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Introduction

In the present paper we study some geometrical properties of the moduli
space of Bohr - Sommerfeld lagrangian cycles which belongs to a new sub-
ject, built on the border (or on a neighborhood of the border) of algebraic
geometry and lagrangian geometry. This new subject was called ALAG —
abelian lagrangian algebraic geometry — by its inventors, A. N. Tyurin and
A. Gorodentsev (see [6]). ALAG - programme could be seen as a programme
indeed: as the input for the programme one takes any smooth compact sym-
plectic simply connected manifold (finite dimensional) (M,ω) with integer
symplectic form (so [ω] ∈ H2(M,Z)), and as the output of the programme
one gets an infinite dimensional algebraic manifold Bhw,r

S which is the moduli
space of half weighted Bohr - Sommerfeld lagrangian cycles of fixed topolog-
ical type and volume. The construction is essentially universal - one doesn’t
use other ingredients than a symplectic manifold naturally has, and this
universality implies an important property of the construction which was
called ”dynamical correspondence” (see [17]). It means that every hamilto-
nian action on the given symplectic manifold M induces a natural action on
the moduli space Bhw,r

S and this action is hamiltonian with respect to the
Kaehler form on Bhw,r

S . Moreover, one can write down explicitly the corre-
sponding Hamiltonian Ff ∈ C∞(Bhw,r

S ,R) for any ”classical” Hamiltonian
f ∈ C∞(M,R) (see [16], [17]). This dynamical property leads one to apply
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the ALAG - programme for a generalization of geometric quantization. And
a solution for the problem of nonlinear version of geometric quantization is
given by the moduli space Bhw,r

S (a survey on the subject can be found in
[18]).

It doesn’t look unexpected since the inventors of ALAG had in mind the
following main background idea. The point is that the group of symplecto-
morphisms of M acts in a natural way on the moduli space Bhw,r

S , and this
action preserves the Kaehler structure. It means that one could try to per-
form the factorization which would give a finite dimensional quotient space
which should be an algebraic variety (finite dimensional). Leaving aside all
possible details and difficulties (such as the transitivity problem of the action
etc.) one concludes with the following ideal picture: for any given compact
symplectic manifold with integer symplectic form there is a canonical part-
ner — finite dimensional algebraic variety. This correspondence now would
be highly desired because of Mirror Symmetry conjecture. Indeed, Mirror
Symmetry today in the broad context is understood as a duality between
Algebraic Geometry and Symplectic Geometry. This means that if M,W
are mirror partners then the algebraic geometry of M corresponds to the
symplectic geometry of W and vice versa. The main problem is to find
the meaning of term ”correspond” in the previous phrase. For example, in
Homological Mirror Symmetry, proposed by M. Kontsevich, this one is un-
derstood as follows: in the framework of Algebraic Geometry one constructs
some category over M (namely, the derived category of coherent sheaves)
while in the symplectic setup one takes some category over W (which is the
Fukaya - Floer - Oh - Ohta - Ono category) and the correspondence means
that these two categories are equivalent as triangulated categories. Another
example is given in more general framework for Fano varieties by D. Orlov,
L. Karzarkov and D. Auruox where one compares the derived category of co-
herent sheaves with so- called Fukaya - Seidel category for the corresponding
Landau - Ginzburg model, see [2].

Unfortunately the straightforward background idea of ALAG - programme
couldn’t be realized since as it was shown in [19] if the quotient space

Bhw,r
S /SymM

does exist it should be zero dimensional (and the number of points is equal
to h0(BS ,Z), see below). Zero dimensional complex manifolds are interesting
only if they are naturally included into some ambient algebraic space (f.e.
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the last author of [6] is extremely skilfull in the recognizing of some geometric
objects under different views including the case of points). But in our case
a priori there is no any natural ambient space for the factor. Despite of
this the situation is not pathologic: suppose one constructs a natural vector
bundle (or some other fibered object) of finite rank over the moduli space
Bhw,r

S and factorize it with respect to SymM - action, then it would give a
quotient object of finite (non zero) dimension. If this natural bundle over
Bhw,r

S is holomorphic then the resulting quotient space should be algebraic.
This enforces us to study some geometrical properties of the moduli

spaces. In the present text we follow this reason, starting with some nat-
ural objects over the moduli space of Bohr - Sommerfeld Lagrangian cycles
(without weights). Even on this level (real analytic) there are examples of the
objects. It’s not hard to describe how the group of symplectomorphisms acts
on these ones. At the same time the basic construction with half-weighting
in ALAG can be slightly deformed and this would lead to extensions of the
objects to the weighted case. This needs some geometric interpretation of
the Maslov class which we discuss below.

Acknoledgement. The author would like to deeply thank the Max
Planck Institute for Mathematics (Bonn) for hospitality. My gratitude goes
to V. Gorbunov, A. Gorodentsev, S. Kuleshov, A. Isaev, A. Levin, A. Mu-
drov, V. Pidstrygach, P. Pyatov, Yu. Tschinkel and many others for valuable
discussions and remarks.

1 Induced dynamics

Every symplectic manifold (M,ω) where ω is the symplectic form, can be re-
garded as the phase space of some classical mechanical system. We will deal
with compact case when M is a compact real even dimensional manifold and
moreover we will assume that it is simply connected. Then every hamiltonian
vector field (= infinitesimal symplectomorphism) is generated by a smooth
function which is called the Hamiltonian. Every Hamiltonian defines (or in-
duces) dynamics of the system so if one considers a point then it is moved by
the hamiltonian vector field and its motion gives us some trajectory which
is an integral curve, tangent at each point to the hamiltonian vector field.
To study the induced motion one has to linearize the phase space near this
distinguished point (= take a chart in some atlas, which defines the smooth
structure) and solve the corresponding differential equation (the Hamilton



4

equation). It’s the subject of classical mechanics — an old and very impor-
tant part of mathematics. But at the same time there is an aspect of the
situation above leading to some more generic picture.

Indeed, let us consider any submanifold S ⊂ M inside of M . Then
for any Hamiltonian f ∈ C∞(M,R) one has the corresponding infinitesimal
deformation of S, and if we continue the infinitesimal deformation, given by
Xf , to the induced 1- parameter family of symplectomorphisms φt (perhaps
for sufficiently small t) we get some motion of S. This motion could be
divided into two parts:

Inner part: the deformation of S itself (so how the points of S move
with respect to each other and change the location)

and
Outer part: the deformation of S inside of M as a ”body”.
Generalizing we see that on the space of all sub objects of M one has some

induced action of any Hamiltonian and it’s quite natural to speak in this case
about some induced dynamics: dynamics of objects which are subsets inside
of M .

But even the simplest case when one takes as this subset an arbitrary cho-
sen set of points already shows that this induced dynamics can be extremely
complicated. So in the full range of possible sub objects we must find an
appropriate type (if it exists) of submanifolds for which we could describe
the induced dynamics. Indeed, to do this we need

1) some good notion of the space of such sub objects including the ques-
tion of what is the corresponding smooth structure (to introduce some coor-
dinates),

2) some natural splitting of the Hamiltonian action into ”inner” and
”outer” parts compatible with the choice of coordinates,

3) this splitting should give us some reasonable equations which would
be solvable,

4) some relationship between classical mechanical setup and the new one,
given by the investigations.

Of course, any such realization is interesting for us if it can be understood
as a solution or a generalization of some problem. ALAG - programme gives
us an example of such induced dynamics.

In this case we take as the sub objects some lagrangian submanifolds (or
more generally some cycles) of fixed topological and homological types which
satisfy so called Bohr - Sommerfeld condition with respect to some natural
additional data. The meaning of this condition is just that local deforma-
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tions of any such lagrangian submanifold inside of our set are generated by
hamiltonian vector fields. So we distinguish in the space of all lagrangian
submanifolds of fixed topological and homological types the ones which are
hamiltonian equivalent. Let us recall briefly the main points of ALAG -
construction (see [6]) taking in mind our requirements above for induced
dynamics.

