Commutation relation of Hecke operators for Arakawa lifting

Atsushi Murase and Hiro-aki Narita

Abstract

T. Arakawa, in his unpublished note, constructed and studied a theta lifting from elliptic cusp forms to automorphic forms on the real symplectic group $S p(1, q)_{\mathbb{R}}$ of signature $(1+, q-)$. The second named author proved that such a lifting provides bounded (or cuspidal) automorphic forms on $S p(1, q)_{\mathbb{R}}$ generating quaternionic discrete series. In this paper, restricting ourselves to the case of $q=1$, we reformulate Arakawa's theta lifting as a theta correspondence for similitude groups $\left(G L_{2} \times B^{\times}\right) \times G \operatorname{Sp}(1,1)$ in the adelic setting and give a commutation relation of Hecke operators satisfied by the lifting. Here B^{\times}denotes the multiplicative group of a definite quaternion algebra B over \mathbb{Q}. As an application we show that the theta lift $\mathcal{L}\left(f, f^{\prime}\right)$ of a Hecke eigenform $\left(f, f^{\prime}\right)$ on $G L_{2} \times B^{\times}$is also a Hecke eigenform on $\operatorname{GSp}(1,1)$. We furthermore provide all finite local factors of the spinor L-function attached to $\mathcal{L}\left(f, f^{\prime}\right)$ in terms of Hecke eigenvalues of $\left(f, f^{\prime}\right)$.

1 Introduction.

The prototype of our study in this paper is the classical work [E] by M. Eichler on the commutation relation of Hecke operators for theta series associated with spherical polynomials on a definite quaternion algebra over \mathbb{Q}. After this, several generalizations of it were given. For example, H. Yoshida constructed a theta lifting from a pair of automorphic forms on a multiplicative group of a definite quaternion algebra to holomorphic Siegel modular forms of degree two, and gave a commutation relation for his lift. S. Kudla [Ku] considered such a relation for a theta lifting from elliptic cusp forms to holomorphic automorphic forms on $S U(2,1)$. Moreover we note that S . Rallis [Ra] investigated in great generality a commutation relation via the Weil representation for symplectic-orthogonal dual pairs. Our concern here is a theta lifting from elliptic cusp forms to automorphic forms on the real symplectic group $S p(1, q)_{\mathbb{R}}$ of signature $(1+, q-)$ originally formulated by T. Arakawa. We study this lifting for the case of $q=1$ along the same line as $[\mathrm{Y}]$ and $[\mathrm{Ku}]$.

Let us recall that Arakawa formulated the theta lifting mentioned above by considering the restriction of a theta correspondence of $S L_{2}(\mathbb{R}) \times S O(4,4 q)$ to $S L_{2}(\mathbb{R}) \times S p(1, q)_{\mathbb{R}}(c \mathrm{cf}$. [Ar-$1],[\mathrm{N}-1]$ and $[\mathrm{N}-3])$. We henceforth confine ourselves to the case of $q=1$. It turned out that

Arakawa's formulation is not appropriate for proving a commutation relation, since we do not have sufficient Hecke operators. Following T. Ikeda's suggestion, we formulate our lift as a theta correspondence between $\left(G L_{2} \times B^{\times}\right)$and $G S p(1,1)$, where B is a definite quaternion algebra over \mathbb{Q}. This amounts to the same as taking a certain average of original Arakawa's lifts over the ideal classes of B. In this setting, we have Hecke operators enough to show a good commutation relation. On the other hand, we note that our lift can be viewed as a theta correspondence of similitude groups. For references in this direction see $[\mathrm{G}],[\mathrm{H}-\mathrm{K}]$, [Ro], $[\mathrm{Sz}]$ and [W] etc.

We now explain more precisely our reformulation of the lifting, which is given in the adelic setting. Let $\kappa>6$ be an even integer and let D be a divisor of the discriminant d_{B} of B. We denote by $S_{\kappa}(D)$ the space of elliptic cusp forms on $G L_{2}(\mathbb{A})$ of weight κ and level D, and let \mathcal{A}_{κ} be the space of automorphic forms on $B_{\mathbb{A}}^{\times}$(for definitions of $S_{\kappa}(D)$ and \mathcal{A}_{κ} see Definition 2.2). Furthermore, using a metaplectic representation of $\operatorname{GSp}(1,1)_{\mathbb{A}} \times G L_{2}(\mathbb{A}) \times$ $B_{\mathbb{A}}^{\times}(\mathrm{cf} . \S 3, \S 4.1)$, we construct a theta kernel θ^{κ} on $G S p(1,1)_{\mathbb{A}} \times G L_{2}(\mathbb{A}) \times B_{\mathbb{A}}^{\times}$under a special choice of a test function (cf. (4.1)). For $\left(f, f^{\prime}\right) \in S_{\kappa}(D) \times \mathcal{A}_{\kappa}$ we then construct an automorphic form $\mathcal{L}\left(f, f^{\prime}\right)$ on $G S p(1,1)_{\mathbb{A}}$ by integrating $\left(f, f^{\prime}\right)$ against θ^{κ} (cf. (4.2)). This $\mathcal{L}\left(f, f^{\prime}\right)$ belongs to the space \mathcal{S}_{κ} of bounded (or cuspidal) automorphic forms on $G S p(1,1)_{\mathbb{A}}$ given in Definition 2.1 (cf. Theorem 4.1), which turn out to generate at the infinite place a quaternionic discrete series in the sense of Gross and Wallach [G-W] (cf. [N-2, Theorem 8.7]).

Our main result is a formula for Hecke eigenvalues of $\mathcal{L}\left(f, f^{\prime}\right)$ stated as Theorem 5.1. For all non-Archimedean primes we provide such formula in terms of Hecke eigenvalues of f and f^{\prime}. This follows from our formula for the commutation relation of Hecke operators in Proposition 6.1 and Proposition 6.2. Then we discuss an application of this formula to the spinor L-functions of $\mathcal{L}\left(f, f^{\prime}\right)^{\prime}$ s. We define an Euler factor of the spinor L-function at a prime $p \nmid d_{B}$ (resp. $p \mid d_{B}$) using the formula for the denominator of the Hecke series by G. Shimura [Shim-1, Theorem 2] (resp. T. Hina and T. Sugano [H-S, §4], [Su, (1-34)]). To be precise we give our formulas of the spinor L-functions under some normalization of the Hecke eigenvalues. Among such formulas, the case $D=1$ is the most interesting. In fact, if we assume that f and f^{\prime} are Hecke eigenforms, the spinor L-function $L\left(\mathcal{L}\left(f, f^{\prime}\right)\right.$, spin, s) of $\mathcal{L}\left(f, f^{\prime}\right)$ for that case admits the following simple decomposition (cf. Corollary 5.2)

$$
L\left(\mathcal{L}\left(f, f^{\prime}\right), \text { spin }, s\right)=L(\bar{f}, s) L^{d_{B}}\left(f^{\prime}, s\right)
$$

where $L(\bar{f}, s)$ (resp. $\left.L^{d_{B}}\left(f^{\prime}, s\right)\right)$ denotes Hecke's classical L-function for \bar{f} (some partial Lfunction for f^{\prime} whose Euler factors range only over $p \nmid d_{B}$).

This paper is organized as follows. In $\S 2$ we define the automorphic forms we need after giving basic notations. In $\S 3$ we introduce a metaplectic representation of $G S p(1,1) \times G L_{2} \times$ B^{\times}over local fields. Then we define a global metaplectic representation of the adele group and provide the adelic reformulation of the Arakawa lifting for the case of $q=1$ in $\S 4$. The section 5 is devoted to the statement of our main results, i.e., Hecke eigenvalues and spinor

L-functions for the lifting. In $\S 6$ we state our result on the commutation relation of Hecke operators, from which our main results are deduced immediately. In $\S 7$ and $\S 8$ we prove the commutation relation. More precisely the case of unramified finite places (resp. ramified finite places) is considered in $\S 7$ (resp. §8).

We express our profound gratitude to T. Ibukiyama and T. Ikeda for their comments on our study. Our results in this paper are obtained during second named author's stay at Max-Planck-Institut fuer Mathematik for 2005 April to 2006 March. He thanks the institute very much for providing him with a fruitful research stay.

Notation

For an algebraic group \mathcal{G} over $\mathbb{Q}, \mathcal{G}_{v}$ stands for the group of \mathbb{Q}_{v}-points of \mathcal{G}, where \mathbb{Q}_{v} denotes the p-adic field (resp. the field of real numbers) when $v=p$ is a finite prime (resp. $v=\infty$). By $\mathcal{G}_{\mathbb{A}}$ (resp. $\mathcal{G}_{\mathbb{A}, f}$), we denote the adelization of \mathcal{G} (resp. the group of finite adeles in $\mathcal{G}_{\mathbb{A}}$). Let ψ be the additive character of $\mathbb{Q}_{\mathbb{A}} / \mathbb{Q}$ such that $\psi\left(x_{\infty}\right)=\mathbf{e}\left(x_{\infty}\right)$ for $x_{\infty} \in \mathbb{R}$, where we put $\mathbf{e}(z)=\exp (2 \pi i z)$ for $z \in \mathbb{C}$. We denote by ψ_{v} the restriction of ψ to \mathbb{Q}_{v} for a prime v of \mathbb{Q}.

2

Let B be a definite quaternion algebra over \mathbb{Q}. In what follows, we fix an identification between $B_{\infty}:=B \otimes_{\mathbb{Q}} \mathbb{R}$ and the Hamilton quaternion algebra \mathbb{H}, and an embedding $\mathbb{H} \hookrightarrow$ $M_{2}(\mathbb{C})$. Let $B \ni b \mapsto \bar{b} \in B$ be the main involution of B, and put $\operatorname{tr}(b):=b+\bar{b}$ and $n(b):=b \bar{b}$ for $b \in B$. Let $B^{\times}:=B \backslash\{0\}$ be the multiplicative group of B. The center $Z\left(B^{\times}\right)$ of B^{\times}is $\mathbb{Q}^{\times} \cdot 1$. Let d_{B} be the discriminant of B. By definition, d_{B} is the product of finite primes p such that $B_{p}:=B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ is a division algebra.

We let $G=G S p(1,1)$ be an algebraic group over \mathbb{Q} defined by

$$
G_{\mathbb{Q}}=\left\{\left.g \in M_{2}(B)\right|^{t} \bar{g} Q g=\nu(g) Q, \nu(g) \in \mathbb{Q}^{\times}\right\}
$$

where $Q=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Denote by Z_{G} the center of G.
The Lie group $G_{\infty}^{1}:=\left\{g \in G_{\infty} \mid \nu(g)=1\right\}$ acts on the hyperbolic 4-space $\mathcal{X}:=\{z \in$ $\mathbb{H} \mid \operatorname{tr}(z)>0\}$ by linear fractional transformations

$$
g \cdot z:=(a z+b)(c z+d)^{-1}, \quad\left(g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G_{\infty}^{1}, z \in \mathcal{X}\right) .
$$

Let $\mu: G_{\infty}^{1} \times \mathcal{X} \rightarrow \mathbb{H}^{\times}$be the automorphy factor given by $\mu\left(\left(\begin{array}{cc}a & b \\ c & d\end{array}\right), z\right):=c z+d$. The stabilizer subgroup K_{∞} of $z_{0}:=1 \in \mathcal{X}$ in G_{∞}^{1} is a maximal compact subgroup of G_{∞}^{1}, which is isomorphic to $S p^{*}(1) \times S p^{*}(1)$, where $S p^{*}(1):=\{z \in \mathbb{H} \mid n(z)=1\}$.

