Max-Planck-Institut für Mathematik Bonn

The realizability of operations on homotopy groups concentrated in two degrees
by

Hans-Joachim Baues
 Martin Frankland

Max-Planck-Institut für Mathematik
Preprint Series 2012 (50)

The realizability of operations on homotopy groups concentrated in two degrees

Hans-Joachim Baues
Martin Frankland

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Mathematics
University of Illinois at Urbana-Champaign
1409 W. Green St.
Urbana, IL 61801
USA

THE REALIZABILITY OF OPERATIONS ON HOMOTOPY GROUPS CONCENTRATED IN TWO DEGREES

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Abstract

The homotopy groups of a space are endowed with homotopy operations which define the Π-algebra of the space. An Eilenberg-MacLane space is the realization of a Π algebra concentrated in one degree. In this paper, we provide necessary and sufficient conditions for the realizability of a Π-algebra concentrated in two degrees. We then specialize to the stable case, and list infinite families of such Π-algebras that are not realizable.

1. Realization problem for homotopy operations

The homotopy groups $\pi_{*} X$ of a pointed space X are not merely a list of groups, but carry the additional structure of (primary) homotopy operations, which are natural transformations

$$
\pi_{n_{1}} X \times \pi_{n_{2}} X \times \ldots \times \pi_{n_{j}} X \rightarrow \pi_{n} X
$$

These include for example Whitehead products $\pi_{p} X \times \pi_{q} X \rightarrow \pi_{p+q-1} X$, as well as precomposition operations $\alpha^{*}: \pi_{m} X \rightarrow \pi_{n} X$ induced by any map $\alpha: S^{n} \rightarrow S^{m}$ as illustrated in the commutative diagram

By the Yoneda lemma, j-ary homotopy operations are parametrized by homotopy classes of pointed maps

$$
S^{n} \rightarrow S^{n_{1}} \vee S^{n_{2}} \vee \ldots \vee S^{n_{j}} .
$$

This information is encoded in a category as follows.
Definition 1.1. Let $\mathbf{T o p}_{*}$ denote the category of pointed topological spaces. Let $\boldsymbol{\Pi}$ denote the full subcategory of the homotopy category $\mathbf{H o T o p}_{*}$ consisting of finite wedges of spheres $\vee S^{n_{i}}, n_{i} \geq 1$. Note that the empty wedge (a point) is allowed.
$A \Pi$-algebra is a product-preserving functor $\Pi^{\mathrm{op}} \rightarrow$ Set. In other words, a contravariant functor sending wedges to products. Let ПAlg denote the category of Π-algebras, where morphisms are natural transformations.

[^0]The prototypical example is the homotopy Π-algebra $[-, X]$ of a pointed space X, which is the functor represented by X in the homotopy category. One can view this data as the graded group $\pi_{*} X$, with $\pi_{n} X=\left[S^{n}, X\right]$, endowed with the structure of primary homotopy operations. Likewise, given any Π-algebra π, the group $\pi\left(S^{n}\right)$ will be denoted π_{n}. Taking the homotopy groups $\pi_{*} X$ defines a functor $\pi_{*}: \mathbf{H o T o p}_{*} \rightarrow$ IAlg sending X to its homotopy Π-algebra.

Definition 1.2. A Π-algebra π is called realizable if there is a space X together with an isomorphism $\pi \simeq \pi_{*} X$ of Π-algebras. Such a space X is called a realization of π.

Example 1.3. A Π-algebra concentrated in a single degree n is the same as a group π_{n}, which is abelian if $n \geq 2$. All such Π-algebras are realizable (uniquely up to weak equivalence), and the Eilenberg-MacLane space $K\left(\pi_{n}, n\right)$ is a realization of this Π-algebra.

In general, one has the following problem:
Realization problem. Given a Π-algebra π, is π realizable by a space?
Here, one must realize not only the homotopy groups, but also the prescribed homotopy operations.

One has the following classic example due to Quillen [21, Thm. I].
Example 1.4. Let π be a simply-connected rational Π-algebra, i.e. satisfying $\pi_{1}=0$ and π_{n} is a rational vector space. Then π is realizable. In fact, the category of such Π-algebras is equivalent to the category of reduced graded Lie algebras, and each such Lie algebra is the Samelson product Lie algebra of a space.

Example 1.5. A Π-algebra concentrated in degrees 1 and n consists of a group π_{1} and a π_{1}-module π_{n}, and can be realized by a generalized Eilenberg-MacLane space. Moreover, the moduli space of realizations is described in [18, Thm. 3.4, Cor. 3.5].

Example 1.6. A Π-algebra concentrated in two consecutive degrees $n, n+1$ (with $n \geq 2$) consists of two abelian groups π_{n} and π_{n+1} together with a homomorphism $\Gamma_{n}^{1}\left(\pi_{n}\right) \rightarrow \pi_{n+1}$, where the functor Γ_{n}^{1} is given by

$$
\Gamma_{n}^{1}\left(\pi_{n}\right)= \begin{cases}\Gamma\left(\pi_{n}\right) & \text { for } n=2 \\ \pi_{n} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 & \text { for } n \geq 3\end{cases}
$$

where Γ denotes Whitehead's quadratic functor. The structure map $\Gamma_{n}^{1}\left(\pi_{n}\right) \rightarrow \pi_{n+1}$ corresponds to precomposition $\eta^{*}: \pi_{n} \rightarrow \pi_{n+1}$ by the Hopf map $\eta: S^{n+1} \rightarrow S^{n}$. More precisely, $\eta^{*}: \pi_{n} \rightarrow \pi_{n+1}$ is a quadratic map when $n=2$ (resp. a linear map of order 2 when $n \geq 3$), and therefore corresponds by adjunction to a map of abelian groups $\Gamma_{n}^{1}\left(\pi_{n}\right) \rightarrow \pi_{n+1}$.

All such Π-algebras are realizable. This follows from J.H.C. Whitehead's homotopy classification of simply connected 4-dimensional CW-complexes in terms of the certain exact sequence [25]. See also [4] Thm. 3.3 (A)]. Moreover, the moduli space of realizations is described in [18, Thm. 5.1].

Example 1.7. A Π-algebra concentrated in a stable range can be identified with a module over the stable homotopy ring π_{*}^{S}, i.e. the homotopy groups of the sphere spectrum; see section 5. Our results provide examples of such modules that are not realizable (by a space or, equivalently, by a spectrum)

For more background on Π-algebras, see for example [23], §4] [7] §3.1] [8, §2] [14], §2] [11, §4]. For literature on the realization problem for Π-algebras and some generalizations, see for example [9] [10] [11] [12].

Main results and organization. In section 2] we describe Π-algebras concentrated in two degrees in terms of homotopy groups of spheres (Prop. 2.7). Section 3 is devoted to the metastable case in degrees n and $2 n-1$ (Prop. 3.7).

Section 4 explains the main result of this paper, which solves the realization problem for Π-algebras concentrated in two degrees. Theorem 4.2 provides a necessary and sufficient condition for such a Π-algebra to be realizable, in terms of homology of EilenbergMacLane spaces.

Section 5 specializes to the stable case. In section 6, we provide infinite families of non-realizable examples, using elements in the image of the J-homomorphism (Prop. 6.4 6.5). Section 7 contains proofs and technical material that would have otherwise cluttered the exposition

2. Π-algebras concentrated in two degrees

Let $\Pi \mathbf{A l g}(n, n+k)$ be the full subcategory of $\boldsymbol{\Pi} A \lg$ consisting of Π-algebras concentrated in degrees n and $n+k$ for some $n, k \geq 1$; these are sometimes called 2-stage Π-algebras. In light of example 1.5 we will usually assume $n \geq 2$.

The category $\boldsymbol{\Pi} \mathbf{A l g}(n, n+k)$ can be described as a comma category. First recall some terminology [3, Def. 1.1] [4, § 1.5].

Definition 2.1. Let C be a category and let $\Gamma: C \rightarrow \mathcal{A}$ be a functor. Then we obtain the category $\Gamma \mathcal{A}$ as follows. An object is a triple (X, A, η) where X is an object of C and $\eta: \Gamma X \rightarrow A$ is a morphism in \mathcal{A}. A morphism $(X, A, \eta) \rightarrow(Y, B, \lambda)$ in $\Gamma \mathcal{A}$ is a pair (f, g) where $f: X \rightarrow Y$ is a morphism in C such that the diagram

commutes in \mathcal{A}. We call $\Gamma \mathcal{A}$ the comma category of Γ. An object (X, A, η) of $\Gamma \mathcal{A}$ is also denoted by η.

Proposition 2.2. Let $n \geq 2$. There is a unique functor (up to natural isomorphism) $\widetilde{\Gamma}_{n}^{k}: \mathbf{A b} \rightarrow \mathbf{A b}$ yielding an isomorphism

$$
\Pi \mathbf{A l g}(n, n+k) \cong \widetilde{\Gamma}_{n}^{k} \mathbf{A b}
$$

of categories over $\mathbf{A b} \times \mathbf{A b}$.
For example, in the case $k=1$, the functor $\widetilde{\Gamma}_{n}^{1}=\Gamma_{n}^{1}$ is described in Example 1.6.
Proof. Uniqueness follows from A. 3 For existence, we will use some basic facts about truncated Π-algebras.

Let $\boldsymbol{\Pi A l g}_{n}^{k}$ denote the full subcategory of $\Pi \mathbf{A l g}$ consisting of Π-algebras concentrated in degrees $n, n+1, \ldots, n+k$. Recall [4, Prop. 1.6] that $\Pi_{A l g}^{n} k$ can be described as an iterated comma category

$$
\Pi \mathbf{A l g}{ }_{n}^{k} \cong \Gamma_{n}^{k} \mathbf{A b}
$$

using homotopy operation functors $\Gamma_{n}^{k}: \Pi \mathbf{A l g}_{n}^{k-1} \rightarrow \mathbf{A b}$ that encode homotopy operations inductively, one degree at a time [4, Def. 1.5]. Note that the inductive process starts with $\boldsymbol{\Pi} \mathbf{A l g}_{n}^{0} \cong \mathbf{A b}$.

Now take

$$
\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)=\Gamma_{n}^{k}\left(\pi_{n}, 0, \ldots, 0\right)
$$

where $\left(\pi_{n}, 0, \ldots, 0\right)$ denotes the (unique) object π of $\boldsymbol{\Pi} \mathbf{A l g}_{n}^{k-1}$ with $\pi_{n+1}=0, \ldots, \pi_{n+k-1}=$ 0 .

Indeed, the full subcategory of $\boldsymbol{\Pi} \mathbf{A l g}_{n}^{1}$ consisting of objects π with $\pi_{n+1}=0$ is isomorphic to $\mathbf{A b}$, via the correspondence $\left(\pi_{n}, 0\right) \mapsto \pi_{n}$. This follows from A.1 (4), since the trivial group 0 is the terminal object in $\mathbf{A b}$. Repeating the argument, the full subcategory of $\boldsymbol{\Pi} \mathbf{A l g}{ }_{n}^{k-1}$ consisting of objects π with $\pi_{n+1}=0, \ldots, \pi_{n+k-1}=0$ is isomorphic to $\mathbf{A b}$, via the correspondence $\left(\pi_{n}, 0, \ldots, 0\right) \mapsto \pi_{n}$. Now the full subcategory $\boldsymbol{\Pi} \mathbf{A l g}(n, n+k)$ of $\boldsymbol{\Pi} \mathbf{A l g}_{n}^{k}$ is isomorphic to the comma category of Γ_{n}^{k} restricted to objects of the form $\left(\pi_{n}, 0, \ldots, 0\right)$. That is precisely the functor $\widetilde{\Gamma}_{n}^{k}$ defined above.

In particular, we have $\widetilde{\Gamma}_{n}^{k}=0$ if and only if the projection $\Pi \mathbf{A l g}(n, n+k) \xrightarrow{\cong} \mathbf{A b} \times \mathbf{A b}$ is an isomorphism of categories, that is the Π-algebra structure concentrated in degrees n and $n+k$ is trivial. The corresponding Π-algebras $\left(\pi_{n}, \pi_{n+k}\right)$ are clearly realizable, for example by a product of Eilenberg-MacLane spaces $K\left(\pi_{n}, n\right) \times K\left(\pi_{n+k}, n+k\right)$.
Remark 2.3. By 2.2 and A.4, the category $\Pi \operatorname{Alg}(n, n+k)$ is additive if and only if the functor $\widetilde{\Gamma}_{n}^{k}$ is additive. This certainly happens in the stable range, but not always (e.g. $k=2, n=3$ as in Ex. 2.4). In fact, we will see shortly that it happens often (see Prop. 2.7).
Example 2.4. Taking $k=2$, the formula for Γ_{n}^{2} in [4] 1.10] yields

$$
\widetilde{\Gamma}_{n}^{2}\left(\pi_{n}\right)= \begin{cases}0 & \text { for } n=2 \\ \Lambda^{2}\left(\pi_{3}\right) & \text { for } n=3 \\ 0 & \text { for } n \geq 4\end{cases}
$$

where $\Lambda^{2}(A):=A \otimes A /(a \otimes a \sim 0)$ denotes the exterior square. Note that the map $\Lambda^{2}\left(\pi_{3}\right) \rightarrow$ π_{5} encodes the Whitehead product $[-,-]: \pi_{3} \otimes_{\mathbb{Z}} \pi_{3} \rightarrow \pi_{5}$.

