ia the restrietion of the Levi form of ~ to

{w = o} CT~~, A must be positive definite (we adjust the sign of Wd if necessary}, 80

Qd(z,Z) ia positive definite. Thus M ia strongly pseudoconvex.
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§ 5. Estimates of the mapping.

In this section we assume that f: M ---+ M' is a Ioeal CR homeomorphism of CR

manifolds (1.2) that are strongly pseudoconvex and over-extendable at the origin, and

f(O) = 0 . We denote by C(Q) reep. C(Q/) the Levi cone of M reep. M' at the origin.

5.1 PROPOSITION. There exist open, strongly convex cones in IRd aatisfying

C(Q) < r1 < r2 < r3 and C(Q ') < ri < r2' and there exist neighborhoods

U1 CU2 ( U3 and Ui ( U2 of the origin in (n so thai the following hold:

(i) f extends holomorphically to the wedge 7'2 = Y M(r2'U2) and maps it

into Y2 = YM / (r2,U2)·
(ii) f maps 11""1 = Y M(rpUl) into Vi = Y M/(ri ,Ui) .

(iii) 1 1 extende holomorphically to 7'"2 = YM/(r2,U2) and maps it into

Y 3 = YM(r3,U3)·

(iv) r 1
map8 7"i to 7"2'

Moreover, we can choose r 3 resp. r 2 to be contained in a prescribed cone r 0 > C(Q)

resp. r Ü> C(Q/) .

The index in YM indicates that we have a wedge with edge M, and similarly for M'.

Proof. Choose r3 > C(Q) and U3 C (n , and consider the inverse map r 1 : M' -----+ M .

H w' ( M' ia a sufficiently small neigborhood of 0 EM', ihen the }X>Iynomial hull of

r 1(w ' ) CM ia contained in the wedge 1f"3 UM = Y M(r3'U3) UM according to

Proposition 4.2. Since M' is over-extendable at 0, there is a cone r 2> C(Q') and a

neighborhood U2 of 0 in (n so that every CR functon on w' extends

holomorphically to the wedge 7'"2 = 11"M' (r2'U2) (see Pro}X>sition 2.5). Hence this

wedge is contained in the polynomial hull of 'W' ,so r 1 map8 7""2 to 7'"3' Thus
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(üi) holds.

We repeat the same argument with f instead of 1 1 . We use the over-extendability of

M at 0 to find a cone r 2 satisfying C(Q) < r 2 < r 3 and a neighborhood U2 ce U3

of 0 such that f extends to the wedge 7'"2 = Y M(r2'U2) and maps 7'"2 into ""2'
Thus (i) holds.

Consider again 1 1 . Using the over--extendability of M' at 0 and Proposition 4.2 we

find a wedge Vi < Y2 with cone ri ' C(Q/) < ri < r 2' so that r 1
( Yi) ( 7'"2'

ThuB (iv) holds. Finally, we repeat the same with f to find VI C 7""2 such that

f( 7'"1) < Vi. This proves Proposition 5.1.

5.2 PROPOSITION. Let f: M ----+ M' be as in the Main Theorem. Then there is a

wedge Y y(r,U) with edge M whose cone r satisfies C(Q) < r , such that f

extends holomorphically to Y, it satisfies the diatance estimate

(1) bdist( (,M) ~ dist(f( (),M ') ~ C dist( (,M) , (E Y

for some C > 0 t and ia uniformly Bälder continuous with the exponent 1/2 on

YU (M n U).

Proof. Choose wedges V= ""1 < 7'"2 < 7'"3 and 7'"i < 7'"2 as in Proposition 5.1.

Assume also that "'"3 and 7"2 are sufficiently. small so that they admit strongly

plurisubharmonic bartiers p resp. p' . The estimate (1) is obtained by applying the Hopf

lemma (Corollary 3.4) to the negative plurisubharmonic function p' of on "'2 and to
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Ta get the Hölder estimate we first apply the change of coordinates (4.3) on the target side

so that 7'"2 is contained in a strongly convex domain ~ with M' ( 8 !iJ. For each

point (E Yand each vector X E (n\{O} we can find alinear complex disc !J.( (;X) in

7'"2 ' centered at (, in direction X, of radius comparable io dist( (,M) . On the target

side, the largest such disc in !iJ, centered at f( () , in any direction, has radius

~ Cldist(f( (),M 1)1/2 for some constant Cl . Since !iJ is convex, the result of [17] and

(1) imply the following estimate on the derivative of f at ,:

IDf( ()X 1/ IX I ~ C2 dist(f( (),M 1)1/2/dist( (,M)

< ( )-1/2_ C3 dist (,M , (E 1f'.