Let (M,ω) be a compact smooth simply connected symplectic manifold of
dimension 2n with integer symplectic form ω so [ω] ∈ H2(M,Z) ⊂ H2(M,R).
Since the class [ω] is integer and our manifold M is simply connected there
exists unique hermitian line bundle L with the first Chern class c1(L) = [ω]
together with unique up to gauge transformations hermitian connection a
such that Fa = 2πiω. The data (L, a) are defined uniquely (so they are
intrinsic for our symplectic manifold) and called ”prequantization data”. One
takes a smooth oriented n - dimensional manifold Spar as the parameter space
considering smooth maps (or more generally immersions)

φ : Spar →M,

which satisfy the properties
fixed homological type [φ(Spar)] = [S] ∈ Hn(M,Z) — a fixed class,
lagrangian condition φ∗ω = 0,
Bohr - Sommerfeld condition φ∗(L, a) is a trivial line bundle with

a trivial connection (so the pair φ∗(L, a) is gauge equivalent to the pair
(C∞(Spar,C), d) where d is the ordinary differential).

The space of all such maps is factorized with respect to the reparametriza-
tion group which is Diff+

0 Spar and the resulting quotient space is called the
moduli space of Bohr - Sommerfeld lagrangian cycles and denoted as BS .
Forgetting about the parameter space Spar we can think about BS as con-
sisting of the images of φs so of Bohr - Sommerfeld lagrangian submanifolds
in M (we will deal with smooth Bohr - Sommerfeld lagrangian submanifolds
so we will speak about BS near smooth points).

Now we list the main properties of the moduli space BS (see [6]) with
respect to the requirements 1) - 4) above.

1) The moduli space BS is smooth real infinite dimensional manifold.
The tangent space TBS at a smooth point S ∈ BS is modeled by the space
C∞(S,R) modulo constants. The smooth structure is given by the Darboux
- Weinstein theorem which says that for every S ⊂ M there exists a neigh-
borhood O(S) ⊂ M symplectomorphic to an ε- neighborhood of the zero
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section in T ∗S endowed with the canonical symplectic structure. Thus the
choice of a covering of M by a number of Darboux - Weinstein neighborhoods
(sufficiently small) gives us an atlas on BS and at each its chart we have the
corresponding local coordinates — smooth functions on S modulo constants.

2) As it was pointed out in [20] any choice of smooth structure gives us
some canonical decomposition of any hamiltonian vector field on any Bohr
- Sopmmerfeld lagrangian cycle. It’s very crucial point since in general one
could not decompose canonically vector field at points of some submanifold
without additional data (f.e. some compatible riemannian metric). But the
choice of some local coordinates (an appropriate atlas) gives the splitting
which is very simple to describe in the coordinates (see [17]). At the same
time this decomposition is compatible with the corresponding description
in terms of local Darboux - Weinstein coordinates: the outer part of the
hamiltonian vector field Xf , defined by function f ∈ C∞(M,R) responses
for the motion of S in BS and the last one is given infinitesimally by ψ ∈
C∞(S,R) equals to

ψ = f |S modulo constants.

In general, it is a special feature of lagrangian submanifolds thatXf is tangent
to S if and only if f is constant on S.

3) The splitting gives us quite simple and natural equation of motion
over BS: it’s not hard to see that the hamiltonian dynamics of any function
f ∈ C∞(M,R) induces the corresponding transformation of BS, generated
by some smooth vector field. We’ve almost described it in the previous item
— every function f ∈ C∞(M,R) being restricted to any cycle S ∈ BS gives a
tangent vector ψ = f |S, and generalizing the picture over whole BS one gets
a smooth vector field Af . This vector field induces a 1- parameter family of
smooth transformations of BS and it is exactly what the family φt generates.
So the equation of motion is very close to the classical one.

4) The desired relationship is absolutely clear. The point is that here
we have some dynamical correspondence: the induced dynamics coincides
with the dynamics, described by some natural equation including the vector
field Af induced by f . This dynamical naturality shows that for any pair of
smooth functions f, g the Poisson bracket {f, g} induces a vector field which
is exactly the commutator [Af , Ag]. So the picture is quite compatible and
self contained. Let us remark that a function f ∈ C∞(M,R) really induces
not just a vector field on BS but something more: at the points where the field
degenerates we have some exact numerical values. Indeed, Af degenerates at
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point S ∈ BS iff f |S = const, and this constant gives us the numerical value.
We’ve discussed what it looks like at the last part of [18].

Now one wants to compexify the story. The reason comes from the quan-
tization problem stated as follows (see f.e. [8]). One has the maximal symme-
try group of our phase space (M,ω) which is the infinite-dimensional group
of symplectomorphisms SymM . The construction given above realizes some
representation of SymM as a subgroup of DiffBS. But this group is es-
sentially real. Can we extend the construction such that it would give us a
realization of SymM in complex (hermitian) setup? On the other hand, we
have used only one part of the splitting of hamiltonian vector fields which
was declared as of very importance. It means that the picture with BS is a
bit degenerated since if f1 and f2 coincide on S and doesn’t coincide on any
neighborhood of S in M they nevertheless give the same deformation vector
at S ∈ BS. To activate the inner parts of hamiltonian vector field we need
to add some objects over our Bohr - Sommerfeld lagrangian cycles. One try
to exploited either flat connections (supercycle story) or densities or forms
over these cycles — anyway it should lead to some complexification of the
construction. In ALAG one takes halfweights (see [6]) so the ”halfweighted”
moduli space Bhw,r

S is fibered over B such that

π : Bhw,r
S → BS,

π−1(S) = {θ|
∫

S
θ2 = r},

where θ s are halfweights over S. The moduli space of halfweighted Bohr -
Sommerfeld cycles of fixed volume is an infinite dimensional algebraic man-
ifold (see [6]) and as it was shown in [19] the component of unity of the
symplectomorphism group Sym0M ⊂ SymM is irreducibly represented as a
subgroup of the symmetry group of the algebraic manifold. In particular it
means that the induced infinitesimal action of Xf (for any smooth function

f ∈ C∞(M,R)) on the moduli space Bhw,r
S is hamiltonian with respect to

the Kaehler form Ω and as it was shown in [17] it is strictly hamiltonian
with hamiltonian function Ff ∈ C∞(Bhw,r

S ,R). This function has extremely
simple dependence on f namely

Ff (S, θ) = τ

∫
S

f |Sθ
2

where τ is a real parameter. Although the story with this new kind of quan-
tization is not finished yet ALAG - programme itself looks like a appropriate
tool for investigations in lagrangian geometry.
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The applicability of ALAG in quantization problem hints that one could
try to exploite the programme in another mathematical problem closely re-
lated to physics — in mirror symmetry. It is the main background idea of
this paper (and as we hope of some future investigations). Some idealogical
approach to such an application is given in the next section.

2 Extended mirror symmetry

It’s a natural idea built over some standard concept of mirror symmetry
independently in [21] and [15], [14]. Here we follow the last source since it’s
more suitable for our aims.

We recall roughly the usual setup: one considers Calabi - Yau 3 - man-
ifolds (originally one deals with quintics in CP4, see [11]). Then two such
manifolds M and W are partners if

(numerical level) h1,1(W ) = h1,2(M) and vice versa;
(geometrical level) the complex deformations of M naturally corre-

sponds to the Kaehler deformations of W and vice versa.
The geometrical level is higher than the numerical one since the complex

deformations of M form (infinitesimally) the space of dimension h1,2(M)
while the number h1,1(W ) responses for the Kaehler deformations of W .