Let κ be a positive integer. Denote by $\left(\sigma_{\kappa}, V_{\kappa}\right)$ the representation of \mathbb{H} given as

$$
\mathbb{H} \hookrightarrow M_{2}(\mathbb{C}) \rightarrow \operatorname{End}\left(V_{\kappa}\right),
$$

where the second arrow indicates the κ-th symmetric power representation of $M_{2}(\mathbb{C})$. Then

$$
\tau_{\kappa}\left(k_{\infty}\right):=\sigma_{\kappa}\left(\mu\left(k_{\infty}, z_{0}\right)\right), \quad\left(k_{\infty} \in K_{\infty}\right)
$$

gives rise to an irreducible representation of K_{∞} of dimension $\kappa+1$.
Define $\omega_{\kappa}: G_{\infty}^{1} \rightarrow \operatorname{End}\left(V_{\kappa}\right)$ by

$$
\omega_{\kappa}(g):=\sigma_{\kappa}(D(g))^{-1} n(D(g))^{-1}, \quad\left(g \in G_{\infty}^{1}\right)
$$

where $D(g):=\frac{1}{2}\left(g \cdot z_{0}+1\right) \mu\left(g, z_{0}\right)$. It is known that ω_{κ} is a matrix coefficient of the discrete series representation with minimal K_{∞}-type $\left(\tau_{\kappa}, V_{\kappa}\right)$ (cf. [Ar-2, §2.6]). That discrete series is a quaternionic discrete series in the sense of B. Gross and N. Wallach [G-W]. We note that ω_{κ} is integrable if $\kappa>4$.

Throughout the paper, we fix a maximal order \mathcal{O} of B. We also fix a two-sided ideal \mathfrak{A} of \mathcal{O} satisfying the following conditions:
(i) If $p \nmid d_{B}$, then $\mathfrak{A}_{p}=\mathcal{O}_{p}$.
(ii) If $p \mid d_{B}$, then $\mathfrak{A}_{p}=\mathfrak{P}_{p}^{e_{p}}$ with $e_{p} \in\{0,1\}$, where \mathfrak{P}_{p} is the maximal ideal of \mathcal{O}_{p}.

We set

$$
D=\prod_{p \mid d_{B}, e_{p}=0} p
$$

Note that $D=1$ if and only if $e_{p}=1$ for any $p \mid d_{B}$. Let $L:={ }^{t}\left(\mathcal{O} \oplus \mathfrak{A}^{-1}\right)$, which is a maximal lattice of $B^{\oplus 2}$. For a finite prime $p, K_{p}=\left\{k \in G_{p} \mid k L_{p}=L_{p}\right\}$ is a maximal compact subgroup of G_{p}, where $L_{p}:=L \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$. We set $K_{f}:=\prod_{p<\infty} K_{p}$.

Definition 2.1. For an even integer $\kappa>4$, let \mathcal{S}_{κ} be the space of smooth functions on $F: G_{\mathbb{A}} \rightarrow V_{\kappa}$ satisfying the following conditions:

1. $F\left(z \gamma g k_{f} k_{\infty}\right)=\tau_{\kappa}\left(k_{\infty}\right)^{-1} F(g) \quad \forall\left(z, \gamma, g, k_{f}, k_{\infty}\right) \in Z_{G, \mathbb{A}} \times G_{\mathbb{Q}} \times G_{\mathbb{A}} \times K_{f} \times K_{\infty}$,
2. F is bounded,
3. $c_{\kappa} \int_{G_{\infty}^{1}} \omega_{\kappa}\left(h_{\infty}^{-1} g_{\infty}\right) F\left(g_{f} h_{\infty}\right) d h_{\infty}=F\left(g_{f} g_{\infty}\right)$ for any fixed $\left(g_{f}, g_{\infty}\right) \in G_{\mathbb{A}, f} \times G_{\infty}$, where $c_{\kappa}:=2^{-4} \pi^{-2} \kappa(\kappa-1)$.

Here we remark that this automorphic form has been verified to be cuspidal (cf. [Ar2, Proposition 3.1]) and generate a quaternionic discrete series at the infinite place (cf. [N 2, Theorem 8.7]).

Next let H and H^{\prime} be algebraic groups over \mathbb{Q} defined by $H_{\mathbb{Q}}=G L_{2}(\mathbb{Q})$ and $H_{\mathbb{Q}}^{\prime}=B^{\times}$ respectively, and denote by Z_{H} and $Z_{H^{\prime}}$ the center of H and H^{\prime} respectively. We define an action of $S L_{2}(\mathbb{R})$ on the complex upper half plane $\mathfrak{h}:=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$ as usual. Let $U_{\infty}:=\left\{h \in S L_{2}(\mathbb{R}) \mid h \cdot i=i\right\}=S O(2)$ and $U_{\infty}^{\prime}:=\left\{h^{\prime} \in \mathbb{H} \mid n\left(h^{\prime}\right)=1\right\}=S p^{*}(1)$. Moreover, we put $U_{f}=\prod_{p<\infty} U_{p}$ and $U_{f}^{\prime}=\prod_{p<\infty} U_{p}^{\prime}$, where $U_{p}:=\left\{\left.u=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in G L_{2}\left(\mathbb{Z}_{p}\right) \right\rvert\,\right.$ $\left.c \in D \mathbb{Z}_{p}\right\}$ and $U_{p}^{\prime}:=\mathcal{O}_{p}^{\times}$.

Definition 2.2. (1) Let $S_{\kappa}(D)$ be the space of smooth functions f on $H_{\mathbb{A}}$ satisfying the following conditions:

1. $f\left(z \gamma h u_{f} u_{\infty}\right)=j\left(u_{\infty}, i\right)^{-\kappa} f(h) \quad \forall\left(z, \gamma, h, u_{f}, u_{\infty}\right) \in Z_{H, \mathbb{A}} \times H_{\mathbb{Q}} \times H_{\mathbb{A}} \times U_{f} \times U_{\infty}$,
2. For any fixed $h_{f} \in H_{\mathbb{A}, f}, \mathfrak{h} \ni h_{\infty} \cdot i \mapsto j\left(h_{\infty}, i\right)^{\kappa} f\left(h_{f} h_{\infty}\right)$ is holomorphic for $h_{\infty} \in$ $S L_{2}(\mathbb{R})$,
3. f is bounded,
where $j\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \tau\right):=c \tau+d$ denotes the standard \mathbb{C}-valued automorphy factor of $S L_{2}(\mathbb{R}) \times \mathfrak{h}$. (2) Furthermore, \mathcal{A}_{κ} stands for the space of smooth V_{κ}-valued functions f^{\prime} on $H_{\mathbb{A}}^{\prime}$ such that

$$
f^{\prime}\left(z^{\prime} \gamma^{\prime} h^{\prime} u_{f}^{\prime} u_{\infty}^{\prime}\right)=\sigma_{\kappa}\left(u_{\infty}^{\prime}\right)^{-1} f\left(h^{\prime}\right) \quad \forall\left(z^{\prime}, \gamma^{\prime}, h^{\prime}, u_{f}^{\prime}, u_{\infty}^{\prime}\right) \in Z_{H^{\prime}, \mathbb{A}} \times H_{\mathbb{Q}}^{\prime} \times H_{\mathbb{A}}^{\prime} \times U_{f}^{\prime} \times U_{\infty}^{\prime}
$$

3 Metaplectic representation

In this section, we fix a prime v of \mathbb{Q}. When $v=p$ is a finite prime (resp. $v=\infty$), $|*|_{v}$ denotes the p-adic valuation (resp. the usual absolute value for \mathbb{R}). For $X=\binom{x}{y} \in B_{v}^{\oplus 2}$, we put $X^{*}:=(\bar{x}, \bar{y})$. For a finite prime p, let \mathbb{V}_{p} be the space of functions on $B_{p}^{\oplus 2} \times \mathbb{Q}_{p}^{\times}$generated by $\varphi_{1}(X) \varphi_{2}(t)$, where φ_{1} (resp. φ_{2}) is a locally constant and compactly supported function on $B_{p}^{\oplus 2}$ (resp. \mathbb{Q}_{p}^{\times}). We also let \mathbb{V}_{∞} be the space of smooth functions φ on $B_{\infty}^{\oplus 2} \times \mathbb{Q}_{\infty}^{\times}=\mathbb{H}^{\oplus 2} \times \mathbb{R}^{\times}$ such that, for any fixed $t \in \mathbb{R}^{\times}, X \mapsto \varphi(X, t)$ is rapidly decreasing on $\mathbb{H}^{\oplus 2}$.

Lemma 3.1. There exists a smooth representation $r=r_{v}$ of $G_{v} \times H_{v} \times H_{v}^{\prime}$ on \mathbb{V}_{v} given as follows:
For $\varphi \in \mathbb{V}_{v}, X \in B_{v}^{\oplus 2}$ and $t \in \mathbb{Q}_{v}^{\times}$,

$$
\begin{align*}
& r(g, 1,1) \varphi(X, t)=|\nu(g)|_{v}^{-\frac{3}{2}} \varphi\left(g^{-1} X, \nu(g) t\right), \quad\left(g \in G_{v}\right), \tag{3.1}\\
& r\left(1,\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right), 1\right) \varphi(X, t)=\psi_{v}\left(\frac{b t}{2} \operatorname{tr}\left(X^{*} Q X\right)\right) \varphi(X, t), \quad\left(b \in \mathbb{Q}_{v}\right), \tag{3.2}\\
& r\left(1,\left(\begin{array}{cc}
a & 0 \\
0 & a^{\prime}
\end{array}\right), 1\right) \varphi(X, t)=\left.|a|_{v}^{\frac{7}{2}}\left|a^{\prime}\right|\right|_{v} ^{-\frac{1}{2}} \varphi\left(a X,\left(a a^{\prime}\right)^{-1} t\right), \quad\left(a, a^{\prime} \in \mathbb{Q}_{v}^{\times}\right), \tag{3.3}\\
& r\left(1,\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \varphi(X, t)=|t|_{v}^{4} \int_{B_{v}^{\oplus 2}} \psi_{v}\left(t \operatorname{tr}\left(Y^{*} Q X\right)\right) \varphi(Y, t) d_{Q} Y, \tag{3.4}\\
& r(1,1, z) \varphi(X, t)=|n(z)|_{v}^{\frac{3}{2}} \varphi\left(X z, n(z)^{-1} t\right), \quad\left(z \in B_{v}^{\times}\right) . \tag{3.5}
\end{align*}
$$

Here $d_{Q} Y$ is the Haar measure on $B_{v}^{\oplus 2}$ self-dual with respect to the pairing

$$
B_{v}^{\oplus 2} \times B_{v}^{\oplus 2} \ni\left(Y, Y^{\prime}\right) \mapsto \psi_{v}\left(\operatorname{tr}\left(Y^{*} Q Y^{\prime}\right)\right)
$$

We define a partial Fourier transform \mathcal{I} by

$$
\mathcal{I} \varphi\left(\binom{x_{1}}{x_{2}}, t\right)=\int_{B_{v}} \psi_{v}\left(-t \operatorname{tr}\left(\bar{y} x_{1}\right)\right) \varphi\left(\binom{y}{x_{2}}, t\right) d y, \quad\left(\varphi \in \mathbb{V}_{v}\right)
$$

where $d y$ is the Haar measure on B_{v} self-dual with respect to the pairing $B_{v} \times B_{v} \ni(x, y) \mapsto$ $\psi_{v}(\operatorname{tr}(\bar{x} y))$. The proof of the following fact is straightforward and we omit it.