In a Π-algebra concentrated in degrees n and $n+k$, any operation that factors through intermediate degrees would automatically vanish. This suggests looking at indecomposable operations, in the following sense.

Definition 2.5. Let $Q_{k, n}$ denote the indecomposables of $\pi_{n+k}\left(S^{n}\right)$, i.e. the quotient of $\pi_{n+k}\left(S^{n}\right)$ by the subgroup generated by all decomposable elements.

Here, an element $x \in \pi_{n+k}\left(S^{n}\right)$ is called decomposable if it is obtained via (nontrivial) primary homotopy operations from elements of lower degree, including possibly of degree n, but not only elements of degree n. For example, the Whitehead product $\left[y, \iota_{n}\right] \in \pi_{p+n-1}\left(S^{n}\right)$ with $y \in \pi_{p}\left(S^{n}\right), p>n$, is decomposable. However, the Whitehead product $\left[\iota_{n}, \iota_{n}\right] \in \pi_{2 n-1}\left(S^{n}\right)$ is not considered decomposable.

Warning: The definition of decomposable in [7] §2.2] does include elements obtained via primary operations from elements of degree n. In particular, the latter definition makes every element $x \in \pi_{n+k}\left(S^{n}\right)$ decomposable, since it is obtained as a precomposition of the identity class, $x=\iota_{n} \circ x=x^{*}\left(\iota_{n}\right)$.

In the stable range $k \leq n-2, Q_{k, n}=Q_{k}^{S}$ does not depend on n. Here Q_{*}^{S} denotes the indecomposables of the graded ring π_{*}^{S} (homotopy groups of the sphere spectrum).

Remark 2.6. The subgroup generated by all decomposables is in fact generated by compositions of the form $S^{n+k} \xrightarrow{f} S^{m} \xrightarrow{g} S^{n}$ (with $n<m<n+k$) and 3-fold iterated Whitehead products of the identity map $\iota_{n} \in \pi_{n}\left(S^{n}\right)$ of even-dimensional spheres. This follows from the Barcus-Barratt formula and the fact that all 4 -fold iterated Whitehead products of the identity class for spheres vanish [26, Thm. XI.8.8]. See the discussion before Lemma 3.6 of [8].

Proposition 2.7. Assuming $k \neq n-1$, we have

$$
\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)=\pi_{n} \otimes_{\mathbb{Z}} Q_{k, n} .
$$

In particular, in the stable range $k \leq n-2$, we have

$$
\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)=\pi_{n} \otimes_{\mathbb{Z}} Q_{k}^{S} .
$$

Proof. See section 7.3
Corollary 2.8. For all k and n with $k \neq n-1$ such that $Q_{k, n}=0$ holds, 2-stage Π algebras concentrated in degrees n and $n+k$ have trivial homotopy operations and are thus automatically realizable.

Example 2.9. Every Π-algebra concentrated in degrees 2 and $2+k$ is realizable. The case $k=1$ is settled in Example 1.6. For the case $k \geq 2$, note that the Hopf map $\eta: S^{3} \rightarrow S^{2}$ induces an isomorphism $\pi_{2+k} S^{3} \xrightarrow{\approx} \pi_{2+k} S^{2}$. Hence every element in $x \in \pi_{2+k} S^{2}$ is in fact a decomposable element $\eta \circ x^{\prime}$ for some $x^{\prime} \in \pi_{n+k} S^{3}$. Thus we have $Q_{k, 2}=0$ and the result follows from 2.8

As noted in example 1.6, the realization problem is solved in the affirmative in the case $k=1$. The same is true for the case $k=2$.

Proposition 2.10. Every Π-algebra concentrated in degrees n and $n+2$ is realizable.
Proof. In the stable range $n \geq 4$, it follows from 2.8 and $Q_{2}^{S}=0$, because of $\pi_{2}^{S}=\mathbb{Z} / 2\left\langle\eta^{2}\right\rangle$. Likewise for $n=2$, it follows from the fact $Q_{2,2}=0$, obtained from $\pi_{4}\left(S^{2}\right)=\mathbb{Z} / 2\langle\eta \circ \eta\rangle$.

The only case where the Π-algebra data is non-trivial is $n=3$, with $\widetilde{\Gamma}_{3}^{2}=\Lambda^{2}$ as noted in example 2.4 In that case, the Π-algebra π is realizable if and only if the obstruction $O(\pi)=\eta_{2} \circ E_{3}\left(\eta_{1}\right)$ described in [4] Thm. $3.3(\mathrm{~B})$] vanishes. The map $E_{3}\left(\eta_{1}\right)$ described in [4], § 3.2] factors through π_{4} and is therefore zero in our case (with $\pi_{4}=0$).

3. Metastable case

The situation is somewhat more complicated for the critical dimension $k=n-1$, which is in the metastable range. Let us recall some terminology and basic facts from [1].

Definition 3.1. [1] Def. 2.1] A quadratic \mathbb{Z}-module

$$
M=\left(M_{e} \xrightarrow{H} M_{e e} \xrightarrow{P} M_{e}\right)
$$

consists of a pair of abelian groups M_{e} and $M_{e e}$ together with \mathbb{Z}-linear maps H and P that satisfy $P H P=2 P$ and $H P H=2 H$.

A morphism $f: M \rightarrow N$ of quadratic \mathbb{Z}-modules consists of a pair of \mathbb{Z}-linear maps $f: M_{e} \rightarrow N_{e}$ and $f: M_{e e} \rightarrow N_{e e}$ which commute with H and P respectively.

For any quadratic \mathbb{Z}-module M, one has the involution

$$
T:=H P-1: M_{e e} \rightarrow M_{e e}
$$

which satisfies $P T=P, T H=H$, and $T T=1$.
Example 3.2. [1] After Rem. 9.2] Consider

$$
\pi_{m}\left\{S^{n}\right\}=\left(\pi_{m} S^{n} \xrightarrow{H} \pi_{m} S^{2 n-1} \xrightarrow{P} \pi_{m} S^{n}\right)
$$

where H is the Hopf invariant and $P=\left[\iota_{n}, \iota_{n}\right]_{*}$ is induced by the Whitehead square. This data $\pi_{m}\left\{S^{n}\right\}$ is a quadratic \mathbb{Z}-module.

In particular, we have

$$
\begin{aligned}
& \pi_{3}\left\{S^{2}\right\}=\left(\pi_{3} S^{2} \xrightarrow{H} \pi_{3} S^{3} \xrightarrow{P} \pi_{3} S^{2}\right)=(\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{2} \mathbb{Z}) \\
& \pi_{5}\left\{S^{3}\right\}=\left(\pi_{5} S^{3} \xrightarrow{H} \pi_{5} S^{5} \xrightarrow{P} \pi_{5} S^{3}\right)=(\mathbb{Z} / 2 \xrightarrow{0} \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2) .
\end{aligned}
$$

Definition 3.3. [1] Def. 4.1] Given an abelian group A and a quadratic \mathbb{Z}-module M, their quadratic tensor product $A \otimes_{\mathbb{Z}}^{q} M$ is the abelian group generated by symbols

$$
\begin{aligned}
& a \otimes m, \quad a \in A, m \in M_{e} \\
& {[a, b] \otimes n, \quad a, b \in A, n \in M_{e e}}
\end{aligned}
$$

subject to the relations

$$
\begin{aligned}
& (a+b) \otimes m=a \otimes m+b \otimes m+[a, b] \otimes H(m) \\
& a \otimes\left(m+m^{\prime}\right)=a \otimes m+a \otimes m^{\prime} \\
& {[a, a] \otimes n=a \otimes P(n)} \\
& {[a, b] \otimes n=[b, a] \otimes T(n)} \\
& {[a, b] \otimes n \text { is linear in each variable } a, b, \text { and } n .}
\end{aligned}
$$

We will often omit the subscript \mathbb{Z} and simply write $A \otimes^{q} M$.
Example 3.4. [1, Prop. 4.5] Taking the quadratic \mathbb{Z}-module

$$
\mathbb{Z}^{\Gamma}:=(\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{2} \mathbb{Z}) \simeq \pi_{3}\left\{S^{2}\right\},
$$

the quadratic tensor product with any abelian group A is $A \otimes^{q} \mathbb{Z}^{\Gamma} \cong \Gamma(A)$, Whitehead's universal quadratic functor $\Gamma: \mathbf{A b} \rightarrow \mathbf{A b}$ described in [25] [5, §2.1].

Note that the usual tensor product with a given abelian group (or more generally R module) M defines an additive functor $-\otimes_{\mathbb{Z}} M$. Similarly, the quadratic tensor product $-\otimes^{q} M$ with a fixed quadratic \mathbb{Z}-module M always defines a quadratic functor $\mathbf{A b} \rightarrow \mathbf{A b}$ in the following sense.

Definition 3.5. [5], §2] Let $F: \mathbf{A b} \rightarrow \mathbf{A b}$ be a functor satisfying $F(0)=0$. Recall that F is additive or linear if the natural projection

$$
F(X \oplus Y) \rightarrow F(X) \oplus F(Y)
$$

is an isomorphism.
We say that F is quadratic if the second cross effect

$$
F(X \mid Y):=\operatorname{ker}(F(X \oplus Y) \rightarrow F(X) \oplus F(Y))
$$

viewed as a bifunctor is linear in both X and Y. In this case, one has a natural decomposition

$$
F(X \oplus Y) \cong F(X) \oplus F(Y) \oplus F(X \mid Y) .
$$

Proposition 2.7 said that a 2 -stage Π-algebra is described by indecomposable homotopy operations, for $k \neq n-1$. There is an analogous notion in the metastable case $k=n-1$.

Definition 3.6. For $n \geq 2$, the quadratic \mathbb{Z}-module of indecomposables of $\pi_{2 n-1}\left\{S^{n}\right\}$ is the quotient quadratic \mathbb{Z}-module

$$
Q_{n-1}\left\{S^{n}\right\}:=\left(Q_{n-1, n} \xrightarrow{H} \pi_{2 n-1} S^{2 n-1} \xrightarrow{P} Q_{n-1, n}\right)
$$

using the notation of 2.5 . This is well defined since $H: \pi_{2 n-1} S^{n} \rightarrow \pi_{2 n-1} S^{2 n-1} \cong \mathbb{Z}$ vanishes on decomposable elements, namely compositions, since these are torsion elements.

Proposition 3.7. In the metastable case $k=n-1$, the functor $\widetilde{\Gamma}_{n}^{n-1}$ is the quadratic functor given by

$$
\widetilde{\Gamma}_{n}^{n-1}\left(\pi_{n}\right)=\pi_{n} \otimes^{q} Q_{n-1}\left\{S^{n}\right\} .
$$

Proof. See section 7.3
Example 3.8. In the case $n=2$ and $k=1$, we have

$$
\pi_{3}\left\{S^{2}\right\} \xrightarrow{=} Q_{1}\left\{S^{2}\right\} \cong(\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{2} \mathbb{Z})=\mathbb{Z}^{\Gamma} .
$$

As noted in Example 3.4, the quadratic tensor product with this quadratic \mathbb{Z}-module is

$$
\pi_{2} \otimes^{q} \mathbb{Z}^{\Gamma} \cong \Gamma\left(\pi_{2}\right)
$$

which recovers the case $n=2$ of Example 1.6
Example 3.9. In the case $n=3$ and $k=2$, we have

$$
\pi_{5}\left\{S^{3}\right\} \cong(\mathbb{Z} / 2 \xrightarrow{0} \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2) .
$$

where the group $\pi_{5} S^{3} \cong \mathbb{Z} / 2$ is generated by the composite $S^{5} \xrightarrow{\eta} S^{4} \xrightarrow{\eta} S^{3}$. Therefore the quadratic \mathbb{Z}-module of indecomposables is

$$
Q_{2}\left\{S^{3}\right\} \cong(0 \rightarrow \mathbb{Z} \rightarrow 0)=\mathbb{Z}^{\Lambda}
$$

using the notation of [1, Lem. 2.11]. By [1, Prop. 4.5], the quadratic tensor product with this quadratic \mathbb{Z}-module is the exterior square functor

$$
\pi_{3} \otimes^{q} \mathbb{Z}^{\Lambda} \cong \Lambda^{2}\left(\pi_{3}\right)
$$

which recovers the case $n=3$ of Example 2.4

4. Criterion for realizability

First recall some notions and notation from [4] § 1,2]. Let X be an ($n-1$)-connected CWcomplex, whose homotopy Π-algebra is given inductively by the abelian group $\pi_{n}:=\pi_{n} X$ and maps of abelian groups

$$
\begin{aligned}
& \eta_{1}: \Gamma_{n}^{1}\left(\pi_{n}\right) \rightarrow \pi_{n+1} \\
& \eta_{2}: \Gamma_{n}^{2}\left(\eta_{1}\right) \rightarrow \pi_{n+2} \\
& \ldots \\
& \eta_{k}: \Gamma_{n}^{k}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{k-1}\right) \rightarrow \pi_{n+k}
\end{aligned}
$$

Note that η_{k} encodes the $(n+k)$-type of $\pi_{*} X$.
Consider Whitehead's "certain exact sequence" [25]

$$
\begin{equation*}
\ldots \rightarrow H_{j+1} X \xrightarrow{b} \Gamma_{j} X \xrightarrow{i} \pi_{j} X \xrightarrow{h} H_{j} X \xrightarrow{b} \Gamma_{j-1} X \rightarrow \ldots \tag{1}
\end{equation*}
$$

where h is the Hurewicz map. There is a transformation γ, natural in X, making the diagram

commute. In [4, Thm. 2.4], γ is exhibited as the left edge morphism of a spectral sequence

$$
E_{p, q}^{2}=\left(L_{p} \Gamma_{n}^{q}\right)\left(\eta_{1}, \eta_{2}, \ldots, \eta_{q-1}\right) \Rightarrow \Gamma_{n+p+q} X
$$

Lemma 4.1. Postnikov truncation $X \rightarrow P_{n} X$ induces isomorphisms $\Gamma_{j} X \xrightarrow{\cong} \Gamma_{j} P_{n} X$ for $j \leq n+1$.