Let D(M), D(W ) are the Hodge diamonds of M and W . An extension
of the numerical mirror symmetry would read as the coincidence of D(M)
and D̂(W ), where the last one is given by D(W ), transformed by rotation on
π/2. More generally, it could be extended as the condition that there exists
some isomorphism

φ : Heven(M,Z) → Hodd(W,Z)

(which could be given by the rotation f.e.). But such a coincidence again
should be pure numerical — to ”geometrize” it we must to attach to the
cohomological classes some geometrical realizations which would be appro-
priate in the corresponding context. F.e. if we are speaking about M and
complex geometry of M then Heven should be endowed by some complex
realizations, and in the case of W , symplectic geometry comes to forefront.
An element from Heven(M,Z) reads as (r, c1, c2, c3) and it is clear that one
takes the realization by holomorphic vector bundles of the topological type
given by rank r and the Chern classes c1, c2, c3. The fixed Kaehler form on
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our Calabi - Yau manifold M which is a necessary entire defines the cor-
responding polarization and one can ask about the realizations by stable
holomorphic vector bundles of the fixed topological type. Thus every couple
v = (r, c1, c2, c3) ∈ Heven is endowed with a finite dimensional complex mod-
uli space Mv. The local theory of the moduli space says that at a smooth
point E ∈ Mv the tangent space is modeled by the kernel of a map

ψ : H1(M, adE) → H2(M, adE)

but due to the Calabi - Yau condition (the canonical class is trivial) both
the spaces have the same dimension so one could expect that Mv is zero
dimensional so one has a number of points.

On the other hand Hodd(W,Z) just coincides with H3(W,Z) by the def-
inition of Calabi - Yau manifold. The group H3(W,Z) is isomorphic due
to the Poincare duality to H3(W,Z) so one should look for any reasonable
realizations of classes from H3(W,Z). Such realization could be given by
some lagrangian submanifolds representing a fixed class. But the space of
all lagrangian submanifolds is too big thus one should impose some natural
conditions to derive some good finite dimensional moduli space. One choice
comes with special lagrangian submanifolds (see [7]). The local theory was
investigated by McLean in [10] and it ensures that the moduli space at a
smooth point S ⊂ M has dimension b1(S) — the first Betty number. So
as an appropriate realization in the symplectic setup the moduli space M[S]

of special lagrangian submanifolds would be a natural realization of class
[S] ∈ H3(W,Z). These moduli spaces are essentially real but one can switch
on complex geometry adding some supercycle structure to the story (see [7],
[?]). Then the moduli space of special lagrangian super cycles is a complex
moduli space.

The logical consequence is clear now: the Calaby - Yau manifolds M and
W are mirror dual if there exists an isomorphism

φ : Heven(M,Z) → Hodd(W,Z)

such that for any v ∈ Heven(M,Z) the moduli space Mv is isomorphic to
the moduli space M[S]=φ(v).

As an example we could mention the case where the SYZ - construction
(see [13]) works. This is the case of elliptic curves, which is worked out in
details in [14]. In this case the moduli space of stable vector bundles of type
(r, d) where r is the rank and d is the degree is isomorphic to the curve itself.
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At the same time (see [14]) the moduli space of special lagrangian cycles on
the mirror curve always has dimension 2 being generated by translations in
one direction. Adding some supercycle structure to the consideration one
avoids this divergence getting a direct correspondence between holomorphic
bundles and special lagrangian supercycles, see [14]. We will discuss the
situation more concretely in Section 5. At the same time we will show that the
correspondence carries some hidden parts which hints that it could be lifted
to a correspondence between lagrangian submanifolds and connections (not
only that flat). Thus our background idea is to extend the extended mirror
symmetry picture to be some general correspondence between lagrangian
geometry and gauge geometry.

For example we can understand the special lagrangian condition as a
minimality condition on lagrangian submanifolds or on the moduli space
of Bohr - Sommerfled cycles. As we will show in Section 5 in general the
intersection of notions is ”finite”, it means that the space of special Bohr -
Sommerfeld lagrangian cycles in general is a finite set of points thus it’s a
kind of the usual story when one takes some special representatives for an
infinte space (harmonic forms, instantons etc).

So it’s a natural idea to combine together the special lagrangian condition
and the Bohr - Sommerfeld condition to one spBS - condition and consider
the moduli space of spBS lagrangian cycles. Then we can rearrange the order
and consider the story in the opposite way. Indeed, one could consider the
special lagrangian condition as a condition imposed on the moduli space BS

of Bohr - Sommerfeld lagrangian cycles. Then it is not hard to see that in
the presence of the corresponding riemannian metric on W one has a map

Vg : BS → R+,

attaching the riemannian volume to each Bohr - Sommerfeld cycle. Then
the set of spBS - lagrangian cycles is given by the absolute minima of this
functional. And the story turns to be very familiar if we remember that there
is a very good paradigm for the theory of stable vector bundles namely the
gauge theory.

3 Infinite dimensional geometry of BS

SpBS cycles can be regarded as solutions of some equations over the space
of Bohr - Sommerfeld lagrangian cycles BS. The last one is an infinite di-
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mensional smooth real manifold. To study the geometry one needs a pattern
to work with infinite dimensional manifolds. We would like to use the gauge
theory as the pattern since the theory is highly developed and at the same
time the gauge theory is a good and natural framework for the theory of
stable holomorphic vector bundles. The main example is given by the Don-
aldson theory which is closely related to stable holomorphic vector bundles
over algebraic surfaces.

The battle field of the gauge theory is presented by a based manifold X,
which is smooth real, a principle G - bundle P → X over X, the space AP

of G - connections on P and the gauge group G of fiberwise G - transfor-
mations of P . The space of connections is just an affine space, but the real
configuration space is given by the set of equivalence classes

BP = AP/G.

This space is usually extremely complicated so one derives some regular sub-
set B∗

P ⊂ BP which consists of classes of irreducible connections (with min-
imal centralizer C(G)). This is an infinite dimensional real space locally
modeled at a regular point [a] ∈ B∗

S by

Ω1
X(adG)/daΩ

0
X(adG),

where da is the covariant derivative of a connection a which represents [a].
In presence of a riemannian metric g on X the slice near [a] can be described
as the kernel of formal adjoint operator d∗a

kerd∗
a ⊂ Ω1

X(adG).

So the quotient space B∗
P can be taken as a possible cousin of the moduli space

BS (at least it would explain why the moduli space of Bohr - Sommerfeld
lagrangian cycles was denoted by the same letter B in the original paper [6]).

But the quotient space B∗
P possesses more remarkable properties (see [4]),

namely
(1) it is orientable,
(2) it admits a universal object,
(3) all rational cohomologies of B∗

P are induced by this universal object.
An orientation in the infinite dimensional case is understood as follows.

Suppose that there exists a real line bundles Λ → B such that if M ⊂ B is any
regular finite dimensional submanifold then the restriction Λ|M is isomorphic
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to ΛmaxTM . Then B is orientable if this Λ is trivial, and an orientation is
given by a class of trivializations of Λ. In gauge theory it follows from the
topological properties of B∗

P being a classifying space. In our case we can
not apply the classical arguments from [4]. But nevertheless one has the
following

Proposition 1 The moduli space BS is orientable.

The proof is a little bit tricky: let us lift the story to the space of Bohr -
Sommerfeld lagrangian maps φ : Spar →M , then the tangent space of these
maps is given by the direct sum V ect(Spar)⊕C

∞(Spar,R)/consts. This space
carries a natural skew symmetric operation:

< (v1, f1), (v2, f2) >= ([v1, v2],Lv1
f2 − Lv2

f1).

The existence of this nondegenerated operator ensures that the space of Bohr
- Sommerfeld maps is orientable, and the factorization by an infinite Lie group
which is Diff+ Spar doesn’t destroy this property.

At the same time one can see that the choice of an orientation on BS

depens on the choice of an orientation on Spar.
The second important property of B∗

P listed above concerns with some
universal object. In the gauge theory it is some universal adG - bundle
constructed as follows.

On the direct product X×AP one has a universal bundle P with universal
connection A such that for every slice X×{A} the restriction of the universal
objects is presented just by (P,A). The gauge group G acts in a natural way
both on the base and on the universal bundle what gives us the corresponding
adG bundle

P
↓

X × BP

The same picture takes place for irreducible connections therefore

P
↓

X × B∗
P

↙ p ↘ q
X B∗

P
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The universal adG - bundle P is of great importance in the story. Using
this universal object one could transport objects from X to B∗

S. For example
(and it belongs to item (3)), we can transport homological classes of X to
cohomological classes of B∗

P . To do this one takes any characteristic class
c of G, say, degree d, this class gives us the corresponding class c(P) ∈
Hd(X × B∗

P ) and then substituting any homological class [Σ] ∈ Hi(X,Z) we
get a class fromHd−i(B∗

P ,Q) (if our characteristic class is rational). Generally
it defines a homomorphism

µ : Hi(X,Z) → Hd−i(B∗
P ,Q),

and in the known cases these µ - classes generate whole the ring H∗(B∗
P ,Q).