A standard argument shows that f is Hölder continuous on ,.,. U(MnU) with the

Hölder exponent 1/2. This proves Proposition 5.2.

In order to obtain more precise information on Df( () for (E Y we shall introduce

certain affine coordinate changes on the domain and the target. In the domain we fix a pair

of wedges 1f" = 1f"1 and 1f"2 with cones f, f 2 satisfying C(Q) < r < r2 . On the

target side we use the coordinates in which Proposition 4.3 holds, Le., we have d strongly

convex domains !iJ 1"'" !iJd ((n so that

M' n V' = 0 !iJ 1 n ... n 0 !iJd nV'

for a suitably small neighborhood U I of 0 E (n , the boundaries O!iJ j intersect

transversely &1ong M', and f maps 7'"2 holomorphically into ~1 n ... n !iJ d .
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Moreover, we mayassume that the distance estimate (1) holds on 7"2'

For ea.ch point p E M we choose a unitary matrix Up E U(n) satisfying

(2) U (T M) = (ID )( IRd = TOM ,p p

Let 'p: (D ---+ (n be the associated affine map

(3)

We denote by U~ resp. y;~ similar maps associated to f(p) EM' . Then we have

(4) f = (,' )-1 0f 0' , p EM ,p p p

where f is the expression for f in the new coordinates. Notice that f map8 thep p

manifold 'p(M) of the form (1.1) to the manifold ,~(M/), and fp(O) = 0 .

We will &Saume that 11'"2 is sufficiently small such that each point (E 7Y2 has the

unique dosest point p = r( () E M ,and ((-p)ENpM. We then have

for some t( () E IRd with

It( () I = I(-p I = dist( (,M) .
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From (2)-(4) we get

(5)

For each t EIRd such that f is defined at (O~t) we shall write its derivative in thep

block notation

(6)

with blocks of sizes A E (mxm, B E (IDXd , C E (dxm, D E (dxd . Ir we choose U
p

to depend continuously on p E M I then for all p E M sufficiently elose to 0 we may

take t to be an arbitrary vector of sufficiently smalllength in cone r 0 ( IRd satisfyjng

C(Q) < r < r0 < r2 . (Here, r is the cone determining the wedge ".= "'1' and r2

determines 7"2')

5.3 PROPQSITION. For each point p EM sufficiently elose to the origin and each vector

t E lRd such that the point ,= p + U;I(O,it)t =,;I(O,it) is contained in .". I the

blocks in (6) satisfy the following estimates:

(a) A (t) = 0(1), D (t) = (7(1) ,

B:(t) = a( 1t 1-172) I Cp(t) = a(lt 11
/
2

)

(b) Cp(t) = a(lt 1
1/ 2) .

. * d(c) If the limit D = lim D (t) exists as t --+ 0 within some cone in r ( IR with
P t--iO P

non-empty interior, then it ia a real-valued d)( d matrix.
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Moreover, the estimates in (a) are uniform with respect to p and t.

Remark. At this point we are not able to prove that the estimate in (b) holds uniformly

with respect to p, so we stated it separately. We shall prove in section 6 that the limit in

(c) exists for almost every p E M (with respect to the aurlace measure on M) as t -----t 0

within some amaller cone contained in r.

Proof. We shall give the proof for the point p =0 E M since the proof for any other point

is just the same.

Fix a point (= (O,it) E Y and let f(() = (' = (z' ,u' +iv') .If XE (n is any vector

of length one, then by [17] we have

1Df( ()X 1 ~ A • ~/Rl '

where A is an absolute constant, R1 is the radius of the largest linear complex disc in

Y2 ' centered at (, in direction of the vector X, and ~ ia the radius of the largest

d
such disc in n ~., centered at (' ,in direction of the vector Df( ()X .

j=1 J

For each X we can take R1 proportional to 1t I or bigger. When X E (m x {O}d , we

ca.n take R1 proportional to 1t 1
1/ 2 . On the other hand, we have dist( (' ,M') j::;;: I t I

so ~ ia at most CI t 1
1/ 2 for same C > 0 because of the strong convexity of the

domains 9) j . Thus IDf( ()X I is always .~ C11 t 1-1/2 , and is bounded when X is

complex tangential. This gives the estimatea (a) for the blocks A and B.
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The estimates for C and D require some additional work. By Hölder continuity we have

I (' I = If( () I ~ C21 t 11
/
2

. Let 'i = (z' ,u' +ivi) be the uniquely determined point in

M' that differs 'from " only in the v' coordinate. From the defining equation of M'

we have

v' - ",' (z' z' u')1 - r " ,

so Iv i I = ti( It I) (since ",' (0) = 0, d",' (0) = 0 ). Also,

Ivi-v' I R$ dist( (' ,M') = ti( It I) . This implies

(7) Iv'l = O(ltl) .