Proof. The truncation map $X \rightarrow P_{n} X$ can be chosen as a direct limit of maps $X=X_{0} \rightarrow$ $X_{1} \rightarrow X_{2} \rightarrow \ldots$ which are cell attachments, where $X_{j} \rightarrow X_{j+1}$ is attaching cells of dimension at least $n+j+2$ (in order to kill π_{n+j+1}). In particular, only cells of dimension at least $n+2$ are involved, so that with this particular cell structure, the skeleta $X^{(n+1)}=\left(P_{n} X\right)^{(n+1)}$ agree.

Since $\Gamma_{j} X$ can be defined as $\Gamma_{j} X=\operatorname{im}\left(\pi_{j} X^{(j-1)} \rightarrow \pi_{j} X^{(j)}\right)$ induced by skeletal inclusion, the result follows.

Theorem 4.2 (Criterion for realizability). The 2 -stage П-algebra corresponding to

$$
\eta_{k}: \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow \pi_{n+k}
$$

is realizable if and only if the map η_{k} factors through the map $\gamma_{K\left(\pi_{n}, n\right)}$ as illustrated in the diagram

Here we have the isomorphism $\Gamma_{n+k} K\left(\pi_{n}, n\right) \cong H_{n+k+1} K\left(\pi_{n}, n\right)$ by the Whitehead exact sequence (1). The homology of Eilenberg-MacLane spaces is well known [15] [16] [17] [13].

Proof. (\Rightarrow) If π is realizable by a space X, then the natural transformation γ for X yields a commutative diagram

as noted in (2). Because X has $(n+k-1)$-type $P_{n+k-1} X \cong K\left(\pi_{n}, n\right)$, lemma 4.1 provides a natural isomorphism

$$
\Gamma_{n+k} X \cong \Gamma_{n+k}\left(P_{n+k-1} X\right) \cong \Gamma_{n+k} K\left(\pi_{n}, n\right)
$$

and therefore the desired factorization.
(\Leftarrow) We will use the theorem on the realizability of the Hurewicz morphism [2] Thm. 3.4.7], starting from the $(n+k-1)$-Postnikov section of a putative realization, which is $K\left(\pi_{n}, n\right)$. First note that the map

$$
i_{n+k-1}: \Gamma_{n+k-1} K\left(\pi_{n}, n\right) \rightarrow \pi_{n+k-1} K\left(\pi_{n}, n\right)=0
$$

in Whitehead's exact sequence is null, that is $\operatorname{ker} i_{n+k-1}=\Gamma_{n+k-1} K\left(\pi_{n}, n\right)$. (Except in the case $k=1$, but the argument below will work anyway, using ker i_{n+k-1} instead of $\Gamma_{n+k-1} K\left(\pi_{n}, n\right)$.)

We are given a factorization $\eta_{k}=f \circ \gamma_{K\left(\pi_{n}, n\right)}$, with $f: \Gamma_{n+k} K\left(\pi_{n}, n\right) \rightarrow \pi_{n+k}$. Choose an epimorphism $b_{1}: H_{1} \rightarrow \operatorname{ker} f$ where H_{1} is a free abelian group. Now take $H_{0}:=$
coker $f \oplus \Gamma_{n+k-1} K\left(\pi_{n}, n\right)$ with the map $\pi_{n+k} \rightarrow H_{0}$ surjecting onto the first summand and $b_{0}: H_{0} \rightarrow \Gamma_{n+k-1} K\left(\pi_{n}, n\right)$ the projection. These maps assemble into the exact sequence

$$
H_{1} \xrightarrow{b_{1}} \Gamma_{n+k} K\left(\pi_{n}, n\right) \xrightarrow{f} \pi_{n+k} \rightarrow H_{0} \rightarrow \Gamma_{n+k-1} K\left(\pi_{n}, n\right) \rightarrow 0 .
$$

By [2, Thm. 3.4.7], there exists a CW-complex X together with an $(n+k-1)$-equivalence $p: X \rightarrow Y$ making the diagram

commute, where the top row is part of Whitehead's exact sequence for X. By naturality of γ, the diagram

commutes, so that X has the prescribed Π-algebra structure up to degree $n+k$. Hence the Postnikov section $P_{n+k} X$ is a realization of π.

Corollary 4.3. Fix $n \geq 2$ and $k \geq 1$. Then an abelian group π_{n} has the property that "every Π-algebra concentrated in degrees n and $n+k$ with prescribed group π_{n} is realizable" if and only if the map

$$
\gamma_{K\left(\pi_{n}, n\right)}: \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow \Gamma_{n+k} K\left(\pi_{n}, n\right)
$$

is split injective.
Proof. (\Rightarrow) If $\gamma_{K\left(\pi_{n}, n\right)}$ is not split injective, then pick $\pi_{n+k}:=\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)$ with the structure map

$$
\eta_{k}:=\operatorname{id}: \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)
$$

which does not factor through $\gamma_{K\left(\pi_{n}, n\right)}$, and thus defines a non-realizable Π-algebra.
(\Leftarrow) If $\gamma_{K\left(\pi_{n}, n\right)}$ is split injective, then a factorization

can always be found, taking f to be η_{k} on the summand $\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)$ and an arbitrary map on the complementary summand C.

Remark 4.4. As a particular case of corollary 4.3, whenever γ is not injective, one can find a corresponding non-realizable 2 -stage Π-algebra. Here is another way of thinking about this.

Say that a homotopy operation $\alpha \in \pi_{n+k} S^{n}$ can be detected by a space X if there is an $x \in \pi_{n} X$ satisfying $\alpha^{*} x \neq 0 \in \pi_{n+k} X$. Using 2.7, theorem 4.2 says that a homotopy
operation $\alpha \in Q_{k, n}$ can be detected by a 2 -stage space if and only if it satisfies $\gamma_{K(\mathbb{Z}, n)}(\alpha) \neq$ 0 . Indeed, one has the realizable 2-stage Π-algebra with $\pi_{n}=\mathbb{Z}, \pi_{n+k}=\Gamma_{n+k} K(\mathbb{Z}, n)$, and $\gamma_{K(\mathbb{Z}, n)}: Q_{k, n} \rightarrow \Gamma_{n+k} K(\mathbb{Z}, n)$ as structure map.

Remark on k-invariants. It is a classic fact that connected spaces are classified up to homotopy by their k-invariants. In particular, a 2 -stage space X with homotopy groups π_{n} and π_{n+k} (where $n \geq 2$) is classified by its k-invariant

$$
\kappa \in H^{n+k+1}\left(K\left(\pi_{n}, n\right) ; \pi_{n+k}\right) .
$$

Via the natural surjective map

$$
\theta: H^{n+k+1}\left(K\left(\pi_{n}, n\right) ; \pi_{n+k}\right) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H_{n+k+1}\left(K\left(\pi_{n}, n\right), \mathbb{Z}\right), \pi_{n+k}\right)
$$

this yields a map of abelian groups

$$
\Gamma_{n+k} K\left(\pi_{n}, n\right) \cong H_{n+k+1}\left(K\left(\pi_{n}, n\right), \mathbb{Z}\right) \xrightarrow{\theta(k)} \pi_{n+k} .
$$

Another point of view on theorem 4.2, as well as an alternate proof, is that the Π-algebra $\pi_{*} X$ is given by the structure map

This follows from the theorem on k-invariants in [2, Thm. 2.5.10 (b)] and diagram (2). Therefore, the realizable 2 -stage Π-algebras are precisely those whose structure map η_{k} factors through $\gamma_{K\left(\pi_{n}, n\right)}$.

5. Stable case

A Π-algebra concentrated in a stable range $n, n+1, \ldots, n+k$ with $k \leq n-2$ can be identified with a module over the stable homotopy ring π_{*}^{S}, or more precisely its Postnikov truncation $\pi_{* \leq k}^{S}$. Indeed, in such a Π-algebra π, all Whitehead products vanish for dimension reasons, and all precomposition operations $\alpha^{*}: \pi_{n+i} \rightarrow \pi_{n+j}$ are induced by maps $\alpha: S^{n+j} \rightarrow S^{n+i}$ that live in stable homotopy groups π_{j-i}^{S}. The identification is made more precise in 7.9 .
Proposition 5.1. $А$ П-algebra concentrated in a stable range $n, n+1, \ldots, n+k$ is realizable (by a space) if and only if the corresponding π_{*}^{S}-module is realizable (by a spectrum).

Proof. (\Rightarrow) Let π be a Π-algebra concentrated in said stable range, and denote also by π the corresponding π_{*}^{S}-module. If X is a space realizing π, then the Postnikov truncation $P_{n+k} \Sigma^{\infty} X$ of the suspension spectrum of X is a spectrum realizing π. Indeed, X is ($n-1$)connected so that the Freudenthal suspension theorem provides an isomorphism $\pi_{i} X \xrightarrow{\cong}$ $\pi_{i}^{S} X=\pi_{i} \Sigma^{\infty} X$ for $i \leq 2 n-2$, in particular for $i \leq n+k$. Moreover, this isomorphism is compatible with precomposition operations, so that $\pi_{*} \Sigma^{\infty} X$ has the correct π_{*}^{S}-module structure in the stable range $* \leq n+k$. Because π has only zeroes above degree $n+k$, we obtain the isomorphism of π_{*}^{S}-modules $\pi_{*} P_{n+k} \Sigma^{\infty} X \simeq \pi$.
(\Leftarrow) Let M be a π_{*}^{S}-module concentrated in a stable range, so that the corresponding Π-algebra is $\Omega^{\infty} M$, by 7.9. If Z is a spectrum realizing M, then the infinite loop space $\Omega^{\infty} Z$ is a space realizing $\Omega^{\infty} M$, by 7.6 .

Remark 5.2. A π_{*}^{S}-module π is realizable if and only if any of its shifts $\Sigma^{j} \pi$ (for $j \in \mathbb{Z}$) is realizable. This follows from the isomorphism $\pi_{*}\left(\Sigma^{j} Z\right) \cong \Sigma^{j}\left(\pi_{*} Z\right)$ of π_{*}^{S}-modules.

The criterion 4.2 indicates that the map

$$
\gamma_{K\left(\pi_{n}, n\right)}: \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow \Gamma_{n+k} K\left(\pi_{n}, n\right) \cong H_{n+k+1} K\left(\pi_{n}, n\right)
$$

plays a key role for determining realizability. In the stable range $k \leq n-2$, we have seen in 2.7 that the domain of $\gamma_{K\left(\pi_{n}, n\right)}$ is

$$
\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)=\pi_{n} \otimes_{\mathbb{Z}} Q_{k}^{S}
$$

while its codomain is

$$
H_{n+k+1} K\left(\pi_{n}, n\right) \cong(H \mathbb{Z})_{k+1}\left(H \pi_{n}\right) \cong\left(H \pi_{n}\right)_{k+1}(H \mathbb{Z})
$$

where $H A$ denotes the Eilenberg-MacLane spectrum of an abelian group A. The universal coefficient theorem yields a natural exact sequence

$$
0 \rightarrow \pi_{n} \otimes_{\mathbb{Z}} H \mathbb{Z}_{k+1} H \mathbb{Z} \hookrightarrow\left(H \pi_{n}\right)_{k+1} H \mathbb{Z} \rightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}\left(\pi_{n}, H \mathbb{Z}_{k} H \mathbb{Z}\right) \rightarrow 0
$$

which is split (non-naturally).
Lemma 5.3. Let R be a commutative ring, R Mod the category of R-modules, and $f f R \operatorname{Mod}$ the full subcategory consisting of finitely generated free R-modules. Let $\iota: f f R \mathbf{M o d} \rightarrow$ $R \mathbf{M o d}$ denote the inclusion.