For example, in the Donaldson theory X is a compact 4 - dimensional
manifold, G = SU(2), then the characteristic class is the Pontryagin class
degree 4 of SO(3) universal bundle P, this class is rational but nevertheless
as it was established the corresponding µ - classes µ([Σ1]), ..., µ([Σk]), [Σi] ∈
H2(X,Z) are integer and the ring H∗(B∗

P ,Z) in this case is generated by these
two dimensional classes and one 4 -dimensional class η which came from the
class of point on X (see [4]).

Our main observation for today is that in the case of the moduli space of
Bohr - Sommerfeld lagrangian cycles BS we always have a universal object
which makes it possible to repeat (at least formally) the constructions recalled
above.

On the direct product M × BS consider the universal cycle

M × BS ⊃ U = {(x, S)| where x ∈M,S ∈ BS and x ∈ S}.

In the classical language it is called the incidence cycle. It’s not hard to see
that this cycle is smooth at smooth points and has codimension n. Then
one takes the Poincare dual class [U ]∗ ∈ Hn(M × B∗

S) (our BS is orientable
so formally one could do this) and substituting homological classes from
Hi(M,Z) one gets a homomorphism

µL : Hi(M,Z) → Hn−i(BS,Z).

It is natural to understand (and call) the images as the generalized µ - classes.
The homology and cohomology classes are something well defined in the

finite dimensional situation and it’s hard to imagine what are they in the
infinite dimensional case. Again we follow here [4] and understand these
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classes in the spirit of the Donaldson theory. There one chooses a riemannian
metric on the based manifold X which defines the Yang - Mills functional
on B∗

P . The absolute minima of the functional are anti self dual connection
classes or instantons which form the moduli space Mg

asd ⊂ B∗
P . For a generic

metric this moduli space is smooth finite dimensional (but generally non
compact). Thus we could ”test” our µ - classes on a finite dimensional
subobject in B∗

P : if d = v.dimMg
asd is even then

< µ([Σ1]).....µ([Σd/2]); [M
g
asd] >∈ Z,

where [Mg
asd] ∈ Hd(B

∗
P ,Z) is the fundamental class of the moduli space

(perhaps after a small deformation of g). Moreover, if b+2 (X) > 1 the topology
of Mg

asd for a generic metric doesn’t depend on it so one gets some polynomial
map

γd : SdH2(X,Z) → Z

invariant with respect to the Diff+X - action. Such a map is the celebrated
Donaldson polynomial (see [4]); these polynomials distinguish possible non
equivalent smooth structures on a given topological base X. Thus the non-
triviality of the µ - classes is reflected by the nontriviality of the polynomials
(in the case of nontrivial Donaldson invariants).

Following these ideas, we would like to show that the generalized µ -
classes are not trivial computing them on some appropriate finite subspaces
of BS (but it would not mean any usefulness of the classes, while we expect
that it is). The simplest possible case is just a point — some fixed Bohr - Som-
merfeld cycle S0 ∈ BS . To pair with one should take classes from H0(BS ,Z)
so it leads to considerations of Hn(M,Z) and the corresponding µL - classes.
Let us take any class [S1] ∈ Hn(M,Z) and compute < µL([S1]); [pt] >∈ Z

where the point class is represented by S0. It’s easy to see that topologically
this integer number is given by the intersection points of S1 and S0 in M
(perhaps after a small perturbation of S1) counting with signs. Therefore

< µL([Σ1]; [pt] >= QM([S1], [S0])

where QM is the topological intersection form of M . This shows that if BS is
not connected there would be no difference between pairings< µL([S1]); [pti] >
for i = 1, ..., b1(BS) and consequently in the good cases the moduli space BS

is connected.
To test other µL - classes we need other finite dimensional subsets in BS .

Repeating the gauge theory story one could fix an additional data on M f.e.
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some compatible riemannian metric g. Then it defines a functional

Vg : BS → R+, Vg(S) =

∫
S

V olg|S ∈ R+,

attaching the riemannian volume to any cycle S (recall that our cycles are
oriented). Then, one can ask about the extrema of this functional. The choice
of a riemannian metric compatible with our symplectic form is equivalent to
the choice of an almost complex structure J compatible with ω. In good cases
the set of minimal Bohr - Sommerfeld cycles is finite dimensional and smooth
and we can take the corresponding subset as the testing subspace in BS. It’s
well known (see [?]) that if J is integrable then S is minimal if the Ricci tensor
of g identically vanishes on S. It implies that topologically the restriction of
the canonical bundle KJ must be trivial since in the integrable case the Ricci
tensor represents the canonical class. In the cases of main interest (Calabi -
Yau and Fano varieties) this topological condition is satisfied automatically
and one should expect that the moduli space of special Bohr - Sommerfeld
lagrangian cycles is finite dimensional and smooth. We will denote it as
MspBS ⊂ BS. Let us consider a couple of examples.

Projective line. It is the toy example from [6] so we already know that
for S2 with the standard symplectic form the moduli space BS consists of
unicursal real curves which divide the sphere into two equal parts with the
same symplectic volume (really one has a double cover of the space since we
take the curves with orientations and because H1(S

2,Z) is trivial we consider
only one homological class as [S]). Let us take the standard Fubini - Study
metric on S2; then it’s not hard to see that MspBS consists of big circles, it
is smooth oriented manifold of dimension 2. But in this case we have only
one potentially nontrivial µL - class which comes from the class of point in
H0(S

2,Z), and it is easy to see that the class µL([pt]) has degree 1 and we
can’t compute it on [MspBS], getting some new symplectic invariants. It
doesn’t look suprizely since for S2 there is unique symplectic invariant —
due to the celebrated Moser theorem — and it is the symplectic volume of
S2.

Elliptic curve. This case is not simply connected but one could modify
the definitions adding the choice of an admissible hermitian connection on
the prequantization bundle L. It’s not hard to see that one instead can
choose a oriented cycle S ⊂ E, representing any nontrivial fixed class [S] ∈
H1(E,Z), and declair that it is Bohr - Sommerfeld. Then each other oriented
cycle from the same homology class is Bohr - Sommerfeld if and only if
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the symplectic volume of the film connecting them equals to zero (or more
generally if we change the prequantization level from 1 to k ∈ N, then the
symplectic volume must be l

k

∫
E
ω, l ∈ Z). F.e. for level 1 every two Bohr

- Sommerfeld must intersect each other. On the other hand, the space of
translations naturally splits (so E itself does) into two parts: the first one
contains the translations which preserves the Bohr - Sommerfeld condition
while the second part is transversal to the first one. The special Bohr -
Sommerfeld cycle is defined then as a Bohr - Sommerfeld cycle invariant
with respect to admissible translations. It is clear that there is only one such
a cycle.

Hirzebruch surfaces. A complex quadric with the standard Kaehler
form from the symplectic point of view is just the product of two projective
lines endowed with the standard symplectic forms (and the standard Fubini
- Study metrics)

Q = CP1
+ × CP1

−,

so the lagrangian geometry for this case is completely described by the prod-
uct structure together with the known facts about the projective line. Again
one could represents by lagrangian submanifolds the trivial middle homol-
ogy class only due to the numerical properties of H2(Q,Z); it is not hard
to see that S ⊂ Q is lagrangian if and only if both the projections pr±S to
the factors P1

± are smooth one dimensional and any such S is Bohr - Som-
merfeld if and only if both the projections pr±S are Bohr - Sommerfeld in
P1
±. The subset MspBS ⊂ BS is exactly the product of two 2- dimensional

spaces coming from the factors P1
±. So the story is essentially the same as for

the projective line. For another topological type of the Hirzebruch surfaces
(note that symplectically there are only two types of the surfaces — quadric
and complex projective plane with one blown - up point) we have the same
results.