Lemma 3.2. For $h \in H_{v}$, we have
$(\mathcal{I} \cdot r(1, h, 1) \varphi)(X, t)=|\operatorname{det} h|_{v}^{-\frac{1}{2}} \mathcal{I} \varphi\left((\operatorname{det} h) \cdot h^{-1} X,(\operatorname{det} h)^{-1} t\right), \quad\left(\varphi \in \mathbb{V}_{v}, X \in B_{v}^{\oplus 2}, t \in \mathbb{Q}_{v}^{\times}\right)$.
When $v=p<\infty$, we put

$$
\varphi_{0, p}(X, t):=\operatorname{char}_{L_{p}}(X) \operatorname{char}_{\mathbb{Z}_{p}^{\times}}(t),
$$

where $\operatorname{char}_{L_{p}}\left(\right.$ resp. char $\left.\mathbb{Z}_{p}^{\times}\right)$is the characteristic function of $L_{p}={ }^{t}\left(\mathcal{O}_{p} \oplus \mathfrak{A}_{p}^{-1}\right) \quad\left(\right.$ resp. $\left.\mathbb{Z}_{p}^{\times}\right)$. When $v=\infty$, we put

$$
\varphi_{0, \infty}^{\kappa}(X, t):= \begin{cases}t^{\frac{\kappa+3}{2}} \sigma_{\kappa}((1,1) X) \mathbf{e}\left(\frac{i t}{2} \operatorname{tr}\left(X^{*} X\right)\right) & (t>0) \\ 0 & (t<0)\end{cases}
$$

Lemma 3.3. Let $v=p<\infty$. Then we have

$$
r\left(k_{p}, u_{p}, u_{p}^{\prime}\right) \varphi_{0, p}=\varphi_{0, p}
$$

for $k_{p} \in K_{p}, u_{p} \in U_{p}$ and $u_{p}^{\prime} \in U_{p}^{\prime}$.

Proof. This is verified by a direct calculation. When $p \mid D$ we need Lemma 3.2 to show the U_{p}-invariance.
Lemma 3.4. Let $v=\infty$. Then we have

$$
r\left(k_{\infty}, u_{\infty}, u_{\infty}^{\prime}\right) \varphi_{0, \infty}^{\kappa}=j\left(u_{\infty}, i\right)^{-\kappa} \tau_{\kappa}\left(k_{\infty}\right)^{-1} \cdot \varphi_{0, \infty}^{\kappa} \cdot \sigma_{\kappa}\left(u_{\infty}^{\prime}\right)
$$

for $k \in K_{\infty}, u \in U_{\infty}$ and $u^{\prime} \in U_{\infty}^{\prime}$.
Proof. The transformation law with respect to the U_{∞}-action follows immediately from [$\mathrm{N}-$ 3, Lemma 3.8]. The other transformation laws are checked in a straightforward way.

4 Arakawa lift

4.1

Let $\mathbb{V}_{\mathbb{A}}$ be the restricted tensor product of \mathbb{V}_{v} with respect to $\left\{\varphi_{0, p}\right\}_{p<\infty}$. By $r_{\mathbb{A}}$ we denote a smooth representation of $G_{\mathbb{A}} \times H_{\mathbb{A}} \times H_{\mathbb{A}}^{\prime}$ on $\mathbb{V}_{\mathbb{A}}$ given as

$$
r_{\mathbb{A}}\left(g, h, h^{\prime}\right) \varphi:={\underset{v}{ }}_{\otimes} r_{v}\left(g_{v}, h_{v}, h_{v}^{\prime}\right) \varphi_{v}
$$

for $\varphi=\otimes \varphi_{v} \in V_{\mathbb{A}}$ and $\left(g=\left(g_{v}\right), h=\left(h_{v}\right), h^{\prime}=\left(h_{v}^{\prime}\right)\right) \in G_{\mathbb{A}} \times H_{\mathbb{A}} \times H_{\mathbb{A}}^{\prime}$. Define a function $\varphi_{0}^{\kappa} \in \mathbb{V}_{\mathbb{A}}{ }^{v}$ by

$$
\varphi_{0}^{\kappa}(X, t):=\varphi_{0, \infty}^{\kappa}\left(X_{\infty}, t_{\infty}\right) \prod_{p<\infty} \varphi_{0, p}\left(X_{p}, t_{p}\right)
$$

for $X=\left(X_{v}\right) \in B_{\mathbb{A}}^{\oplus 2}$ and $t=\left(t_{v}\right) \in \mathbb{Q}_{\mathbb{A}}^{\times}$.
Set

$$
\begin{equation*}
\theta^{\kappa}\left(g, h, h^{\prime}\right):=\sum_{(X, t) \in B^{\oplus 2} \times \mathbb{Q}^{\times}} r_{\mathbb{A}}\left(g, h, h^{\prime}\right) \varphi_{0}^{\kappa}(X, t), \quad\left(\left(g, h, h^{\prime}\right) \in G_{\mathbb{A}} \times H_{\mathbb{A}} \times H_{\mathbb{A}}^{\prime}\right) . \tag{4.1}
\end{equation*}
$$

It is easily verified that the series (4.1) is uniformly convergent on any compact subset of $G_{\mathbb{A}} \times H_{\mathbb{A}} \times H_{\mathbb{A}}^{\prime}$, and that

$$
\theta^{\kappa}\left(\gamma g k_{f} k_{\infty}, \gamma_{1} h u_{f} u_{\infty}, \gamma_{2} h^{\prime} u_{f}^{\prime} u_{\infty}^{\prime}\right)=\tau_{\kappa}\left(k_{\infty}\right)^{-1} j\left(u_{\infty}, i\right)^{-\kappa} \theta\left(g, h, h^{\prime}\right) \sigma_{\kappa}\left(u_{\infty}^{\prime}\right)
$$

for $\left(\gamma, g, k_{f}, k_{\infty}\right) \in G_{\mathbb{Q}} \times G_{\mathbb{A}} \times K_{f} \times K_{\infty},\left(\gamma_{1}, h, u_{f}, u_{\infty}\right) \in H_{\mathbb{Q}} \times H_{\mathbb{A}} \times U_{f} \times U_{\infty}$ and $\left(\gamma_{2}, h^{\prime}, u_{f}^{\prime}, u_{\infty}^{\prime}\right) \in H_{\mathbb{Q}}^{\prime} \times H_{\mathbb{A}}^{\prime} \times U_{f}^{\prime} \times U_{\infty}^{\prime}$. Now note that $r_{\infty}\left(g_{\infty}, h_{\infty}, h_{\infty}^{\prime}\right) \varphi_{0, \infty}\left(X_{\infty}, t_{\infty}\right)$ is $Z_{G, \infty} \times Z_{H, \infty} \times Z_{H^{\prime}, \infty}$-invariant. We also then see that θ^{κ} is $Z_{G, \mathbb{A}} \times Z_{H, \mathbb{A}} \times Z_{H^{\prime}, \mathbb{A}^{-}}$-invariant, since $\mathbb{Q}_{\mathbb{A}}^{\times}=\mathbb{Q}^{\times} \cdot \mathbb{R}_{>0} \cdot \mathbb{Z}_{f}^{\times}$.

For $f \in S_{\kappa}(D)$ and $f^{\prime} \in \mathcal{A}_{\kappa}$, we set

$$
\begin{equation*}
\mathcal{L}\left(f, f^{\prime}\right)(g):=\int_{Z_{H, \mathrm{~A}} H_{\mathbb{Q}} \backslash H_{\mathbb{A}}} d h \int_{Z_{H^{\prime}, \mathbb{A}} H_{\mathbb{Q}}^{\prime} \backslash H_{\mathbb{A}}^{\prime}} d h^{\prime} \theta^{\kappa}\left(g, h, h^{\prime}\right) \overline{f(h)} f^{\prime}\left(h^{\prime}\right) \quad\left(g \in G_{\mathbb{A}}\right) . \tag{4.2}
\end{equation*}
$$

Theorem 4.1 (Arakawa, Narita). Suppose $\kappa>6$.
(i) The integral (4.2) is absolutely convergent.
(ii) $\mathcal{L}\left(f, f^{\prime}\right)(g) \in \mathcal{S}_{\kappa}$.

Proof. Since $G_{\mathbb{A}}=Z_{G, \mathbb{A}} G_{\mathbb{Q}} G_{\infty}^{1} K_{f}$ (cf. [Shim-2, Theorem 6.14]), it is sufficient to consider the restriction of $\mathcal{L}\left(f, f^{\prime}\right)$ to G_{∞}^{1}. By a standard argument, we see that $\left.\mathcal{L}\left(f, f^{\prime}\right)\right|_{G_{\infty}^{1}}$ is a finite linear combination of original Arakawa lift (cf. [Ar-1], [N-1, §4] and [N-3, Theorem 4.1]), from which the theorem follows.

5 Main result

5.1

To state the main result of the paper, we need to review several facts on Hecke operators.

5.2

First we consider the case where $p \nmid d_{B}$. We fix an isomorphism of B_{p} onto $M_{2}\left(\mathbb{Q}_{p}\right)$ such that \mathcal{O}_{p} maps onto $M_{2}\left(\mathbb{Z}_{p}\right)$ and that the main involution of B_{p} corresponds to an involution of $M_{2}\left(\mathbb{Q}_{p}\right)$ given by

$$
M_{2}\left(\mathbb{Q}_{p}\right) \ni X \mapsto w^{-1 t} X w, \quad\left(w=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right) .
$$

The reduced trace tr corresponds to the trace Tr of $M_{2}\left(\mathbb{Q}_{p}\right)$. We henceforth identify B_{p} with $M_{2}\left(\mathbb{Q}_{p}\right)$ using the above isomorphism. Then $G_{p}, K_{p}, H_{p}^{\prime}$ and U_{p}^{\prime} are identified with $G S p\left(J, \mathbb{Q}_{p}\right), G S p\left(J, \mathbb{Z}_{p}\right), G L_{2}\left(\mathbb{Q}_{p}\right)$ and $G L_{2}\left(\mathbb{Z}_{p}\right)$ respectively, where $G S p(J)$ is the group of similitudes of $J=\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)$. Note that we can identify U_{p} with U_{p}^{\prime} by the isomorphism $B_{p} \simeq M_{2}\left(\mathbb{Q}_{p}\right)$ fixed above.

Define Hecke operators $\mathcal{T}_{p}^{i}(i=0,1,2)$ on \mathcal{S}_{κ} by

$$
\mathcal{T}_{p}^{i} F(g)=\int_{G_{p}} F(g x) \Phi_{p}^{i}(x) d x
$$

where $\Phi_{p}^{0}, \Phi_{p}^{1}$ and Φ_{p}^{2} are the characteristic function of $K_{p} \operatorname{diag}(p, p, p, p) K_{p}, K_{p} \operatorname{diag}(p, p, 1,1) K_{p}$ and $K_{p} \operatorname{diag}\left(p^{2}, p, p, 1\right) K_{p}$ respectively. Note that $\mathcal{T}_{p}^{0} F=F$ for any $F \in \mathcal{S}_{\kappa}$.

We also define Hecke operators T_{p} and T_{p}^{\prime} on $S_{\kappa}(D)$ and \mathcal{A}_{κ} by

$$
\begin{aligned}
T_{p} f(h) & =\int_{H_{p}} f(h x) \phi_{p}(x) d x \\
T_{p}^{\prime} f^{\prime}\left(h^{\prime}\right) & =\int_{H_{p}^{\prime}} f^{\prime}\left(h^{\prime} x^{\prime}\right) \phi_{p}^{\prime}\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

where $\phi_{p}=\phi_{p}^{\prime}$ is the characteristic function of $G L_{2}\left(\mathbb{Z}_{p}\right) \operatorname{diag}(p, 1) G L_{2}\left(\mathbb{Z}_{p}\right)$.

