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THE REALIZABILITY OF OPERATIONS ON HOMOTOPY GROUPS
CONCENTRATED IN TWO DEGREES

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Abstract. The homotopy groups of a space are endowed with homotopy operations which
define theΠ-algebra of the space. An Eilenberg-MacLane space is the realization of aΠ-
algebra concentrated in one degree. In this paper, we provide necessary and sufficient con-
ditions for the realizability of aΠ-algebra concentrated in two degrees. We then specialize
to the stable case, and list infinite families of suchΠ-algebras that are not realizable.

1. Realization problem for homotopy operations

The homotopy groupsπ∗X of a pointed spaceX are not merely a list of groups, but carry
the additional structure of (primary) homotopy operations, which are natural transforma-
tions

πn1X × πn2X × . . . × πn j X→ πnX.

These include for example Whitehead productsπpX× πqX→ πp+q−1X, as well as precom-
position operationsα∗ : πmX→ πnX induced by any mapα : Sn → Sm as illustrated in the
commutative diagram

Sn

α∗(x)
!!C

C
C

C
C

C
C

C

α // Sm

x

��
X.

By the Yoneda lemma,j-ary homotopy operations are parametrized by homotopy classes
of pointed maps

Sn→ Sn1 ∨ Sn2 ∨ . . . ∨ Sn j .

This information is encoded in a category as follows.

Definition 1.1. Let Top∗ denote the category of pointed topological spaces. LetΠ de-
note the full subcategory of the homotopy categoryHoTop∗ consisting of finite wedges of
spheres∨Sni , ni ≥ 1. Note that the empty wedge (a point) is allowed.

A Π-algebra is a product-preserving functorΠop→ Set. In other words, a contravariant
functor sending wedges to products. LetΠAlg denote the category ofΠ-algebras, where
morphisms are natural transformations.

Date: August 10, 2012.
2010Mathematics Subject Classification.Primary: 55Q35; Secondary: 55Q40, 55Q45, 55Q15, 55P20.
Key words and phrases.realization, homotopy operations, homotopy groups, 2-stage, Π-algebra, spheres,

Eilenberg-MacLane spaces, Whitehead product.
The second author was supported in part by an FQRNT Postdoctoral Research Fellowship and would like to

thank the Max-Planck-Institut für Mathematik Bonn for its generous hospitality, as well as Katja Hutschenreuter,
Markus Szymik, Haynes Miller, Charles Rezk, Paul Goerss, Angelica Osorno, Doug Ravenel, and Mark Behrens
for fruitful conversations.

1



2 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

The prototypical example is the homotopyΠ-algebra [−,X] of a pointed spaceX, which
is the functor represented byX in the homotopy category. One can view this data as the
graded groupπ∗X, with πnX = [Sn,X], endowed with the structure of primary homotopy
operations. Likewise, given anyΠ-algebraπ, the groupπ(Sn) will be denotedπn. Tak-
ing the homotopy groupsπ∗X defines a functorπ∗ : HoTop∗ → ΠAlg sendingX to its
homotopyΠ-algebra.

Definition 1.2. A Π-algebraπ is calledrealizable if there is a spaceX together with an
isomorphismπ ≃ π∗X of Π-algebras. Such a spaceX is called arealization of π.

Example1.3. A Π-algebra concentrated in a single degreen is the same as a groupπn,
which is abelian ifn ≥ 2. All suchΠ-algebras are realizable (uniquely up to weak equiva-
lence), and the Eilenberg-MacLane spaceK(πn,n) is a realization of thisΠ-algebra.

In general, one has the following problem:

Realization problem. Given aΠ-algebraπ, is π realizable by a space?
Here, one must realize not only the homotopy groups, but alsothe prescribed homotopy

operations.
One has the following classic example due to Quillen [21, Thm. I].

Example1.4. Let π be a simply-connected rationalΠ-algebra, i.e. satisfyingπ1 = 0 and
πn is a rational vector space. Thenπ is realizable. In fact, the category of suchΠ-algebras
is equivalent to the category of reduced graded Lie algebras, and each such Lie algebra is
the Samelson product Lie algebra of a space.

Example1.5. A Π-algebra concentrated in degrees 1 andn consists of a groupπ1 and a
π1-moduleπn, and can be realized by a generalized Eilenberg-MacLane space. Moreover,
the moduli space of realizations is described in [18, Thm. 3.4, Cor. 3.5].

Example1.6. A Π-algebra concentrated in twoconsecutivedegreesn,n + 1 (with n ≥ 2)
consists of two abelian groupsπn andπn+1 together with a homomorphismΓ1

n(πn)→ πn+1,
where the functorΓ1

n is given by

Γ1
n(πn) =


Γ(πn) for n = 2

πn ⊗Z Z/2 for n ≥ 3

whereΓ denotes Whitehead’s quadratic functor. The structure mapΓ1
n(πn) → πn+1 corre-

sponds to precompositionη∗ : πn → πn+1 by the Hopf mapη : Sn+1 → Sn. More precisely,
η∗ : πn → πn+1 is a quadratic map whenn = 2 (resp. a linear map of order 2 whenn ≥ 3),
and therefore corresponds by adjunction to a map of abelian groupsΓ1

n(πn)→ πn+1.
All such Π-algebras are realizable. This follows from J.H.C. Whitehead’s homotopy

classification of simply connected 4-dimensional CW-complexes in terms of the certain
exact sequence [25]. See also [4, Thm. 3.3 (A)]. Moreover, the moduli space of realizations
is described in [18, Thm. 5.1].

Example1.7. A Π-algebra concentrated in a stable range can be identified with a module
over the stable homotopy ringπS

∗ , i.e. the homotopy groups of the sphere spectrum; see
section 5. Our results provide examples of such modules thatare not realizable (by a space
or, equivalently, by a spectrum)

For more background onΠ-algebras, see for example [23,§4] [7, §3.1] [8,§2] [14, §2]
[11,§4]. For literature on the realization problem forΠ-algebras and some generalizations,
see for example [9] [10] [11] [12].
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Main results and organization. In section 2, we describeΠ-algebras concentrated in two
degrees in terms of homotopy groups of spheres (Prop. 2.7). Section 3 is devoted to the
metastable case in degreesn and 2n− 1 (Prop. 3.7).

Section 4 explains the main result of this paper, which solves the realization problem
for Π-algebras concentrated in two degrees. Theorem 4.2 provides a necessary and suffi-
cient condition for such aΠ-algebra to be realizable, in terms of homology of Eilenberg-
MacLane spaces.

Section 5 specializes to the stable case. In section 6, we provide infinite families of
non-realizable examples, using elements in the image of theJ-homomorphism (Prop. 6.4,
6.5). Section 7 contains proofs and technical material thatwould have otherwise cluttered
the exposition.

2. Π-algebras concentrated in two degrees

LetΠAlg(n,n+k) be the full subcategory ofΠAlg consisting ofΠ-algebras concentrated
in degreesn andn + k for somen, k ≥ 1; these are sometimes called 2-stageΠ-algebras.
In light of example 1.5, we will usually assumen ≥ 2.

The categoryΠAlg(n,n + k) can be described as a comma category. First recall some
terminology [3, Def. 1.1] [4,§ 1.5].

Definition 2.1. Let C be a category and letΓ : C → A be a functor. Then we obtain
the categoryΓA as follows. An object is a triple (X,A, η) whereX is an object ofC and
η : ΓX → A is a morphism inA. A morphism (X,A, η) → (Y, B, λ) in ΓA is a pair (f ,g)
where f : X→ Y is a morphism inC such that the diagram

ΓX
Γ f

//

η

��

ΓY

λ

��
A

g
// B

commutes inA. We callΓA thecomma categoryof Γ. An object (X,A, η) of ΓA is also
denoted byη.

Proposition 2.2. Let n ≥ 2. There is a unique functor (up to natural isomorphism)
Γ̃k

n : Ab → Ab yielding an isomorphism

ΠAlg(n,n+ k) � Γ̃k
nAb

of categories overAb × Ab.
For example, in the case k= 1, the functor̃Γ1

n = Γ
1
n is described in Example 1.6.

Proof. Uniqueness follows from A.3. For existence, we will use somebasic facts about
truncatedΠ-algebras.