Hence the projection onto the w' -ßpace {Olm x (d of any linear complex disc

& C !iJ1 n ... n !iJ d centered at (' has radius at most C31 tl . This implies the

estimates for the blocks C and D corresponding to the components fm+l'... ,fn of f .

Since all of these estimates only depend on the radii R1 and ~ and on the distance

estimate for f, it is clear that the same holds uniformly for p E M sufficiently near O.

To prove the estimate (b) we shall use the generalized theorem of Caratheodory on the

angular derivative [24, Theorem 8.5.6] . Again we shall take p = 0 E M .

We can find osculating balls Bl'... ,Bd C (n such that Bj ) !iJj' OBj n 8 !iJ j = {O} ,

and the normals to aB j at 0 are linearly independent vectors

O"j E {Olm )( i [Rd = NOM' , 1 ~ j ~ d .



-46-

Fix a point (O,it) E Y. In Section 3, Proposition 3.3, we have constructed an

(m+l)-dimensional complex plane TTt ' generated in the present context by

T~M = (m )( {O}d and the vector t, containing a ball Bt(R) (TTt of radius R > 0

(R independent of t ), such that Bt(R) ( 11'"2 and 8Bt(R) n 8 7'"2 = {O} E M .

For each j E {1,... ,d} we consider the restricted mapping f: Bt(R) ----+ Bj between

balls. Clearly f(O) = 0 J and the estimate (7) implies that

(8) 1im i nf dist(f( C), OB .)/dist( (,OBt(R)) < m .
Bt(R) 3 (--+0 J

For a fixed j we write f = (f(t),f(n)) , where f(n) is the normal component of f with

respect to 8Bj at 0 (Le., the projection of f onto the normal direction to OBj at 0),

and f(t) is the tangential component. The cited theorem [24, p. 177] implies

Since the normals to 8Bj (1 ~ j ~ d) at 0 span {O}m)( (d over (, we get

when t Er0' Itl ----+ 0 . This is precisely the estimate (b) on Cp(t) at p = 0 .

It remains to prove (c). The theorem quoted above implies that for each fixed t Er 0 and

j E {1, ... ,d} , the derivative of f(n) in the direction of the vector it (the "normal"

direction in Bt(R) at 0) converges to areal number:
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d

lim i 1: tk 8f(n)/ 8wk(O~ft) E IR .
f-..... O k=l

For each j, f(n) is a linear combination with purely imaginary coefficients of the

components {ft}t=m+1' By the assumption (c) the limits

(10) lim Oft /8wk(O,it), 1 ~ k 5 d, m+1 ~ t ~ n ,
t-.....o

exist as t --+ 0 within certain cone. Applying (9) in d linearly independent mrection

t E IRd we conelude that the limits

lim i8f(n)/8wk(O,it) EIR, 1 5k 5d
t-.....o

are real-valued. FinaIly, aB j runs from 1 to d, the normals to OB j at 0 span

{Olm )( iIRd , so the limits in (10) are also real-valued. This proves (c), and Proposition

5.3 is proved.

Remark 1. In the proof of (c) we had to know in advance that the limits (9) exist and are

independent of t . The problem is that on wedges there is no immediate Lindelöf's

theorem: a bounded holomorphic function may have a limit along certain radial direction,

but may faH to have the nontangentiallimit. For versions of Lindelöf's theorem in (n see

[9], [10], [19], and [23].

5.4 COROLLARY. (Notation as in Proposition 5.1.) There ia a constant C > 0 such that

1/C ~ Idet Df( () I ~ C, (E 1f".
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Proof. The estimate on Idet Df( () I from above follows immediately from (5) and the

estimates in Proposition 5.3 (a). We use the fact that these estimates are uniform with

respect to p and t .

The estimate on Idet Df( () I from below follows by applying the first part of the

Corollary to the mapping r 1
: Y2 ----+ "'3 that map8 Yl into 7'"2 (see

Proposition 5.1.) This proves Corollary 5.4.
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§ 6. Proof of the Main Theorem.