Algebraic K3 - surface. This is the first case when there are non trivial
middle homology classes which can be realized by lagrangian submanifolds.
The point is (see f.e. [7], [14]) that if ωI , ωJ , ωK are the standard symplectic
forms, compatible with a fixed Ricci flat metric g on our K3 - surface X
then the holomorphic with respect to complex structure I riemann surfaces
are special lagrangian with respect to (ωJ , g) and (ωK, g). This gives the
dimension of the moduli space of special lagrangian cycles representing a
given class from PicX. But we are interested in the moduli space of Bohr
- Sommerfeld lagrangian cycles and its subset MspBS. Leaving aside the
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concrete description of BS just mention that if the genus of a Lagrangian
submanifold equals to zero then it is automatically Bohr - Sommerfeld. If
such a submanifold Σ represents a fixed class D ∈ PicX then the moduli
space has the same dimension as H1(Σ,Z)

g(Σ) =
1

2
D2 + 1 = h0(D) − 1,

and consequently the virtual dimension of MspBS is equal to zero. F.e. it is
true for an elliptic pencil since as it was pointed out in [17] each lagrangian
fiberation with compact fibers can contain just discrete set of Bohr - Som-
merfeld lagrangian fibers.

Therefore the known examples do not ensure that the generalized µ-
classes are nontrivial.

4 Floer bundles

The extended mirror symmetry implies that one could deal with lagrangian
submanifolds as with vector bundles (since they are dual with respect to the
symmetry). But the vector bundles are much more familiar to mathemati-
cians to work with so any representation of a lagrangian submanifold (or a
class of lagrangian submanifolds) by a vector bundle or a sheaf would be quite
useful in the mirror story. This section is devoted to a such representation.

Let (M,ω) is as above a simply connected symplectic manifold with in-
teger symplectic form ω. Let BS is the moduli space of Bohr - Sommer-
feld lagrangian cycles of fixed topological type [S] ∈ Hn(M,Z). Consider
any other oriented lagrangian submanifold S1 ⊂ M . Then for each Bohr -
Sommerfeld lagrangian submanifold S ∈ BS we have the Floer cohomology
FCH(S, S1,C) defined as follows (see [5], [12]). Let p1, ..., pm be the set of
the intersection points (perhaps after a small hamiltonian perturbation of
S1). Let us fix a generic almost complex structure I, compatible with ω.
Then for each pair pi, pj ∈ S ∩ S1 one can take the space of holomorphic
films, compatible with the orientations of S and S1 and linking pi and pj

(due to the orientations this operation is not symmetric). Then it gives the
following operator

δ : Cpi
→ Cpj

which is trivial if the space of the films has positive or nagative dimension
and is multiplication by d if it is zero dimensional where d is the number of
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the films. Totally it is generalized to operator

δ :
m∑
1

Cpi
→

m∑
1

Cpi
,

which possesses δ2 = 0 and the cohomology of the complex induced by the
operator δ is called the Floer cohomology of S and S1

FCH(S, S1,C) = ker δ/ Im δ.

The main property of the cohomology space is that it is stable with respect
to the hamiltonian deformations and is equivariant with respect to symplec-
tomorphisms. In particular (as it was pointed out by Floer and proved by
Oh), if S1 is given by a hamiltonian deformation of S then FCH(S, S1,C) =
H∗

dR(S,C) (if some topological assumption holds, namely π2(M,S,Z) is triv-
ial).

Globalizing the definition over whole BS, one gets an object:

FCH(S, S1,C) FS1

↓ ↓
S ∈ BS

which looks like a sheaf or a C - bundle over BS. The stability of the Floer
cohomology with respect to hamiltonian deformations immediately leads to
the following

Proposition 2 Totally FS1
is a C - bundle over BS.

Indeed, one has a distinguished trivialization for any choice of local co-
ordinates (charts) since these local coordinates are given by hamiltonian de-
formations of point S ∈ BS.

On the other hand it is clear that this bundle doesn’t change under hamil-
tonian deformations of S1. This means that we can vary S1 along the moduli
space BS1

getting the same bundle. But there is an object which depends
exactly on S1.

Proposition 3 This bundle FS1
carries a natural singular connection AS1

,
which depends on S1.
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This connection is given by the following arguments. If S (as it was in the
definition) has only transversal intersections with S1 then there exists a small
neighboorhod of S in BS which contains the Bohr - Sommerfeld cycles with
the same property. Then for each point pi ∈ S ∩ S1 belongs to ker δ/ Im δ
its graph with respect to any hamiltonian deformation gives a lifting of the
corresponding tangent vector on the base. Thus for a neighborhood where
the intersections are transversal it gives a natural lifting of paths from the
base which is a connection. The singularities come there if the intersection
turns to be nontransversal — but the type of a singular point is reflected by
the corresponding singularity of the intersection with S1. The singular set
SingAS1

⊂ BS is naturally stratified by the level of the intersection degener-
ation. Thus the geometry of this singular canonical connection is highly non
trivial.

We call the bundle FS1
the Floer bundle since its definition is inspired by

the Floer construction. Let us repeat again that
the bundle FS1

itself depends only on the class of Hamiltionian deforma-
tions of S1,

the canonical connection AS1
depends on S1 itself.

Thus the changing of S1 inside of the fixed class of hamiltonian deforma-
tions just leads to the perturbation of this connection AS1

inside of a fixed
class. Turning to S ′

1 which is slightly deformed S1 in the same class of hamil-
tonian deformations gives one another connection AS′

1
on the same bundle

FS1
. This new connection AS′

1
is again a singular one, but its singular set is

different from SingAS1
.

As an example one could take the case when S1 belongs to BS. Then the
fiber of the Floer bundle is given by H∗(S,C) and the singular set SingAS1

has a ”center” — the point S1 itself, which belong to each stratum, and
the geometry of this singular set is dictated by the singularity theory of
lagrangian submanifolds (see f.e. [22]).

Another example of a related object induced over a moduli space of Bohr
- Sommerfeld cycles by some vector bundles over M is given as follows.

Suppose that (M,ω) admits an integrable complex structure I, compat-
ible with ω. Then (M,ω, I) becomes an algebraic manifold and one can
consider the moduli space of stable vector bundles over it with respect to
the principle polarization given by the Kaehler class [ω]. Then for each sta-
ble bundle with the first Chern class proportional to [ω] one could take the
corresponding Kobayshi - Hitchin connection a whose curvature form is just
proportional to our symplectic form. Then the restriction of (E, a) to any
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lagrangian cycle should be a SU(n) - bundle equipped with a flat connec-
tion. Then over each S ∈ BS one has the corresponding deformed de Rahm
complex:

Ω0
S(E)

da→ Ω1
S(E)

da→ ...Ωn
S(E). 1

The flatness condition ensures that it is a complex indeed so one could take
the cohomology spaces. Every such a space can be globalized over whole
BS giving us a sheaf FE. But a priori it is really a sheaf since for a fixed
index i the rank of the corresponding group H i

a(S,E) can jump when one
deforms the starting point S ∈ BS in a neighborhood. At the same time
the total space H∗

a(S,E) should give a bundle again and we call it the Floer
bundle and denote it as FE taking in mind that it is somehow (may be
just formally) related to the Floer homology groups. Indeed (see [3]), it’s
a known way to define some special homology group for 3 - dimensional
real manifolds via some external objects (which are self dual connections on
smooth four dimensional manifold with ends, given by our 3 - dimensional
manifold). If S has dimension 3 then there exists just a finite number of
gauge classes of flat SU(2) - connections and for this finite number of points
p1, ..., pm it could be defined an operator δ, quite analogous to the operator
form the definition of the Floer cohomology. But there it was defined by
some internal objects of our symplectic manifold, the holomorphic films. In
the case of the Floer homology group this analogous operator δ is defined by
the moduli space of anti self dual connections on S×R. In our case the space
H∗

a(S,E) is defined by an external object as well — some stable holomorphic
bundle and we know how close are the notions of stable holomorphity and
anti self duality in dimension 4. Suppose that S admits just a finite number
of gauge equivalence classes of flat connections. Then the loop space of BS

should generate the Floer homology group of S. Moreover, there is a natural
connection on FE given by the following arguments. In presence of globally
defined on M Kobayashi - Hitchin connection a we can compute how the
complex (1) is deformed with respect to any hamiltonian vector field on the
base. This means that for any path on BS there exists the corresponding
lifting to the fibers of FE. Of course, this lifting depends on the connection
a itself so if we change it in the same equivalence class the induced lifting
should change as well. This lifting is our induced connection on FE.
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Notice that the descriptions of two vector bundles

FS FE

↘ ↙
BS

look quite similar and it is a reasonable idea to compare these two kinds
of bundles. But the problem is that while FS ia a complex bundle FE has
another structure group namely adG where G is the structure group of E.
Anyway one could say that a vector bundle E over M is equivalent to a
lagrangian cycle S if there exists the moduli space BS0

over M such that

FS ≡ FE.