Let ΠAlgk
n denote the full subcategory ofΠAlg consisting ofΠ-algebras concentrated

in degreesn,n + 1, . . . ,n + k. Recall [4, Prop. 1.6] thatΠAlgk
n can be described as an

iterated comma category
ΠAlgk

n � Γ
k
nAb

using homotopy operation functorsΓk
n : ΠAlgk−1

n → Ab that encode homotopy operations
inductively, one degree at a time [4, Def. 1.5]. Note that theinductive process starts with
ΠAlg0

n � Ab.
Now take

Γ̃k
n(πn) = Γk

n(πn,0, . . . ,0)
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where (πn,0, . . . ,0) denotes the (unique) objectπ of ΠAlgk−1
n with πn+1 = 0, . . . , πn+k−1 =

0.
Indeed, the full subcategory ofΠAlg1

n consisting of objectsπ with πn+1 = 0 is isomor-
phic to Ab, via the correspondence (πn,0) 7→ πn. This follows from A.1 (4), since the
trivial group 0 is the terminal object inAb. Repeating the argument, the full subcategory
of ΠAlgk−1

n consisting of objectsπ with πn+1 = 0, . . . , πn+k−1 = 0 is isomorphic toAb, via
the correspondence (πn,0, . . . ,0) 7→ πn. Now the full subcategoryΠAlg(n,n+k) ofΠAlgk

n
is isomorphic to the comma category ofΓk

n restricted to objects of the form (πn,0, . . . ,0).
That is precisely the functor̃Γk

n defined above. �

In particular, we havẽΓk
n = 0 if and only if the projectionΠAlg(n,n+ k)

�

−→ Ab ×Ab is
an isomorphism of categories, that is theΠ-algebra structure concentrated in degreesn and
n+ k is trivial. The correspondingΠ-algebras (πn, πn+k) are clearly realizable, for example
by a product of Eilenberg-MacLane spacesK(πn,n) × K(πn+k,n+ k).

Remark2.3. By 2.2 and A.4, the categoryΠAlg(n,n + k) is additive if and only if the
functor Γ̃k

n is additive. This certainly happens in the stable range, butnot always (e.g.
k = 2,n = 3 as in Ex. 2.4). In fact, we will see shortly that it happens often (see Prop. 2.7).

Example2.4. Takingk = 2, the formula forΓ2
n in [4, 1.10] yields

Γ̃2
n(πn) =



0 for n = 2

Λ2(π3) for n = 3

0 for n ≥ 4

whereΛ2(A) := A⊗A/(a⊗a ∼ 0) denotes the exterior square. Note that the mapΛ2(π3)→
π5 encodes the Whitehead product [−,−] : π3 ⊗Z π3→ π5.

In aΠ-algebra concentrated in degreesn andn+k, any operation that factors through in-
termediate degrees would automatically vanish. This suggests looking at indecomposable
operations, in the following sense.

Definition 2.5. Let Qk,n denote theindecomposablesof πn+k(Sn), i.e. the quotient of
πn+k(Sn) by the subgroup generated by all decomposable elements.

Here, an elementx ∈ πn+k(Sn) is called decomposableif it is obtained via (non-
trivial) primary homotopy operations from elements of lower degree, including possibly
of degreen, but not only elements of degreen. For example, the Whitehead product
[y, ιn] ∈ πp+n−1(Sn) with y ∈ πp(Sn), p > n, is decomposable. However, the Whitehead
product [ιn, ιn] ∈ π2n−1(Sn) is not considered decomposable.

Warning: The definition of decomposable in [7,§2.2] doesinclude elements obtained
via primary operations from elements of degreen. In particular, the latter definition makes
everyelementx ∈ πn+k(Sn) decomposable, since it is obtained as a precomposition of the
identity class,x = ιn ◦ x = x∗(ιn).

In the stable rangek ≤ n − 2, Qk,n = QS
k does not depend onn. HereQS

∗ denotes the
indecomposables of the graded ringπS

∗ (homotopy groups of the sphere spectrum).

Remark2.6. The subgroup generated by all decomposables is in fact generated by compo-

sitions of the formSn+k f
−→ Sm g

−→ Sn (with n < m < n+ k) and 3-fold iterated Whitehead
products of the identity mapιn ∈ πn(Sn) of even-dimensional spheres. This follows from
the Barcus-Barratt formula and the fact that all 4-fold iterated Whitehead products of the
identity class for spheres vanish [26, Thm. XI.8.8]. See thediscussion before Lemma 3.6
of [8].
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Proposition 2.7. Assuming k, n− 1, we have

Γ̃k
n(πn) = πn ⊗Z Qk,n.

In particular, in the stable range k≤ n− 2, we have

Γ̃k
n(πn) = πn ⊗Z QS

k .

Proof. See section 7.3. �

Corollary 2.8. For all k and n with k , n − 1 such that Qk,n = 0 holds, 2-stageΠ-
algebras concentrated in degrees n and n+ k have trivial homotopy operations and are
thus automatically realizable.

Example2.9. EveryΠ-algebra concentrated in degrees 2 and 2+ k is realizable. The case
k = 1 is settled in Example 1.6. For the casek ≥ 2, note that the Hopf mapη : S3 → S2

induces an isomorphismπ2+kS3 ≃−→ π2+kS2. Hence every element inx ∈ π2+kS2 is in fact a
decomposable elementη ◦ x′ for somex′ ∈ πn+kS3. Thus we haveQk,2 = 0 and the result
follows from 2.8.

As noted in example 1.6, the realization problem is solved inthe affirmative in the case
k = 1. The same is true for the casek = 2.

Proposition 2.10. EveryΠ-algebra concentrated in degrees n and n+ 2 is realizable.

Proof. In the stable rangen ≥ 4, it follows from 2.8 andQS
2 = 0, because ofπS

2 = Z/2
〈
η2
〉
.

Likewise forn = 2, it follows from the factQ2,2 = 0, obtained fromπ4(S2) = Z/2 〈η ◦ η〉.
The only case where theΠ-algebra data is non-trivial isn = 3, with Γ̃2

3 = Λ
2 as noted

in example 2.4. In that case, theΠ-algebraπ is realizable if and only if the obstruction
O(π) = η2 ◦ E3(η1) described in [4, Thm. 3.3 (B)] vanishes. The mapE3(η1) described in
[4, § 3.2] factors throughπ4 and is therefore zero in our case (withπ4 = 0). �

3. Metastable case

The situation is somewhat more complicated for the criticaldimensionk = n−1, which
is in the metastable range. Let us recall some terminology and basic facts from [1].

Definition 3.1. [1, Def. 2.1] Aquadratic Z-module

M =
(
Me

H
−→ Mee

P
−→ Me

)

consists of a pair of abelian groupsMe andMee together withZ-linear mapsH andP that
satisfyPHP= 2P andHPH = 2H.

A morphism f : M → N of quadraticZ-modules consists of a pair ofZ-linear maps
f : Me→ Ne and f : Mee→ Nee which commute withH andP respectively.

For any quadraticZ-moduleM, one has the involution

T ≔ HP− 1: Mee→ Mee

which satisfiesPT = P, T H = H, andTT = 1.

Example3.2. [1, After Rem. 9.2] Consider

πm{S
n} =

(
πmSn H

−→ πmS2n−1 P
−→ πmSn

)

whereH is the Hopf invariant andP = [ιn, ιn]∗ is induced by the Whitehead square. This
dataπm{Sn} is a quadraticZ-module.
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In particular, we have

π3{S
2} =

(
π3S2 H

−→ π3S3 P
−→ π3S2

)
=

(
Z

1
−→ Z

2
−→ Z

)

π5{S
3} =

(
π5S3 H

−→ π5S5 P
−→ π5S3

)
=

(
Z/2

0
−→ Z

0
−→ Z/2

)
.

Definition 3.3. [1, Def. 4.1] Given an abelian groupA and a quadraticZ-moduleM, their
quadratic tensor product A⊗q

Z
M is the abelian group generated by symbols

a⊗m, a ∈ A,m ∈ Me

[a,b] ⊗ n, a,b ∈ A,n ∈ Mee

subject to the relations

(a+ b) ⊗m= a⊗m+ b⊗m+ [a,b] ⊗ H(m)

a⊗ (m+m′) = a⊗m+ a⊗m′

[a,a] ⊗ n = a⊗ P(n)

[a,b] ⊗ n = [b,a] ⊗ T(n)

[a,b] ⊗ n is linear in each variablea,b, andn.

We will often omit the subscriptZ and simply writeA⊗q M.

Example3.4. [1, Prop. 4.5] Taking the quadraticZ-module

Z
Γ
≔

(
Z

1
−→ Z

2
−→ Z

)
≃ π3{S

2},

the quadratic tensor product with any abelian groupA is A ⊗q
Z
Γ
� Γ(A), Whitehead’s

universal quadratic functorΓ : Ab → Ab described in [25] [5,§2.1].

Note that the usual tensor product with a given abelian group(or more generallyR-
module)M defines an additive functor− ⊗Z M. Similarly, the quadratic tensor product
− ⊗q M with a fixed quadraticZ-moduleM always defines a quadratic functorAb → Ab
in the following sense.