Let f: M ---+ M' be a eR homeomorphism as in the Main Theorem. Let

Y = Y(r,U) be a wedge with edge M such that r > C(Q) , f extendB holomorphically

to Y and satisfies the estimates of Proposition 5.3 and Corollary 5.4 there.

H, in addition, f is a eR diffeomorphism of class ffl on M, then for each point

( E M the derivative Df( () rnaps T~M isornorphically onto T~( OM I .

If we think of the cornplex rn-planes T~M and T~(()MI aB points in the cornplex

Grassman manifold Gr(m,n) of complex m-dimensional subspaces of (n, it is natural to

associate to M resp. M' the manifolds 11 resp. Ei' in (n)( Gr(m,n) by

(1) ~ = {( "T~M) : , EM} ( (n )( Gr(m,n) ,

and analogously for 11' . Then f lifts to a continuous mapping 1'::&1: ---+ ~, defined

by

(2)

Notice that l' can be defined even when f is merely continuous on M.

Over the wedge 'Ir we can lift f to the holomorphic mapping
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F: 1f' x Gr(m,n) ---+ (n x Gr(m,n) ,

(3)

F( CA) = (f( (),Df( ()A) .

Here, Df( ()A ia the image of A E Gr(m,n) under the linear map Df( () i thia requires

that Df( () ia non-degenerate for each (E Y, aB ia the case in our situation.

When f E ~l(M) and Df( () is non-degenerate for ( E M, then F extends

continuously from 1f" x Gr(m,n) to ~ and coincides with l' on ~. Moreover,

Webster prove in [28] that the manifold M is totally real at a point (( if and

only if the Levi fonn of M ia non degenerate at 'E M . The proof of the Main Theorem

now follows exactly as in Webster [28, 29], provided that we use the smooth version of the

edge-of-the-wedge theorem given in [23]. This will be explained in more details below.

In this case one does not need the over-extendability of M resp. M' at 0 i instead it

suffices to assume that M and M' are minimal at 0, so the result of Tumanov [25]

can be applied to extend f resp. 1 1 to some wedge. In this case we do not require auy cf

the results of sections 3-5.

We now drop the assumption f E ~l(M) . We will nevertheless find a suitable wedge

.,r ( 1f')( Gr(m,n) with edge ~ 80 that the mapping F (3) extenda continuously from

,r to ~ U~ aud coincides with 1 on n. This will suffice to conclude tbe proof of

the Main Theorem along the same lines as before. In the hypersurface case this approach

has been developed in the papers by Pinchuk and Hasanov [23] and the author [15]. Dur

present proof includes the hypersurface situation aB a very special case.

Before proceeding, we must introduce homogeneous coordinates on the Grassmannian
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Gr(m,n) and express the map F (3) using these coordinates. To each matrix

P E (dx(m+d) of rank d we associate the complex m-plane

where P ( ie the matrix product. Clearly every A E Gr(m,m+d) is of thie form, and we

have (PI] = (P2] if and only if P2 = B· PI for some B E GL(d,() .

If A E GL(n,G:) , n = m+d , then A maps each m-plane onto an m-plane as followe:

A( (P]) = {A( E(n : P ( = O}

= {(' E (0: PA-1(, = O}

= [PA-1] .

We ehall Bay that P is the homogeneous coordinate of (P] E Gr(m,m+d) . When d=l,

we have Gr(m,m+1) = (pm, the complex projective space.

In these coordinates the map F can be expressed by

(4) F( (, (PJ) = (f( (), (p. Df( ()-1]) .

We must also write the manifold :&t (1) in the coordinate notation. Let M ((n be

defined by

r( () = r(z,w) = -Im w + <p(z,z,Re w) = 0 ,
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of dimension dxn, where r = (1Jr./ {)zk)
Z J

and

r = (Or./Ow n ) for 1 ~ j,l ~ d, 1 ~ k ~ m. Notice that
W J (..

Since ~O) = 0, drp(O) = 0 , the matrix r is invertible in a neighborhood of the origin
w

in (n, and we shall always work under this hypothesis.

This allows us to consider F only on the coordinate chart of Gr(m,n) consisting of points

[P] E Gr(m,n) for which P = (PpP2) and the matrix P 2 E (dxd is invertible. On this

chart we can use the affine coordinate [P] = p;1p 1 E (dxm . Hence T~M has the affine

coordinate r-1(p)r (p) for p EM .w z

1t will be convenient to introduce the holomorphic mapping

(5)

In the choosen affine coordinate system on Gr(m,n) the map F is then given by

(6) F( (,P) =(f( (), [G( (,P)] ), (E 11", P E (dxm .