Let $F:$ ffRMod \rightarrow RMod be an additive functor. Then there is a unique extension $\bar{F}: R \mathbf{M o d} \rightarrow R$ Mod of F which preserves all (small) colimits. \bar{F} is natural in F. It is given by $\bar{F}=-\otimes_{R} F R$. For any functor $G: R \mathbf{M o d} \rightarrow R \mathbf{M o d}$, there is a natural transformation $\overline{\iota^{*} G} \rightarrow G$, which is natural in G.
Proof. For a finitely generated free R-module $M \simeq \oplus_{i \in I} R$, we have

$$
F M \simeq F\left(\oplus_{i \in I} R\right) \cong \oplus_{i \in I} F R \simeq M \otimes_{R} F R
$$

since F is additive.
Every R-module M is (naturally) a colimit of finitely generated free R-modules, which implies that the left Kan extension of ι along ι is $\operatorname{Lan}_{\iota} \iota \cong 1_{R M o d}$. Therefore an extension \bar{F}, if it exists, is a left Kan extension of F along ι, which exists and is unique. It is given by

$$
\begin{aligned}
\bar{F} N=\left(\operatorname{Lan}_{\iota} F\right) N & =\underset{\iota M \rightarrow N}{\operatorname{colim}} F M \\
& =\underset{\iota M \rightarrow N}{\operatorname{colim}\left(M \otimes_{R} F R\right)} \\
& =\left(\operatorname{colim}_{\iota M \rightarrow N} M\right) \otimes_{R} F R \\
& =\left(\operatorname{Lan}_{\iota} \iota\right) N \otimes_{R} F R \\
& =N \otimes_{R} F R .
\end{aligned}
$$

Moreover $\bar{F}=\operatorname{Lan}_{\iota} F$ is natural in F, that is
$\operatorname{Lan}_{\iota}: \operatorname{Fun}(f f R$ Mod, R Mod $) \rightarrow \operatorname{Fun}(R$ Mod, R Mod $)$
is a functor. In fact, $\operatorname{Lan}_{\iota}$ is left adjoint to the restriction functor ι^{*}, so that the counit $\epsilon_{G}: \operatorname{Lan}_{\iota} \iota^{*} G \rightarrow G$ provides a natural transformation which is natural in G.

Remark 5.4. $\overline{\iota^{*} G}$ is not the $0^{\text {th }}$ left derived functor $L_{0} G$ of G, which provides the best approximation of G by a right exact functor, with comparison map $L_{0} G \rightarrow G$. Indeed, there exist additive right exact functors $\mathbf{A b} \rightarrow \mathbf{A b}$ which do not preserve infinite direct sums. However, the comparison maps do fit together as $\overline{\iota^{*} G} \rightarrow L_{0} G \rightarrow G$.

Proposition 5.5. In the stable range $k \leq n-2$, the map

$$
\gamma_{K\left(\pi_{n}, n\right)}: \pi_{n} \otimes_{\mathbb{Z}} Q_{k}^{S} \rightarrow(H \mathbb{Z})_{k+1}\left(H \pi_{n}\right)
$$

factors through the summand $\pi_{n} \otimes_{\mathbb{Z}} H \mathbb{Z}_{k+1} H \mathbb{Z}$, i.e. we have

$$
\gamma_{K\left(\pi_{n}, n\right)}: \pi_{n} \otimes_{\mathbb{Z}} Q_{k}^{S} \rightarrow \pi_{n} \otimes_{\mathbb{Z}} H \mathbb{Z}_{k+1} H \mathbb{Z} \hookrightarrow(H \mathbb{Z})_{k+1}\left(H \pi_{n}\right) .
$$

Proof. First note that

$$
A \mapsto H \mathbb{Z}_{k+1} H A
$$

defines an additive functor $G: \mathbf{A b} \rightarrow \mathbf{A b}$. For abelian groups A, B, we have:

$$
\begin{aligned}
G(A \oplus B) & =H \mathbb{Z}_{k+1} H(A \oplus B) \\
& \cong H \mathbb{Z}_{k+1}(H A \vee H B) \\
& \cong H \mathbb{Z}_{k+1} H A \oplus H \mathbb{Z}_{k+1} H B \\
& =G A \oplus G B .
\end{aligned}
$$

Now $\gamma: F \rightarrow G$ is a natural transformation from the functor $F=-\otimes_{\mathbb{Z}} Q_{k}^{S}$ to G and by lemma 5.3 induces a commutative diagram

Because F already preserves all colimits (i.e. is of the form $F=-\otimes_{\mathbb{Z}} F \mathbb{Z}$), the map ϵ_{F} is an isomorphism. Moreover we have

$$
\overline{\iota^{*} G}=-\otimes_{\mathbb{Z}} G \mathbb{Z}=-\otimes_{\mathbb{Z}} H \mathbb{Z}_{k+1} H \mathbb{Z}
$$

and the coaugmentation

$$
\left(\epsilon_{G}\right)_{A}: A \otimes_{\mathbb{Z}} H \mathbb{Z}_{k+1} H \mathbb{Z} \rightarrow H A_{k+1} H \mathbb{Z}
$$

is the usual inclusion of the tensor summand. Therefore γ factors through said inclusion.

Corollary 5.6. In the stable range $k \leq n-2$, every Π-algebra concentrated in degrees n and $n+k$ is realizable if and only if the map

$$
\gamma_{K(\mathbb{Z}, n)}: Q_{k}^{S} \rightarrow H \mathbb{Z}_{k+1} H \mathbb{Z}
$$

is split injective. Note that the map does not depend on n, only on the stable stem k.
Proof. By 4.3, every П-algebra concentrated in degrees n and $n+k$ is realizable if and only if the maps

$$
\gamma_{K\left(\pi_{n}, n\right)}: \pi_{n} \otimes_{\mathbb{Z}} Q_{k}^{S} \rightarrow(H \mathbb{Z})_{k+1}\left(H \pi_{n}\right)
$$

are split injective for every abelian group π_{n}. By 5.5, this is equivalent to the maps

$$
\gamma_{K\left(\pi_{n}, n\right)}: \pi_{n} \otimes_{\mathbb{Z}} Q_{k}^{S} \rightarrow \pi_{n} \otimes_{\mathbb{Z}} H \mathbb{Z}_{k+1} H \mathbb{Z}
$$

being split injective. Since applying $\pi_{n} \otimes_{\mathbb{Z}}-$ (or any functor) to a split monomorphism yields a split monomorphism, this is equivalent to the single map

$$
\gamma_{K(\mathbb{Z}, n)}: Q_{k}^{S} \rightarrow H \mathbb{Z}_{k+1} H \mathbb{Z}
$$

being split injective.

6. Non-realizable examples

As noted in Ex. 1.6 and Prop. 2.10, all 2-stage Π-algebras with stem $k=1$ or $k=2$ are realizable - for any value of n, not only stably. We will show that the smallest stem where a non-realizable example appears is $k=3$.

Let us recall the first few stable homotopy groups of spheres; see [4] § 4]. In degrees $* \leq 6$, the stable homotopy ring π_{*}^{S} is generated (as an algebra) by elements $\eta \in \pi_{1}^{S}, v \in \pi_{3}^{S}$, and $\alpha \in \pi_{3}^{S}$, subject to relations

$$
\begin{aligned}
& 2 \eta=0 \\
& 4 v=\eta^{3} \\
& \eta v=0 \\
& 2 v^{2}=0 \\
& 3 \alpha=0 \\
& \alpha^{2}=0 .
\end{aligned}
$$

Here η is the stabilization of the Hopf map $S^{3} \rightarrow S^{2}$ and v is the 2-primary part of the stabilization of the Hopf map $H: S^{7} \rightarrow S^{4}$. Integrally, v can be thought of as, say, $3 H$. The element α is the first in the 3-primary alpha family.

The first few stable homotopy groups are

$$
\pi_{i}^{S}= \begin{cases}\mathbb{Z} & i=0 \\ \mathbb{Z} / 2\langle\eta\rangle & i=1 \\ \mathbb{Z} / 2\left\langle\eta^{2}\right\rangle & i=2 \\ \mathbb{Z} / 24 \simeq \mathbb{Z} / 8\langle v\rangle \oplus \mathbb{Z} / 3\langle\alpha\rangle & i=3 \\ 0 & i=4 \\ 0 & i=5 \\ \mathbb{Z} / 2\left\langle v^{2}\right\rangle & i=6\end{cases}
$$

and their indecomposables are

$$
Q_{i}^{S}= \begin{cases}\mathbb{Z} & i=0 \\ \mathbb{Z} / 2\langle\eta\rangle & i=1 \\ 0 & i=2 \\ \mathbb{Z} / 12 \simeq \mathbb{Z} / 4\langle v\rangle \oplus \mathbb{Z} / 3\langle\alpha\rangle & i=3 \\ 0 & i=4 \\ 0 & i=5 \\ 0 & i=6 .\end{cases}
$$

Proposition 6.1. Let $n \geq 5$. The (stable) Π-algebra concentrated in degrees n and $n+3$ given by $\pi_{n}=\mathbb{Z}$ and $\pi_{n+3}=\mathbb{Z} / 4$ with structure map $\eta_{3}: \pi_{n} \otimes_{\mathbb{Z}} Q_{3}^{S} \rightarrow \pi_{n+3}=\mathbb{Z} / 4$ given by the projection

$$
\pi_{n} \otimes_{\mathbb{Z}} Q_{3}^{S} \cong Q_{3}^{S}=\mathbb{Z} / 4\langle v\rangle \oplus \mathbb{Z} / 3\langle\alpha\rangle \rightarrow \mathbb{Z} / 4
$$

sending v to 1 is not realizable.
Proof. According to [16, Thm. 25.1], we have $H \mathbb{Z}_{4} H \mathbb{Z} \simeq \mathbb{Z} / 6=\mathbb{Z} / 2 \oplus \mathbb{Z} / 3$. Therefore the map $\gamma: Q_{3}^{S} \simeq \mathbb{Z} / 12 \rightarrow \mathbb{Z} / 6 \simeq H \mathbb{Z}_{4} H \mathbb{Z}$ sends $2 v$ to 0 , whereas η_{3} does not. The result follows from 4.2

Theorem 4.2 reduces realizability questions to the algebraic problem of understanding the map γ, but it can also be used the other way around, as we now illustrate.

Proposition 6.2. The map $\gamma: Q_{3}^{S} \rightarrow H \mathbb{Z}_{4} H \mathbb{Z}$ sends α to a non-zero element (therefore of order 3).

Proof. Take $n \geq 5$ and consider the localization at 3 of the sphere $S^{n} \rightarrow S_{(3)}^{n}$, then take Postnikov sections $P_{n+3} S^{n} \rightarrow P_{n+3} S_{(3)}^{n}=: X$. Because this map induces 3-localization on homotopy groups (and a map of Π-algebras), the Π-algebra $\pi_{*} X$ consists of two non-zero groups

$$
\begin{aligned}
& \pi_{n} X \cong \mathbb{Z}_{(3)} \\
& \pi_{n+3} X \cong \mathbb{Z} / 3\langle\alpha\rangle
\end{aligned}
$$

with structure map

$$
\eta_{3}: \pi_{n} X \otimes_{\mathbb{Z}} Q_{3}^{S} \xrightarrow{\simeq} \pi_{n+3} X
$$

sending α to α, i.e. the identity via the identification

$$
\pi_{n} X \otimes_{\mathbb{Z}} Q_{3}^{S} \cong \mathbb{Z}_{(3)} \otimes_{\mathbb{Z}}(\mathbb{Z} / 4\langle v\rangle \oplus \mathbb{Z} / 3\langle\alpha\rangle)=\mathbb{Z} / 3\langle\alpha\rangle
$$

By 4.2, we deduce that the map

$$
\mathbb{Z}_{(3)} \otimes_{\mathbb{Z}} \gamma: \mathbb{Z}_{(3)} \otimes_{\mathbb{Z}} Q_{3}^{S} \cong \mathbb{Z} / 3\langle\alpha\rangle \rightarrow \mathbb{Z}_{(3)} \otimes_{\mathbb{Z}} H \mathbb{Z}_{4} H \mathbb{Z} \simeq \mathbb{Z} / 3
$$

sends α to a non-zero element, and therefore so does γ.
In fact, the same argument yields a more general statement.
Proposition 6.3. Fix a prime $p \geq 3$ and consider the Greek letter element $\alpha_{1} \in Q_{2(p-1)-1}^{S}$. The map $\gamma: Q_{2(p-1)-1}^{S} \rightarrow H \mathbb{Z}_{2(p-1)} H \mathbb{Z}$ sends α to a non-zero element (therefore of order p).
Proof. Write the stable stem $k:=\left|\alpha_{1}\right|=2(p-1)-1$ and take n very large, namely $n \geq k+2$. Consider the localization at p of the sphere $S^{n} \rightarrow S_{(p)}^{n}$, then take Postnikov sections $P_{n+k} S^{n} \rightarrow P_{n+k} S_{(p)}^{n}=: X$.

A key feature of α_{1} is that it generates $\pi_{2 p-3}^{S} \otimes \mathbb{Z}_{(p)} \simeq \mathbb{Z} / p$ and is the first element of order a power of p in $\pi_{*}^{S}[24,(13.4)]$. Thus the p-localization of all lower (positive) stems is zero. Therefore the Π-algebra $\pi_{*} X$ consists of two non-zero groups

$$
\begin{aligned}
& \pi_{n} X \cong \mathbb{Z}_{(p)} \\
& \pi_{n+k} X \cong\left(\pi_{k}^{S}\right)_{(p)} \simeq \mathbb{Z} / p
\end{aligned}
$$

in which α_{1} is detected. More precisely, taking $1 \in \pi_{n} X$ we have $\alpha_{1}^{*}(1)=\alpha_{1} \neq 0$ in $\pi_{n+k} X$. By 4.2 (and remark 4.4), γ sends α_{1} to a non-zero element.

