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Abstract

We give a topological and geOluetrical dassification of integrable Hamilto­
nian systems with nondegenerate singularities in tenns of their singularities,
affine-structured orbit space, monodrOluies, anel characteristic dasses. In par­
ticular, we discover a new characteristic dass, called the global ehern dass,
which lies in H 2 (O, R), where 0 is the base space of the system and n is
sonle free Abelian (not locally constant in general) sheaf over 0, called thc
affine monodromy sheaf. This characteristic dass allows to dassify systems
topologically, and it coincides with the olle founei by Duistermaat for thc case
of regular Lagrangiall torus foliations anel by Boucetta and Molino for thc case
with only elliptic singularities. We discuss the obstructions to the COllstruc­
tion of integrbale systems frOlll a given stratifieel integral affine manifold as
the base space. As an application to synlplectic geonlCtry, wo find a Inethod,
called illtegrable surgery, for cOllstructillg many known and ll11knoWll sym­
plectic manifolds.

Keywords: symplectic maniJolds, integrable Hamiltonian systems, mon­
odromy, characteristic classes, topological classification, integrable s'Urgery

AMS subject classification: 58F07, 70H05

1 Introduction

Integrable Hanültonian systeIns (IHS's for short) are known to playa very iInpor­
tant r61e in c1assical mechanics and physics, and it is a natural problern to study
their topological properties. For such a study is important for the uuderstanding
of dynaIuical behavior of integrable systems and their perturbations, for finding ob­
structions to integrability, for detecting algcbraically different or similt-n integrable
systems, ect. On the other hand, according to a conjecture told to Iue by A.T.
.Fomenko, every symplectic manifold admits a nondegenerate IHS. \iVhether this
conjecture is true or not, a topological study of IHS's will help us to understand
Illore about the symplectic structures on manifolds.

In thc previous paper [40] in this series, we studied the topological structure
of nondegenerate singularities of IHS's. In this paper, we will give a topological
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and geonlctrical dassification of IHS's with nondegenerate singularities. Before de­
scribing it, let us recall that the first sigllificant result concerning topology of IHS's
is what called Arnalcl-Liauville thearenl, which gives the Bannal fann, in terms af
action-angle coordinates, for IHS's near a regular cOlnpact level set of a moment map
(see e.g. [1]). The question about the existence of global action-angle coordinates
for (the regular parts of) IHS's was studied, among othcr people, by Duistennaat
[16], who found two important topological invariants, which are called monodrolllY
and Duistennaat-Chern dass respectively, anel which togcther dassify regular IHS's
(i.e. without singulrities) over a given base space up to tapological equivalence. The
work of Duistennaat was maele Inore precise (and extended to the case of cOluplcte
isotropie foliations) by Dazord and Delzant [12], and was extended to the case of
systelns with only elliptic singularities by Boucetta and MoHno [9]. In these papers
[9, 12, 16], the Duistennaat-Chern dass (01' the Chern dass as they call it) is de­
fineel with the help of local sections of the torus fibration, anel it is an elelnent in
H 2 (O, R), where 0 is the base space of the foliation, and R is a locally constant free
Abelian sheaf over 0, which may be called thc affine monodromy sheaf anel defined
as thc sheaf of local S 1 actions on thc fibers of the Lagrangian fibration.

The Inain difficulty that we encountered while trying to generalize thc above
characteristic dass to the case of integrable systems with more general noncIegcneratc
singularitics lies in thc fact that we dou't have local sectians in the sense of fiber
bundles: they do not exist near general hyperbolic singularities. There are two
approaches to ovcrcome this difficulty: The first approach is to avoid thc use of
local sectians by dealing directly with local automorphisln groups, and the secand
approach is to generalize the notion of local sections so that they always exist.

Using the first approach, we find a cohomological dass, called global ehern dass
(cf. Subseetion 4.1), which lies in H 2 (O, R), whcre 0 is thc base space of the
associated (singular) Lagrangian foliation of thc SystClll, and R is the sheaf of local
§l-actions, just as before! Of course, our global Chern dass coincides with thc
one studied by Duistermaat, Dazord, Delzant, Boucetta and Nlolino in the above­
Inentioned cases. Thc Inain differences from the regular case is that 0 is not a
Inanifold but a stratified Inanifold, anel R is not locally constant though still free
Abelian. It is interesting to notice that thc base space 0 has a natural affine
structurc which Inakcs it into a stratified integral affine manifold (cf. Subsection
3.3).