Unfortunately we cannot pass to an affine coordinate system on the target yet.
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We shall now define a special wedge ,r C (0 x (dxm with edge :&t as follows. For

(CE Y we let 1"( C) E M be its dosest point in M. Recall that T 1"( ()M has the affine

coordinate (r-1 r )( 1r( ()) . Fix a > 0 sufficiently large and setwz

(Here we can use any matrix norm.) Dur first goal is to prove

6.1 LEMMA. The holomorphic mapping G (5) ia bounded on the wedge ,r.

Proof. In order to estimate G( CP) we let p = ~ () E M be the dosest point to , on

M . We introduce the affine change of coordinates (5.2)-(5.3), so f satisfies (5.4). We also

let t = t( C) E IRd be such that

Since the unitary map Up takes

G:m )( {O}d = [(O,rd)(d)] , it follows that

isomorphically onto

(8)

for some matrix E(p) E GL(d,G:) . We may choose Up to depend continuously on p EM

and Uo= rn)(n , so E(p) will also be continuous in p E M and E(O) = rw(O) = ~ rd)(d .

We perform similar transformations on the target side with respect to the point

f(p) E M'; we denote the corresponding quantities by the same letters, only adding a
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prime.

From (5.4) we calculate by the chain rule

(9)

Set

Df( ()-1 = U-1 0 Df (O,it)-l 0 U I .
P P P

where the blocks have the same sizes as those in Dfp(O,it) (5.6). Since

Idet Dfp(O,it) I = Idet Df( () I ia oounded away from zero on 11'" according to Corollary

5.4, Proposition 5.3 (a) and (b) implies that the blocks Ap ' ~p' ~p' np satisfy

exactly the same estimates as the corresponding blocks Ap ' Hp' Cp , Dp ' In

particular, as t ---+ 0 ,

uniformly with respect to p E M , and also ~p(t) = a( I t 1
1/ 2) .

From the definition of the wedge ,r (7) we see that for each ((,P) E ,r , with

r( () = p EM , we have
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so

(11)

We can now estimate G( (,p) as follows:

G( (,P) = (P ,Id)(d) -Df( ()-1

= r-1(p)-r((p)-U-1 -Df (O,it)-l_ U / + () (ltI 1/ 2)
w P P P

= r-1(p)_(Od)(m,E(p))-Df (O,it)-l_ U ' + (/ (ltI 1/ 2)
w p p

= rw1(p). E(p)' (~p(t),ßp(t)). U~ + 0 ( I t 1
1/ 2)

We have used (8)-(11) in these calculations. If we take into account

and

(Od)(m,np(t)) -U~ = np(t) -(Od)(m,Id)(d) -U~

= n
p
(t)-E/(p)-l_ r , (/(f(p))

(we have used the analogue of (8) for the point f(p)), we finally get

G((,P) = [r-1(p)E(p)] -ß (t)- [E/(p)-lr /(/(f(p))] + () (ltI 1/ 2) .w p

The expressions in the square brackets are continuoua with respect to p E M, ßp(t) ia
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uniformly bounded, and the term O( 1t 1
1/ 2) is also uniform with respect to p. This

implies that G is bounded on ., and Lemma 6.1 is proved.

To simplify the notation we introduce the function

H( () = r-1(p). E(p)· rs (t)· E' (p)-l, (E Y,w p

with values in (d)(d so,

G( CP) = H(()' r' (' (f(p)) + (J ( I t 1
1/ 2), ((,P) E 71'.

We split G as

where

(12)

Notice that the first term in G( (,P) does not depend on the second component P which

only contributes a term 0 (I t 11
/
2

) , provided of course that ((,P) E ,r.

6.2 PROPOSITION. There is a smaller wedge Vo(Y with edge M and the

corresponding wedge
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1f'0 = {( (,P) E 1f': (E Y o}

with edge :&t so that the following hold:

(a) For almost every p EM with respect to the surface measure on M, the function G

has a limit

lim G( (,P) = G*(p) E (dxn
(--ip

as ((,P) E Yr0 and (----+ P nontangentially within the wedge 7'"0' (This means that

I(-p Ifdist( (,8 Yo) stays bounded.)

(b) Idet G21 is bounded away from 0 on ,r0 neu ~,so G;1G1 is bounded

holomorphic there.