Definition 3.5. [5, §2] Let F : Ab → Ab be a functor satisfyingF(0) = 0. Recall thatF is
additive or linear if the natural projection

F(X ⊕ Y)→ F(X) ⊕ F(Y)

is an isomorphism.
We say thatF is quadratic if the second cross effect

F(X|Y) ≔ ker(F(X ⊕ Y)→ F(X) ⊕ F(Y))

viewed as a bifunctor is linear in bothX andY. In this case, one has a natural decomposition

F(X ⊕ Y) � F(X) ⊕ F(Y) ⊕ F(X|Y).

Proposition 2.7 said that a 2-stageΠ-algebra is described by indecomposable homotopy
operations, fork , n− 1. There is an analogous notion in the metastable casek = n− 1.

Definition 3.6. For n ≥ 2, thequadratic Z-module of indecomposablesof π2n−1{Sn} is
the quotient quadraticZ-module

Qn−1{S
n} ≔

(
Qn−1,n

H
−→ π2n−1S2n−1 P

−→ Qn−1,n

)

using the notation of 2.5. This is well defined sinceH : π2n−1Sn → π2n−1S2n−1
� Z van-

ishes on decomposable elements, namely compositions, since these are torsion elements.
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Proposition 3.7. In the metastable case k= n−1, the functor̃Γn−1
n is the quadratic functor

given by

Γ̃n−1
n (πn) = πn ⊗

q Qn−1{S
n}.

Proof. See section 7.3. �

Example3.8. In the casen = 2 andk = 1, we have

π3{S
2}
=
։ Q1{S

2} �

(
Z

1
−→ Z

2
−→ Z

)
= ZΓ.

As noted in Example 3.4, the quadratic tensor product with this quadraticZ-module is

π2 ⊗
q
Z
Γ
� Γ(π2)

which recovers the casen = 2 of Example 1.6.

Example3.9. In the casen = 3 andk = 2, we have

π5{S
3} �

(
Z/2

0
−→ Z

0
−→ Z/2

)
.

where the groupπ5S3
� Z/2 is generated by the compositeS5 η

−→ S4 η
−→ S3. Therefore the

quadraticZ-module of indecomposables is

Q2{S
3} � (0→ Z→ 0) = ZΛ

using the notation of [1, Lem. 2.11]. By [1, Prop. 4.5], the quadratic tensor product with
this quadraticZ-module is the exterior square functor

π3 ⊗
q
Z
Λ
� Λ2(π3)

which recovers the casen = 3 of Example 2.4.

4. Criterion for realizability

First recall some notions and notation from [4,§ 1,2]. LetX be an (n−1)-connected CW-
complex, whose homotopyΠ-algebra is given inductively by the abelian groupπn ≔ πnX
and maps of abelian groups

η1 : Γ1
n(πn)→ πn+1

η2 : Γ2
n(η1)→ πn+2

. . .

ηk : Γk
n(η1, η2, . . . , ηk−1)→ πn+k

. . .

Note thatηk encodes the (n+ k)-type ofπ∗X.
Consider Whitehead’s “certain exact sequence” [25]

(1) . . .→ H j+1X
b
−→ Γ jX

i
−→ π jX

h
−→ H jX

b
−→ Γ j−1X→ . . .

whereh is the Hurewicz map. There is a transformationγ, natural inX, making the diagram

(2) Γk
n(η1, η2, . . . , ηk−1)

γ

��

ηk

''OOOOOOOOOOO

Γn+kX
i // πn+kX
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commute. In [4, Thm. 2.4],γ is exhibited as the left edge morphism of a spectral sequence

E2
p,q = (LpΓ

q
n)(η1, η2, . . . , ηq−1)⇒ Γn+p+qX.

Lemma 4.1. Postnikov truncation X→ PnX induces isomorphismsΓ jX
�

−→ Γ jPnX for
j ≤ n+ 1.

Proof. The truncation mapX → PnX can be chosen as a direct limit of mapsX = X0 →

X1 → X2 → . . . which are cell attachments, whereX j → X j+1 is attaching cells of dimen-
sion at leastn+ j + 2 (in order to killπn+ j+1). In particular, only cells of dimension at least
n+ 2 are involved, so that with this particular cell structure,the skeletaX(n+1) = (PnX)(n+1)

agree.
SinceΓ jX can be defined asΓ jX = im

(
π jX( j−1)→ π jX( j)

)
induced by skeletal inclusion,

the result follows. �

Theorem 4.2(Criterion for realizability). The2-stageΠ-algebra corresponding to

ηk : Γ̃k
n(πn)→ πn+k

is realizable if and only if the mapηk factors through the mapγK(πn,n) as illustrated in the
diagram

Γn+kK(πn,n)

��
�

�

�

Γ̃k
n(πn)

γK(πn,n)

99rrrrrrrrrr

ηk

// πn+k.

Here we have the isomorphismΓn+kK(πn,n) � Hn+k+1K(πn,n) by the Whitehead exact
sequence(1). The homology of Eilenberg-MacLane spaces is well known[15] [16] [17]
[13].

Proof. (⇒) If π is realizable by a spaceX, then the natural transformationγ for X yields a
commutative diagram

Γk
n(πn,0, . . . ,0) = Γ̃k

n(πn)

γX

��

ηk

))SSSSSSSSSSSSSSSSSSSS

Γn+kX
i // πn+kX = πn+k

as noted in (2). BecauseX has (n+ k− 1)-typePn+k−1X � K(πn,n), lemma 4.1 provides a
natural isomorphism

Γn+kX � Γn+k(Pn+k−1X) � Γn+kK(πn,n)

and therefore the desired factorization.
(⇐) We will use the theorem on the realizability of the Hurewiczmorphism [2, Thm.

3.4.7], starting from the (n + k − 1)-Postnikov section of a putative realization, which is
K(πn,n). First note that the map

in+k−1 : Γn+k−1K(πn,n)→ πn+k−1K(πn,n) = 0

in Whitehead’s exact sequence is null, that is kerin+k−1 = Γn+k−1K(πn,n). (Except in
the casek = 1, but the argument below will work anyway, using kerin+k−1 instead of
Γn+k−1K(πn,n).)

We are given a factorizationηk = f ◦ γK(πn,n), with f : Γn+kK(πn,n) → πn+k. Choose
an epimorphismb1 : H1 ։ ker f where H1 is a free abelian group. Now takeH0 ≔
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coker f ⊕ Γn+k−1K(πn,n) with the mapπn+k → H0 surjecting onto the first summand and
b0 : H0։ Γn+k−1K(πn,n) the projection. These maps assemble into the exact sequence

H1
b1
−→ Γn+kK(πn,n)

f
−→ πn+k → H0։ Γn+k−1K(πn,n)→ 0.

By [2, Thm. 3.4.7], there exists a CW-complexX together with an (n+ k− 1)-equivalence
p: X→ Y making the diagram

Hn+k+1X

�

��

// Γn+kX

� p∗

��

// πn+kX

�

��

// Hn+kX

�

��

// // Γn+k−1X

� p∗

��

// 0

H1
b1 // Γn+kK(πn,n)

f
// πn+k // H0

// // Γn+k−1K(πn,n) // 0

commute, where the top row is part of Whitehead’s exact sequence forX. By naturality of
γ, the diagram

Γ̃k
n(πn)

γX
//

ηX
k

((
Γn+kX

� p∗

��

in+k // πn+kX

�

��
Γ̃k

n(πn)
γK(πn,n)

//

ηk

66Γn+kK(πn,n)
in+k // πn+k

commutes, so thatX has the prescribedΠ-algebra structure up to degreen+ k. Hence the
Postnikov sectionPn+kX is a realization ofπ. �

Corollary 4.3. Fix n ≥ 2 and k≥ 1. Then an abelian groupπn has the property that “every
Π-algebra concentrated in degrees n and n+ k with prescribed groupπn is realizable” if
and only if the map

γK(πn,n) : Γ̃
k
n(πn)→ Γn+kK(πn,n)

is split injective.

Proof. (⇒) If γK(πn,n) is not split injective, then pickπn+k ≔ Γ̃
k
n(πn) with the structure map

ηk ≔ id : Γ̃k
n(πn)→ Γ̃k

n(πn)

which does not factor throughγK(πn,n), and thus defines a non-realizableΠ-algebra.
(⇐) If γK(πn,n) is split injective, then a factorization

Γn+kK(πn,n) ≃ Γ̃k
n(πn) ⊕C

f

��
�

�

�

Γ̃k
n(πn)

)

	

γK(πn,n)

66mmmmmmmmmmmmm

ηk

// πn+k

can always be found, takingf to beηk on the summand̃Γk
n(πn) and an arbitrary map on the

complementary summandC. �

Remark4.4. As a particular case of corollary 4.3, wheneverγ is not injective, one can find
a corresponding non-realizable 2-stageΠ-algebra. Here is another way of thinking about
this.