The second approach is also carried out, for a large subset of possible base spaces
(for which one can bope to have global generalized sections, cf. Subscction 4.3).

By gencralizing thc notion of nlonodromy from thc regular case, we obtain the
notion of global 7nonodromy, which is thc isolllOrphisln dass of thc sheaf over thc
base space 0, whose stalk at each point is the cohomology ring of the preimage
of this point under the projection Inap, with integral coefficients (cf. Subsection
3.4). Two integrable systems are called roughly topologically equivalent if their base
spaces can be identified via a homeomorphisln, and undcr this identificatioIl, they
have the same siugularities topologically, and the salne global Inonodrolny. In order
to define thc global ehern dass of an integrable systcln, wc then have to cmnpare it
with anothcr fixed systenl lying in the salne rough topological equivalence dass. (In

2



the case of regular foliations, such a fixed system is the one which admits aglobai
section. In general we clon't have scetions so the choice Inay be arbitrary).

Two integrablc systems are callcd topologically equivalent if they have the sanle
associated singular torus foliations topologically (cf. Subsection 3.1). Dur main
result is the following (cf. Subsection 4.1):

Theorem. Two integrable Halniltonian systems with nondegenerate singular­
ities are topologically equivalent if anel only if their base spaces can be ielentified
by a hOlneoIllorphisln, anel uneler this ielentification they have the sanle topological
structure of singularities, the salne global Inonoclrolny anel the same global ehern
class.

Two integrable systems are calleel gcometrically equivalent if there is a snlOoth
sylnplectolnorphislll between the two manifolds which preserves the associated sin­
gular foliations. By using thc so callcd Lagrangian global ehern dass, we also obtain
a geometrical classification siInilar to the theoreln stated above (cf. Subseetion 4.1).

In the case of nondegenerate IHS's on 3-diInensional isoenergy submanifolds,
studied by Fomenko anel his school, the global ehern dass vanishes, and the global
monodromy may be characterized in tenns of some numerical 111arks as in the so­
calleel Fomenko-Zieschang invariant (cf. [19] anel references thereill). Let us mention
here a nice reeent application of topological invariants in this case: together with
Nlaupertuis variational principle, they allowed Boisinov anel Fomenko to find sOlne
metries on the 2-spherc, whose geoelesic fiows are integrablc with the aid of first
integrals of degree 301' 4 in veloeities, which eannot be reduced to linear 01' quadratie
integrals (cf. [8} anel references therein). Such integrable Inetrics have not been
known beforc.

We want to advertise in this paper a siInple idea, called integrable SU1'[jery, for COIl­
structing symplectic manifolds tlsing integrable Hamiltonian systellls. This method
may cOlnplement other known I1lethods for constructing symplectic structures (see
e.g. [4, 30]). An integrable surgery is a sYlnplectic surgery which rcspects some
integrable systellls on symplectic Inanifolds. Such a surgery is of course present
ilnplicitly in our definition of characteristic classes, anel is iInportant for integrable
systems thCInselves. Ir the eonjecture that evcry symplectic manifold admits a non­
degenerate IHS is true then every symplectic manifold can be obtaineel fronl the
sinlplest ones by integrable surgery. Anyway, symplectic manifolds constructed ex­
plicitly by symplectic surgcry fornl a very large class , anel lnay be used to check
various conjectures in symplectic geometry, e.g. the conjeeture about the ratio­
nal hOlnotopy type of simply-connected synlplectic luanifolds (cf. [35]). V'lc will
illustrate our idea by several siInple exarnples throughout this paper.