(c) G;lG l extends continuously from Yr0 to M so that for each p E M :

(13)

(d) The mapping F defined by (3) (or (6)) extends continuously to ,r0 u~ and

coincides with 1 (2) on E1:.

Proof. Dur final goal ia to prove (d), from which the Main Theorem will follow by applying

the smooth version of the edge-of-the-wedge theorem as in [23] or [15].

Clearly (d) follows from (c) since, in the affine coordinates on Gr(m,n) , F
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equals

Notice that the right hand side in (13) is just the affine coordinate of T~(p)M' • so

F l:&i = 1 as required.

Also, iC (b) holds, then Idet H( C) I is bounded away from zero when It I is sufficiently

small (Le. 'E ""0 is close to M), hence (12) implies

(14) (G2"lG1)( "P) = r' w' (f(p))-1. r~, (f(p)) + tJ( I t 1
1/ 2) .

\

As ,---+ p, t ---+ 0 and we have (13).

The only factor in the matrix H( C) over which we have no apriori control is ßp(t).

Clearly the property (b) ia equivalent to having Idet ßp(t) I bounded away from zero.

Unfortunately we are not able to derive such an estimate directly from Proposition 5.3.

*In order to prove b) we will first show that G2 has &.e. boundary values G2(p) on :&1:

*such that det G2(p) satisfiea one of the estimates

*:I: Re(det G2(p)) ~ C > 0

for same constant C > 0 and for p E M dose to o. Since G2 ia bounded holomorphic

on ,r, the same estimate (with a smaller C) will hold on ,r0 near Ei, so (b) will be

verified.
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At this point a technical probem appears: the manifold Et c (n x Gr(m,n) is totally real

but is not generating, unless d = 1 and m = n-1 . To avoid this problem we shall first

define a manifold E C (n x Gr(m,n) of real dimension diD1RE = 2 diD1R~ , called the

aporoximate complexification of Et, that contains Et as a maximal totally real

submanifold, and whose tangent bundle TE is complex-linear to as higher degree as

possible &long Et.

When M ia rea!-ana!ytic, so ia Et, and we let E be the usua! complexification of Ei,

Le., a complex submanifold of dimension equal to dimm~ containing Et. Such :E is

unique near ~.

When M ia merely of dass ~k, so :&t E f1k-1 , we first parametrize Et locally by a

~k-l map t: wC1R2m+d ---+ :&t defined as folows. Let x,y E IRm , u E IRd ,

z = x+iy E (m . Define

P(x,y,u) = (rwIrz)(z,u+üp(z,z,u))

(1 i dXd)-I (-) dxm= 2' cpu + 2' I · cpz Z,z,u E (

and

(15) t(x,y,u) = (z,u+i<p(z,z,u), P(x,y,u)) E (n x (dxm

Here, CPu E (d)(d and CPz E (d)(m are the matrices of derivatives of tp = (cpl' ... ,CPd)

(1.1) with respect to the indicated variables.

We now extend t to complex valued (x,y,u) in a sma!l neighborhood of the origin in

(2m+d so that the extension is ~k-l, smooth away !rom 1R2m+ d , and -n t and all its
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derivatives of order ~ k-2 vanish on ~2m+d. When M is real-analytic, we may take 1

to be halomorphic. In particular, Dt is (-linear at each point of 1R2m+d near the origin.

We let E ( (n x (dxm be the loeal image of 1 near 1(0) = (O,T~M). In the

real-analytic case E ia the usual complexification of ~ .

Next we want to find a nonempty wedge

with edge 1R2m+ d n V0 (V0 being a small neighborhood of the origin) such that

(16)

Let r (lRd be the eone determining the wedge Y. Choose an arbitrary finer cone

r' < r and let r 0 (1R
2m+ d be a cone contained in a small conieal neighborhood of

{0}2m x r' ,satisfying f On ({0}2m x [Rd) = r' . We claim that the inclusion (16)

holds provided that r 0 and V0 are chosen sufficiently small. To see this, notice that for

ea.ch t E [Rd the vector

d

i Dt1(0) = i 1: t j lJt / IJuj(O)
j=1

belangs to Tt(O)E. Since at the origin cp contains no quadratic terms except the Levi

form, a simple calculation shows

i Dt t(O) = (O,it,O) .
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H t Er, then i Dt t(O) points to the interior of the wedge ,r. The definition of ""0

now implies the inclusion (16).