Say that a homotopy operationα ∈ πn+kSn can be detected by a spaceX if there is
an x ∈ πnX satisfyingα∗x , 0 ∈ πn+kX. Using 2.7, theorem 4.2 says that a homotopy
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operationα ∈ Qk,n can be detected by a 2-stage space if and only if it satisfiesγK(Z,n)(α) ,
0. Indeed, one has the realizable 2-stageΠ-algebra withπn = Z, πn+k = Γn+kK(Z,n), and
γK(Z,n) : Qk,n→ Γn+kK(Z,n) as structure map.

Remark on k-invariants. It is a classic fact that connected spaces are classified up to
homotopy by theirk-invariants. In particular, a 2-stage spaceX with homotopy groupsπn

andπn+k (wheren ≥ 2) is classified by itsk-invariant

κ ∈ Hn+k+1 (K(πn,n); πn+k) .

Via the natural surjective map

θ : Hn+k+1 (K(πn,n); πn+k)։ HomZ (Hn+k+1(K(πn,n),Z), πn+k)

this yields a map of abelian groups

Γn+kK(πn,n) � Hn+k+1(K(πn,n),Z)
θ(κ)
−−→ πn+k.

Another point of view on theorem 4.2, as well as an alternate proof, is that theΠ-algebra
π∗X is given by the structure map

Γ̃k
n(πn)

γK(πn,n)
//

ηk

66Γn+kK(πn,n)
θ(κ)

// πn+k.

This follows from the theorem onk-invariants in [2, Thm. 2.5.10 (b)] and diagram (2).
Therefore, the realizable 2-stageΠ-algebras are precisely those whose structure mapηk

factors throughγK(πn,n).

5. Stable case

A Π-algebra concentrated in a stable rangen,n + 1, . . . ,n + k with k ≤ n − 2 can be
identified with a module over the stable homotopy ringπS

∗ , or more precisely its Postnikov
truncationπS

∗≤k. Indeed, in such aΠ-algebraπ, all Whitehead products vanish for dimen-
sion reasons, and all precomposition operationsα∗ : πn+i → πn+ j are induced by maps
α : Sn+ j → Sn+i that live in stable homotopy groupsπS

j−i . The identification is made more
precise in 7.9.

Proposition 5.1. AΠ-algebra concentrated in a stable range n,n+1, . . . ,n+k is realizable
(by a space) if and only if the correspondingπS

∗ -module is realizable (by a spectrum).

Proof. (⇒) Let π be aΠ-algebra concentrated in said stable range, and denote alsoby π
the correspondingπS

∗ -module. If X is a space realizingπ, then the Postnikov truncation
Pn+kΣ

∞X of the suspension spectrum ofX is a spectrum realizingπ. Indeed,X is (n− 1)-

connected so that the Freudenthal suspension theorem provides an isomorphismπiX
�

−→

πS
i X = πiΣ

∞X for i ≤ 2n − 2, in particular fori ≤ n + k. Moreover, this isomorphism
is compatible with precomposition operations, so thatπ∗Σ

∞X has the correctπS
∗ -module

structure in the stable range∗ ≤ n+ k. Becauseπ has only zeroes above degreen+ k, we
obtain the isomorphism ofπS

∗ -modulesπ∗Pn+kΣ
∞X ≃ π.

(⇐) Let M be aπS
∗ -module concentrated in a stable range, so that the corresponding

Π-algebra isΩ∞M, by 7.9. If Z is a spectrum realizingM, then the infinite loop space
Ω∞Z is a space realizingΩ∞M, by 7.6. �

Remark5.2. A πS
∗ -moduleπ is realizable if and only if any of its shiftsΣ jπ (for j ∈ Z) is

realizable. This follows from the isomorphismπ∗(Σ jZ) � Σ j(π∗Z) of πS
∗ -modules.
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The criterion 4.2 indicates that the map

γK(πn,n) : Γ̃
k
n(πn)→ Γn+kK(πn,n) � Hn+k+1K(πn,n)

plays a key role for determining realizability. In the stable rangek ≤ n− 2, we have seen
in 2.7 that the domain ofγK(πn,n) is

Γ̃k
n(πn) = πn ⊗Z QS

k

while its codomain is

Hn+k+1K(πn,n) � (HZ)k+1(Hπn) � (Hπn)k+1(HZ)

whereHA denotes the Eilenberg-MacLane spectrum of an abelian groupA. The universal
coefficient theorem yields a natural exact sequence

0→ πn ⊗Z HZk+1HZ ֒→ (Hπn)k+1HZ։ TorZ1(πn,HZkHZ)→ 0

which is split (non-naturally).

Lemma 5.3. Let R be a commutative ring, RMod the category of R-modules, and f f RMod
the full subcategory consisting of finitely generated free R-modules. Letι : f f RMod →
RMod denote the inclusion.

Let F: f f RMod → RMod be an additive functor. Then there is a unique extension
F : RMod → RMod of F which preserves all (small) colimits.F is natural in F. It is given
by F = − ⊗R FR. For any functor G: RMod → RMod, there is a natural transformation
ι∗G→ G, which is natural in G.

Proof. For a finitely generated freeR-moduleM ≃ ⊕i∈I R, we have

FM ≃ F(⊕i∈I R) � ⊕i∈I FR≃ M ⊗R FR

sinceF is additive.
EveryR-moduleM is (naturally) a colimit of finitely generated freeR-modules, which

implies that the left Kan extension ofι alongι is Lanι ι � 1RMod . Therefore an extensionF,
if it exists, is a left Kan extension ofF alongι, which exists and is unique. It is given by

FN = (Lanι F)N = colim
ιM→N

FM

= colim
ιM→N

(M ⊗R FR)

= (colim
ιM→N

M) ⊗R FR

= (Lanι ι)N ⊗R FR

= N ⊗R FR.

MoreoverF = Lanι F is natural inF, that is

Lanι : Fun(f f RMod,RMod)→ Fun(RMod,RMod)

is a functor. In fact, Lanι is left adjoint to the restriction functorι∗, so that the counit
ǫG : Lanι ι∗G→ G provides a natural transformation which is natural inG. �

Remark5.4. ι∗G is not the 0th left derived functorL0G of G, which provides the best
approximation ofG by a right exact functor, with comparison mapL0G → G. Indeed,
there exist additive right exact functorsAb → Ab which donot preserve infinite direct
sums. However, the comparison maps do fit together asι∗G→ L0G→ G.
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Proposition 5.5. In the stable range k≤ n− 2, the map

γK(πn,n) : πn ⊗Z QS
k → (HZ)k+1(Hπn)

factors through the summandπn ⊗Z HZk+1HZ, i.e. we have

γK(πn,n) : πn ⊗Z QS
k → πn ⊗Z HZk+1HZ ֒→ (HZ)k+1(Hπn).

Proof. First note that
A 7→ HZk+1HA

defines an additive functorG: Ab → Ab. For abelian groupsA, B, we have:

G(A⊕ B) = HZk+1H(A⊕ B)

� HZk+1(HA∨ HB)

� HZk+1HA⊕ HZk+1HB

= GA⊕GB.

Now γ : F → G is a natural transformation from the functorF = − ⊗Z QS
k to G and by

lemma 5.3 induces a commutative diagram

ι∗F

ǫF

��

ι∗γ
//
ι∗G

ǫG

��
F γ

// G.

BecauseF already preserves all colimits (i.e. is of the formF = − ⊗Z FZ), the mapǫF is
an isomorphism. Moreover we have

ι∗G = − ⊗Z GZ = − ⊗Z HZk+1HZ

and the coaugmentation

(ǫG)A : A⊗Z HZk+1HZ→ HAk+1HZ

is the usual inclusion of the tensor summand. Thereforeγ factors through said inclusion.
�

Corollary 5.6. In the stable range k≤ n− 2, everyΠ-algebra concentrated in degrees n
and n+ k is realizable if and only if the map

γK(Z,n) : QS
k → HZk+1HZ

is split injective. Note that the map does not depend on n, only on the stable stem k.