Thc organization of this paper is as folIows: Section 1 is this introduetion. In
Section 2 we reeall briefty thc theory of Duistennaat, Dazord anel Delzant of regular
torus Lagrangian foliations, for our work is a direct generalization of this theory to
the case with singularities. Thc only original thing in this Section are two cxarnples
at the end: one is about the integrable point of view of Kodaira-Thurston exalnple,
the other one is an exotic sYlnplectie structure on }R2n constructed using integrable
surgery. Section 3 starts with a geolnetrical definition of nondegenerate IHS's, so
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that one ean forget about the mOInent Inaps and deal only \vith singular Lagrangian
foliations. Subseetion 3.2 reealls the Inain results about nondegenerate singularities
froIn [40], whieh are indespensable for the topologieal c1assifieation of integrable
systems. In particular, these results allow us to study the integral affine structure
of the base spaees in Subsection 3.3, and the sheaves of loeal automorphism groups
in Subsection 3.5. In Subscetion 3.4 we givc the notion of affine and global Inon­
odroillies, and rough topologieal / geolnetrieal equivalenees. Seetion 4 starts with
the definition of eharacteristic classes, and classifieation theorems. Sllbsection 4.2 is
devoted to the problein of constrllcting integrable systelns froln given stratified inte­
gral affine Inanifolds as the base spaces. Vve will find somc hOlnological obstructions
for doing so. This Sllbsection also contains a few exalnples of integrable surgery.
Subseetion 4.3 is devoted to thc study of generalized seetions. Subscetion 4.4, the
last one, contains a theoreln about the topology of the base space in thc 2 degree
of freedolu easc, whieh is an analog of Milnor's thcorem about affine struetures on
2-surfaees. It also eontains some examples of integrable systems with two degrees
of freedom, whieh are related to eomplcx algcbraic surfaccs.

In this paper we will define the charaeteristie classes only for IHS's with non­
degenerate singularities, but I think that they can be definecl in thc salne way for
IHS's with SOllle degenerate singularities. To lnake it 1110re precise, we would have
to study in more detail degenerate singularities, and their automorphisIn groups in
partieular. It is c1esirable to have a theory similar to the Arnold theory of Lagrangian
singularities, for degcnerate singularities of IHS's. It is also a natural problern to
study topological properties of IHS's not on sympleetie manifolds, but on Poisson
manifolds, Le. allowing tbc systclns to depend on some parameters....

2 Regular Lagrangian torus foliations

2.1 Local normal form

Let (kJ2
n, w) be a S11100th paraeolnpact sympleetie manifold, !l : (M 2n , w) ---1 :IR

a slnooth Hamiltonian function. Thc Hamiltonian system x = XH(x), defined by
iXHw = -dH, is called integrable in the sense of Liouville (in this case we say
that we have an IHS), if there exist n cOlnmuting first integrals F I = H, F2 , ... ,Fn

whieh are fllnctionally independent ahnost everywhere: {Fi , H} = {Fi , fj} = 0,
dFI A dF2 A ... A dFn =1= 0 a.e.. The Inap F = (FI , ... , Fn ) : 1l/f2n ---1 }Rn is called
the moment map. Of course, for a given Halniltonian H, this InOlnent Inap is not
unique. However, under thc nonresonance condition for H, the regular level sets of
tbis Inoment Inap are llniquely detennined by the original integrable Hamiltonian
vector fielcl X 1/.

\~Te will always asSllIne that thc level sets of the mOlllent lllap F = (FI , ... , Fn ) :

(lvf2n
, w) -t Rn are eornpaet (without this assumption Arnold-Liouville theorem may

fail) . Let E = {y E }Rn 13x E F- 1(y ), rank dF (x) < n} be the bifurcation diagram.
Put A10 = M \ F-I(E), and denote by 0 0 thc sp~\ce of connected components of
the regular level sets of F in flIJo. Then we have a natural projection 7r : A10 -t 0 0 ,

and the map F : Mo ---+ }Rn ean be faetored through this projection to a Inap
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F : 00 --+ IRu .

The following well-known theorem is an analog of Darboux's theorern in syrnplec­
tic geometry, and it gives the nonnal fonn for an integrable systerll near a regular
level set of the rnoment map.

Theorem 2.1 (Arnold-Liouville) 1f : Mo --+ 00 is a regular Lagrangian TH (torus)
jibration. Moreover, for each y E 00 there is a neighborhood DU = D(y) of
y in 00 such that (1f- 1(Dn), w) can be written as (Dn x 1m, E~ dPi A dqi) via a
jibration-preserving sympletornorphism, where (Pi) is a system 01 coordinates in
D n , (qi mod 1) is a system 01 periodic coordinates in 1m, and the fibration 0/
(DU x 1m, E7 dPi /\ dqi) into Lagrangian tori is the projection DU x 1m --+ Dn.