Here we can place just the simplest example of the correspondent objects,
namely one has

Proposition 4 The prequantization line bundle L is equivalent over the
moduli space BS to S ∈ BS itself.

The proof is obvious: by the definition the restriction of (L, a) to every
S ∈ BS is gauge equivalent to the pair (C∞(S,C), d) where d is the ordinary
differential. In this case the complex (1) is exactly the de Rahm complex,
and the fiber of FL is given by H∗

dR(S,C). On the other hand, according to
the basic result of Floer, which we have mentioned above, the fiber of FS

over BS is the same and it follows immediately that the bundles FL and FS

over BS are isomorphic.
At the same time the problem of comparison of connections over bundles

FL and FS is much more complicated. But at the same time it is much more
interesting since if we are lucky we can get in this way some correspondence
between Bohr - Sommerfeld cycles from BS and connections in a fixed gauge
class.

Indeed, as we have seen every S ∈ BS and every a ∈ [a] ∈ A(L)/G define
some connections AS and Aa on the same bundle FS = FL. Then we would
get a map

BS → A(L)

thus we could find a correspondence between Bohr - Sommerfeld cycles and
connections on the prequantization bundle. Of course, it is just a rough idea,
but such a correspondence is highly desired.
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Let us mention another way to construct the bundle FE. To do this one
could exploit the universal object

U ⊂M × BS

in the following form: consider the diagram:

U
↙ ↘

M BS

with two natural projections p : U → M and q : U → BS. Then any
bundle (E, a) endowed with a connection can be lifted to U and then if the
connection is flat along the fibers of q can be pushed down producing a set
of sheaves Riq∗p

∗(E, a). The direct sum of these sheaves gives us the bundle
FE above.

5 Special and Bohr - Sommerfeld lagrangian

cycles on elliptic curve

Let Σ is a riemann surface of genus 1 so topologically it is torus T 2 endowed
with a flat Kahler structure with integer Kahler form ω. Thus one has the
prequantization bundle L with the first Chern class c1(L) = [ω] ∈ H2(Σ,Z).
The first question we have to answer is the following: what is the meaning
in this classical set up of the choice of a prequantization connection a such
that Fa = 2πiω? In the simply connected case this connection is given
automatically but in our case we have a real affine plane Π of noneqivalent
solutions to the equation Fa = 2πiω. This affine space is associated to the
vector space H1(Σ,R). The first fact is contained in the following

Proposition 5 The choice of a prequantization connection is equivalent to
the choice of a fixed point o ∈ Σ.

This means that in this prequantization setup one needs not just a com-
plex 1- dimensional Kahler manifold but an elliptic curve which is in addition
an abelian group. The arguments are extremely simple — if we choose a pre-
quantization connection a0 then we get a holomorphic structure on the line
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bundle L, so one gets the bundle L(o) for a point o. It’s easy to see that the
complete correspondence is given as a factorization

Π → Σ

with respect to periods of Σ. On the other hand we can this correspondence
can be explained via the fact that the moduli space of stable holomorphic
bundles is isomorphic to Σ.

Thus one can see that imposing this prequantization setup we get an
elliptic curve indeed.

Let us fix a prequantization connection a ∈ Ah(L) and some homology
class [S] ∈ H1(Σ,Z), [S] 6= 0. Let S0 be a Bohr - Sommerfeld lagrangian
oriented cycle so S0 ∈ Ba

S, where symbol a in the notation reflects the de-
pendence on the choice of a. Then we have the following simple proposition.

Proposition 6 An oriented cycle S representing the same homology class
[S] belongs to the same moduli space Ba

S if and only if the volume of the area,
restricted by oriented cycles S0 and S1, is integer.

The proof is the same as in Toy Example from [6]: the characters for the
restrictions of (L, a) on S0 and S differ by exponent of 2πiV olωN where N
is the area. Notice that there are exactly two choices of this area, bounded
by the oriented cycles, but since the total volume of Σ is integer it doesn’t
matter which one is taken.

Our Kahler manifold Σ admits symmetries which are given by the straight
lines on the universal covering of Σ. The symmetries are defined, f.e.,
by the corresponding nondegenerated hamiltonian vector fields, which are
parametrized by H1(Σ,R) in the usual way. Then

Proposition 7 There exists unique direction in H1(Σ,R), such that the cor-
responding vector field preserves the Bohr - Sommerfeld condition.

This means that Ba
S can be equipped with a circle action, but this action is

not smooth. To ensure let us recall (see [14]) that in the case of elliptic curves
special lagrangian cycles are given by geodesic cycles so they correspond
to straight lines on the universal covering. This means that if one fixes
a homology class [S] ∈ H1(Σ,Z) then the moduli space MspLag of special
lagrangian cycles is isomorphic to S1. On the other hand

Proposition 8 The set BS ∩MspLag consists of exactly one point. For any
prequantization level k this set consists of k points.
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Ideed, according to the description of special Lagrangian cycles and Propo-
sition 6, we get the statement. Now we can come back to the circle action.
It is not hard to see that this circle action preserves exactly the special la-
grangian cycles, which belong to Ba

S. From this we see that

Proposition 9 The circle action on Ba
S , induced by the translations de-

scribed above, has unique fixed point, which is given by the special lagrangian
cycle.

In the case of level k the distunguished set of isolated points S1, ..., Sk ∈
Ba

S are the special Bohr - Sommerfeld lagrangian cycles. Thus, one could
say, that ”euler characteristic” of Ba

S is equal to some derivation of the set of
these special Bohr - Sommerfeld cycles. Since the moduli space is orientable
then this characteristic equals to the number of special Lagrangian cycles,
counted with signs.

On the other hand, the distinguished direction in H1(Σ,R) is given by
the cohomology class, dual to [S] ∈ H1(Σ,Z). To ensure one could consider
the corresponding Hodge star operator, harmonic forms etc. At the same
time the translation arguments show that

Ba
S = Ba+αρ+kτ

S ,

where α ∈ R, k ∈ Z and ρ, τ correspond to the translations which preserve
this a - Bohr - Sommerfeld condition and the orthogonal to it respectively.
Thus it remains just a circle

H1(Σ,R) → S1
a,

which parametrizes different moduli spaces of Bohr - Sommerfeld lagrangian
cycles.

Moreover, the translation arguments show that

Proposition 10 For any [a0], [a1] ∈ S1
a the moduli spaces Ba0

S and Ba1

S are
isomorphic. The isomorphism is given by some appropriate translation.

Now let us discuss the construction from [14] attaching to any stable vec-
tor bundle on a given elliptic curve Σ some special lagrangian submanifold on
the mirror curve Σ′. Recall that this mirror curve is constructed in this case
following the SYZ - strategy (see [13]). Since one can fix a decomposition of
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Σ into the direct product of groups U(1)+×U(1)− there is the corresponding
fibration

Σ → S1. 2

Then the mirror curve is given as dual fibration over the same base:

Σ′ → S1, 2′

where the fibers are dual 1-dimensional torus for the fibers of (2) above.
Then, f.e., if one has a holomorphic line bundle over Σ then choosing the
corresponding connection a (or, more rigorius, a class of connections) and
then restricting it to each fiber in (2), one should get a representation of its
fundamental group so an element of the dual torus. The point is that the
image of this correspondence is collected to a lagrangian cycle in Σ′ and as
it was shown in [14] this cycle is special lagrangian.