Proof. By 4.3, everyΠ-algebra concentrated in degreesn andn+k is realizable if and only
if the maps

γK(πn,n) : πn ⊗Z QS
k → (HZ)k+1(Hπn)

are split injective for every abelian groupπn. By 5.5, this is equivalent to the maps

γK(πn,n) : πn ⊗Z QS
k → πn ⊗Z HZk+1HZ

being split injective. Since applyingπn ⊗Z − (or any functor) to a split monomorphism
yields a split monomorphism, this is equivalent to the single map

γK(Z,n) : QS
k → HZk+1HZ

being split injective. �
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6. Non-realizable examples

As noted in Ex. 1.6 and Prop. 2.10, all 2-stageΠ-algebras with stemk = 1 or k = 2 are
realizable – for any value ofn, not only stably. We will show that the smallest stem where
a non-realizable example appears isk = 3.

Let us recall the first few stable homotopy groups of spheres;see [4,§ 4]. In degrees
∗ ≤ 6, the stable homotopy ringπS

∗ is generated (as an algebra) by elementsη ∈ πS
1 , ν ∈ πS

3 ,
andα ∈ πS

3 , subject to relations

2η = 0

4ν = η3

ην = 0

2ν2 = 0

3α = 0

α2 = 0.

Hereη is the stabilization of the Hopf mapS3 → S2 andν is the 2-primary part of the
stabilization of the Hopf mapH : S7 → S4. Integrally,ν can be thought of as, say, 3H.
The elementα is the first in the 3-primary alpha family.

The first few stable homotopy groups are

πS
i =



Z i = 0

Z/2 〈η〉 i = 1

Z/2
〈
η2
〉

i = 2

Z/24≃ Z/8 〈ν〉 ⊕ Z/3 〈α〉 i = 3

0 i = 4

0 i = 5

Z/2
〈
ν2
〉

i = 6

and their indecomposables are

QS
i =



Z i = 0

Z/2 〈η〉 i = 1

0 i = 2

Z/12≃ Z/4 〈ν〉 ⊕ Z/3 〈α〉 i = 3

0 i = 4

0 i = 5

0 i = 6.

Proposition 6.1. Let n≥ 5. The (stable)Π-algebra concentrated in degrees n and n+ 3
given byπn = Z andπn+3 = Z/4 with structure mapη3 : πn ⊗Z QS

3 → πn+3 = Z/4 given by
the projection

πn ⊗Z QS
3 � QS

3 = Z/4 〈ν〉 ⊕ Z/3 〈α〉։ Z/4

sendingν to 1 is not realizable.

Proof. According to [16, Thm. 25.1], we haveHZ4HZ ≃ Z/6 = Z/2 ⊕ Z/3. Therefore
the mapγ : QS

3 ≃ Z/12→ Z/6 ≃ HZ4HZ sends 2ν to 0, whereasη3 does not. The result
follows from 4.2. �
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Theorem 4.2 reduces realizability questions to the algebraic problem of understanding
the mapγ, but it can also be used the other way around, as we now illustrate.

Proposition 6.2. The mapγ : QS
3 → HZ4HZ sendsα to a non-zero element (therefore of

order3).

Proof. Taken ≥ 5 and consider the localization at 3 of the sphereSn → Sn
(3), then take

Postnikov sectionsPn+3Sn → Pn+3Sn
(3) =: X. Because this map induces 3-localization on

homotopy groups (and a map ofΠ-algebras), theΠ-algebraπ∗X consists of two non-zero
groups

πnX � Z(3)

πn+3X � Z/3 〈α〉

with structure map

η3 : πnX ⊗Z QS
3
≃
−→ πn+3X

sendingα to α, i.e. the identity via the identification

πnX ⊗Z QS
3 � Z(3) ⊗Z (Z/4 〈ν〉 ⊕ Z/3 〈α〉) = Z/3 〈α〉 .

By 4.2, we deduce that the map

Z(3) ⊗Z γ : Z(3) ⊗Z QS
3 � Z/3 〈α〉 → Z(3) ⊗Z HZ4HZ ≃ Z/3

sendsα to a non-zero element, and therefore so doesγ. �

In fact, the same argument yields a more general statement.

Proposition 6.3. Fix a prime p≥ 3 and consider the Greek letter elementα1 ∈ QS
2(p−1)−1.

The mapγ : QS
2(p−1)−1 → HZ2(p−1)HZ sendsα to a non-zero element (therefore of order p).

Proof. Write the stable stemk ≔ |α1| = 2(p − 1) − 1 and taken very large, namely
n ≥ k + 2. Consider the localization atp of the sphereSn → Sn

(p), then take Postnikov
sectionsPn+kSn→ Pn+kSn

(p) =: X.

A key feature ofα1 is that it generatesπS
2p−3 ⊗ Z(p) ≃ Z/p and is the first element of

order a power ofp in πS
∗ [24, (13.4)]. Thus thep-localization of all lower (positive) stems

is zero. Therefore theΠ-algebraπ∗X consists of two non-zero groups

πnX � Z(p)

πn+kX � (πS
k )(p) ≃ Z/p

in whichα1 is detected. More precisely, taking 1∈ πnX we haveα∗1(1) = α1 , 0 in πn+kX.
By 4.2 (and remark 4.4),γ sendsα1 to a non-zero element. �

Proposition 6.1 provides a non-realizable 2-stageΠ-algebra with the lowest possible
stem dimensionk = 3. It would be interesting to find an infinite family of such examples, in
infinitely many stem dimensionsk. For this we need an infinite family of indecomposables
in Q∗. The Greek letter elements, for example theα andβ families, are good candidates.

Proposition 6.4. Fix a prime p ≥ 3 and consider the alpha elementsαi ∈ QS
2i(p−1)−1

[22, Def. 1.3.10, Thm. 1.3.11]. For every i≥ 2, the mapγ : QS
2i(p−1)−1 → HZ2i(p−1)HZ

sendsαi to zero.
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Proof. For i ≥ 2, there is a Toda bracket [24, (13.4)]

αi ∈ 〈α1, p, αi−1〉

so thatαi cannot be detected by a 2-stage space (or spectrum), and by 4.4 we haveγ(αi) =
0.

In more detail, writes= |α1| andt = |αi−1| so thatαi = s+ t+1, and assumeX is a space
with homotopy concentrated in degreesn andn + s+ t + 1 (for n large). Let us illustrate
the Toda bracket setup:

Sn+s+t αi−1
−−−→ Sn+s p

−→ Sn+s α1
−−→ Sn.

Pick anyx ∈ πnX. We claim that the precompositionα∗i (x) = xαi is null. Postcomposing
by x defines a map [24, Prop. 1.2 (iv)]

〈α1, p, αi−1〉
x◦−
−−−→〈xα1, p, αi−1〉

= 〈0, p, αi−1〉

using the factxα1 ∈ πn+sX = 0. The indeterminacy of〈0, p, αi−1〉 is

0[Sn+s+t+1,Sn+s] + [Sn+s+1,X]αi−1

= (πn+s+1X)αi−1

= {0}

again using the assumption onπ∗X. Moreover, 0 is clearly a representative in〈0, p, αi−1〉

[24, Prop. 1.2 (0)], thus we have equality〈0, p, αi−1〉 = {0}. Thereforexαi ∈ 〈0, p, αi−1〉 is
null, as claimed. �

Proposition 6.5. Fix a prime p ≥ 3 and consider the divided alpha elementsαi/ j ∈

QS
2i(p−1)−1, where j ≤ νp(i) + 1, and νp denotes the p-adic valuation[22, Def. 1.3.19].

For every j≥ 2, we have pαi/ j , 0 butγ(pαi/ j) = 0.

Proof. Recall a few properties of the divided alpha elements [22] [6, §1]. The element

αi/ j ∈ Ext1,2i(p−1)
BP∗BP (BP∗, BP∗)

defined in theE2-term of the Adams-Novikov spectral sequence is a permanentcycle and
therefore represents an element in homotopyαi/ j ∈ π

S
2i(p−1)−1 (which is known to be in

the image of theJ-homomorphism). It has (additive) orderp j , is indecomposable, and its
order inQS

∗ is still p j . This provespαi/ j , 0 in QS
∗ .

On the other hand, thep-torsion inHZ∗HZ is annihilated by a single power ofp [19,
Thm. 3.1] [13,§11, Thm. 2]. Therefore the mapγ : QS

∗ → HZ∗+1HZ must sendpαi/ j to
zero. �

Remark6.6. In proposition 6.5, we may as well takei = p j−1.

Wheneverγ : QS
k → HZk+1HZ is non-injective, we can find a corresponding non-

realizable 2-stageΠ-algebra in stem dimensionk. Therefore, propositions 6.4 and 6.5
provide infinite families of non-realizable examples, in infinitely many stem dimensions.