5.3

We next consider the case where $p \mid d_{B}$, i.e., B_{p} is a division algebra. In this case, we fix a prime element Π of B_{p} and put $\pi:=n(\Pi)$. Then π is a prime element of \mathbb{Q}_{p}.

Define Hecke operators $\mathcal{T}_{p}^{i}(i=0,1)$ on \mathcal{S}_{κ} by

$$
\mathcal{T}_{p}^{i} F(g)=\int_{G_{p}} F(g x) \Phi_{p}^{i}(x) d x
$$

where Φ_{p}^{0} and Φ_{p}^{1} are the characteristic functions of $K_{p} \cdot \operatorname{diag}(\Pi, \Pi) \cdot K_{p}$ and $K_{p} \operatorname{diag}(1, \pi) K_{p}$ respectively. Note that $\left(\mathcal{T}_{p}^{0}\right)^{2} F=F$ for any $F \in \mathcal{S}_{\kappa}$. We also define Hecke operators T_{p} and T_{p}^{\prime} on $S_{\kappa}(D)$ and \mathcal{A}_{κ} by

$$
\begin{aligned}
T_{p} f(h) & =\int_{H_{p}} f(h x) \phi_{p}(x) d x \\
T_{p}^{\prime} f^{\prime}\left(h^{\prime}\right) & =\int_{H_{p}^{\prime}} f^{\prime}\left(h^{\prime} x^{\prime}\right) \phi_{p}^{\prime}\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

Here ϕ_{p}^{\prime} is the characteristic function of $U_{p}^{\prime} \Pi U_{p}^{\prime}=\Pi U_{p}^{\prime}$ and ϕ_{p} is defined as follows: If $p \mid D$, ϕ_{p} is the sum of the characteristic functions of $U_{p}\left(\begin{array}{cc}\pi & 0 \\ 0 & 1\end{array}\right) U_{p}$ and $U_{p}\left(\begin{array}{ll}1 & 0 \\ 0 & \pi\end{array}\right) U_{p}$. If $p \nmid D, \phi_{p}$ is the characteristic function of $U_{p}\left(\begin{array}{cc}\pi & 0 \\ 0 & 1\end{array}\right) U_{p}$.

5.4

We say that $F \in \mathcal{S}_{\kappa}$ is a Hecke eigenform if F is a common eigenfunction of the Hecke operators \mathcal{T}_{p}^{i} for any $p<\infty$. Let $F \in \mathcal{S}_{\kappa}$ be a Hecke eigenform with $\mathcal{T}_{p}^{i} F=\Lambda_{p}^{i} F\left(\Lambda_{p}^{i} \in \mathbb{C}\right)$. We define the spinor L-function of F by

$$
L(F, \text { spin }, s)=\prod_{p<\infty} L_{p}(F, \text { spin }, s)
$$

where $L_{p}(F$, spin, $s)=Q_{p}\left(F, p^{-s}\right)^{-1}$,

$$
Q_{p}(F, t)= \begin{cases}1-p^{\kappa-3} \Lambda_{p}^{1} t+p^{2 \kappa-5}\left(\Lambda_{p}^{2}+p^{2}+1\right) t^{2}-p^{3 \kappa-6} \Lambda_{p}^{1} t^{3}+p^{4 \kappa-6} t^{4} & \text { if } p \nmid d_{B} \\ 1-\left\{p^{\kappa-3} \Lambda_{p}^{1}-p^{\kappa-3}\left(p^{A_{p}}-1\right) \Lambda_{p}^{0}\right\} t+p^{2 \kappa-3}\left(\Lambda_{p}^{0}\right)^{2} t^{2} & \text { if } p \mid d_{B}\end{cases}
$$

and

$$
A_{p}= \begin{cases}1 & \text { if } p \nmid D \\ 2 & \text { if } p \mid D\end{cases}
$$

The Euler factor for $p \nmid d_{B}$ (resp. $p \mid d_{B}$) is given by the formula for the denominator of the Hecke series in [Shim-1, Theorem 2] (resp. [H-S, §4] and [Su, (1-34)]), under the normalization
of the Hecke eigenvalues

$$
\left\{\begin{array}{ll}
\left(\Lambda_{p}^{0}, \Lambda_{p}^{1}, \Lambda_{p}^{2}\right) \rightarrow\left(p^{2(\kappa-3)} \Lambda_{p}^{0}, p^{\kappa-3} \Lambda_{p}^{1}, p^{2(\kappa-3)} \Lambda_{p}^{2}\right) & \left(p \nmid d_{B}\right) \\
\left(\Lambda_{p}^{0}, \Lambda_{p}^{1}\right) \rightarrow\left(p^{\kappa-3} \Lambda_{p}^{0}, p^{\kappa-3} \Lambda_{p}^{1}\right) & \left(p \mid d_{B}\right)
\end{array} .\right.
$$

We say that $f \in S_{\kappa}$ (resp. $f^{\prime} \in \mathcal{A}_{\kappa}$) is a Hecke eigenform if f (resp. f^{\prime}) is a common eigenfunction of T_{p} (resp. T_{p}^{\prime}) for any $p<\infty$. For Hecke eigenforms $f \in S_{\kappa}$ and $f^{\prime} \in \mathcal{A}_{\kappa}$ with $T_{p} f=\lambda_{p} f$ and $T_{p}^{\prime} f^{\prime}=\lambda_{p}^{\prime} f^{\prime}\left(\lambda_{p}, \lambda_{p}^{\prime} \in \mathbb{C}\right)$, we define L-functions

$$
\begin{aligned}
L^{D}(f, s) & =\prod_{p \nmid D}\left(1-\lambda_{p} p^{\kappa-2-s}+p^{2 \kappa-3-2 s}\right)^{-1} \\
L^{d_{B}}\left(f^{\prime}, s\right) & =\prod_{p \nmid d_{B}}\left(1-\lambda_{p}^{\prime} p^{\kappa-2-s}+p^{2 \kappa-3-2 s}\right)^{-1}
\end{aligned}
$$

When $D=1$, we write $L(f, s)$ for $L^{D}(f, s)$, which is the usual Hecke L-function of f.

5.5

We are now able to state the main result of the paper.
Theorem 5.1. Let $f \in S_{\kappa}$ and $f^{\prime} \in \mathcal{A}_{\kappa}$, and suppose that

$$
\begin{aligned}
& T_{p} f=\lambda_{p} f \\
& T_{p}^{\prime} f^{\prime}=\lambda_{p}^{\prime} f^{\prime}
\end{aligned}
$$

for each $p<\infty$. Then $F(g):=\mathcal{L}\left(f, f^{\prime}\right)(g)$ is a Hecke eigenform and the Hecke eigenvalues are given as follows:
(i) If $p \nmid d_{B}$, we have

$$
\begin{aligned}
& \mathcal{T}_{p}^{0} F=F, \\
& \mathcal{T}_{p}^{1} F=\left(p \overline{\lambda_{p}}+p \lambda_{p}^{\prime}\right) F, \\
& \mathcal{T}_{p}^{2} F=\left(p \overline{\lambda_{p}} \lambda_{p}^{\prime}+p^{2}-1\right) F .
\end{aligned}
$$

(ii) If $p \mid d_{B}$, we have

$$
\begin{aligned}
& \mathcal{T}_{p}^{0} F=\lambda_{p}^{\prime} F, \\
& \mathcal{T}_{p}^{1} F=\left(p \overline{\lambda_{p}}+(p-1) \lambda_{p}^{\prime}\right) F
\end{aligned}
$$

Corollary 5.2. Let f and f^{\prime} be as in Theorem 5.1. Then we have

$$
L\left(\mathcal{L}\left(f, f^{\prime}\right), \text { spin }, s\right)=L^{D}(\bar{f}, s) L^{d_{B}}\left(f^{\prime}, s\right) \prod_{p \mid D}\left(1-\left\{\overline{\lambda_{p}}+(1-p) \lambda_{p}^{\prime}\right\} p^{\kappa-2-s}+p^{2 \kappa-3-2 s}\right)^{-1} .
$$

In particular, if $D=1$, we have

$$
L\left(\mathcal{L}\left(f, f^{\prime}\right), \text { spin }, s\right)=L(\bar{f}, s) L^{d_{B}}\left(f^{\prime}, s\right)
$$

Here we define $L^{D}(\bar{f}, s)$ or $L(\bar{f}, s)$ by replacing λ_{p} with $\overline{\lambda_{p}}$ in $L^{D}(f, s)$ or $L(f, s)$ respectively.

Remark 5.3. When $p \nmid d_{B}$ the formula for the Hecke eigenvalues is essentially the same as the corresponding result of Yoshida lifting (cf. [Y, Theorem 6.1]). For such p this leads to the following decomposition

$$
L_{p}\left(\mathcal{L}\left(f, f^{\prime}\right), \text { spin, } s\right)=\left(1-\overline{\lambda_{p}} p^{\kappa-2-s}+p^{2 \kappa-3-2 s}\right)^{-1}\left(1-\lambda_{p}^{\prime} p^{\kappa-2-s}+p^{2 \kappa-3-2 s}\right)^{-1}
$$

6 Commutation relations

6.1

In this section, we state the commutation relations of Hecke operators, from which Theorem 5.1 immediately follows. For a function ϕ on H_{p}, we put $\widehat{\phi}(h)=\phi\left(h^{-1}\right)\left(h \in H_{p}\right)$. We define $\widehat{\phi}^{\prime}$ for $\phi^{\prime}: H_{p}^{\prime} \rightarrow \mathbb{C}$ in a similar manner.