This picture with the mirror curves contains a lot of hidden degrees of
freedom. Let us mention that real dimension 2 possesses the following spec-
ification:

— every 1- dimensional submanifold is lagrangian;
— every hermitian connection, restricted to a fiber, is flat.
Indeed, in the correspondence

line bundles ↔ lagrangian cycles

represented above, one can take any hermitian connection b on L over Σ, and
it should be flat on the fibers thus it gives a lagrangian submanifold in Σ′. The
point is that this resulting submanifold is not special lagrangian in general.
Let us take two connection a (which is our prequantization connection) and b
(choosen arbitrary) on the prequantization bundle L and compare the images
under the procedure, namely lagrangian cycles Sa and Sb in Σ′. It’s clear that
these cycles belong to the same homology class. On the other hand

Proposition 11 Two lagrangian cycles Sa and Sb belongs to the same mod-
uli space of Bohr - Sommerfeld cycles on Σ′ if and only if

VΣ(
δ

2πi
) ∈ Z. 3

Here δ = a − b is a pure imaginary 1 - form, defined as the difference
between two hermitian connections, and VΣ is a map

VΣ : Ω1
Σ → R,
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defined as follows. Every real 1 - form ρ ∈ Ω1
Σ can be intergated over the

fibers of (2) which gives us a function on the base S1, and this function can
be integrated as well over S1 with respect to the given volume form (all the
data are given by the fixed Kahler structure). Thus one gets a real number
and it is the value of VΣ(ρ).

The description of VΣ given above is not quite elegant but it is suitable
to explain the statement of the proposition. Indeed, the integration along
the fibers gives us the difference in the characters which can be regarded as
the length of the arc in the corresponding fiber of (2’) ended at points of Sa

and Sb. Then the integration of the symplecitc form ω′ on Σ′ over the film
between Sa and Sb is given by the integration of the arc lengthes over the
base. If we change the prequantization level on Σ′ then one should correct
(3) as follows

VΣ(
δ

2πi
) · k ∈ Z. 3′

Now the expression in (3) is not quite clear so let us correct it in more
invariant way. It’s not hard to see that

VΣ(ρ) =

∫
Σ

ρ ∧ α,

where α is the harmonic form which represents the cohomology class P.D.[S] ∈
H1(Σ,Z) ⊂ H1(Σ,R). Here [S] is the homology class of the fibers in (2).
The last one can be rearranged accoeding to the Hodge theory:

∫
Σ

ρ ∧ α =

∫
Σ

< ρ, ∗α > ω =

∫
Σ

< ρH , ∗α > ω,

where
ρ = dρ1 + ρH + d∗ρ2

— is the orthogonal Hodge decomposition of ρ into three parts: exact, har-
monic and co- exact. Thus we see that Sa and Sb belong to the same Bohr
- Sommerfeld class if and only if the harmonic projection of the difference
form ρ is equal to rα + m ∗ α, where r ∈ R, m ∈ Z. On the other hand we
have that the resulting images Sb depends only on the gauge class of b (which
is not surprising) and we could consider the space A(L)/G = dΩ1

Σ since the
gauge class of hermitian connections in this case is completely defined by
their curvature form. At the same time the admissible harmonic part of ρ
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doesn’t change the image so we can understand dΩ1
Σ as the parameter space

for the images Sb ⊂ Σ′.
But the problem is that the images Sb for any b ∈ A(L) form just a

special subset in the space of all lagrangian submanifolds in Σ′. This subset
is distinguished by the condition that every Sb projects properly on the base
S1 in (2’). Thus imposing the condition (3) we can cover just the Bohr
- Sommerfeld lagrangian cycles with trivial Maslov class (see [9], [1]) with
respect to the real polarization given by (2’). The idea coming in this way
says that we could proceed as it was done in [9], constructing first some Bohr
- Sommerfeld submanifolds which project properly on S1 and then deform
these ones using some global hamiltonian vector fields on Σ′.

So the strategy is:
1. We can take some connection b ∈ A(L). It is defined by some 1- form

ρ and we take such b that the harmonic part of ρ is trivial. Then b is defined
uniquelly by two exact froms: dρ1, dd

∗ρ2.
2. For dd∗ρ2 ∈ dΩ1

Σ we have the corresponding image Sb ⊂ Σ′.
3. Since ρ1 is a function we could take its hamiltonian vector field on Σ

and produce the corresponding vector field on Σ′. It should be hamiltonian
as well and we can act by the corresponding symplectomorphism φt, t = 1 to
Sb. Totally it gives some Bohr - Sommerfeld submanifold S ′

b.
There remain two problem:
Problem 1. Can we produce in this way any Bohr - Sommerfeld la-

grangian cycle in Σ′?
Problem 2. What is the fiber of this correspondence so can we com-

pletely describe the (not gauge) class of hermitian connections in A(L) which
give us the same Bohr - Sommerfeld cycle?

We hope to solve the problems in the nearest future. Here we just mention
that the correspondence, given by the strategy steps above is suitable to work
with Floer bundles and to compare the induced connections on the Floer
bundles described in the previous section.

6 Geometric interpretation of the Maslov class

The classical definition of the Maslov class (see [1]) supposes that we are
dealing with a flat symplectic space hence the lagrangian grasmannization
is given by the direct product of the standard grasmannian GrR2n and the
based space (say, R2n). Then (see [1]) for any lagrangian submanifold S ⊂
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R2n one can get a map
i : S → S1,

combining the Gauss map and the determinant map. Then the Maslov class is
given by the lifting of the fundamental class of S1 (or of the dual class). This
classical definition can be naturally extended to the case of non-flat based
space. It could be done for any Fano variety since in this case the canonical
class is poporptional to the class of the symplectic (Kahler) form. This
generalization makes it possible to extend the notion of special lagrangian
submanifold to the case when

KM = k[ω],

and then the Maslov class is presented as an obstruction for the existence
of the minimal (special) lagrangian submanifolds in a contineous family of
lagrangian submanifolds (f.e. for any connected component of the moduli
space of Bohr - Sommerfeld lagrangian cycles). Moreover, as we will show
the Maslov class can be defined in absolutely general situation.

To start with let us remark the following geometrical fact.

Proposition 12 The intersection of any lagrangian submanifold with any
symplectic divisor is always nontransversal. It is smooth and has dimension
n− 1.

It’s clear that under this ”symplectic divisor” one means a smooth sym-
plectic submanifold of real codimension 2. Therefore in the Kahler case a
divisor D ⊂MI is a symplectic divisor.

The reason is obvious: in the transversal case the intersection should have
dimension

dimR S ∩D = n− 2,

if dimRM = 2n, dimR D = 2n − 2, dimR S = n (we don’t suppose that
the intersection is topologically nontrivial — just adding suggestion ”if the
intersection is not empty”). But the real dimension is bigger than in the
transversal case since D is simplectic and S is lagrangian, namely it is n− 1.
Indeed, at a point p ∈ S ∩D one can choose two vectors v1, v2 ∈ TpM such
that ωp(v1, v2) 6= 0, vi 6∈ TpD (because of the fact that TpD is a symplectic
subspace of TpM). In the transversal case these vectors could be choosen
in TpL, but it is impossible due to the lagrangian condition. On the other
hand, at each point p ∈ S∩D the dimension of Tp(S∩D) ⊂ TpM can not be
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bigger than n−1. Indeed, the intersection S∩D should be isotropic inside of
(D,ω|D), and the maximal dimension of an isotropical submanifold is n− 1.
Therefore the intersection has the same dimension at each point, equals to
n− 1, and it follows that S ∩D is smooth.

Corollary 1 The intersection (S ∩ D) is always a smooth lagrangian sub-
manifold of (D,ω|D).