Note that [9, Thm. 8.1] also provides a (different) infinite family of non-realizableΠ-
algebras, which can be truncated to two non-zero degrees. The argument used there is
similar to that of 6.4.
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7. Proofs

7.1. Theories. The categoryΠ forms a theory in the sense of Lawvere [3,§6], more
precisely agraded(or multisorted) theory[3, §8]. We adopt the following convention.

Definition 7.1. A theory is a category with finite coproducts, including the empty coprod-
uct (initial object∗).

Definition 7.2. Let T be a theory. Amodel for T is a product-preserving functorTop →

Set. In other words, a contravariant functor sending coproducts to products.
As in [4,§ 1], let model(T) := Fun×(Top,Set) denote the category of models for a theory

T.

In this terminology,Π-algebras are models forΠ. We will be interested inΠ-algebras
concentrated in a range of dimensions.

Notation 7.3. Denote by:

• Πn the full subcategory ofΠ consisting of wedges of spheres of dimensions at
leastn;
• Πk

n the full subcategory consisting of wedges of spheres of dimensions fromn to
n+ k.

Note thatΠn andΠk
n are also theories, and the inclusion functorsΠk

n→ Πn→ Π are maps
of theories, i.e. preserve coproducts.

Notation 7.4. Denote by:

• ΠAlg ≔ model(Π) the category ofΠ-algebras;
• ΠAlgn the full subcategory consisting of (n− 1)-connectedΠ-algebras;
• ΠAlgk

n the full subcategory consisting ofΠ-algebras concentrated in degreesn to
n+ k.

The equivalencesΠAlgn � model(Πn) andΠAlgk
n � model(Πk

n) are proved in [18, Prop.
4.5, Rem. 4.6].

Let us study the stable case as in section 5 more precisely. Given a spectrumZ, its
homotopy groupsπ∗Z naturally form aπS

∗ -module, whereπS
∗ is the stable homotopy ring.

This algebraic structure can also be described as a model fora theory.

Notation 7.5. Let Spdenote the category of spectra; any version of it will do here, since we
will only use its homotopy category. LetΠst denote the full subcategory of the homotopy
categoryHoSp consisting of finite wedges of sphere spectra∨Sni , ni ∈ Z. Here again, the
empty wedge (a point) is allowed.

We have the isomorphism of categories model(Π
st) � πS

∗Mod, sending a modelM to
theπS

∗ -moduleMi ≔ M(Si) endowed with the induced precomposition operations. Given
a spectrumZ, the realizableπS

∗ -moduleπ∗Z corresponds to the functor [−,Z].
We can now make the relationship betweenΠ-algebras andπS

∗ -modules precise.
Consider the suspension spectrum functorΣ∞ : Π → Πst which sends maps to their

stabilization. BecauseΣ∞ preserves coproducts (wedges), it induces a restriction functor
on models

Ω∞ ≔ (Σ∞)∗ : πS
∗Mod → ΠAlg.

Concretely,Ω∞M has the same underlying graded group asM in degreesi ≥ 1, and maps
between spheres act onΩ∞M via their stabilization. The notationΩ∞ is justified by the
following proposition.
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Proposition 7.6. For any spectrum Z, there is an isomorphism ofΠ-algebrasπ∗(Ω∞Z) �
Ω∞(π∗Z), which is natural in Z.

Proof. Let S be an object ofΠ, that is, a finite wedge of spheres. By definition, we have

π∗(Ω
∞Z)(S) = [S,Ω∞Z]

Ω∞(π∗Z)(S) = (π∗Z)(Σ∞S) = [Σ∞S,Z].

Moreover,Σ∞ is left adjoint toΩ∞ so that we have an isomorphism of sets

[S,Ω∞Z] � [Σ∞S,Z]

which is natural inS and Z. Naturality in S provides the isomorphism ofΠ-algebras
π∗(Ω∞Z) ≃ Ω∞(π∗Z), while naturality inZ implies that this isomorphism ofΠ-algebras is
also natural. �

Notation 7.7. Denote by:

• (Πst)n the full subcategory ofΠst consisting of wedges of sphere spectra of dimen-
sions at leastn;
• (Πst)k

n the full subcategory consisting of wedges of sphere spectraof dimensions
from n to n+ k.

As in the unstable picture, the inclusion functors (Πst)k
n → (Πst)n → Π

st are maps of
theories.

Notation 7.8. Denote by:

• πS
∗Modn the full subcategory ofπS

∗Mod consisting of (n−1)-connectedπS
∗ -modules;

• πS
∗Modk

n the full subcategory consisting ofπS
∗ -modules concentrated in degreesn

to n+ k.

Once again, there are isomorphisms of categoriesπS
∗Modn � model((Πst)n) andπS

∗Modk
n �

model((Πst)k
n).

Proposition 7.9. In the stable range k≤ n− 2, the functorΩ∞ restricts to an equivalence
of categories

Ω∞ : πS
∗Modk

n
�

−→ ΠAlgk
n.

Proof. In the stable range, the stabilization functorΣ∞ : Πk
n → (Πst)k

n is an equivalence of
categories. Therefore, it induces an equivalence on models

(Σ∞)∗ : model((Πst)k
n)
�

−→ model(Πk
n)

which is the desired equivalence. �

7.2. Split linear extension of theories.

Proposition 7.10. Let n≥ 2 and k≥ 1. Consider the functor

D : (Π0
n+k)

op ×Πk−1
n → Ab

(S,U) 7→ [S,U].

Then the theoryΠk
n with its natural projection

Π
k
n→ Π

0
n+k ×Π

k−1
n

given by “collapse” functors[18, § 4] is the split linear extension[3, Def. 7.1]ofΠ0
n+k ×

Π
k−1
n by D.
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Proof. First note thatD takes values inAb because every objectS = ∨iSn+k of Π0
n+k is an

abelian cogroup object (ofΠ orΠk
n). Moreover,D is additive inΠ0

n+k:

D(S1 ∨ S2,U) = [S1 ∨ S2,U] = [S1,U]∗ × [S2,U] = D(S1,U) × D(S2,U)

and satisfiesD(S, ∗) = [S, ∗] = 0 for anyS ∈ Π0
n+k. Therefore, there is such a thing as the

split linear extensionT of Π0
n+k ×Π

k−1
n by D, with its projectionq: T → Π0

n+k ×Π
k−1
n .

Let us construct an equivalence of categoriesϕ : Πk
n
�

−→ T with inverseψ : T
�

−→ Πk
n.

First, note that every objectX of Πk
n, i.e. a finite wedge of spheres of dimensions fromn

to n + k, can be uniquely expressed as a wedgeX = S ∨ U with S ∈ Π0
n+k,U ∈ Π

k−1
n ,

i.e. S contains the spheres of dimensionn + k andU contains the remaining spheres, of
dimensions fromn to n+ k− 1. Moreover, extracting either summand fromX is functorial
in X, using the collapse functors

colhi : Πk
n→ Π

0
n+k

collo : Πk
n→ Π

k−1
n

which extract the spheres of highest dimensionn + k and lower dimensionsn to n + k −
1, respectively. By abuse of notation, write colhi : X ։ S and collo : X ։ U for the
corresponding collapse maps.

Step 1: Construction ofϕ : Πk
n→ T. On objects, take

ϕ(X � S ∨ U) := (S,U) = (colhiX, colloX)

and for a morphismX1 � S1 ∨ U1
f
−→ S2 ∨ U2 � X2, ϕ( f ) is defined by the data



S1
inchi

1
֒→ S1 ∨ U1

f
−→ S2 ∨ U2

colhi
2
։ S2

U1
inclo

1
֒→ S1 ∨ U1

f
−→ S2 ∨ U2

collo2
։ U2

S1
inchi

1
֒→ S1 ∨ U1

f
−→ S2 ∨ U2

collo2
։ U2

where the last piece of data is an element of [S1,U2]∗ = D(S1,U2). In symbols:

ϕ( f ) =
(
colhi( f ), collo( f ), collo2 ◦ f ◦ inchi

1

)

=:
(
f hi, f lo, f hilo

)
.

We haveϕ(idX) = idϕX = (idS, idU ,0). Remains to check thatϕ respects composition.