Consider now the smooth bounded function GoI on "'0 . Denote by d the diatance

from the edge in "'0 .Since G is bounded holomorphic on ,r, the Cauchy estimates

give lOG I = tJ(d-1) . Also, 1-0 t 1= tJ(dk- 2) by construction. Thus the chain rule

gives

Since k > 2 , Theorem 4 in [14] implies that GoI has a nontangentiallimit within "'0

at almost every point of the edge 1R2m+d nV0 . The cited theorem ia stated in [14] only

*for a special cone r ,but since we have considerable freedom in ehoosing r 0 ' we may

*assume that r 0 can be covered by finitely many cones isomorphie to r . Thus the result

applies in our situation.

T:s implies that at almost every point (P,T~M) E 11: , the function G( e,p) has a limit

G (p) as (,,P) ----+ (p,T~M) nontangentially wi thin the wedge t ( YO) ( ~ n 11' .

Clearly the first coordinate projection of I( "'0) onto (n contains a finer wedge

7'"0 < 7'" with edge M. Let ~ C,r be the corresponding wedge with edge :&1:

defined by

,r0 = {( (,P) E ,r: 'E )v0} .

Since the second coordinate P only contributes a term O( I t 1
1/ 2) in G( (,P) that

vanishes as ,---+ M (see (12)), G( (,P) has the same nontangential limit
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*lim G( (,P) = G (p)
(-..... p

as (e,p) E ,r0 and (----+ P nontangentially in 7Y0 .

Fix a point p E M at which the limit exists. From (12) it follows that

*lim n (t) = n (p)
t-..... O p

also exists as t -----10through certain cone in IRd so that ,= J6;l(O,it) E "'0'

* *We claim that the limit n (p) E GL(d,lR) is real valued and Idet ß (p) I is bounded

away !rom zero, uniformly with respect to p EM. To prove this, note first that the

estimates (a) and (b) in Proposition 5.3 imply

as t ----+ 0 . Since this is bounded away !rom zero and Idet Ap(t) I, Idet Dp(t) I are

bounded !rom above, they are also bounded away !rom zero for Itl amall. Thus Dp(t) is

invertible, and the formulas for ca.lculating the inverse matrix show that

Bence

3 . ~* -1lim D (t) = u (p) .
t--tO p
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*Proposition 5.3 (c) implies that n (p) is real-valued, and we have already seen above

*that Idet n (p) I is bounded and bounded away from 0, uniformly in p.

* dxd *Now we can see from (12) that the second component G2(p) E (: has det G2(p)

nearly real-valued for p E M sufficiently elose to 0, and it is bounded away from O.

Thus there is a C > 0 such that for each p E M where the limit exists we have

(17) *± Re [det G2(p)] ~ C > 0 .

Apriori the sign depends on P J but we claim that one of the two signs holds for almost a.ll

pEM.

This follows from the following well-known fact. Let h be a bounded holomorphic

*{unction on the unit disc b. ( ( , with a.e. boundary values h on Ob.. Assume that we

*have an arc 1 = 11 U12 (8~ such that 11 , 12 are measurable sets, Re h ~ 1 a.e. on

*11 ,and Re h ~ -1 a.e. on 12 , Then one of the sets 11 J 12 has measure zero. Here is a

sketch of the proof. Suppose both 11 and 12 have positive measure. By Runge's

approximation theorem there is a polynomial P on ( such that g = Poh is arbitrarilly

dose to 0 on 11 and to 1 on 12 , Suppose for the sake of the argument that

11 U12 = O~ . Since log Ig I ia subharmonic, we have

2~

loglg(Oll ~hf loglg*(eiOlldO ,
o

*and this is very small since Ig I is dose to 0 on 11 , Applying the same to log 11-g I
we get that log 11--g(O) I is also very small, a contradiction. If 11U12 = 1 is just
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a proper subarc of 8ä we apply a similar proof for a suitably chosen point z E ä dose to

1 .