6.2

In this subsection, suppose that $p \nmid d_{B}$ and let the notations be the same as in $\S 5.2$. The metaplectic representation r in this case is given as follows:
Let $\Phi \in \mathcal{S}\left(M_{4,2}\left(\mathbb{Q}_{p}\right)\right) \otimes \mathcal{S}\left(\mathbb{Q}_{p}^{\times}\right), X \in M_{4,2}\left(\mathbb{Q}_{p}\right)$ and $t \in \mathbb{Q}_{p}^{\times}$. Here $\mathcal{S}\left(M_{4,2}\left(\mathbb{Q}_{p}\right)\right)\left(\right.$ resp. $\left.\mathcal{S}\left(\mathbb{Q}_{p}^{\times}\right)\right)$ denote the space of locally constant and compactly supported functions on $M_{4,2}\left(\mathbb{Q}_{p}\right)$ (resp. $\left.\mathbb{Q}_{p}^{\times}\right)$. We have

$$
\begin{aligned}
& r(g, 1,1) \Phi(X, t)=|\nu(g)|_{p}^{-\frac{3}{2}} \Phi\left(g^{-1} X, \nu(g) t\right), \quad\left(g \in G_{p}\right), \\
& r\left(1,1, h^{\prime}\right) \Phi(X, t)=\left|\operatorname{det} h^{\prime}\right|_{p}^{\frac{3}{2}} \Phi\left(X h^{\prime},\left(\operatorname{det} h^{\prime}\right)^{-1} t\right), \quad\left(h^{\prime} \in H_{p}^{\prime}\right), \\
& r\left(1,\left(\begin{array}{cc}
a & 0 \\
0 & a^{\prime}
\end{array}\right), 1\right) \Phi(X, t)=|a|_{p}^{\frac{7}{2}}\left|a^{\prime}\right|_{p}^{-\frac{1}{2}} \Phi\left(a X,\left(a a^{\prime}\right)^{-1} t\right), \quad\left(a, a^{\prime} \in \mathbb{Q}_{p}^{\times}\right), \\
& r\left(1,\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right), 1\right) \Phi(X, t)=\psi\left(\frac{b t}{2} \operatorname{Tr}\left({ }^{t} X J X w^{-1}\right)\right) \Phi(X, t), \quad\left(b \in \mathbb{Q}_{p}\right), \\
& r\left(1,\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \Phi(X, t)=|t|_{p}^{4} \int_{M_{4,2}\left(\mathbb{Q}_{p}\right)} \psi\left(t \cdot \operatorname{Tr}\left({ }^{t} Y J X w^{-1}\right)\right) \Phi(Y, t) d_{Q} Y .
\end{aligned}
$$

6.3

The commutation relations are stated as follows:
Proposition 6.1. Suppose that $p \nmid d_{B}$. Then we have
(i) $r\left(\Phi_{p}^{1}, 1,1\right) \varphi_{0, p}=p \cdot r\left(1, \widehat{\phi}_{p}, 1\right) \varphi_{0, p}+p \cdot r\left(1,1, \widehat{\phi}_{p}^{\prime}\right) \varphi_{0, p}$,
(ii) $r\left(\Phi_{p}^{2}, 1,1\right) \varphi_{0, p}+\left(1-p^{2}\right) r\left(\Phi_{p}^{0}, 1,1\right) \varphi_{0, p}=p \cdot r\left(1, \widehat{\phi}_{p}, \widehat{\phi}_{p}^{\prime}\right) \varphi_{0, p}$.

Proposition 6.2. Suppose that $p \mid d_{B}$. Then we have

$$
\begin{aligned}
& r\left(\Phi_{p}^{0}, 1,1\right) \varphi_{0, p}=r\left(1,1, \widehat{\phi}_{p}^{\prime}\right) \varphi_{0, p} \\
& r\left(\Phi_{p}^{1}, 1,1\right) \varphi_{0, p}=p \cdot r\left(1, \widehat{\phi}_{p}, 1\right) \varphi_{0, p}+(p-1) r\left(1,1, \widehat{\phi}_{p}^{\prime}\right) \varphi_{0, p}
\end{aligned}
$$

7

Given a condition S, we set

$$
\delta(S):= \begin{cases}1 & (\text { if } S \text { is satisfied) } \\ 0 & \text { (otherwise) }\end{cases}
$$

For the reamining part of this paper we often use this notation, and denote $\varphi_{0, p}$ simply by φ_{0}

7.1

In this section, we assume that $p \nmid d_{B}$ and prove Proposition 6.1. We keep the notations of $\S 5.2$ and $\S 6.2$. For $X \in M_{2}\left(\mathbb{Q}_{p}\right)$ with $w X+{ }^{t} X w=0$ and $Y \in G L_{2}\left(\mathbb{Q}_{p}\right)$, we put

$$
u(X):=\left(\begin{array}{ll}
1_{2} & X \\
0_{2} & 1_{2}
\end{array}\right), \tau(Y):=\left(\begin{array}{cc}
Y & 0_{2} \\
0_{2} & w^{-1 t} Y^{-1} w
\end{array}\right) \in G_{p}
$$

The following is easily verified.
Lemma 7.1. (i)

$$
\begin{aligned}
K_{p} \operatorname{diag}(p, p, 1,1) K_{p}= & \operatorname{diag}(1,1, p, p) K_{p} \cup \bigcup_{c \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} u\left(\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)\right) \operatorname{diag}(1, p, 1, p) K_{p} \\
& \cup \bigcup_{b, d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \tau\left(\left(\begin{array}{cc}
1 & d \\
0 & 1
\end{array}\right)\right) u\left(\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right) \operatorname{diag}(p, 1, p, 1) K_{p} \\
& \cup \bigcup_{a, b, c \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} u\left(\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\right) \operatorname{diag}(p, p, 1,1) K_{p} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
K_{p} \operatorname{diag}\left(p^{2}, p, p, 1\right) K_{p}= & \operatorname{diag}\left(1, p, p, p^{2}\right) K_{p} \cup \bigcup_{d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} u\left(\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right)\right) \operatorname{diag}\left(p, 1, p^{2}, p\right) K_{p} \\
& \cup \bigcup_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}, c \in \mathbb{Z}_{p} / p^{2} \mathbb{Z}_{p}} u\left(\left(\begin{array}{cc}
a & 0 \\
c & -a
\end{array}\right)\right) \operatorname{diag}\left(p, p^{2}, 1, p\right) K_{p} \\
& \cup \bigcup_{(a, b, c) \in \Lambda} u\left(p^{-1}\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\right) \operatorname{diag}(p, p, p, p) K_{p} \\
& \cup \bigcup_{a, d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}, b \in \mathbb{Z}_{p} / p^{2} \mathbb{Z}_{p}} \tau\left(\left(\begin{array}{cc}
1 & d \\
0 & 1
\end{array}\right)\right) u\left(\left(\begin{array}{cc}
a & b \\
0 & -a
\end{array}\right)\right) \operatorname{diag}\left(p^{2}, p, p, 1\right) K_{p},
\end{aligned}
$$

where

$$
\Lambda:=\left\{(a, b, c) \in\left(\mathbb{Z}_{p} / p \mathbb{Z}_{p}\right)^{3} \mid(a, b, c) \not \equiv(0,0,0) \quad \bmod p, a^{2}+b c \equiv 0 \quad \bmod p\right\}
$$

Here we note $\sharp \Lambda=p^{2}-1$.

7.2

Denote by $\sigma_{m, n}$ (resp. σ^{\prime}) the characteristic function of $M_{m, n}\left(\mathbb{Z}_{p}\right)$ (resp. \mathbb{Z}_{p}^{\times}). Then we have $\varphi_{0}(X, t)=\sigma_{4,2}(X) \sigma^{\prime}(t)$. In the later discussion, we often write σ for $\sigma_{m, n}$ if there is no fear of confusion. The following facts are frequently used.

Lemma 7.2. We write σ for $\sigma_{1,1}$. Then

$$
\sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(p^{-1}(t+a)\right)=\sigma(t) \quad\left(t \in \mathbb{Q}_{p}\right)
$$

and

$$
\sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma(t) \sigma\left(p^{-1}\left(a t+t^{\prime}\right)\right)=p \sigma\left(p^{-1} t\right) \sigma\left(p^{-1} t^{\prime}\right)+\sigma(t) \sigma\left(t^{\prime}\right)-\sigma\left(p^{-1} t\right) \sigma\left(t^{\prime}\right) \quad\left(t, t^{\prime} \in \mathbb{Q}_{p}\right)
$$

Lemma 7.3. For $x \in M_{2,2}\left(\mathbb{Q}_{p}\right)$, set

$$
\lambda(x):=\sigma\left(\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right) x\right)+\sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{ccc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) x\right)
$$

and

$$
\rho(x):=\sigma\left(x\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\right)+\sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(x\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right)\right) .
$$

Then

$$
\lambda(x)=\rho(x) .
$$

For the rest of this section, we put

$$
\left[i_{1}, i_{2}, i_{3}, i_{4}\right](x)=\sigma_{2,2}\left(\left(\begin{array}{ll}
p^{-i_{1}} x_{1} & p^{-i_{2}} x_{2} \\
p^{-i_{3}} x_{3} & p^{-i_{4}} x_{4}
\end{array}\right)\right)
$$

for $x=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right) \in M_{2,2}\left(\mathbb{Q}_{p}\right)$ and $i_{1}, i_{2}, i_{3}, i_{4} \in \mathbb{Z}$.

7.3 Proof of Proposition 6.1 (i)

Let $X=\binom{x}{y} \in M_{4,2}\left(\mathbb{Q}_{p}\right)$ and $t \in \mathbb{Q}_{p}^{\times}$. In view of $\S 6.2$ and Lemma 7.1, we obtain

$$
r\left(\Phi_{p}^{1}, 1,1\right) \varphi_{0}(X, t)=p^{\frac{3}{2}} \sigma^{\prime}(p t) I(X)
$$

where

$$
\left.\begin{array}{rl}
I(X)= & \sum_{a, b, c \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\binom{p^{-1}\left\{x+\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) y\right\}}{y} \\
& \left.+\sum_{b, d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\begin{array}{cc}
\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & d \\
0 & 1
\end{array}\right)\left\{\begin{array}{ll}
p^{-1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right) y & b \\
0 & 0
\end{array}\right) y\right\}
\end{array}\right) .
$$

On the other hand, since

$$
U_{p}\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right) U_{p}=\bigcup_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}}\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right) U_{p} \cup\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right) U_{p},
$$

we obtain

$$
p\left\{r\left(1, \widehat{\phi}_{p}, 1\right) \varphi_{0}(X, t)+r\left(1,1, \widehat{\phi}_{p}^{\prime}\right) \varphi_{0}(X, t)\right\}=p^{\frac{3}{2}} \sigma^{\prime}(p t) I^{\prime}(X)
$$

where

$$
\begin{aligned}
I^{\prime}(X)= & \delta\left(\operatorname{Tr}\left(x w^{-1 t} y w\right) \in p \mathbb{Z}_{p}\right) \sigma(X) \\
& +p^{3} \sigma\left(p^{-1} X\right) \\
& +p \sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(X\left(\begin{array}{lll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right)\right) \\
& +p \sigma\left(X\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

The proof of Proposition 6.1 (i) is reduced to that of the following formula:

$$
\begin{equation*}
I(X)=I^{\prime}(X) \tag{7.1}
\end{equation*}
$$

Without loss of generality, we may assume that $y=\left(\begin{array}{cc}p^{\lambda} & 0 \\ 0 & p^{\mu}\end{array}\right)$ with $\lambda \geq \mu \geq 0$ in view of the elementary divisor theorem. First suppose that $\mu>0$. Then

$$
I\binom{x}{y}=p^{3} \sigma\left(p^{-1} x\right)+p \lambda(x)+\sigma(x)
$$

and

$$
I^{\prime}\binom{x}{y}=\sigma(x)+p^{3} \sigma\left(p^{-1} x\right)+p \rho(x)
$$

The equality (7.1) immediately follows from Lemma 7.3.
Next suppose that $\lambda=\mu=0$. Then

$$
I(X)=\sum_{a, b, c \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(p^{-1}\left(x+\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\right)\right)
$$

and

$$
I^{\prime}(X)=\delta\left(\operatorname{Tr}(x) \in p \mathbb{Z}_{p}\right) \sigma(x)
$$

Let $x=\left(\begin{array}{cc}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$. If $x \notin M_{2}\left(\mathbb{Z}_{p}\right)$, we have $I(X)=I^{\prime}(X)=0$. Assume that $x \in M_{2}\left(\mathbb{Z}_{p}\right)$. If $\operatorname{Tr}(x)=x_{1}+x_{4} \in p \mathbb{Z}_{p}$ (resp. $\in \mathbb{Z}_{p}^{\times}$), we have $I(X)=I^{\prime}(X)=1$ (resp. $=0$), which proves (7.1).