The functions Pi anel qi are called action and angle coordinates. Each torus of
the fibration !vIa --+ 00 is called a Liouville torus. The fact that !vIa --+ 0 0 is a
torus fibration and the systerll --'YH is quasi-periodic on each torus was known to
Liouville. The existence of action-angle coordinates was proved by Arnold under
some additional assumptions, and then by Jost and others (see e.g. [I}).

Arnold-Liouville theorem implies that each Liouville torus has a natural Hat
structure given by angle coordinates, the Hamiltonian vector field in each Liouville
torus is constant, and the HaIniltonian flow is quasi-periodic. It also iInplies that
the (regular part of thc) base space 00 has a unique natural integral affine structure
which makes it into an integral affine manifold (e.g., [16]): If (Pi, qi) (i = 1, ... ,n, qi­
mod 1) anel (Xi, Vi) (i = 1, ... , n, Yi - rnocl 1) are two different systems of action­
angle coordinates near a Liouville torus, then (Xi) and (Pi) are related by an integral
affine transformation, that is (XdT = A (Pi)T + (Ci)T, where A is an element of
GL(n, Z) and (Ci) are sorne real constants. Thus the integral affine structure of the
base space is given locally by a system of action coordinates. We will call any first
integral of the Halniltonian system near a Liouville torus, whose Hamiltonian flow
is periodic with nünimal period eqllal to 1, a IDeal action function. It is easy to see
that locally near every Liouville torus, any action function is a coordinatc function
in sorne systerll of action-angle coordinates.

2.2 Global action-angle coordinates

Suppose now that we have a regular Lagrangian torus fibration 1f : (Mgn, w) --+ 08.
It is a natural georuetric setting of intebrable systems without singularities, because
any two functions 11,/2 : 00 --+ IR Poisson-conlIuute if considered as fUIlctions on
lvIo (Le. {lI 01f,J2 01f } = 0), and any Hanliltonian function ofthe type H = h01f, 11,:

00 --+ IR, is integrable.

\Ve can ask if there are global action-angle coordinates. That is, can (Mo, w) --+
00 be written in the fonn

n

(00 X T l1
, L dPi A dqi) --+ 00

1

wherc (pd: 0 0 --+ lRn is an inlInersion, qi mod 1 are periodic coordinates on 'fll.
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More generallYl we cau ask for a topological 01' geometrical dassification of such
fibrations 1r : (Mgn,w) -t og, assuming that the base sapce og is known. Here two
regular Lagrangian torus fibrations (Ma , wa ) ~ Da and (Mb, Wb) ~ Ob are called
topologically equivalent if there are diffeOInorphisD1S cI> : A1a -t A1bl 1> : Da -t Ob

which lnake the following diagram commutative:

They are called geometrically equivalent if e:p can be chosen to be a sYInplectomor­
phisIll.

A natural way to solve thc above probleIn is via obstruction theory. If 1r :

(Mgn lw) -t og adlnits aglobai systeIn of action-angle coordinates, then it has thc
following properties:

a) 1r : NIgn -t og is a principal 'rn-bundle.

b) 1r : A1gn -t Oö has aglobai section.

c) Moreover, it has aglobai Lagrangian section.

Conversely, if the above conditions are satisifed then Olle can show easily that
'Tr : (Mgn, w) -t og admits global action-angle coordinates. The obstruction for the
condition a) to be fulfilled is called thc (affine) 1Twnodromy. It will bc cleal' that
the monodroIny, besides of being a topological invariant of the foliatioll, can also be
detennined from the affine structllre of the base space 0 0 alone. The obstructions to
b) anel c) will be called Duistermaat-Chern dass anel Lagrangian Duistermaat-Chern
dass. It will also be deal' that two regular Lagrangian torus fibrations over the saIne
base space 0 0 are topologically equivalent if they have the same monodromy anel
Duistermaat-Chern dass, and gcoInetrically equivalent if thcy induce the same affine
structure on 0 0 anel have the saIne Lagrangian Duistennaat-Chern dass.

In the next subsections we will disclIss briefty affine monodroIny anel (Lagrangian)
Duistermaat-Chern dass (for lllorc details see [12, 16]).