Proposition 6.1 provides a non-realizable 2 -stage Π-algebra with the lowest possible stem dimension $k=3$. It would be interesting to find an infinite family of such examples, in infinitely many stem dimensions k. For this we need an infinite family of indecomposables in Q_{*}. The Greek letter elements, for example the α and β families, are good candidates.

Proposition 6.4. Fix a prime $p \geq 3$ and consider the alpha elements $\alpha_{i} \in Q_{2 i(p-1)-1}^{S}$ [22, Def. 1.3.10, Thm. 1.3.11]. For every $i \geq 2$, the map $\gamma: Q_{2 i(p-1)-1}^{S} \rightarrow H \mathbb{Z}_{2 i(p-1)} H \mathbb{Z}$ sends α_{i} to zero.

Proof. For $i \geq 2$, there is a Toda bracket [24, (13.4)]

$$
\alpha_{i} \in\left\langle\alpha_{1}, p, \alpha_{i-1}\right\rangle
$$

so that α_{i} cannot be detected by a 2 -stage space (or spectrum), and by 4.4 we have $\gamma\left(\alpha_{i}\right)=$ 0 .

In more detail, write $s=\left|\alpha_{1}\right|$ and $t=\left|\alpha_{i-1}\right|$ so that $\alpha_{i}=s+t+1$, and assume X is a space with homotopy concentrated in degrees n and $n+s+t+1$ (for n large). Let us illustrate the Toda bracket setup:

$$
S^{n+s+t} \xrightarrow{\alpha_{i-1}} S^{n+s} \xrightarrow{p} S^{n+s} \xrightarrow{\alpha_{1}} S^{n} .
$$

Pick any $x \in \pi_{n} X$. We claim that the precomposition $\alpha_{i}^{*}(x)=x \alpha_{i}$ is null. Postcomposing by x defines a map [24, Prop. 1.2 (iv)]

$$
\begin{aligned}
\left\langle\alpha_{1}, p, \alpha_{i-1}\right\rangle \xrightarrow{x \circ-} & \left\langle x \alpha_{1}, p, \alpha_{i-1}\right\rangle \\
= & \left\langle 0, p, \alpha_{i-1}\right\rangle
\end{aligned}
$$

using the fact $x \alpha_{1} \in \pi_{n+s} X=0$. The indeterminacy of $\left\langle 0, p, \alpha_{i-1}\right\rangle$ is

$$
\begin{aligned}
0\left[S^{n+s+t+1}, S^{n+s}\right] & +\left[S^{n+s+1}, X\right] \alpha_{i-1} \\
& =\left(\pi_{n+s+1} X\right) \alpha_{i-1} \\
& =\{0\}
\end{aligned}
$$

again using the assumption on $\pi_{*} X$. Moreover, 0 is clearly a representative in $\left\langle 0, p, \alpha_{i-1}\right\rangle$ [24, Prop. $1.2(0)]$, thus we have equality $\left\langle 0, p, \alpha_{i-1}\right\rangle=\{0\}$. Therefore $x \alpha_{i} \in\left\langle 0, p, \alpha_{i-1}\right\rangle$ is null, as claimed.

Proposition 6.5. Fix a prime $p \geq 3$ and consider the divided alpha elements $\alpha_{i / j} \in$ $Q_{2 i(p-1)-1}^{S}$, where $j \leq v_{p}(i)+1$, and v_{p} denotes the p-adic valuation [22, Def. 1.3.19]. For every $j \geq 2$, we have $p \alpha_{i / j} \neq 0$ but $\gamma\left(p \alpha_{i / j}\right)=0$.

Proof. Recall a few properties of the divided alpha elements [22] [6, §1]. The element

$$
\alpha_{i / j} \in \operatorname{Ext}_{B P_{*} B P}^{1,2 i(p-1)}\left(B P_{*}, B P_{*}\right)
$$

defined in the E_{2}-term of the Adams-Novikov spectral sequence is a permanent cycle and therefore represents an element in homotopy $\alpha_{i / j} \in \pi_{2 i(p-1)-1}^{S}$ (which is known to be in the image of the J-homomorphism). It has (additive) order p^{j}, is indecomposable, and its order in Q_{*}^{S} is still p^{j}. This proves $p \alpha_{i / j} \neq 0$ in Q_{*}^{S}.

On the other hand, the p-torsion in $H \mathbb{Z}_{*} H \mathbb{Z}$ is annihilated by a single power of p [19 Thm. 3.1] [13, §11, Thm. 2]. Therefore the map $\gamma: Q_{*}^{S} \rightarrow H \mathbb{Z}_{*+1} H \mathbb{Z}$ must send $p \alpha_{i / j}$ to zero.

Remark 6.6. In proposition 6.5, we may as well take $i=p^{j-1}$.
Whenever $\gamma: Q_{k}^{S} \rightarrow H \mathbb{Z}_{k+1} H \mathbb{Z}$ is non-injective, we can find a corresponding nonrealizable 2 -stage Π-algebra in stem dimension k. Therefore, propositions 6.4 and 6.5 provide infinite families of non-realizable examples, in infinitely many stem dimensions.

Note that [9, Thm. 8.1] also provides a (different) infinite family of non-realizable Пalgebras, which can be truncated to two non-zero degrees. The argument used there is similar to that of 6.4

7. Proofs

7.1. Theories. The category Π forms a theory in the sense of Lawvere [3, §6], more precisely a graded (or multisorted) theory [3, §8]. We adopt the following convention.

Definition 7.1. A theory is a category with finite coproducts, including the empty coproduct (initial object *).
Definition 7.2. Let \mathbf{T} be a theory. A model for \mathbf{T} is a product-preserving functor $\mathbf{T}^{\mathrm{op}} \rightarrow$ Set. In other words, a contravariant functor sending coproducts to products.

As in [4], § 1], let model(T) $:=\operatorname{Fun}^{\times}\left(\mathbf{T}^{\mathrm{op}}\right.$, Set $)$ denote the category of models for a theory T.

In this terminology, Π-algebras are models for Π. We will be interested in Π-algebras concentrated in a range of dimensions.

Notation 7.3. Denote by:

- $\boldsymbol{\Pi}_{n}$ the full subcategory of $\boldsymbol{\Pi}$ consisting of wedges of spheres of dimensions at least n;
- Π_{n}^{k} the full subcategory consisting of wedges of spheres of dimensions from n to $n+k$.
Note that $\boldsymbol{\Pi}_{n}$ and $\boldsymbol{\Pi}_{n}^{k}$ are also theories, and the inclusion functors $\boldsymbol{\Pi}_{n}^{k} \rightarrow \boldsymbol{\Pi}_{n} \rightarrow \boldsymbol{\Pi}$ are maps of theories, i.e. preserve coproducts.

Notation 7.4. Denote by:

- ПАlg $:=\operatorname{model}(\boldsymbol{\Pi})$ the category of Π-algebras;
- $\Pi A \mathbf{I g}_{n}$ the full subcategory consisting of $(n-1)$-connected Π-algebras;
- $\Pi \mathbf{A l g}{ }_{n}^{k}$ the full subcategory consisting of Π-algebras concentrated in degrees n to $n+k$.
The equivalences $\boldsymbol{\Pi} \mathbf{A l g}{ }_{n} \cong \operatorname{model}\left(\boldsymbol{\Pi}_{n}\right)$ and $\boldsymbol{\Pi} \mathbf{A l g}{ }_{n}^{k} \cong \operatorname{model}\left(\Pi_{n}^{k}\right)$ are proved in [18, Prop. 4.5, Rem. 4.6].

Let us study the stable case as in section 5 more precisely. Given a spectrum Z, its homotopy groups $\pi_{*} Z$ naturally form a π_{*}^{S}-module, where π_{*}^{S} is the stable homotopy ring. This algebraic structure can also be described as a model for a theory.

Notation 7.5. Let $\mathbf{S p}$ denote the category of spectra; any version of it will do here, since we will only use its homotopy category. Let $\Pi^{s t}$ denote the full subcategory of the homotopy category HoSp consisting of finite wedges of sphere spectra $\vee S^{n_{i}}, n_{i} \in \mathbb{Z}$. Here again, the empty wedge (a point) is allowed.

We have the isomorphism of categories $\operatorname{model}\left(\boldsymbol{\Pi}^{s t}\right) \cong \pi_{*}^{S} \mathbf{M o d}$, sending a model M to the π_{*}^{S}-module $M_{i}:=M\left(S^{i}\right)$ endowed with the induced precomposition operations. Given a spectrum Z, the realizable π_{*}^{S}-module $\pi_{*} Z$ corresponds to the functor $[-, Z]$.

We can now make the relationship between Π-algebras and π_{*}^{S}-modules precise.
Consider the suspension spectrum functor $\Sigma^{\infty}: \Pi \rightarrow \Pi^{s t}$ which sends maps to their stabilization. Because Σ^{∞} preserves coproducts (wedges), it induces a restriction functor on models

$$
\Omega^{\infty}:=\left(\Sigma^{\infty}\right)^{*}: \pi_{*}^{S} \text { Mod } \rightarrow \text { ПAlg. }
$$

Concretely, $\Omega^{\infty} M$ has the same underlying graded group as M in degrees $i \geq 1$, and maps between spheres act on $\Omega^{\infty} M$ via their stabilization. The notation Ω^{∞} is justified by the following proposition.

Proposition 7.6. For any spectrum Z, there is an isomorphism of Π-algebras $\pi_{*}\left(\Omega^{\infty} Z\right) \cong$ $\Omega^{\infty}\left(\pi_{*} Z\right)$, which is natural in Z.

Proof. Let S be an object of Π, that is, a finite wedge of spheres. By definition, we have

$$
\begin{aligned}
& \pi_{*}\left(\Omega^{\infty} Z\right)(S)=\left[S, \Omega^{\infty} Z\right] \\
& \Omega^{\infty}\left(\pi_{*} Z\right)(S)=\left(\pi_{*} Z\right)\left(\Sigma^{\infty} S\right)=\left[\Sigma^{\infty} S, Z\right] .
\end{aligned}
$$

Moreover, Σ^{∞} is left adjoint to Ω^{∞} so that we have an isomorphism of sets

$$
\left[S, \Omega^{\infty} Z\right] \cong\left[\Sigma^{\infty} S, Z\right]
$$

which is natural in S and Z. Naturality in S provides the isomorphism of Π-algebras $\pi_{*}\left(\Omega^{\infty} Z\right) \simeq \Omega^{\infty}\left(\pi_{*} Z\right)$, while naturality in Z implies that this isomorphism of Π-algebras is also natural.

Notation 7.7. Denote by:

- $\left(\boldsymbol{\Pi}^{s t}\right)_{n}$ the full subcategory of $\boldsymbol{\Pi}^{s t}$ consisting of wedges of sphere spectra of dimensions at least n;
- $\left(\boldsymbol{\Pi}^{s t}\right)_{n}^{k}$ the full subcategory consisting of wedges of sphere spectra of dimensions from n to $n+k$.
As in the unstable picture, the inclusion functors $\left(\boldsymbol{\Pi}^{s t}\right)_{n}^{k} \rightarrow\left(\boldsymbol{\Pi}^{s t}\right)_{n} \rightarrow \boldsymbol{\Pi}^{s t}$ are maps of theories.

Notation 7.8. Denote by:

- $\pi_{*}^{S} \mathbf{M o d}_{n}$ the full subcategory of π_{*}^{S} Mod consisting of ($n-1$)-connected π_{*}^{S}-modules;
- $\pi_{*}^{S} \mathbf{M o d}_{n}^{k}$ the full subcategory consisting of π_{*}^{S}-modules concentrated in degrees n to $n+k$.
Once again, there are isomorphisms of categories $\pi_{*}^{S} \operatorname{Mod}_{n} \cong \operatorname{model}\left(\left(\boldsymbol{\Pi}^{s t}\right)_{n}\right)$ and $\pi_{*}^{S} \operatorname{Mod}_{n}^{k} \cong$ $\operatorname{model}\left(\left(\Pi^{s t}\right)_{n}^{k}\right)$.

Proposition 7.9. In the stable range $k \leq n-2$, the functor Ω^{∞} restricts to an equivalence of categories

$$
\Omega^{\infty}: \pi_{*}^{S} \mathbf{M o d}_{n}^{k} \xrightarrow{\cong} \text { ПAlg}_{n}^{k} .
$$

Proof. In the stable range, the stabilization functor $\Sigma^{\infty}: \Pi_{n}^{k} \rightarrow\left(\Pi^{s t}\right)_{n}^{k}$ is an equivalence of categories. Therefore, it induces an equivalence on models

$$
\left(\Sigma^{\infty}\right)^{*}: \operatorname{model}\left(\left(\Pi^{s t}\right)_{n}^{k}\right) \xrightarrow{\cong} \operatorname{model}\left(\Pi_{n}^{k}\right)
$$

which is the desired equivalence.