Finally suppose that $\lambda>0$ and $\mu=0$. Then

$$
\begin{aligned}
I(X)= & p \sum_{a, b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(p^{-1} x+\left(\begin{array}{cc}
0 & p^{-1} b \\
0 & p^{-1} a
\end{array}\right)\right) \\
& +\sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\left\{x+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right\}\right) \\
= & p[1,0,1,0](x)+[1,0,0,0](x)
\end{aligned}
$$

and

$$
I^{\prime}(X)=\delta\left(x_{1} \in p \mathbb{Z}_{p}\right) \sigma(x)+p[1,0,1,0](x)
$$

hence we get $I(X)=I^{\prime}(X)$. This complete the proof of Proposition 6.1 (i).

7.4 Proof of Proposition 6.1 (ii)

Fisrt observe

$$
r\left(\Phi_{p}^{2}, 1,1\right) \varphi_{0}(X, t)=p^{3} \sigma^{\prime}\left(p^{2} t\right) J(X)
$$

where

$$
\begin{aligned}
& J(X)=
\end{aligned}
$$

We also have

$$
r\left(\Phi_{p}^{0}, 1,1\right) \varphi_{0}(X, t)=p^{3} \sigma^{\prime}\left(p^{2} t\right) J^{\prime}(X)
$$

where

$$
J^{\prime}(X):=\sigma\binom{p^{-1} x}{p^{-1} y}
$$

On the other hand, we obtain

$$
r\left(1, \widehat{\phi}_{p}, \widehat{\phi}_{p}\right) \varphi_{0}(X, t)=p^{2} \sigma^{\prime}\left(p^{2} t\right) J^{\prime \prime}(X)
$$

where

$$
\begin{aligned}
J^{\prime \prime}(X):= & \delta\left(\operatorname{Tr}\left(x w^{-1 t} y w\right) \in p^{2} \mathbb{Z}_{p}\right) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\binom{x}{y}\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right)\right) \\
& +\delta\left(\operatorname{Tr}\left(x w^{-1 t} y w\right) \in p^{2} \mathbb{Z}_{p}\right) \sigma\left(\binom{x}{y}\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\right) \\
& +p^{3} \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\binom{x}{y}\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & p^{-2}
\end{array}\right)\right) \\
& +p^{3} \sigma\left(\binom{x}{y}\left(\begin{array}{cc}
p^{-2} & 0 \\
0 & p^{-1}
\end{array}\right)\right) .
\end{aligned}
$$

To show the second part of Proposition 6.1, it remains to prove

$$
\begin{equation*}
J(X)+\left(1-p^{2}\right) J^{\prime}(X)=J^{\prime \prime}(X) \tag{7.2}
\end{equation*}
$$

As in $\S 7.3$, we may assume that

$$
y=\left(\begin{array}{cc}
p^{\alpha} & 0 \\
0 & p^{\beta}
\end{array}\right) \quad(\alpha \geq \beta \geq 0)
$$

We divide the proof into the five cases as follows:

$$
\text { (a) } \beta \geq 2 \text { (b) } \alpha \geq 2, \beta=1 \text { (c) } \alpha=\beta=1 \text { (d) } \alpha \geq 1, \beta=0(e) \alpha=\beta=0 \text {. }
$$

(a) Under the setting of this case, we have

$$
\begin{aligned}
J(X)+\left(1-p^{2}\right) J^{\prime}(X)= & \sigma\left(\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right) x\right)+\sum_{d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{cc}
p^{-1} & p^{-1} d \\
0 & 1
\end{array}\right) x\right) \\
& +p^{3} \sigma\left(\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & p^{-2}
\end{array}\right) x\right) \\
& +p^{3} \sum_{d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{cc}
p^{-2} & p^{-2} d \\
0 & p^{-1}
\end{array}\right) x\right) \\
= & \lambda(x)+p^{3} \lambda\left(p^{-1} x\right)
\end{aligned}
$$

and

$$
J^{\prime \prime}(X)=\rho(x)+p^{3} \rho\left(p^{-1} x\right)
$$

The equality (7.2) follows from Lemma 7.3.
(b) For this case, we have

$$
\begin{aligned}
& J(X)=[1,1,0,0](x)+p^{2} \sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{cc}
p^{-1} x_{1} p^{-1} x_{2} \\
p^{-2} x_{3} & p^{-2} x_{4}-p^{-1} a
\end{array}\right)\right)+\sum_{(a, b, c) \in \Lambda} \sigma\left(\binom{p^{-1} x_{1} p^{-1}\left(x_{2}+b\right)}{p^{-1} x_{3} p^{-1}\left(x_{4}-a\right)}\right) \\
& +p \sum_{\substack{d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p} \\
b \in \mathbb{Z}_{p} / p^{2} \mathbb{Z}_{p}}} \sigma\left(\left(\begin{array}{c}
p^{-2}\left(x_{1}+d x_{3}\right) \\
p^{-1} x_{3}
\end{array} p^{-2}\left(x_{2}+d x_{4}\right)+p^{-1} b\right)\right) \\
& =[1,1,0,0](x)+p^{2}[1,1,2,1](x) \\
& \left.+\sum_{\substack{a=0 \\
b c \equiv 0 \bmod p \\
b \bmod p,(b, c) \neq(0,0)}} \sigma\left(\left(\begin{array}{cc}
p^{-1} x_{1} p^{-1}\left(x_{2}+b\right) \\
p^{-1} x_{3} & p^{-1} x_{4}
\end{array}\right)\right)+\sum_{\substack{a \neq 0 \\
b \neq 0 \\
b \neq 0}}^{\bmod p} \begin{array}{l}
\bmod p
\end{array}\right) \\
& +p^{2} \sum_{d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{c}
p^{-2}\left(x_{1}+d x_{3}\right) \\
p^{-1} x_{3}
\end{array} p^{-1}\left(x_{2}+d x_{4}\right), p^{-1} x_{4}\right)\right) \\
& =[1,1,0,0](x)+p^{2}[1,1,2,1](x)+(p-1)[1,1,1,1](x)+[1,0,1,0](x)-[1,1,1,0](x) \\
& +p^{2} \sigma\left(p^{-1} x_{2}\right) \sigma\left(p^{-1} x_{4}\right) \sum_{d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(p^{-1} x_{3}\right) \sigma\left(p^{-1}\left(d p^{-1} x_{3}+p^{-1} x_{1}\right)\right) \\
& =[1,1,0,0](x)+p^{2}[1,1,2,1](x)+(p-1)[1,1,1,1](x)+[1,0,1,0](x)-[1,1,1,0](x) \\
& +p^{2}\{p[2,1,2,1](x)+[1,1,1,1](x)-[1,1,2,1](x)\}
\end{aligned}
$$

and hence

$$
\begin{aligned}
J(X)+\left(1-p^{2}\right) J^{\prime}(X)= & {[1,1,0,0](x)+p[1,1,1,1](x)+[1,0,1,0](x) } \\
& -[1,1,1,0](x)+p^{3}[2,1,2,1](x)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
J^{\prime \prime}(X)= & \delta\left(x_{1} \in p \mathbb{Z}_{p}\right) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\binom{x_{1} p^{-1}\left(b x_{1}+x_{2}\right)}{x_{3} p^{-1}\left(b x_{3}+x_{4}\right)}\right) \\
& +\delta\left(x_{1} \in p \mathbb{Z}_{p}\right) \sigma\left(\binom{p^{-1} x_{1} x_{2}}{p^{-1} x_{3} x_{4}}\right)+p^{3} \sigma\left(\binom{p^{-2} x_{1} p^{-1} x_{2}}{p^{-2} x_{3} p^{-1} x_{4}}\right) \\
= & \sigma\left(p^{-1} x_{1}\right) \sigma\left(p^{-1} x_{2}\right) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(x_{3}\right) \sigma\left(p^{-1}\left(b x_{3}+x_{4}\right)\right) \\
& +[1,0,1,0](x)+p^{3}[2,1,2,1](x) \\
= & p[1,1,1,1](x)+[1,1,0,0](x)-[1,1,1,0](x) \\
& +[1,0,1,0](x)+p^{3}[2,1,2,1](x) .
\end{aligned}
$$

The equality (7.2) in this case immediately follows.
(c) For this case, we have

$$
\begin{aligned}
J(X)= & \sum_{\substack{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p} \\
c \in \mathbb{Z}_{p} / \bar{Z}_{p}}} \sigma\left(\left(\begin{array}{c}
\mathbb{Z}_{p} \\
p^{-1} x_{1} \\
p^{-2} x_{2}+p^{-1} c p^{-p^{-2}} x_{4}-p^{-1} a
\end{array}\right)\right) \\
& +\sum_{(a, b, c) \in \Lambda} \sigma\left(p^{-1}\left(x+\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\right)\right) \\
& +\sum_{\substack{a, d \in \mathbb{Z}_{p} / p \mathbb{Z}_{p} \\
b \in \mathbb{Z}_{p} / p^{2} \mathbb{Z}_{p}}} \sigma\left(\binom{p^{-2}\left(x_{1}+d x_{3}\right)+p^{-1} a p^{-2}\left(x_{2}+d x_{4}\right)+p^{-1}(b+a d)}{p^{-1} x_{3}}\right) \\
= & p \sigma\left(p^{-1} x\right)+\delta\left(x_{1}+x_{4} \in p \mathbb{Z}_{p}, x_{1}^{2}+x_{2} x_{3} \in p \mathbb{Z}_{p}\right)\left(\sigma(x)-\sigma\left(p^{-1} x\right)\right)+p^{2} \sigma\left(p^{-1} x\right) \\
= & \left(p^{2}+p-1\right) \sigma\left(p^{-1} x\right)+\delta\left(x_{1}+x_{4} \in p \mathbb{Z}_{p}, x_{1}^{2}+x_{2} x_{4} \in p \mathbb{Z}_{p}\right) \sigma(x) .
\end{aligned}
$$

On the other hand, we immediately have

$$
J^{\prime}(X)=\sigma\left(p^{-1} x\right)
$$

and

$$
\begin{aligned}
J^{\prime \prime}(X) & =\delta\left(x_{1}+x_{4} \in p \mathbb{Z}_{p}\right)\left\{\sigma\left(x\left(\begin{array}{cc}
p^{-1} & 0 \\
0 & 1
\end{array}\right)\right)+\sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(x\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{-1}
\end{array}\right)\right)\right\} \\
& =\delta\left(x_{1}+x_{4} \in p \mathbb{Z}_{p}\right)\left\{\sigma\left(\left(\begin{array}{cc}
p^{-1} x_{1} & x_{2} \\
p^{-1} x_{3} & x_{4}
\end{array}\right)\right)+\sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\binom{x_{1} p^{-1}\left(b x_{1}+x_{2}\right)}{x_{3} p^{-1}\left(b x_{3}+x_{4}\right)}\right)\right\} .
\end{aligned}
$$

To prove (7.2), it is sufficient to show that

$$
\begin{aligned}
& p \sigma\left(p^{-1} x\right) \\
& +\delta\left(x_{1}+x_{4} \in p \mathbb{Z}_{p}\right)\left\{\delta\left(x_{1}+x_{2} x_{3} \in p \mathbb{Z}_{p}\right) \sigma(x)-\sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\binom{x_{1} p^{-1}\left(b x_{1}+x_{2}\right)}{x_{3} p^{-1}\left(b x_{3}+x_{4}\right)}\right)-[1,0,1,0](x)\right\}
\end{aligned}
$$

vanishes. This is proved by a tedious but straightforward calculation and we omit its proof. (d) In this case, we have

$$
\begin{aligned}
J(X) & =\sum_{\substack{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p} \\
b \in \mathbb{Z}_{p} / p^{2} \mathbb{Z}_{p}}} \sigma\left(\left(\begin{array}{cc}
p^{-2} & 0 \\
0 & p^{-1}
\end{array}\right) x+\left(\begin{array}{cc}
p^{\alpha-2} a & p^{-2} b \\
0 & -p^{-1} a
\end{array}\right)\right), \\
J^{\prime}(X) & =0, \\
J^{\prime \prime}(X) & =\delta\left(x_{1}+p^{\alpha} x_{4} \in p^{2} \mathbb{Z}_{p}\right) \sigma\left(\left(\begin{array}{cc}
p^{-1} x_{1} & x_{2} \\
p^{-1} x_{3} & x_{4}
\end{array}\right)\right)
\end{aligned}
$$

for $X=\binom{x}{y}$ and $x=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$. Since

$$
\left.\left.\begin{array}{rl}
J(X) & =\sum_{a \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(\left(\begin{array}{c}
p^{-2} x_{1}+p^{\alpha-2} a \\
p^{-1} x_{3}
\end{array} p_{p^{-1}\left(x_{4}-a\right)}^{x_{2}}\right.\right.
\end{array}\right)\right)
$$

we are done.
(e) For this remaining case, we have

$$
J(X)=J^{\prime}(X)=J^{\prime \prime}(X)=0
$$

and the proof of (7.2) has been completed.