Given a compositeX1
f
−→ X2

g
−→ X3 in Πk

r , which we write as

S1 ∨ U1
f
−→ S2 ∨ U2

g
−→ S3 ∨ U3

applyingϕ yields

ϕ(g f) =
(
(g f)hi, (g f)lo, (g f)hilo

)

=
(
ghi f hi,glo f lo, (g f)hilo

)

whereas the composite inT is

ϕ(g)ϕ( f ) =
(
ghi,glo,ghilo

) (
f hi, f lo, f hilo

)

=
(
ghi f hi,glo f lo, ( f hi)∗ghilo + (glo)∗ f hilo

)
.
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Let us check the equality (g f)hilo = ( f hi)∗ghilo + (glo)∗ f hilo:

( f hi)∗ghilo + (glo)∗ f hilo = ghilo f hi + glo f hilo

= collo3 g inchi
2 colhi

2 f inchi
1 + collo3 g inclo

2 collo2 f inchi
1

= collo3 g
(
inchi

2 colhi
2 + inclo

2 collo2
)

f inchi
1

= collo3 g
(
(1S2,0)+ (0,1U2)

)
f inchi

1

= collo3 g1X2 f inchi
1

= collo3 (g f) inchi
1

= (g f)hilo.

Step 2: Construction ofψ : T → Πk
n. On objects, take

ψ(S,U) := S ∨ U

and for a morphism
( f h, f l , δ) : (S1,U1)→ (S2,U2)

in T, with δ ∈ D(S1,U2) = [S1,U2], define the morphism

ψ( f h, f l , δ) : S1 ∨ U1→ S2 ∨ U2

ψ( f h, f l , δ) =
(
inchi

2 f h + inclo
2 δ
)
; inclo

2 f l .

We have
ψ1(S,U) = ψ(1S,1U ,0) = inchi ∨ inclo = 1S∨U

and it remains to check thatψ respects composition. Given a composite

(S1,U1)
( f h, f l ,δ)

//

(gh f h,gl f l ,( f h)∗ǫ+(gl )∗δ)

99
(S2,U2)

(gh,gl ,ǫ)
// (S3,U3)

in T, applyingψ yields

S1 ∨ U1
inchi

2 f h+inclo
2 δ;inclo

2 f l

//

inchi
3 gh f h+inclo

3 (( f h)∗ǫ+(gl )∗δ);inclo
3 gl f l

66S2 ∨ U2
inchi

3 gh+inclo
3 ǫ;inclo

3 gl

// S3 ∨ U3

which is still commutative, as we now check. On the summandS1, the top composite is

S1
inchi

2 f h+inclo
2 δ

−−−−−−−−−−→ S2 ∨ U2
inchi

3 gh+inclo
3 ǫ;inclo

3 gl

−−−−−−−−−−−−−−→ S3 ∨ U3

(
inchi

3 gh + inclo
3 ǫ; inclo

3 gl
)
◦
(
inchi

2 f h + inclo
2 δ
)

=
(
inchi

3 gh + inclo
3 ǫ; inclo

3 gl
)
◦
(
inchi

2 f h
)
+
(
inchi

3 gh + inclo
3 ǫ; inclo

3 gl
)
◦
(
inclo

2 δ
)

(3)

=
(
inchi

3 gh + inclo
3 ǫ
)
◦ f h +

(
inclo

3 gl
)
◦ δ

=inchi
3 gh f h + inclo

3 ǫ f h +
(
inclo

3 gl
)
◦ δ(4)

=inchi
3 (gh f h) + inclo

3

(
ǫ f h + glδ

)

=inchi
3 (gh f h) + inclo

3

(
( f h)∗ǫ + (gl)∗δ

)
.
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Step (3) follows from right distributivity for maps betweenspheres [26, Thm. X.8.1].
Step (4) follows from Hilton’s formula [26, Thm. XI.8.5] [2,§ A.9] and the fact that
f h : S1 → S2 is a map between spheres of equal dimensions (namelyn+ k). In that case,
the Hilton-Hopf invariants vanish and composition is in fact left distributive, in other words
precomposition byf h is linear.

Step 3:ψϕ = idΠk
n
. On objects, the composite of functors does

(X � S ∨ U)
ϕ
7→ (S,U)

ψ
7→ S ∨ U

and on a mapX1 � S1 ∨ U1
f
−→ S2 ∨ U2 � X2, the composite does

f
ϕ
7→
(
f hi, f lo, f hilo

)

ψ
7→
(
inchi

2 f hi + inclo
2 f hilo

)
; inclo

2 f lo.

Here comes the topological argument.Note thatS is (n + k − 1)-connected andU is
(n − 1)-connected, so that the natural mapS ∨ U → S × U is (n + k + n − 1)-connected.
That means fori ≤ n+ k + n− 2 (in particular fori ≤ n+ k), any mapg: Si → S ∨ U is
homotopic to inchicolhig+ inclocollog.

On the first summandS1, the mapf is

f inchi
1 = inchi

2 colhi
2 f inchi

1 + inclo
2 collo2 f inchi

1

= inchi
2 f hi + inclo

2 f hilo

and on the second summandU1, the mapf is

f inclo
1 = inclo

2 collo2 f inclo
1 by cellular approximation

= inclo
2 f lo

from which we obtain the desired equalityψϕ( f ) = f .
Step 4:ϕψ = idT . On objects, the composite of functors does

(S,U)
ψ
7→ S ∨ U

ϕ
7→ (S,U)

and on a map (f h, f l , δ) : (S1,U1)→ (S2,U2), the composite does

( f h, f l , δ)
ψ
7→
(
inchi

2 f h + inclo
2 δ
)
; inclo

2 f l

ϕ
7→
(
colhi

2

(
inchi

2 f h + inclo
2 δ
)
, collo2 inclo

2 f l , collo2
(
inchi

2 f h + inclo
2 δ
))

=
(
colhi

2 inchi
2 f h + colhi

2 inclo
2 δ, collo2 inclo

2 f l , collo2 inchi
2 f h + collo2 inclo

2 δ
)

=
(
f h, f l , δ

)
.

�

Remark7.11. Proposition 7.10 was implicitly used in [4, Prop. 1.6] without being proved
there.

7.3. Homotopy operation functors.

Proof of Proposition 2.7.Let πn be an abelian group. We want to compute the abelian
groupΓ̃k

n(πn) = Γk
n(πn,0, . . . ,0).

Our functorΓk
n is the functor denotedρ∗∆ in [3, (7.3)]. By proposition 7.10 and [3, Lem.

7.5; Lem. 7.10],Γk
n can be computed using a free presentation, as we will explainshortly.

Here we will implicitly use the identification model(Π0
n+k) � Ab sending a modelM to the

abelian groupM(Sn+k).
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Let g: T → S be a map between wedges of spheres of dimensionsn,n+1, . . . ,n+k−1
satisfying

(1) cokerπn(g) = πn;
(2) cokerπi(g) = 0 for n < i < n+ k, that is,πi(g) is surjective in those degrees.

Then the sequence of abelian groups

(5) πn+k(T ∨ S)2
πn+k(g,1)
−−−−−−→ πn+k(S)։ Γ̃k

n(πn)→ 0

is exact, where the left-hand group is

πn+k(T ∨ S)2 ≔ ker
(
πn+k(T ∨ S)

πn+k(0,1)
−−−−−−→ πn+k(S)

)

i.e. the kernel of the collapse map. In other words, our functor can be computed as̃Γk
n(πn) =

cokerπn+k(g,1).
A free presentation can be obtained as follows. LetR → F ։ πn → 0 be a free

presentation ofπn as abelian group, i.e. an exact sequence whereR andF are free abelian
groups. RealizeR → F asπn(g′) for a mapg′ : S′ → S between wedges of spheres
of dimensionn (with a sphereSn for each summandZ). Now insert spheres of higher
dimensions to kill all the homotopy ofS. More precisely, consider the wedge

S′′ ≔
∨

x∈πiS
n<i<n+k

Si

and the mapg′′ : S′′ → S defined on each summandSi by (a representative of) the indexing
elementx ∈ πiS. The map

T = S′′ ∨ S′
g=(g′′,g′)
−−−−−−→ S

provides a free presentation as described above.
Step 1: Assumeπn = F ≃ Z is free on one generator.
The free presentation ofπn is given byR = 0 andF = Z, so that we takeS′ = ∗ and

S = Sn. We want to compute the cokernel illustrated in (5). We claimthat the image of
πn+k(g,1) is the subgroupDec ⊂ πn+k(Sn) generated by decomposable elements, which
would prove the result̃Γk

n(Z) = Qk,n.
Takex ∈ πn+k(T ∨ Sn)2 and consider its imageπn+k(g,1)(x) ∈ πn+k(Sn) as illustrated in

the diagram

Sn+k

$$HH
HH

HH
HH

H

x // T ∨ Sn

(g,1)

��
Sn.