7.2. Split linear extension of theories.

Proposition 7.10. Let $n \geq 2$ and $k \geq 1$. Consider the functor

$$
\begin{aligned}
D:\left(\boldsymbol{\Pi}_{n+k}^{0}\right)^{\mathrm{op}} \times \boldsymbol{\Pi}_{n}^{k-1} & \rightarrow \mathbf{A b} \\
(S, U) & \mapsto[S, U] .
\end{aligned}
$$

Then the theory Π_{n}^{k} with its natural projection

$$
\boldsymbol{\Pi}_{n}^{k} \rightarrow \boldsymbol{\Pi}_{n+k}^{0} \times \Pi_{n}^{k-1}
$$

given by "collapse" functors [18, § 4] is the split linear extension [3, Def. 7.1] of $\Pi_{n+k}^{0} \times$ Π_{n}^{k-1} by D.

Proof. First note that D takes values in $\mathbf{A b}$ because every object $S=\vee_{i} S^{n+k}$ of $\boldsymbol{\Pi}_{n+k}^{0}$ is an abelian cogroup object (of $\boldsymbol{\Pi}$ or Π_{n}^{k}). Moreover, D is additive in Π_{n+k}^{0} :

$$
D\left(S_{1} \vee S_{2}, U\right)=\left[S_{1} \vee S_{2}, U\right]=\left[S_{1}, U\right]_{*} \times\left[S_{2}, U\right]=D\left(S_{1}, U\right) \times D\left(S_{2}, U\right)
$$

and satisfies $D(S, *)=[S, *]=0$ for any $S \in \Pi_{n+k}^{0}$. Therefore, there is such a thing as the split linear extension \mathbf{T} of $\boldsymbol{\Pi}_{n+k}^{0} \times \Pi_{n}^{k-1}$ by D, with its projection $q: \mathbf{T} \rightarrow \Pi_{n+k}^{0} \times \Pi_{n}^{k-1}$.

Let us construct an equivalence of categories $\varphi: \boldsymbol{\Pi}_{n}^{k} \xrightarrow{\cong} \mathbf{T}$ with inverse $\psi: \mathbf{T} \xrightarrow{\cong} \boldsymbol{\Pi}_{n}^{k}$. First, note that every object X of Π_{n}^{k}, i.e. a finite wedge of spheres of dimensions from n to $n+k$, can be uniquely expressed as a wedge $X=S \vee U$ with $S \in \Pi_{n+k}^{0}, U \in \Pi_{n}^{k-1}$, i.e. S contains the spheres of dimension $n+k$ and U contains the remaining spheres, of dimensions from n to $n+k-1$. Moreover, extracting either summand from X is functorial in X, using the collapse functors

$$
\begin{aligned}
& \operatorname{col}^{\text {hi }}: \boldsymbol{\Pi}_{n}^{k} \rightarrow \boldsymbol{\Pi}_{n+k}^{0} \\
& \operatorname{col}^{\mathrm{lo}}: \boldsymbol{\Pi}_{n}^{k} \rightarrow \boldsymbol{\Pi}_{n}^{k-1}
\end{aligned}
$$

which extract the spheres of highest dimension $n+k$ and lower dimensions n to $n+k-$ 1 , respectively. By abuse of notation, write $\operatorname{col}^{\text {hi }}: X \rightarrow S$ and $\operatorname{col}^{\text {lo }}: X \rightarrow U$ for the corresponding collapse maps.

Step 1: Construction of $\varphi: \Pi_{n}^{k} \rightarrow \mathbf{T}$. On objects, take

$$
\varphi(X \cong S \vee U):=(S, U)=\left(\operatorname{col}^{\mathrm{hi}} X, \operatorname{col}^{\mathrm{lo}} X\right)
$$

and for a morphism $X_{1} \cong S_{1} \vee U_{1} \xrightarrow{f} S_{2} \vee U_{2} \cong X_{2}, \varphi(f)$ is defined by the data
where the last piece of data is an element of $\left[S_{1}, U_{2}\right]_{*}=D\left(S_{1}, U_{2}\right)$. In symbols:

$$
\begin{aligned}
\varphi(f) & =\left(\operatorname{col}^{\mathrm{hi}}(f), \operatorname{col}^{\mathrm{lo}}(f), \operatorname{col}_{2}^{\mathrm{lo}} \circ f \circ \mathrm{inc}_{1}^{\mathrm{hi}}\right) \\
& =:\left(f^{\mathrm{hi}}, f^{\mathrm{lo}}, f^{\mathrm{hilo}}\right) .
\end{aligned}
$$

We have $\varphi\left(\mathrm{id}_{X}\right)=\mathrm{id}_{\varphi X}=\left(\mathrm{id}_{S}, \mathrm{id}_{U}, 0\right)$. Remains to check that φ respects composition. Given a composite $X_{1} \xrightarrow{f} X_{2} \xrightarrow{g} X_{3}$ in Π_{r}^{k}, which we write as

$$
S_{1} \vee U_{1} \xrightarrow{f} S_{2} \vee U_{2} \xrightarrow{g} S_{3} \vee U_{3}
$$

applying φ yields

$$
\begin{aligned}
\varphi(g f) & =\left((g f)^{\text {hi }},(g f)^{\text {lo }},(g f)^{\text {hilo }}\right) \\
& =\left(g^{\text {hi }} f^{\text {hi }}, g^{\text {lo }} f^{\text {lo }},(g f)^{\text {hilo }}\right)
\end{aligned}
$$

whereas the composite in \mathbf{T} is

$$
\begin{aligned}
\varphi(g) \varphi(f) & =\left(g^{\text {hi }}, g^{\text {lo }}, g^{\text {hilo }}\right)\left(f^{\text {hi }}, f^{\text {lo }}, f^{\text {hilo }}\right) \\
& =\left(g^{\text {hi }} f^{\text {hi }}, g^{\text {lo }} f^{\text {lo }},\left(f^{\text {hi }}\right)^{*} g^{\text {hilo }}+\left(g^{\text {lo }}\right)_{*} f^{\text {hilo }}\right) .
\end{aligned}
$$

Let us check the equality $(g f)^{\text {hilo }}=\left(f^{\text {hi }}\right)^{*} g^{\text {hilo }}+\left(g^{\text {lo }}\right)_{*} f^{\text {hilo }}$:

$$
\begin{aligned}
& \left(f^{\text {hi }}\right)^{*} g^{\text {hilo }}+\left(g^{\text {lo }}\right)_{*} f^{\text {hilo }}=g^{\text {hilo }} f^{\text {hi }}+g^{\text {lo }} f^{\text {hilo }} \\
& =\operatorname{col}_{3}^{\text {lo }} g \text { inc }_{2}^{\text {hi }} \operatorname{col}_{2}^{\text {hi }} f \text { inc }_{1}^{\text {hi }}+\operatorname{col}_{3}^{\text {lo }} g \text { inc }_{2}^{\text {lo }} \operatorname{col}_{2}^{\text {lo }} f \text { inc }_{1}^{\text {hi }} \\
& =\operatorname{col}_{3}^{\mathrm{lo}} g\left(\mathrm{inc}_{2}^{\mathrm{hi}} \operatorname{col}_{2}^{\mathrm{hi}}+\mathrm{inc}_{2}^{\mathrm{lo}} \operatorname{col}_{2}^{\mathrm{lo}}\right) f \mathrm{inc}_{1}^{\text {hi }} \\
& =\operatorname{col}_{3}^{\mathrm{lo}} g\left(\left(1_{S_{2}}, 0\right)+\left(0,1_{U_{2}}\right)\right) f \mathrm{inc}_{1}^{\mathrm{hi}} \\
& =\operatorname{col}_{3}^{\text {lo }} g 1_{X_{2}} f \mathrm{inc}_{1}^{\mathrm{hi}} \\
& =\operatorname{col}_{3}^{\mathrm{lo}}(g f) \text { inc }_{1}^{\mathrm{hi}} \\
& =(g f)^{\text {hilo }} \text {. }
\end{aligned}
$$

Step 2: Construction of $\psi: \mathbf{T} \rightarrow \boldsymbol{\Pi}_{n}^{k}$. On objects, take

$$
\psi(S, U):=S \vee U
$$

and for a morphism

$$
\left(f^{h}, f^{l}, \delta\right):\left(S_{1}, U_{1}\right) \rightarrow\left(S_{2}, U_{2}\right)
$$

in \mathbf{T}, with $\delta \in D\left(S_{1}, U_{2}\right)=\left[S_{1}, U_{2}\right]$, define the morphism

$$
\begin{aligned}
& \psi\left(f^{h}, f^{l}, \delta\right): S_{1} \vee U_{1} \rightarrow S_{2} \vee U_{2} \\
& \psi\left(f^{h}, f^{l}, \delta\right)=\left(\operatorname{inc}_{2}^{\mathrm{hi}} f^{h}+\operatorname{inc}_{2}^{\mathrm{lo}} \delta\right) ; \operatorname{inc}_{2}^{\mathrm{lo}} f^{l} .
\end{aligned}
$$

We have

$$
\psi 1_{(S, U)}=\psi\left(1_{S}, 1_{U}, 0\right)=\text { inc }^{\text {hi }} \vee \text { inc }^{\mathrm{lo}}=1_{S \vee U}
$$

and it remains to check that ψ respects composition. Given a composite

in \mathbf{T}, applying ψ yields

which is still commutative, as we now check. On the summand S_{1}, the top composite is

$$
\begin{aligned}
& \quad S_{1} \xrightarrow{\mathrm{inc}_{2}^{\mathrm{hi}} f^{h}+\mathrm{inc}_{2}^{\mathrm{lo}} \delta} S_{2} \vee U_{2} \xrightarrow{\mathrm{inc}_{3}^{\mathrm{hi}} g^{h}+\mathrm{inc}_{3}^{\mathrm{lo}} \epsilon \mathrm{inc}_{3}^{\mathrm{lo}} g^{l}} S_{3} \vee U_{3} \\
& \\
& \left(\mathrm{inc}_{3}^{\mathrm{hi}} g^{h}+\mathrm{inc}_{3}^{\mathrm{lo}} \epsilon ; \mathrm{inc}_{3}^{\mathrm{lo}} g^{l}\right) \circ\left(\mathrm{inc}_{2}^{\mathrm{hi}} f^{h}+\mathrm{inc}_{2}^{\mathrm{lo}} \delta\right) \\
& =\left(\mathrm{inc}_{3}^{\mathrm{hi}} g^{h}+\mathrm{inc}_{3}^{\mathrm{lo}} \epsilon ; \mathrm{inc}_{3}^{\mathrm{lo}} g^{l}\right) \circ\left(\mathrm{inc}_{2}^{\mathrm{hi}} f^{h}\right)+\left(\mathrm{inc}_{3}^{\mathrm{hi}} g^{h}+\mathrm{inc}_{3}^{\mathrm{lo}} \epsilon ; \mathrm{inc}_{3}^{\mathrm{lo}} g^{l}\right) \circ\left(\mathrm{inc}_{2}^{\mathrm{lo}} \delta\right) \\
& =\left(\mathrm{inc}_{3}^{\mathrm{hi}} g^{h}+\mathrm{inc}_{3}^{\mathrm{lo}} \epsilon\right) \circ f^{h}+\left(\mathrm{inc}_{3}^{\mathrm{lo}} g^{l}\right) \circ \delta \\
& =\mathrm{inc}_{3}^{\mathrm{hi}} g^{h} f^{h}+\mathrm{inc}_{3}^{\mathrm{lo}} \epsilon f^{h}+\left(\mathrm{inc}_{3}^{\mathrm{lo}} g^{l}\right) \circ \delta \\
& = \\
& =\mathrm{inc}_{3}^{\mathrm{hi}}\left(g^{h} f^{h}\right)+\mathrm{inc}_{3}^{\mathrm{lo}}\left(\epsilon f^{h}+g^{l} \delta\right) \\
& = \\
& =\mathrm{inc}_{3}^{\mathrm{hi}}\left(g^{h} f^{h}\right)+\mathrm{inc}_{3}^{\mathrm{lo}}\left(\left(f^{h}\right)^{*} \epsilon+\left(g^{l}\right) * \delta\right) .
\end{aligned}
$$

Step (3) follows from right distributivity for maps between spheres [26, Thm. X.8.1]. Step (4) follows from Hilton's formula [26, Thm. XI.8.5] [2, § A.9] and the fact that $f^{h}: S_{1} \rightarrow S_{2}$ is a map between spheres of equal dimensions (namely $n+k$). In that case, the Hilton-Hopf invariants vanish and composition is in fact left distributive, in other words precomposition by f^{h} is linear.