2.3 Affine monodromy

As in the previous subsection, consider a Lagrangian torus fibration 'Tr : (NIgn, w) -+
0ö' One has an associated vector bundle of first hOInology groups

E /I1(T~,k) og

where k is a coefficient ring, say IR. On this vector bundle there is a unique natural
locally ftat connection, called the Gauss-Manin connection (e.g., [2]). The (affine)
monodromy is defined as the holomolny of this connection, anel is an element of
hom('Tri (Oö), GL(n, IR)) defined up to conjugacy. By choosing the coefficient ring k
to be Z, we see that it is actually an element of hOln( 'TrI (Oö), GL(n, Z)).

From the definition it is deal' that the Inonodromy is a topological invariant. We
will now show that it is also an invariant of 0ö as an integral affine lnanifold. Hence
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the adjeetive affine. Indeed, thc veetor bundle ER HdTn~R) Oö can be identified with
the bundle of eonstant veetor fields on the fibers of 1f : (Mgn, w) -+ og. Ir X is
a eonstant veetor field on rr;;, y E 0ö, then a(..t\) := -w(X,.) ean be identified
with an elernent of T*Oö, anel the rnap )( l---t a(X) is an isornorphisrn. Hence

ER Hl('IT'n~IR) 0ö is isomorphie to the eotangent bllndle T*Oo of 0 0 , and we have
a natural flat conneetion on it. On the other hand, sinee 0 0 is an integral affine
rnanifold, the tangent bundle TOo has a natural flat connection, deflned by the local
trivializations given by the affine charts. The dual connection on the eotangent
bundle T*Oo is therefore also flat. The holonomy of this connection is obviously
an invariant of thc affine structure. But it is easy to see, using Arnold-Liouville
theorern, that this connection coincides with the Hat connectioll defined before.

N · I I E H}(Tn,Z) on . d' bb dl fE Hl(Tn,lR) on U dlotlee aso t lat z ~ 0 IS a Iserete S11 un e 0 R ~ o. n Cl'

the natural identifieation of ER with T*Oo, Ez Inaps to a subbundle of T*Oo, eOll­
sisting of "integral" eoveetors. vVe will delloted this subbundle, or the diserete sheaf
assoeiated to it, by R. It will be useel in the definition of the Duistermaat-Cherll
class in Subseetion 2.4.

First exarnples of integrable SystClllS with nontrivial monodromy, nmuely the
spherieal penduluI11 anel the Lagrange top, were observed by Cushman and others
(e.g., [lI, 16]). In these exanlples and in all other known examples arising from
classical meehanies anel physics, the 1l0nt1'iviality of the monod1'omy is due to thc
presence of the so-calleel focus-focus singularities (see [41] and below).

2.4 Duistermaat-Chern class

Thc Duistennaat-Chern class is defined as the obstruetion for the Lagrangian torus
fibration l'1J11 -+ Oö to admit aglobai seetion. This fibration is locally trivial. Let
(Ui ) be a trivializing open eovering of 0 0 . Over eaeh Ui there is a srnooth seetion,
denoted by Si' Thc differenee between two loeal seetions, Si and Sj, ove1' Ui n Uj ,

ean be written as

Here 0 00
(.) denotes the sheaf of srnooth seetions. It is iInmediate that (p'ij) is an

l-eocycle, anel it defines a Cech first cohomology class, not depending on thc ehoice
of seetions:

Since COO(T*Oo) is a fine shcaf, froIn the short exaet sequellee

we obtain that the eoboundary 1l1ap 0 from Hl(Ool COO(T*Oo/R)) to H 2(Oo, R) in
the assoeiated long exaet sequenee, is an isomorphisln.

itvc, or its image JLDC in H 2(00, R) under the isomorphism 6, will be ealled the
Duistennaat-Chern dass [16]. In ease the monodrolny is trivial, i.e. Mo -+ 00 is
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a principal 1m bundle, the Duistermaat-Chern dass coincieles with the usual Chern
dass (cf. [12]).