We apply this to the funetion h = (det G2)o~ on the wedge ""0' We have that

It9h I = O(dk-3) is bounded sinee k ~ 3 . On each linear diac ä C YO abutting the edge

1R2m+d n V0 along an are 1 we first correct h to a holomorphic function il by

where T ia the Cauchy-Riemann operator on ä 50lving the equation 71(Tu) = U , chosen

so that T(t9 h Iä) vanishes at a prescribed point PO EI. Since T maps Lm(ä)

boundedly into each Hölder space ~ o(ä) ((} < 1) , the correction function ia so small

*(provided that ä is small) that :I: Re h (p) ~ C/2 a.e. on 11 U12 = 1 . As before we

conclude that one of the two sets 11 , 12 must have measure zero. Cleraly we have enough

* *discs in ""0 to prove that either Re h ~ C or -Re h ~ C a.e. on the edge

1R2m+d n VO'

Thus we mayassume that (17) hold with the + sign for almost all p E M ; the proof in

the other case ia analogous. The proof of Theorem 4 in [14], applied to the function

h = (det G2) 0 t on ""0' show that

on "0 sufficiently dose to the edge 1R2m+ d n V0 . Now (12) implies Re(det G2) ~ C/2

on ,r0 near ~. This proves Proposition 6.2 (b), so the Proposition ia proved.

Conclusion of thc proof of Main Theorem. Recall that we have totally real manifolda Ei,
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:K1:' ( (n )( (d)(m = (N of dass ~k-l, a wedge domain

a bounded holomorphic mapping F:'"0 ----t (N

",0 U:&t and maps :&t into :&t' .

,r0 ((N with edge Ei, and

that extends continuously to

If the manifolds Ei and :K1:' were generating in (N (Le., of real dimension N), we

could apply Theorem 3 in [23] to conelnde that F l:&t is of dass ~k-1--o, whence

fl M E ~k-1--o as required. (For this we would only need k ~ 3 .)

Unfortunately :K1: and ~, are not generating unless d = 1 , and we must do some more

work to reach the same condusion. We shall assume k > 3 in the rest of the proof.

(However, k need not be an integer.)

Let s = 2m+d , and let t: w( (s ----t (N be the mapping as in (15) whose restriction to

w= IRs n wlocally parametrizes M, and such that 7J t vanishes to order k-2 on w. In

the terminology and notation of [23], ~ is asymptotically holomorphic of order

(k-2, k-1) on wat the edge w, ~ E {.1 (k-2,k-l)(w) .

Let t' be the analogons mapping associated to 11' , except in this case we extend t'

to a neighborhood of 0 in (N as a loeal diffeomorphism onto its image in (N. Clearly

its inverse t = (t')-1 maps :&t' to IRs )( {O} ((N and ia asymptotically holomorphic

of the same order (k-2, k-1) on 11' .

We now show that • 0 F E ~m( ,r0) is asymptotically holomorphic of order

({k-3)/2,O) at the edge :&t. Let Z be the coordinate on (N . From the distance estimate

for f (Proposition 5.2) and from (14) we obtain the distance estimate

(18) dist(F(Z),~') ~ C · dist(Z,~)1/2



-66-

for Z E ,r°.The uaua! argument involving the Kobayashi metric then givea

(See the proof of Lemma 2 in [23].) The chain rule gives

N

8(fJoF)/ IIlj(Z) = l (~/dZi)(F(Z)) · 8F l! bz j ( Z )
t..=1

Set d = dist(Z,:&t). The first term in each product on the right is O(d(k-2)/2)

a.ccording to (18) and the construction of t , and the second term is O(d-1/2) . Thus

1l9(toF) I = 11(d(k-3)/2) .

Similarly we can obtain the appropriate estimates for the higher order derivatives of f}oF,

so woF E 0 ((k-3)/2,0)( ,r0) as claimed.

Let Vo= rö be the wedge (16) in (8, with the edge

t E 0k-2 k-1( "'0) and k-2 ~ (k-3)/2 + 1 , the composition,

s
IR n VO. Since

ia in 0 ((k-3)/2,0)( ""0) a.ccording to Proposition 2 in [23]. Notice that F+ extends

continuously to the edge !Rs n V0 and map8 it into IRB
)( {o} C(N .
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Using the antiholomorphic reflection Z -----t Z on both the domain and the target we

extend F to a mapping F-, defined on the opposite wedge

so that F- E 0 ((k-3)/2,O)( pO), and F- matches with F+ on the common edge

IRS nV0 . Theorem 1 in [23] implies that the restrietion F+ I s is sIDooth of class
IR nvO

~(k-l)/2-o , so F IEi is of the same dass.

Since k > 3 , we get F I~ E ~1. This implies that the distance estimate (18) holds

without the power 1/2 on the right, and IHF I ia bounded on ~0 . Repeating the same

proof with these improved estimates gives F:!: E 17(k-2,O)( ~), 80 Theorem 1 in [23]

implies F ISi E ~k-l-{) . This proves fl M E ~k-l-{) when k > 3 . The same applies to

1 1 , so the Main Theorem ia proved.
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