Step 3: $\psi \varphi=\operatorname{id}_{\boldsymbol{\Pi}_{n}^{k}}$. On objects, the composite of functors does

$$
(X \cong S \vee U) \stackrel{\varphi}{\mapsto}(S, U) \stackrel{\psi}{\mapsto} S \vee U
$$

and on a map $X_{1} \cong S_{1} \vee U_{1} \xrightarrow{f} S_{2} \vee U_{2} \cong X_{2}$, the composite does

$$
\begin{aligned}
f & \stackrel{\varphi}{\mapsto}\left(f^{\text {hi }}, f^{\text {lo }}, f^{\text {hilo }}\right) \\
& \stackrel{\psi}{\mapsto}\left(\mathrm{inc}_{2}^{\text {hi }} f^{\text {hi }}+\mathrm{inc}_{2}^{\text {lo }} f^{\text {hilo }}\right) ; \mathrm{inc}_{2}^{\text {lo }} f^{\text {lo }} .
\end{aligned}
$$

Here comes the topological argument. Note that S is $(n+k-1)$-connected and U is ($n-1$)-connected, so that the natural map $S \vee U \rightarrow S \times U$ is $(n+k+n-1)$-connected. That means for $i \leq n+k+n-2$ (in particular for $i \leq n+k$), any map $g: S^{i} \rightarrow S \vee U$ is homotopic to inc ${ }^{\text {hi }} \mathrm{col}^{\text {hi }} g+\mathrm{inc}^{\text {lo }} \mathrm{col}^{\mathrm{lo}} g$.

On the first summand S_{1}, the map f is

$$
\begin{aligned}
f \mathrm{inc}_{1}^{\mathrm{hi}} & =\mathrm{inc}_{2}^{\mathrm{hi}} \mathrm{col}_{2}^{\mathrm{hi}} f \mathrm{inc}_{1}^{\mathrm{hi}}+\mathrm{inc}_{2}^{\mathrm{lo}} \operatorname{col}_{2}^{\mathrm{lo}} f \mathrm{inc}_{1}^{\mathrm{hi}} \\
& =\mathrm{inc}_{2}^{\mathrm{hi}} f^{\mathrm{hi}}+\mathrm{inc}_{2}^{\mathrm{lo}} f^{\mathrm{hilo}}
\end{aligned}
$$

and on the second summand U_{1}, the map f is

$$
\begin{aligned}
f \mathrm{inc}_{1}^{\mathrm{lo}} & =\mathrm{inc}_{2}^{\mathrm{lo}} \mathrm{col}_{2}^{\mathrm{lo}} f \text { inc }_{1}^{\mathrm{lo}} \text { by cellular approximation } \\
& =\mathrm{inc}_{2}^{\mathrm{lo}} f^{\mathrm{lo}}
\end{aligned}
$$

from which we obtain the desired equality $\psi \varphi(f)=f$.
Step 4: $\varphi \psi=\mathrm{id}_{\mathbf{T}}$. On objects, the composite of functors does

$$
(S, U) \stackrel{\psi}{\mapsto} S \vee U \stackrel{\varphi}{\mapsto}(S, U)
$$

and on a map $\left(f^{h}, f^{l}, \delta\right):\left(S_{1}, U_{1}\right) \rightarrow\left(S_{2}, U_{2}\right)$, the composite does

$$
\begin{aligned}
& \left(f^{h}, f^{l}, \delta\right) \stackrel{\psi}{\mapsto}\left(\mathrm{inc}_{2}^{\text {hi }} f^{h}+\mathrm{inc}_{2}^{\text {lo }} \delta\right) ; \mathrm{inc}_{2}^{\text {lo }} f^{l} \\
& \stackrel{\varphi}{\mapsto}\left(\operatorname{col}_{2}^{\text {hi }}\left(\mathrm{inc}_{2}^{\text {hi }} f^{h}+\mathrm{inc}_{2}^{\mathrm{lo}} \delta\right), \operatorname{col}_{2}^{\text {lo }} \mathrm{inc}_{2}^{\mathrm{lo}} f^{l}, \operatorname{col}_{2}^{\text {lo }}\left(\mathrm{inc}_{2}^{\mathrm{hi}} f^{h}+\mathrm{inc}_{2}^{\mathrm{lo}} \delta\right)\right) \\
& =\left(\operatorname{col}_{2}^{\mathrm{hi}} \mathrm{inc}_{2}^{\mathrm{hi}} f^{h}+\operatorname{col}_{2}^{\mathrm{hi}} \mathrm{inc}_{2}^{\mathrm{lo}} \delta, \operatorname{col}_{2}^{\mathrm{lo}} \mathrm{inc}_{2}^{\mathrm{lo}} f^{l}, \operatorname{col}_{2}^{\mathrm{lo}} \mathrm{inc}_{2}^{\mathrm{hi}} f^{h}+\operatorname{col}_{2}^{\mathrm{lo}} \mathrm{inc}_{2}^{\mathrm{lo}} \delta\right) \\
& =\left(f^{h}, f^{l}, \delta\right) \text {. }
\end{aligned}
$$

Remark 7.11. Proposition 7.10] was implicitly used in [4, Prop. 1.6] without being proved there.

7.3. Homotopy operation functors.

Proof of Proposition 2.7. Let π_{n} be an abelian group. We want to compute the abelian group $\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)=\Gamma_{n}^{k}\left(\pi_{n}, 0, \ldots, 0\right)$.

Our functor Γ_{n}^{k} is the functor denoted $\rho^{*} \Delta$ in [3, (7.3)]. By proposition 7.10 and [3, Lem. 7.5; Lem. 7.10], Γ_{n}^{k} can be computed using a free presentation, as we will explain shortly. Here we will implicitly use the identification $\operatorname{model}\left(\boldsymbol{\Pi}_{n+k}^{0}\right) \cong \mathbf{A b}$ sending a model M to the abelian group $M\left(S^{n+k}\right)$.

Let $g: T \rightarrow S$ be a map between wedges of spheres of dimensions $n, n+1, \ldots, n+k-1$ satisfying
(1) coker $\pi_{n}(g)=\pi_{n}$;
(2) coker $\pi_{i}(g)=0$ for $n<i<n+k$, that is, $\pi_{i}(g)$ is surjective in those degrees.

Then the sequence of abelian groups

$$
\begin{equation*}
\pi_{n+k}(T \vee S)_{2} \xrightarrow{\pi_{n+k}(g, 1)} \pi_{n+k}(S) \rightarrow \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow 0 \tag{5}
\end{equation*}
$$

is exact, where the left-hand group is

$$
\pi_{n+k}(T \vee S)_{2}:=\operatorname{ker}\left(\pi_{n+k}(T \vee S) \xrightarrow{\pi_{n+k}(0,1)} \pi_{n+k}(S)\right)
$$

i.e. the kernel of the collapse map. In other words, our functor can be computed as $\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)=$ coker $\pi_{n+k}(g, 1)$.

A free presentation can be obtained as follows. Let $R \rightarrow F \rightarrow \pi_{n} \rightarrow 0$ be a free presentation of π_{n} as abelian group, i.e. an exact sequence where R and F are free abelian groups. Realize $R \rightarrow F$ as $\pi_{n}\left(g^{\prime}\right)$ for a map $g^{\prime}: S^{\prime} \rightarrow S$ between wedges of spheres of dimension n (with a sphere S^{n} for each summand \mathbb{Z}). Now insert spheres of higher dimensions to kill all the homotopy of S. More precisely, consider the wedge

$$
S^{\prime \prime}:=\bigvee_{\substack{x \in \pi_{i} S \\ n<i<n+k}} S^{i}
$$

and the map $g^{\prime \prime}: S^{\prime \prime} \rightarrow S$ defined on each summand S^{i} by (a representative of) the indexing element $x \in \pi_{i} S$. The map

$$
T=S^{\prime \prime} \vee S^{\prime} \xrightarrow{g=\left(g^{\prime \prime}, g^{\prime}\right)} S
$$

provides a free presentation as described above.
Step 1: Assume $\pi_{n}=F \simeq \mathbb{Z}$ is free on one generator.
The free presentation of π_{n} is given by $R=0$ and $F=\mathbb{Z}$, so that we take $S^{\prime}=*$ and $S=S^{n}$. We want to compute the cokernel illustrated in (5). We claim that the image of $\pi_{n+k}(g, 1)$ is the subgroup Dec $\subset \pi_{n+k}\left(S^{n}\right)$ generated by decomposable elements, which would prove the result $\widetilde{\Gamma}_{n}^{k}(\mathbb{Z})=Q_{k, n}$.

Take $x \in \pi_{n+k}\left(T \vee S^{n}\right)_{2}$ and consider its image $\pi_{n+k}(g, 1)(x) \in \pi_{n+k}\left(S^{n}\right)$ as illustrated in the diagram

Since T is a wedge of spheres (of dimensions strictly between n and $n+k$), the HiltonMilnor theorem [26, Thm. XI.8.1] implies

$$
\pi_{n+k}\left(T \vee S^{n}\right) \simeq \bigoplus_{j} \pi_{n+k}\left(S^{m_{j}}\right)
$$

for some appropriate dimensions m_{j}, and x can be expressed as

$$
x=\sum_{j} p_{j} \circ x_{j}
$$

where the p_{j} are certain iterated Whitehead products of summand inclusions of the individual spheres of $T \vee S^{n}$. In particular, the element

$$
(g, 1) \circ x=(g, 1) \circ\left(\sum_{j} p_{j} \circ x_{j}\right)=\sum_{j}(g, 1) \circ p_{j} \circ x_{j}
$$

is a sum of decomposables, except possibly one term, corresponding to the summand inclusion $S^{n} \hookrightarrow T \vee S^{n}$. However, that one term is precisely $x_{j}=(0,1) \circ x=\pi_{n+k}(0,1)(x)=0$ by assumption. Hence $\pi_{n+k}(g, 1)(x)$ is decomposable.

Conversely, take any decomposable element $x \in \pi_{n+k}\left(S^{n}\right)$. By the assumption $k \neq n-1$, x must be a sum of compositions $x=\sum_{i} x_{i} \circ \alpha_{i}$ for some $\alpha_{i} \in \pi_{n+k}\left(S^{m_{i}}\right), x_{i} \in \pi_{m_{i}}\left(S^{n}\right)$, $n<m_{i}<n+k$. But each such composite is in the image of $\pi_{n+k}(g, 1)$. By construction of T, there is a wedge summand $S^{m_{i}} \hookrightarrow T$ corresponding to $x_{i} \in \pi_{m_{i}}\left(S^{n}\right)$. The diagram

illustrates the equality $x_{i} \circ \alpha_{i}=(g, 1) \circ \iota \circ \alpha_{i}=\pi_{n+k}(g, 1)\left(\iota \circ \alpha_{i}\right)$. Moreover, the map $(0,1) \circ \iota: S^{m_{i}} \rightarrow S^{n}$ is null, which guarantees $\iota \circ \alpha_{i} \in \operatorname{ker} \pi_{n+k}(0,1)=\pi_{n+k}\left(T \vee S^{n}\right)_{2}$.

Step 2: Assume $\pi_{n}=F$ is free.
Take $S=\vee_{l} S^{n}$ satisfying $\pi_{n}=F \simeq \oplus_{l} \mathbb{Z}=\pi_{n}(S)$ and take $S^{\prime}=*$. Consider the composition function

$$
\begin{aligned}
\pi_{n}(S) \times \pi_{n+k}\left(S^{n}\right) & \rightarrow \pi_{n+k}(S) \\
(x, \alpha) & \mapsto x \circ \alpha .
\end{aligned}
$$

It is linear in the second variable α but not in the first variable x. Failure to be linear in x is measured by the "distributive law of homotopy theory" or Hilton's formula [26, Thm. XI.8.5]. The error terms are composites which are all in the image of $\pi_{n+k}(g, 1): \pi_{n+k}(T \vee$ $S)_{2} \rightarrow \pi_{n+k}(S)$ as explained in step 1. By modding out this image, we obtain a well-defined bilinear map

$$
\pi_{n}(S) \otimes \pi_{n+k}\left(S^{n}\right) \rightarrow \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)
$$

This map vanishes on elements $x \otimes \alpha$ where α is decomposable, since such an α is in the image of $\pi_{n+k}(g, 1)$. Thus there is an induced canonical map

$$
\varphi: \pi_{n}(S) \otimes Q_{k, n} \rightarrow \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right)
$$

We claim that φ is an isomorphism. The Hilton-Milnor theorem provides an isomorphism

$$
\begin{aligned}
\pi_{n+k}(S) & =\pi_{n+k}\left(\vee_{l} S^{n}\right) \\
& \simeq \bigoplus_{j} \pi_{n+k}\left(S^{m_{j}}\right) \\
& \simeq \bigoplus_{l} \pi_{n+k}\left(S^{n}\right) \oplus \bigoplus_{j \text { such that } m_{j}>n} \pi_{n+k}\left(S^{m_{j}}\right)
\end{aligned}
$$

so that we can project onto the first summand $\oplus_{l} \pi_{n+k}\left(S^{n}\right) \cong F \otimes \pi_{n+k}\left(S^{n}\right)$ and then mod out the decomposables:

$$
\pi_{n+k}(S) \rightarrow F \otimes \pi_{n+k}\left(S^{n}\right) \rightarrow F \otimes Q_{k, n}=\pi_{n}(S) \otimes Q_{k, n}
$$

This map vanishes on the image of $\pi_{n+k}(g, 1)$ and therefore induces a map on the cokernel

$$
\psi: \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow \pi_{n}(S) \otimes Q_{k, n} .
$$