8

8.1

In this section, we assume that $p \mid d_{B}$ and prove Proposition 6.2. The proof of the first formula of the proposition is straightforward. To prove the second formula, we need some preparation. By $\sigma_{m, n}$, we denote the characteristic function of $M_{m, n}\left(\mathcal{O}_{p}\right)$. As in $\S 7$, we often omit the subscripts of $\sigma_{m, n}$'s. For a subset A of B_{p}, we put $A^{-}:=\{a \in A \mid \operatorname{tr}(a)=0\}$. Recall that \mathcal{O}_{p} is the maximal order of B_{p}, Π is a (fixed) prime element of B_{p} and $\pi=n(\Pi)$. We put $\mathfrak{P}_{p}=\Pi \mathcal{O}_{p}$.

8.2

We now collect several facts on the arithmetic of B_{p} used in the later discussion.

Lemma 8.1. We have

$$
\begin{aligned}
& \sharp \mathcal{O}_{p} / \pi \mathcal{O}_{p}=p^{4}, \\
& \sharp \mathcal{O}_{p} / \Pi \mathcal{O}_{p}=p^{2}, \\
& \sharp \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}=p^{3}, \\
& \sharp\left(\Pi^{-1} \mathcal{O}_{p}\right)^{-} / \mathcal{O}_{p}^{-}=p^{2} .
\end{aligned}
$$

Lemma 8.2. Let $\sigma=\sigma_{1,1}$ be the characteristic function of \mathcal{O}_{p}.
(i) $\sum_{b \in \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}} \sigma\left(\pi^{-1}(x+b)\right)=\delta\left(\operatorname{tr}(x) \in p \mathbb{Z}_{p}\right) \sigma(x)$,
(ii) $\sum_{b \in \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}} \sigma\left(\Pi^{-1}(x+b)\right)=p^{2} \delta\left(\operatorname{tr}(x) \in p \mathbb{Z}_{p}\right) \sigma(x)$,
(iii) $\sum_{b \in\left(\Pi^{-1} \mathcal{O}_{p}\right)^{-} / \mathcal{O}_{p}^{-}} \sigma(x+b)=\sigma(\Pi x)$,
(iv) $\sum_{b \in \mathfrak{P}_{p}^{-} / \pi \mathfrak{P}_{p}^{-}} \sigma\left(\pi^{-1}(x+b)\right)=p \sigma\left(\Pi^{-1} x\right)$,
(v) $\sum_{b \in \mathcal{O}_{p}^{-} / \mathfrak{P}_{p}^{-}} \sigma\left(\Pi^{-1}(x+b)\right)=\delta\left(\operatorname{tr}(x) \in p \mathbb{Z}_{p}\right) \sigma(x)$,
(vi) $\sum_{b \in \mathfrak{P}_{p}^{-} / \pi \mathfrak{P}_{p}^{-}} \sigma\left(\pi^{-1} \Pi^{-1} x+b\right)=\delta\left(\operatorname{tr}(x) \in p^{2} \mathbb{Z}_{p}\right) \sigma\left(\Pi^{-1} x\right)$.

8.3

We first consider the case $p \mid D$. Let ϕ_{p}^{+}(resp. ϕ_{p}^{-}) be the characteristic function of $U_{p}\left(\begin{array}{cc}1 & 0 \\ 0 & p^{-1}\end{array}\right) U_{p}$ (resp. $\left.U_{p}\left(\begin{array}{cc}p^{-1} & 0 \\ 0 & 1\end{array}\right) U_{p}\right)$. Note that $\widehat{\phi}_{p}=\phi_{p}^{+}+\phi_{p}^{-}$.

Lemma 8.3. We have

$$
r\left(\Phi_{p}^{1}, 1,1\right) \varphi_{0}(X, t)=p^{\frac{3}{2}} \sigma^{\prime}(\pi t) I(X)
$$

where

$$
\begin{aligned}
I\binom{x}{y}= & \sum_{b \in \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}} \sigma\binom{\pi^{-1}(x+b y)}{y} \\
& +\sum_{c \in\left(\Pi^{-1} \mathcal{O}_{p}-\mathcal{O}_{p}\right)^{-} / \mathcal{O}_{p}^{-}} \sigma\binom{\Pi^{-1}(x+c y)}{\Pi^{-1} y} \\
& +\sigma\binom{x}{\pi^{-1} y} .
\end{aligned}
$$

Proof. This follows from the definition of r and the coset decomposition

$$
\begin{aligned}
K_{p}\left(\begin{array}{ll}
1 & 0 \\
0 & \pi
\end{array}\right) K_{p}= & \bigcup_{b \in \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}}\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\pi & 0 \\
0 & 1
\end{array}\right) K_{p} \\
& \cup \bigcup_{c \in\left(\Pi^{-1} \mathcal{O}_{p}-\mathcal{O}_{p}\right)^{-} / \mathcal{O}_{p}^{-}}\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\Pi & 0 \\
0 & \Pi
\end{array}\right) K_{p} \\
& \cup\left(\begin{array}{cc}
1 & 0 \\
0 & \pi
\end{array}\right) K_{p}
\end{aligned}
$$

Lemma 8.4. (i) If $y \in \mathcal{O}_{p}^{\times}$, we have

$$
I\binom{x}{y}=\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma(x)
$$

(ii) If $y \in \Pi \mathcal{O}_{p}^{\times}$, we have

$$
I\binom{x}{y}=p^{2} \delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma\left(\Pi^{-1} x\right)-\sigma\left(\Pi^{-1} x\right)+\sigma(x)
$$

(iii) If $y \in \pi \mathcal{O}_{p}$, we have

$$
I\binom{x}{y}=p^{3} \sigma\left(\pi^{-1} x\right)+\left(p^{2}-1\right) \sigma\left(\Pi^{-1} x\right)+\sigma(x)
$$

Proof. When $y \in \mathcal{O}_{p}^{\times}$,

$$
\begin{aligned}
I\binom{x}{y} & =\sum_{b \in \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}} \sigma\left(\pi^{-1}\left(x y^{-1}+b\right)\right) \\
& =\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma\left(x y^{-1}\right) \\
& =\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma(x)
\end{aligned}
$$

When $y \in \Pi \mathcal{O}_{p}^{\times}$,

$$
\begin{aligned}
I\binom{x}{y} & =\sum_{b \in \mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}} \sigma\left(\Pi^{-1}\left(x y^{-1}+b\right)\right)+\sum_{c \in\left(\Pi^{-1} \mathcal{O}_{p}\right)^{-} / \mathcal{O}_{p}^{-}} \sigma\left(x y^{-1}+c\right)-\sigma\left(x y^{-1}\right) \\
& =p^{2} \delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma\left(x y^{-1}\right)+\sigma\left(\Pi x y^{-1}\right)-\sigma\left(x y^{-1}\right) \\
& =p^{2} \delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma\left(\Pi^{-1} x\right)+\sigma(x)-\sigma\left(\Pi^{-1} x\right)
\end{aligned}
$$

When $y \in \pi \mathcal{O}_{p}$,

$$
\begin{aligned}
I\binom{x}{y} & =\sharp\left(\mathcal{O}_{p}^{-} / \pi \mathcal{O}_{p}^{-}\right) \sigma\left(\pi^{-1} x\right)+\sharp\left(\left(\Pi^{-1} \mathcal{O}_{p}-\mathcal{O}_{p}\right)^{-} / \mathcal{O}_{p}^{-}\right) \sigma\left(\Pi^{-} x\right)+\sigma(x) \\
& =p^{3} \sigma\left(\pi^{-1} x\right)+\left(p^{2}-1\right) \sigma\left(\Pi^{-1} x\right)+\sigma(x) .
\end{aligned}
$$

Lemma 8.5. We have

$$
r\left(1, \phi_{p}^{+}, 1\right) \varphi_{0}(X, t)=p^{\frac{1}{2}} \sigma^{\prime}(p t) J^{+}(X)
$$

where

$$
J^{+}\binom{x}{y}=\sigma(y) \times \begin{cases}\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) \sigma(x) & \left(y \in \mathcal{O}_{p}^{\times}\right) \\ \sigma(x) & \left(y \in \Pi \mathcal{O}_{p}\right)\end{cases}
$$

Proof. Since $U_{p}\left(\begin{array}{cc}1 & 0 \\ 0 & p^{-1}\end{array}\right) U_{p}=\bigcup_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}}\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & p^{-1}\end{array}\right) U_{p}$, we have

$$
\begin{aligned}
r\left(1, \phi_{p}^{+}, 1\right) \varphi_{0}(X, t) & =p^{-\frac{1}{2}} \sigma^{\prime}(p t) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \psi\left(\frac{b t}{2} \operatorname{tr}\left(X^{*} Q X\right)\right) \sigma(X) \\
& =p^{-\frac{1}{2}} \sigma^{\prime}(p t) \cdot p \cdot \delta\left(\operatorname{tr}\left(x^{\sigma} y\right) \in \mathbb{Z}_{p}\right) \sigma_{2,1}\left(\binom{x}{y}\right) \\
& =p^{\frac{1}{2}} \sigma^{\prime}(p t) \sigma(x) \times \begin{cases}\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right) & \left(y \in \mathcal{O}_{p}^{\times}\right) \\
1 & \left(y \in \Pi \mathcal{O}_{p}\right)\end{cases}
\end{aligned}
$$

which proves the lemma.
Lemma 8.6. We have

$$
r\left(1, \phi_{p}^{-}, 1\right) \varphi_{0}(X, t)=p^{\frac{5}{2}} \sigma^{\prime}(p t) J^{-}(X)
$$

where

$$
J^{-}\binom{x}{y}=\sigma(y) \times \begin{cases}0 & \left(y \in \mathcal{O}_{p}^{\times}\right) \\ \left(\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right)-p^{-1}\right) \sigma\left(\Pi^{-1} x\right) & \left(y \in \Pi \mathcal{O}_{p}^{\times}\right) \\ p \sigma\left(\pi^{-1} x\right)+\left(1-p^{-1}\right) \sigma\left(\Pi^{-1} x\right) & \left(y \in \pi \mathcal{O}_{p}\right)\end{cases}
$$