If one requires loeal seetions Si to bc Lagrangian, then one has that

(Z means dosed 1-forms), and it will define the Lagrangian Duistermaat-Chern
dass:

There is another short exact sequence

o-+ R -+ Z(T*Oo) -+ Z(T*OojR) -+ 0

whieh leads to the following long exact sequence

... -+ H 1(Oo, R) ~ H 1 (OOl Z(T*Oo)) = H 2 (00l IR) -+ H 1(Oo, Z(T*OojR))

~ H 2 (00, R) ~ H 2 (00, Z(T*Oo)) = H 3 (00,lR) -+ H 2 (OOl Z(T*OojR)) -+ ...

Uneler the rnaps ~ and d we have J-LDDC A. J-LDC Ä 0

Thus, if the integral affine manifold 0 0 is given, then any clenlent of the coho­
Inology group H 1(00l Z(T*OojR)) will be the Lagrangian Duisterrnaat-Chern dass
of sOUle torus Lagrangian fibration over OOl anel the necessary anel suffieient eon­
elition for an elernent J-L in H 2 (00, R) to be the Duisterrnaat-Chern dass of SOIne
Lagrangian torus fibration is that d(p.,) = O. To each element J-LDC E H 2(00, R)
such that d(J-LDC) = 0 there are H 2(00l IR)jdH1(Ool R) choiees of the elernent J-LLDC
such that 6.(J.tLDC) = /.iDC, anel each choice eorresponds to a geolnetrically different
Lagrangian torus tibration with the sarne topological structure. Ir J-lLDC = 0 then
the corresponding tibration is geOInetrically equivalent to T*OojR -t 0 0 (cf. [12]).

Oue cau writc down the following natural theorem, whieh is a reformulatiou of
the results elue to Duistermaat [16], and Dazord and Delzant [12J:

Theorem 2.2 ([12, 16]) Two Tegular Lagrangian torus fibrations (Ala , wa ) -+ 0 0

and (Mbl Wb) -+ Ob are topologically equivalent if and only if there is a diffeomoT­
phism of the base spaces <p : Da -+ Ob which induces an identijication of the affine
monodromies and Duistennaat-Chern classes. They are geornetrically equivalent if
and only if <p can be chosen to preserve also the affine structure 0/ the base spaces
and the LagTangian Duistermaat-Chern class.

If 0 0 is 2-connected, then there is no room for the monodrolny anel Lagrangian
Duistermaat-Chcrn dass, alld one obtains thc following rcsult elue to Nekhoroshev:

Corollary 2.3 ([33]) /f 0'0 is an integral affine manifold with 7rl(Og) = 7f2(Og) =
0, then there is a unique LagTangian torus fibration over 0'0 {which is compatible
with the given affine structure of og)J and it admits global action-angle coordinates.
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I don't know any example of a physically nlcaningful integrable systcnl with
nontrivial Duistennaat-Chern dass (for the regular part of thc systclu). Howevcr,
it is not difficult to eonstruet artificial exalnples:

Example 2.4 Kodaira- Thurston example:

Take 0 0 to be the standard flat torus T2 = lR2 /71}, with trivial monodromy. Then
H 3 {00, IR) = 0, and any element tlDG E B 2{00, 'R) = Z2 is realizable. The au­
tomorphism group of thc base spaee aets on H2{00, 'R), and the quotient spaee is
isomorphie to Z+ (nonnegative integers). Thus eaeh integrable SysteIll with thc base
spaee T2 is charaeterized topologically by a nonnegativc integer m, and its mnbicnt
synlpleetie Inanifolel !l1~l has BI (!l1~, Z) = Z3 EB (Z/mZ) as can be eOluputed easily.
For each m there are H 2 {00, JR)/dH I (Oo, 'R) = lR/Z ehoiees of the synlplectic struc­
ture on the fibration !l11~ -+ 0 0 , up to geometrical equivalence. Let us notice that
the fibrations NJ~ -+ T2 are topologically the same as aseries of Kodaira primary
complex surfaces (see e.g. [5l). In particular, when m = 1, !l1t is the well-known
Kodaira-Thurston cxample [26, 36] of a manifolel admitting both a conplex anel a
symplectic structure hut not a Kähler strueture.