One readily checks that ψ is inverse to φ.
Step 3: π_{n} is an arbitrary abelian group. We claim that $\widetilde{\Gamma}_{n}^{k}$ is right exact, i.e. preserves cokernels. By applying $\widetilde{\Gamma}_{n}^{k}$ to the free presentation of π_{n}, we obtain the exact sequence

$$
\widetilde{\Gamma}_{n}^{k}(R) \rightarrow \widetilde{\Gamma}_{n}^{k}(F) \rightarrow \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow 0
$$

which, by step 2 , can be written as

$$
R \otimes Q_{k, n} \rightarrow F \otimes Q_{k, n} \rightarrow \widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) \rightarrow 0
$$

from which we obtain

$$
\begin{aligned}
\widetilde{\Gamma}_{n}^{k}\left(\pi_{n}\right) & \cong \operatorname{coker}\left(R \otimes Q_{k, n} \rightarrow F \otimes Q_{k, n}\right) \\
& \cong \operatorname{coker}(R \rightarrow F) \otimes Q_{k, n} \\
& =\pi_{n} \otimes Q_{k, n} .
\end{aligned}
$$

To prove that $\widetilde{\Gamma}_{n}^{k}$ preserves cokernels, recall that this functor is the composite

$$
\mathbf{A b} \cong \boldsymbol{\Pi} \mathbf{A l g} \mathbf{g}_{n}^{0} \hookrightarrow \boldsymbol{\Pi} \mathbf{A l g} \mathbf{g}_{n}^{k-1} \xrightarrow{\Gamma_{n}^{k}} \mathbf{A b} .
$$

The homotopy operation functors Γ_{n}^{k} are defined as follows. Postnikov truncation

$$
P_{n+k-1}: \boldsymbol{\Pi A l g}_{n}^{k} \rightarrow \boldsymbol{\Pi A l g}_{n}^{k-1}
$$

has a left adjoint L, and Γ_{n}^{k} is the composite

$$
\boldsymbol{\Pi A l g}_{n}^{k-1} \xrightarrow{L} \boldsymbol{\Pi A l g}_{n}^{k} \xrightarrow{\pi_{n+k}} \mathbf{A b}
$$

where the last step is evaluation on the sphere S^{n+k}, extracting the highest homotopy group π_{n+k}.

In $\boldsymbol{\Pi A l g}_{n}^{k}$, cokernels are obtained by modding out the image. Therefore the inclusion functor $\boldsymbol{\Pi} \mathbf{A l g}{ }_{n}^{0} \hookrightarrow \Pi \mathbf{A l g}{ }_{n}^{k-1}$ as well as $\pi_{n+k}: \Pi \mathbf{A l g}{ }_{n}^{k} \rightarrow \mathbf{A b}$ preserve cokernels. By virtue of being a left adjoint, L also preserves cokernels, and so does the composite functor $\widetilde{\Gamma}_{n}^{k}$.

Proof of Proposition 3.7. Similar to 7.3. The key ingredient here is the computation of [1, Cor. 9.4]:

$$
\pi_{2 n-1}(S) \cong \pi_{n}(S) \otimes^{q} \pi_{2 n-1}\left\{S^{n}\right\}
$$

where $S=\vee_{l} S^{n}$ is a wedge of n-spheres, so that $\pi_{n}(S) \cong \oplus_{l} \mathbb{Z}$ is a free abelian group. Decomposables (compositions) must be modded out for the same reason as in 7.3

Appendix A. More on comma categories

In this appendix, we recall some basic facts about comma categories, as defined in 2.1 We omit the proofs, which are straightforward (if somewhat tedious) category theory.

Let $F: C \rightarrow \mathcal{D}$ be a functor. Consider the comma category $F \mathcal{D}$, or $\left(F \downarrow 1_{\mathcal{D}}\right)$ in the notation of [20, § II.6]. Recall that objects consist of triples ($X, A, \alpha: F X \rightarrow A$) with $X \in C, A \in \mathcal{D}$ and α is any map.

Let $U: F \mathcal{D} \rightarrow C$ denote the projection $U(X, A, \alpha)=X$.
Proposition A.1. (1) $U: F \mathcal{D} \rightarrow C$ has a left adjoint $L: C \rightarrow F \mathcal{D}$ given by $L X=$ $(X, F X, F X \xrightarrow{\text { id }} F X)$.
(2) Assuming \mathcal{D} has a terminal object $*$, then $U: F \mathcal{D} \rightarrow C$ has a right adjoint $R: C \rightarrow$ $F \mathcal{D}$ given by $R X=(X, *, F X \rightarrow *)$.
(3) L is an isomorphism of categories onto the full subcategory of $F \mathcal{D}$ consisting of objects of the form $(X, F X, F X \xrightarrow{\text { id }} F X)$.
(4) R is an isomorphism of categories onto the full subcategory of $F \mathcal{D}$ consisting of objects of the form $(X, *, F X \rightarrow *)$. In both cases, the inverse isomorphism is the (restriction of the) projection U.
(5) Assuming C has an initial object \emptyset such that $F(\emptyset)$ is also initial, then the projection $F \mathcal{D} \rightarrow \mathcal{D}$ sending (X, A, α) to A has a left adjoint sending A to $(\emptyset, A, F(\emptyset) \rightarrow A)$.

Now we investigate to what extent the comma category $F \mathcal{D}$ determines the functor F.
Proposition A.2. Let $F, G: C \rightarrow \mathcal{D}$ be functors.
(1) A natural transformation $\gamma: F \rightarrow G$ induces a pullback functor $\gamma^{*}: G \mathcal{D} \rightarrow F \mathcal{D}$, which is a functor of categories over $C \times \mathcal{D}$ (i.e. commutes with the projections down to $C \times \mathcal{D}$).
(2) If moreover γ is a natural isomorphism, then γ^{*} is an isomorphism of categories.
(3) A functor $\varphi: F \mathcal{D} \rightarrow G \mathcal{D}$ of categories over $\mathcal{C} \times \mathcal{D}$ (naturally) induces a natural transformation $\gamma^{\varphi}: G \rightarrow F$.
(4) If moreover φ is an equivalence of categories, then γ_{φ} is a natural isomorphism.

Corollary A.3. Functors $F, G: C \rightarrow \mathcal{D}$ are isomorphic if and only if the comma categories $F \mathcal{D}, G \mathcal{D}$ are equivalent as categories over $C \times \mathcal{D}$.

Proposition A.4. Let C, \mathcal{D} be additive categories and $F: C \rightarrow \mathcal{D}$ a functor. Then the comma category $F \mathcal{D}$ is additive if and only if F is an additive functor.

Appendix B. A cute example

Proposition B.1. The stable 3-stage Π-algebra π defined by $\pi_{n}=\pi_{n+1}=\pi_{n+2}=\mathbb{Z} / 2$ (where $n \geq 4$) with structure maps

$$
\begin{aligned}
& \eta_{1}: \Gamma_{n}^{1}\left(\pi_{n}\right)=\pi_{n} \otimes \mathbb{Z} / 2=\mathbb{Z} / 2 \xrightarrow{\cong} \mathbb{Z} / 2=\pi_{n+1} \\
& \eta_{2}: \Gamma_{n}^{2}\left(\pi_{n}, \eta_{1}\right)=\pi_{n+1} \otimes \mathbb{Z} / 2=\mathbb{Z} / 2 \xrightarrow{\cong} \mathbb{Z} / 2=\pi_{n+2}
\end{aligned}
$$

is non-realizable.
Proof. The map $E_{n}\left(\eta_{1}\right)$ described in [4, § 3.2] is the composite

$$
\operatorname{Tor}\left(\pi_{n}, \mathbb{Z} / 2\right) \stackrel{i}{\longrightarrow} \pi_{n} \xrightarrow{q} \pi_{n} \otimes \mathbb{Z} / 2 \xrightarrow{\eta_{1}} \pi_{n+1} \xrightarrow{q} \pi_{n+1} \otimes \mathbb{Z} / 2 \cong \Gamma_{n}^{2}\left(\pi_{n}, \eta_{1}\right)
$$

which in our case is the isomorphism

$$
\mathbb{Z} / 2 C \underset{\cong}{i} \mathbb{Z} / 2 \xrightarrow[\cong]{\stackrel{q}{\cong}} \mathbb{Z} / 2 \xrightarrow[\cong]{\eta_{1}} \mathbb{Z} / 2 \xrightarrow[\cong]{\stackrel{q}{\cong}} \mathbb{Z} / 2
$$

The obstruction $O(\pi)=\eta_{2} \circ E_{n}\left(\eta_{1}\right)$ described in [4, Thm. 3.3 (B)] is the non-zero map $\mathbb{Z} / 2 \xrightarrow{\cong} \mathbb{Z} / 2 \xrightarrow{\cong} \mathbb{Z} / 2$. Therefore π is non-realizable.

Remark B.2. By contrast, example [9, Ex. 7.18] with the same homotopy groups but a different Π-algebra structure is in fact realizable.

References

[1] Hans Joachim Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), no. 13, 49 -107, DOI 10.1016/0022-4049(94)90135-X. MR1255923 (94j:55022)
[2] Hans-Joachim Baues, Homotopy Type and Homology, Oxford Mathematical Monographs, Oxford University Press, 1996.
[3] __, Derived functors of graded theories, K-Theory 17 (1999), no. 2, 151-193.
[4] Hans-Joachim Baues and Paul Goerss, A homotopy operation spectral sequence for the computation of homotopy groups, Topology 39 (2000), 161-192.
[5] H.-J. Baues and T. Pirashvili, Spaces associated to quadratic endofunctors of the category of groups, Extracta Math. 20 (2005), no. 2, 99 -136. MR2195197 (2006i:55022)
[6] Mark Behrens, Congruences between modular forms given by the divided β family in homotopy theory, Geom. Topol. 13 (2009), no. 1, $319-357$, DOI 10.2140/gt.2009.13.319. MR2469520 (2009i:55016)
[7] David Blanc, A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318 (1990), no. 1, 335 -354 .
8] , Abelian П-algebras and their projective dimension, Algebraic topology (Oaxtepec, 1991), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. $39-48$, DOI 10.1090/conm/146/01214, (to appear in print). MR1224906 (94j:55016)
[9] __ Higher homotopy operations and the realizability of homotopy groups, Proc. London Math. Soc. (3) 70 (1995), no. 1, 214 -240, DOI 10.1112/plms/s3-70.1.214. MR1300845 (95g:55004)
[10] , Algebraic invariants for homotopy types, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 3, 497 -523, DOI 10.1017/S030500419900393X. MR1713125 (2000h:55025)
[11] David Blanc, William G. Dwyer, and Paul G. Goerss, The realization space of a Π-algebra: a moduli problem in algebraic topology, Topology 43 (2004), no. 4, 857-892.
[12] David Blanc, Mark W. Johnson, and James M. Turner, On realizing diagrams of П-algebras, Algebr. Geom. Topol. 6 (2006), 763 -807, DOI 10.2140/agt.2006.6.763. MR2240915 (2007c:18008)
[13] Séminaire Henri Cartan, 1954/1955. Algèbres d'Eilenberg-MacLane et homotopie, 2nd ed., 1956 (French). MR0087935 (19,439a)
[14] W. G. Dwyer and D. M. Kan, Homology and cohomology of П-algebras, Trans. Amer. Math. Soc. 342 (1994), no. 1, 257 -273, DOI 10.2307/2154693. MR1147399 (94h:55027)
[15] Samuel Eilenberg and Saunders Mac Lane, On the groups of H(П, n). I, Ann. of Math. (2) 58 (1953), 55 -106. MR0056295 (15,54b)
[16] _ On the groups $H(\Pi, n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), $49-139$. MR0065162 (16,391a)
[17] Samuel Eilenberg and Saunders MacLane, On the groups H(П,n). III, Ann. of Math. (2) 60 (1954), 513 -557. MR0065163 (16,392a)
[18] Martin Frankland, Moduli spaces of 2-stage Postnikov systems, Topology Appl. 158 (2011), no. 11, 1296 -1306.
[19] Stanley O. Kochman, Integral cohomology operations, Current trends in algebraic topology, Part 1 (London, Ont., 1981), CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 437 -478. MR686130 (84f:55017)
[20] Saunders Mac Lane, Categories for the Working Mathematician, Second, Graduate Texts in Mathematics, vol. 5, Springer, 1998.
[21] Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR0258031 (41 \#2678)
[22] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986. MR860042 (87j:55003)
[23] Christopher R. Stover, A van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), no. 1, 9-26.
[24] Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR0143217 (26 \#777)
[25] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51 -110. MR0035997 (12,43c)
[26] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, Springer-Verlga, 1967.

E-mail address: baues@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: franklan@illinois.edu

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St, Urbana, IL 61801, USA

[^0]: Date: August 10, 2012.
 2010 Mathematics Subject Classification. Primary: 55Q35; Secondary: 55Q40, 55Q45, 55Q15, 55P20.
 Key words and phrases. realization, homotopy operations, homotopy groups, 2-stage, Π-algebra, spheres, Eilenberg-MacLane spaces, Whitehead product.

 The second author was supported in part by an FQRNT Postdoctoral Research Fellowship and would like to thank the Max-Planck-Institut für Mathematik Bonn for its generous hospitality, as well as Katja Hutschenreuter, Markus Szymik, Haynes Miller, Charles Rezk, Paul Goerss, Angelica Osorno, Doug Ravenel, and Mark Behrens for fruitful conversations.