Following this ”non- transversality” argument one could deduce the exis-
tence of a topological characterization of this too large intersection property.
Namely suppose that some line bundle L over our symplectic manifold (M,ω)
admits a section whose zeros form a symplectic divisor D ∈ M . Then for
any oriented lagrangian submanifold S ⊂ M one defines the following class
m ∈ H1(M,Z):

m = P.D.[D ∩ S].

Proposition 13 In the setup this class is correctly defined.

Indeed, both S, D are oriented so the smooth intersection S∩D is oriented
too in S. Thus the Poincare dual class of [(S ∩D)] ∈ Hn−1(L,Z) is correctly
defined.

Example. Consider the direct product of two elliptic curves Σ1 × Σ2

with Kahler structures ω1, ω2. We can take a decomposition for each Σi so

Σi = S+
i × S−

i .

Then the fundamental group of Y = Σ1 × Σ2 is presented as the product
of these 4 circles, and the cohomology group of Y as a 4- dimensional torus
can be expressed in terms of the circles. Then let us take a holomorphic line
bundle with first Chern class equals to ω1. Then it has unique up to scaling
holomorphic section s with the zero set, given by p× Σ2 ⊂ Y . This smooth
2 - dimensional submanifold is a symplectic divisor and it is our D. On the
other hand if we take

S = p1 × S+
1 × S+

2 × p2 ⊂ Y

where p1 ∈ S−
1 is arbitrar point and p2 ∈ S−

2 corresponds to p ∈ Σ2, then it’s
clear that S is lagrangian. At the same time we see that the intersection

S ∩D = p1 × S+
1 × p ⊂ S
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has dimension 1 and represents a nontrivial homology class in 2 - torus S.
The Poincare dual class is nontrivial as well.

On this example we can see an interesting effect: it’s a possible situation
when the topological intersection of S and D is trivial while the defined
lagrangian class is non trivial.

Suppose now that we have an algebraic variety MI , defined over an in-
teger symplectic manifold (M,ω) such that ω is the Kahler form. Suppose
additionally that either KM > 0 or KM < 0. It means that either the canon-
ical or anticanonical class admits holomorphic sections. Then for a section
s ∈ H0(MI , K

±
M) the zero set (s)0 = D is a holomorphic divisor and conse-

quently a symplectic divisor so we can proceed in the way represented above.
Namely for any lagrangian submanifold S ⊂MI we have the class

m = ±P.D.[(D ∩ S)] ∈ H1(S,Z).

where the choice of the sign is dictated by the choice of the sign in K±
M to

get holomorphic sections.

Proposition 14 This class m ∈ H1(S,Z) doesn’t depend on the choice
of holomorphic structure I and on the choice of holomorphic section s ∈
H0(MI , K

±
M).

1 The class m ∈ H1(S,Z) is called the universal Maslov class of lagrangian
submanifold S.

The definition given above is algebro - geometrical. We can use the main
idea of the construction above to proceed in the case of any symplectic man-
ifold. For this generalization we need just the following:

Proposition 15 The definition can be extended to the case when a given
symplectic manifold (M,ω) admits symplectic divisors, which represent either
canonical or anticanonical bundle.

Indeed, what we need is just a symplectic realization of the canonical or
anticanonical bundle so a symplectic divisor whose homology class is Poincare
dual to either KM or K−1

M . Then for any lagrangian submanifold S we can
apply the procedure above getting the universal Maslov class via the inter-
section. It’s not too hard to establish that the class doesn’t depend on the
realization by symplectic divisors.

The description of the universal Maslov class implies that
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Theorem 1 The universal Maslov class is invariant with respect to the group
of symplectomorphisms of (M,ω). In particular it is stable with respect to
hamiltonian deformations.

At the same time this class can be defined for any line bundle over our
symplectic manifold (M,ω) as it was mentioned above. The problem is to
realize the corresponding first Chern class by a symplectic submanifold. In
general symplectic setup there is just unique improved case when we know
that such a realization exists. Namely let (as usual in this paper) ω is an
integer symplectic form and the prequantization bundle L exists. Then as it
was proved by S. Donaldson there is an integer number k ∈ Z+ such that Lk

admits a section whose zeros form a symplectic divisor. In this case for any
lagrangian submanifold S ⊂M we can compute the class m for Lk and then
define

m =
1

k
P.D.[(D ∩ S)] ∈ H1(S,Q).

A conjecture in this case states that m belongs to H1(S,Z).
Why we understand these classes as the universal Maslov classes? The

point is that one understands the Maslov index as a correction term in some
approximation of a solution to the Schroedinger equation (see [9]). On the
other hand the Maslov class is invariant of lagrangian submanifolds with
respect to hamiltonian action which preserves some additional structure and
is an obstruction for the lagrangian submanifold to be deformed to a minimal
one under this hamiltonian action.

Indeed, in [1] one introduces this Maslov class using the lagrangian grass-
manization of (M,ω) but to proceed with one needs some special identifica-
tion for the fibers of the grassmanization over whole M which can be non
flat. In order to get such an identification one can use some real polariza-
tion and then the identification takes place. But the price one must pay
doing this is that any invariant, getting in this way, is not invariant under
the whole group of symplectomorphisms. One should restrict himself to the
hamiltonian vector fields (and hence the functions) which preserve this real
polarization.

F.e. in the main case from [9] one deals with the cotangent bundle of
a real manifold S. Then the corresponding polarization which is implicitly
used is just the canonical fiberation

T ∗S → S,
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and the freedom is just to apply hamiltonian trasnformations which preserve
the fibers. Thus the Maslov index (or Maslov class more generally, see [1])
is invariant under this ”translations along the fibers”. But if this class is
nontrivial for a lagrangian submanifold S ′ ⊂ T ∗S from the homology class of
the base then this S ′ couldn’t be transported using this ”translations along
the fibers” to the minimal one (so to S itself).

We would like to show that the universal Maslov class defined here is an
obstruction as well. But in our case it is invariant under any hamiltonian
deformation. The reason is that any symplectic divisor remains to be a
symplectic divisor under any hamiltonian deformation.

Let (MI , ω) is an algebraic variety such that KM = k[ω], viewed as a
symplectic manifold M with an integer symplectic form ω, which admits
a compatible integrable complex structure I. Then it is defined the corre-
sponding riemannian metric g such that the triple (g, I, ω) is a Kahler triple.
It’s well known that this Kahler structure defines

1. a canonical hermitian structure on the canonical line bundle KM ;
2. a canonical hermitian connection aLC on KM , which is called the Levi

- Civita connection such that its curvature form FaLC is equal to 2πiρ where
ρ is the Ricci tensor of the Kahler metric. Due to the equality

KM = k[ω] 4

it follows that ρ = kω. Ona can take the associated U(1) - bundle S1(KM)
and then the corresponding connection on it can be as well denoted as aLC .

Consider now a lagrangian submanifold S ⊂ MI and restrict the pair
(S1(KM), aLC) to it. According to (4), the restriction aLC |S should be flat
so it defines a character:

χ : π1(S) → U(1).

If this character is trivial, then S is minimal. This character is not an integer
data so it can change in a contineous family of lagrangian submanifolds. As
a family we would take the space of Bohr - Sommerfeld cycles BS. Then for
this family we have a universal class on the sheaf

H1 → BS , H1(S,Z) 7→ S,

given by the universal Maslov class. Thus we can see that

Theorem 2 Over any Fano or Calabi - Yau variety the moduli space BS

contains a minimal Bohr - Sommerfeld cycle only if the universal Maslov
class is trivial.
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This statement should be completed by
Conjecture. The implication in the previous statement is ”if and only

if”.
On the other hand we introduce this universal Maslov class in another

perspective. Since we’ve mentioned that it plays the role of a correction in a
quantization programme, one expects that this class should play the corre-
sponding correction role in ALG(a) - quantization and ALAG - programme
at all. At the same time what one needs to extend the Floer bundles to
the weighted version of the moduli space of Bohr - Sommerfeld lagrangian
cycles, which is Bhw,r

S , is again to realize the geometrical ideas underlying
to the definition of the universal Maslov class as a correspondence between
holomorphic n forms on MI and real n - forms on S.

At the end one can report that in both the ways work is in progress.
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