SinceT is a wedge of spheres (of dimensions strictly betweenn andn + k), the Hilton-
Milnor theorem [26, Thm. XI.8.1] implies

πn+k(T ∨ Sn) ≃
⊕

j

πn+k(S
mj )

for some appropriate dimensionsmj , andx can be expressed as

x =
∑

j

p j ◦ x j
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where thep j are certain iterated Whitehead products of summand inclusions of the indi-
vidual spheres ofT ∨ Sn. In particular, the element

(g,1) ◦ x = (g,1) ◦


∑

j

p j ◦ x j

 =
∑

j

(g,1) ◦ p j ◦ x j

is a sum of decomposables, except possibly one term, corresponding to the summand in-
clusionSn ֒→ T∨Sn. However, that one term is preciselyx j = (0,1)◦x = πn+k(0,1)(x) = 0
by assumption. Henceπn+k(g,1)(x) is decomposable.

Conversely, take any decomposable elementx ∈ πn+k(Sn). By the assumptionk , n−1,
x must be a sum of compositionsx =

∑
i xi ◦ αi for someαi ∈ πn+k(Smi ), xi ∈ πmi (S

n),
n < mi < n+ k. But each such composite is in the image ofπn+k(g,1). By construction of
T, there is a wedge summandSmi ֒→ T corresponding toxi ∈ πmi (S

n). The diagram

Sn+k

))SSSSSSSSSSSSSSSSS

αi // Smi

xi

##GG
GG

GG
GG

G

�

� ι // T ∨ Sn

(g,1)

��
Sn.

illustrates the equalityxi ◦ αi = (g,1) ◦ ι ◦ αi = πn+k(g,1)(ι ◦ αi). Moreover, the map
(0,1) ◦ ι : Smi → Sn is null, which guaranteesι ◦ αi ∈ kerπn+k(0,1) = πn+k(T ∨ Sn)2.

Step 2: Assumeπn = F is free.
Take S = ∨lSn satisfyingπn = F ≃ ⊕lZ = πn(S) and takeS′ = ∗. Consider the

composition function

πn(S) × πn+k(S
n)→ πn+k(S)

(x, α) 7→ x ◦ α.

It is linear in the second variableα but not in the first variablex. Failure to be linear inx
is measured by the “distributive law of homotopy theory” or Hilton’s formula [26, Thm.
XI.8.5]. The error terms are composites which are all in the image ofπn+k(g,1) : πn+k(T ∨
S)2→ πn+k(S) as explained in step 1. By modding out this image, we obtain awell-defined
bilinear map

πn(S) ⊗ πn+k(S
n)→ Γ̃k

n(πn).

This map vanishes on elementsx ⊗ α whereα is decomposable, since such anα is in the
image ofπn+k(g,1). Thus there is an induced canonical map

ϕ : πn(S) ⊗ Qk,n→ Γ̃
k
n(πn).

We claim thatϕ is an isomorphism. The Hilton-Milnor theorem provides an isomorphism

πn+k(S) = πn+k(∨lS
n)

≃
⊕

j

πn+k(S
mj )

≃
⊕

l

πn+k(S
n) ⊕

⊕

j such thatmj>n

πn+k(S
mj )

so that we can project onto the first summand⊕lπn+k(Sn) � F ⊗ πn+k(Sn) and then mod out
the decomposables:

πn+k(S)։ F ⊗ πn+k(S
n)։ F ⊗ Qk,n = πn(S) ⊗ Qk,n.
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This map vanishes on the image ofπn+k(g,1) and therefore induces a map on the cokernel

ψ : Γ̃k
n(πn)→ πn(S) ⊗ Qk,n.

One readily checks thatψ is inverse toϕ.
Step 3:πn is an arbitrary abelian group. We claim that̃Γk

n is right exact, i.e. preserves
cokernels. By applying̃Γk

n to the free presentation ofπn, we obtain the exact sequence

Γ̃k
n(R)→ Γ̃k

n(F)։ Γ̃k
n(πn)→ 0

which, by step 2, can be written as

R⊗ Qk,n→ F ⊗ Qk,n։ Γ̃
k
n(πn)→ 0

from which we obtain

Γ̃k
n(πn) � coker

(
R⊗ Qk,n → F ⊗ Qk,n

)

� coker(R→ F) ⊗ Qk,n

= πn ⊗ Qk,n.

To prove that̃Γk
n preserves cokernels, recall that this functor is the composite

Ab � ΠAlg0
n ֒→ ΠAlgk−1

n

Γk
n
−→ Ab.

The homotopy operation functorsΓk
n are defined as follows. Postnikov truncation

Pn+k−1 : ΠAlgk
n→ ΠAlgk−1

n

has a left adjointL, andΓk
n is the composite

ΠAlgk−1
n

L
−→ ΠAlgk

n
πn+k
−−−→ Ab

where the last step is evaluation on the sphereSn+k, extracting the highest homotopy group
πn+k.

In ΠAlgk
n, cokernels are obtained by modding out the image. Thereforethe inclusion

functorΠAlg0
n ֒→ ΠAlgk−1

n as well asπn+k : ΠAlgk
n→ Ab preserve cokernels. By virtue of

being a left adjoint,L also preserves cokernels, and so does the composite functorΓ̃k
n. �

Proof of Proposition 3.7.Similar to 7.3. The key ingredient here is the computation of
[1, Cor. 9.4]:

π2n−1(S) � πn(S) ⊗q π2n−1{S
n}

whereS = ∨lSn is a wedge ofn-spheres, so thatπn(S) � ⊕lZ is a free abelian group.
Decomposables (compositions) must be modded out for the same reason as in 7.3. �

Appendix A. More on comma categories

In this appendix, we recall some basic facts about comma categories, as defined in 2.1.
We omit the proofs, which are straightforward (if somewhat tedious) category theory.

Let F : C → D be a functor. Consider the comma categoryFD, or (F ↓ 1D) in the
notation of [20,§ II.6]. Recall that objects consist of triples (X,A, α : FX → A) with
X ∈ C,A ∈ D andα is any map.

Let U : FD → C denote the projectionU(X,A, α) = X.

Proposition A.1. (1) U : FD → C has a left adjoint L: C → FD given by LX=

(X, FX, FX
id
−→ FX).

(2) AssumingD has a terminal object∗, then U: FD → C has a right adjoint R: C →
FD given by RX= (X, ∗, FX→ ∗).
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(3) L is an isomorphism of categories onto the full subcategory of FD consisting of

objects of the form(X, FX, FX
id
−→ FX).

(4) R is an isomorphism of categories onto the full subcategory of FD consisting of
objects of the form(X, ∗, FX → ∗). In both cases, the inverse isomorphism is the
(restriction of the) projection U.

(5) AssumingC has an initial object∅ such that F(∅) is also initial, then the projection
FD → D sending(X,A, α) to A has a left adjoint sending A to(∅,A, F(∅)→ A).

Now we investigate to what extent the comma categoryFD determines the functorF.

Proposition A.2. Let F,G: C → D be functors.

(1) A natural transformationγ : F → G induces a pullback functorγ∗ : GD → FD,
which is a functor of categories overC × D (i.e. commutes with the projections
down toC ×D).

(2) If moreoverγ is a natural isomorphism, thenγ∗ is an isomorphism of categories.
(3) A functorϕ : FD → GD of categories overC × D (naturally) induces a natural

transformationγϕ : G→ F.
(4) If moreoverϕ is an equivalence of categories, thenγϕ is a natural isomorphism.

Corollary A.3. Functors F,G: C → D are isomorphic if and only if the comma categories
FD,GD are equivalent as categories overC ×D.

Proposition A.4. Let C,D be additive categories and F: C → D a functor. Then the
comma category FD is additive if and only if F is an additive functor.

Appendix B. A cute example

Proposition B.1. The stable3-stageΠ-algebraπ defined byπn = πn+1 = πn+2 = Z/2
(where n≥ 4) with structure maps

η1 : Γ1
n(πn) = πn ⊗ Z/2 = Z/2

�

−→ Z/2 = πn+1

η2 : Γ2
n(πn, η1) = πn+1 ⊗ Z/2 = Z/2

�

−→ Z/2 = πn+2

is non-realizable.

Proof. The mapEn(η1) described in [4,§ 3.2] is the composite

Tor(πn,Z/2)�
� i // πn

q
// // πn ⊗ Z/2

η1
// πn+1

q
// // πn+1 ⊗ Z/2 � Γ2

n(πn, η1)

which in our case is the isomorphism

Z/2�

� i

�

// Z/2
q

�

// // Z/2
η1

�

// Z/2
q

�

// // Z/2.

The obstructionO(π) = η2 ◦ En(η1) described in [4, Thm. 3.3 (B)] is the non-zero map

Z/2
�

−→ Z/2
�

−→ Z/2. Thereforeπ is non-realizable. �

RemarkB.2. By contrast, example [9, Ex. 7.18] with the same homotopy groups but a
differentΠ-algebra structure is in fact realizable.
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