Proof. To prove the lemma, we recall that, for $h \in G L_{2}\left(\mathbb{Q}_{p}\right)$,

$$
(\mathcal{I} \cdot r(1, h, 1) \varphi)(X, t)=|\operatorname{det} h|^{-\frac{1}{2}} \mathcal{I} \varphi\left(\operatorname{det}(h) \cdot h^{-1} X, \operatorname{det}\left(h^{-1}\right) \cdot t\right),
$$

where

$$
\mathcal{I} \varphi\left(\binom{x}{y}, t\right)=\int_{B_{p}} \psi\left(-t \operatorname{tr}\left(u^{\sigma} x\right)\right) \varphi\left(\binom{u}{y}, t\right) d u
$$

(cf. Lemma 3.2). Here the measure $d u$ on B_{p} is normalized by $\operatorname{vol}\left(\mathcal{O}_{p}\right)=p^{-1}$. It is easily verified that

$$
\mathcal{I} \varphi_{0}\left(\binom{x}{y}, t\right)=p^{-1} \sigma(\Pi x) \sigma(y) \sigma^{\prime}(t)
$$

and

$$
\mathcal{I}^{-1} \varphi\left(\binom{x}{y}, t\right)=|t|^{4} \int_{B_{p}} \psi\left(t \operatorname{tr}\left(u^{\sigma} x\right)\right) \varphi\left(\binom{u}{y}, t\right) d u .
$$

It follows that

$$
\begin{aligned}
\left(\mathcal{I} \cdot r\left(1, \phi_{p}^{-}, 1\right) \varphi_{0}\right)(X, t) & =p^{-\frac{1}{2}} \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \mathcal{I} \varphi_{0}\left(\left(\begin{array}{cc}
1 & 0 \\
b & p^{-1}
\end{array}\right)\binom{x}{y}, p t\right) \\
& =p^{-\frac{3}{2}} \sigma(\Pi x) \sigma^{\prime}(p t) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(b x+p^{-1} y\right) .
\end{aligned}
$$

We thus have

$$
\begin{aligned}
r\left(1, \phi_{p}^{-}, 1\right) \varphi_{0}(X, t) & =|t|^{4} \int_{B_{p}} \psi\left(t \operatorname{tr}\left(u^{\sigma} x\right)\right) p^{-\frac{3}{2}} \sigma(\Pi u) \sigma^{\prime}(p t) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(b u+p^{-1} y\right) d u \\
& =p^{\frac{5}{2}} \sigma^{\prime}(p t) K\binom{x}{y},
\end{aligned}
$$

where

$$
K\binom{x}{y}=\int_{B_{p}} \psi\left(p^{-1} \operatorname{tr}\left(u^{\sigma} x\right)\right) \sigma(\Pi x) \sum_{b \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}} \sigma\left(b u+p^{-1} y\right) d u
$$

First observe that $K\binom{x}{y}=0$ if $y \notin \Pi \mathcal{O}_{p}$. Assume that $y \in \Pi \mathcal{O}_{p}$. Then

$$
\begin{aligned}
K\binom{x}{y} & =\sigma\left(p^{-1} y\right) \int_{\Pi^{-1} \mathcal{O}_{p}} \psi\left(p^{-1} \operatorname{tr}\left(u^{\sigma} x\right)\right) d u+\sum_{b \in\left(\mathbb{Z}_{p}-p \mathbb{Z}_{p}\right) / p \mathbb{Z}_{p}} \int_{\Pi^{-1} \mathcal{O}_{p}} \psi\left(p^{-1} \operatorname{tr}\left(u^{\sigma} x\right)\right) \sigma\left(b^{-1} u+p^{-1} y\right) d u \\
& =\operatorname{vol}\left(\Pi^{-1} \mathcal{O}_{p}\right) \sigma\left(p^{-1} y\right) \sigma\left(p^{-1} x\right)+\sum_{b \in\left(\mathbb{Z}_{p}-p \mathbb{Z}_{p}\right) / p \mathbb{Z}_{p}} \int_{\Pi^{-1} \mathcal{O}_{p}} \psi\left(p^{-1} \operatorname{tr}\left(\left(u-b p^{-1} y\right)^{\sigma} x\right)\right) \sigma\left(b^{-1} u\right) d u \\
& =p \sigma\left(\pi^{-1} x\right) \sigma\left(\pi^{-1} y\right)+\sum_{b \in\left(\mathbb{Z}_{p}-p \mathbb{Z}_{p}\right) / p \mathbb{Z}_{p}} \psi\left(p^{-2} b \operatorname{tr}\left(y^{\sigma} x\right)\right) \int_{\Pi^{-1} \mathcal{O}_{p}} \psi\left(p^{-1} \operatorname{tr}\left(u^{\sigma} x\right)\right) \sigma(u) d u \\
& =p \sigma\left(p^{-1} x\right) \sigma\left(\pi^{-1} y\right)+\left\{p \delta\left(\operatorname{tr}\left(y^{\sigma} x\right) \in p^{2} \mathbb{Z}_{p}\right)-1\right\} \operatorname{vol}\left(\mathcal{O}_{p}\right) \sigma\left(\Pi^{-1} x\right) .
\end{aligned}
$$

The last term is equal to

$$
\left\{\delta\left(\operatorname{tr}\left(x y^{-1}\right) \in p \mathbb{Z}_{p}\right)-p^{-1}\right\} \sigma\left(\Pi^{-1} x\right)
$$

if $y \in \Pi \mathcal{O}_{p}^{\times}$, and

$$
\left(1-p^{-1}\right) \sigma\left(\Pi^{-1} x\right)
$$

if $y \in \pi \mathcal{O}_{p}$. This proves the lemma.
The following lemma is clear.
Lemma 8.7. We have

$$
r\left(1,1, \phi_{p}^{\prime}\right) \varphi_{0}(X, t)=p^{\frac{3}{2}} \sigma^{\prime}(p t) J^{\prime}(X)
$$

where

$$
J^{\prime}\binom{x}{y}=\sigma\left(\Pi^{-1} x\right) \sigma\left(\Pi^{-1} y\right)
$$

A straightforward calculation shows the following, which completes the proof of Proposition 6.2 in the case where $p \mid D$.

Proposition 8.8. We have

$$
J(X)-J^{+}(X)-p^{2} J^{-}(X)+(1-p) J^{\prime}(X)=0
$$

8.4

In this subsection, we suppose that $p \nmid D$. We only give a sketch of the proof of Proposition 6.2 in this case, since the proof is similar to that in $\S 8.3$. First we have the following coset decomposition:

$$
\begin{aligned}
K_{p}\left(\begin{array}{cc}
1 & 0 \\
0 & \pi
\end{array}\right) K_{p}= & \bigcup_{b \in \mathfrak{P}_{p}^{-} / \pi \mathfrak{P}_{p}^{-}}\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\pi & 0 \\
0 & 1
\end{array}\right) K_{p} \\
& \cup \bigcup_{c \in\left(\mathcal{O}_{p}-\mathfrak{P}_{p}\right)^{-} / \mathfrak{P}_{p}^{-}}\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\Pi & 0 \\
0 & \Pi
\end{array}\right) K_{p} \\
& \cup\left(\begin{array}{cc}
1 & 0 \\
0 & \pi
\end{array}\right) K_{p} .
\end{aligned}
$$

Lemma 8.9. We have

$$
\begin{aligned}
& r\left(\Phi_{p}^{1}, 1,1\right) \varphi_{0}(X, t)=p^{3 / 2} \delta^{\prime}(\pi t) I(X) \\
& r\left(1, \widehat{\phi}_{p}, 1\right) \varphi_{0}(X, t)=p^{1 / 2} \delta^{\prime}(\pi t) J(X) \\
& r\left(1,1, \widehat{\phi}_{p}\right) \varphi_{0}(X, t)=p^{3 / 2} \delta^{\prime}(\pi t) J^{\prime}(X)
\end{aligned}
$$

where

$$
\begin{aligned}
I(X) & =\sum_{b \in \mathfrak{P}_{p}^{-} / \pi \mathfrak{P}_{p}^{-}} \sigma\binom{\pi^{-1}(x+b y)}{\Pi y}+\sum_{c \in\left(\mathcal{O}_{p}-\mathfrak{P}_{p}\right)^{-} / \mathfrak{P}_{p}^{-}} \sigma\binom{\Pi^{-1}(x+c y)}{y}+\sigma\binom{x}{\Pi^{-1} y} \\
J(X) & =\delta\left(\operatorname{tr}\left(x^{\sigma} y\right) \in p \mathbb{Z}_{p}\right) \sigma\binom{x}{\Pi y}+p^{3} \sigma\binom{\pi^{-1}}{\Pi^{-1} y} \\
J^{\prime}(X) & =\sigma\binom{\Pi^{-1} x}{y}
\end{aligned}
$$

Using Lemma 8.2 and Lemma 8.9, we obtain the following formula, from which Proposition 6.2 immediately follows.

Proposition 8.10.

$$
I(X)=J(X)+(p-1) J^{\prime}(X)
$$

References

[Ar-1] T. Arakawa, unpublished note.
[Ar-2] T. Arakawa, On certain automorphic forms of $S p(1, q)$, Automorphic forms of several variables, Taniguchi Symposium, Katata (1983), 1-48.
[E] M. Eichler, Quadratische Formen und Modulfunktionen, Acta Arith., 4 (1958), 217-239.
[Ge] S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Lecture Notes in Math. 530, Springer-Verlag (1976).
[G-W] B. Gross and N. Wallach, On quaternionic discrete series representations, and their continuations, J. Reine. Angew. Math., 481 (1996), 73-123.
[H-K] M. Harris and S. Kudla, Arithmetic automorphic forms for the nonholomorphic discrete series of $G S p(2)$, Duke. Math. J., 66 (1992), 59-121.
[H-S] T. Hina and T. Sugano, On the local Hecke series of some classical groups over \mathfrak{p}-adic fields, J. Math. Soc. Japan, 35 (1983), 133-152.
[Ku] S. Kudla, On certain Euler products for $S U(2,1)$, Compositio Math., 42 (1981), 321344.
[N-1] H. Narita, On certain automorphic forms of $S p(1, q)$ (Arakawa's results and recent progress), Proceedings of the conference in memory of Tsuneo Arakawa, Automorphic forms and zeta functions, World Scientific (2006), 314-333.
[N-2] H. Narita, Fourier-Jacobi expansion of automorphic forms on $S p(1, q)$ generating quaternionic discrete series, to appear in Journal of functional analysis.
[N-3] H. Narita, Theta lifting from elliptic cusp forms to automorphic forms on $S p(1, q)$, preprint, (2006).
[Ra] S. Rallis, Langlands functoriality and the Weil representation, Amer. J. Math., 104 (1982), 469-515.
[Ro] B. Roberts, The theta correspondence for similitudes, Israel J. Math., 94 (1996), 285317.
[Shim-1] G. Shimura, On modular correspondence for $S p(N, \mathbb{Z})$ and their congruence relations, Proc. Nat. Acad. Sci. U.S.A., 49 (1963), 824-828.
[Shim-2] G. Shimura, Arithmetic of unitary groups, Ann. Math., 79 (1964), 369-409.
[Su] T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 31 (1984), 521-568.
[Sz] H. Shimizu, Theta series and automorphic forms on $G L_{2}$, J. Math. Soc. Japan, 24 (1972), 638-683.
[Y] H. Yoshida, Siegel's modular forms and the arithmetic of quadratic forms, Invent. Math., 60 (1980), 193-248.
[W] J. L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symmetrie, Compositio Math., 54 (1985), 173-242.

E-mail address: murase@cc.kyoto-su.ac.jp, narita@sci.osaka-cu.ac.jp