The results of Duistennaat, Dazord and Delzant lead to the following fact in inte­
grahle surgcry: Suppose 0 1 anel O2 are base spaces of integrable systeills {MI, wd -+
0 1 and (1\12 , W2) -+ O2 , such that on the interscction 0 1 n O2 these two systelns
are regular and ineluce the sanle integral affine structure on 0 1 n O2 . Thcn these
two systeills can bc glued together into an integrahle system with the base space
o = 0 1 U O2 if anel only if they have thc SaIue Lagrangian Duistermaat-Chern dass
when restricted to 0 1 n O2 . In particular, if 0 1 n O2 is contractible, then thc above
two systems can always be glued togcther in a unique Illay. This very siulple fact
al ready has an interesting application given in the following exalnple.

Example 2.5 Exoiic symplectic lR2n s:

Start with the following two integrable systeills: The first one is given by the 11l0ment
Inap F = (F1, ... , Fn ) = (7rxf + 7rYf, ... , 7rX~ + 7rY~) on thc open ball of radius 1 of
}R2n with coordinates Xi, Yi anel with the standard metric and symplectic structurc
(i.e. a harmonic oscillator). On the base space 0 1 of this system, the functions
Fi are also integral affine coordinates of thc induced affine structure outside the
singularities. Let O2 be an open n-disk, attached to 0 1 in such a way that 0 1 U O2

is diffcoillorphic to 0 1 rel. singularities of 0 1, anel 0 1n02 is contractible. Extend thc
functions FI , ...Fn from 0 1 to O2 in stich a way that dF1 /\ ... /\ dFn i= °everywhere
on O2 and there is a point Y E O2 with F1(y) = ... = Fn{y) = O. O2 with thc
integral affine structure given by thc functions Fi is the hase space of a unique
integrable system (M2 , W2) -+ O2 , This is our second system. By construction, 0111'

two systeills can be glued in a unique natural way into an integrable systelTI living
on a symplectic manifold diffeolllorphic to lR2n

. The preimage of Y in this 111anifald
is a Lagrangian torus, and in fact it is an exact Lagrangian torus (i.e. for any I-fann
Cl: such that da is equal to the symplectic form, the restriction of a on this torus is
cohomologous to 0). On the other hand, a famotls result of Gromov [23] {see also
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[34]) says that in the standard symplectic space there can be no smooth closed exact
Lagrangian sublnanifold. Thus our symplectic space is exotic in the sense that it
can not be syrnplectically elnbedded into the standard sYlnplectic space of the salne
dimension. Let us notice here that the first explicit exarnple of an exotic sYlnplectic
spaee was found by Bates and Pesehke [6]. Dur exalnple is a kind of modifieation
and silnplifieation of their exalnple. Vve have a conjecture that, by Inodifying our
example (e.g. by creating more points Y in O2 with F1(y) = ... = Fn(y) = 0), one
can get an infinite series of exotie syrnpleetie spaees, whieh are essentially different.

3 Strongly nondegenerate IHS's

3.1 Geometrie definition of nondegenerate IHS's

Since we will eonsider IHS's only up to topologieal 01' geometrical equivalencc,
throughout this paper we will adopt the following definition of IHS's whieh is a little
bit different from thc usual onc: An integrable Hamiltonian system (with n degrces
of freedom) on a sYlnpleetic manifold (M2n , w) is a triple (M, w, .c), where .c is an
admissible singular Lagrangian foliation , that is, a decomposition of M into disjoint
connccted compaet subsets (calIed leaves) , satisfying the following eondition: For
every leaf N of 12 there is a neighborhood U(N) of N in 1\1 saturated by the leaves
of .c, and a srnooth rnap (eallcd thc rnornent map) F = (F11 •.. , Fn ) : U(N) -+ Rn,
whieh is eonstant on eaeh leaf of .c in U(N), nondegenerate ahnost everywhere, and
such that its eomponents Poisson-coillmute.

It follows from the definition and Arnold-Liouville theorem that 1110St leaves of 12
are Lagrangian tori . .c will be ealled, as usual , thc (assoeiated) singular Lagrangian
foliation of the systern.

Thc spaec 0 of leavcs of .c of an IHS (M, w, 12), equipped with the indueed
topology froln A1, will be called the base space (01' the orbit space) of the integrablc
systenl. Under sonle nondegeneracy conditions (sec below), 0 will turn out to be a
stratified mallifold.

Notice that wc don 't requirc thc global existenee of a mOlnent Inap, but only
its existence near each leaf of the Lagrangian foliation. Thus, the moment map
is something which is not fixed, but can be changed if necessary (for the sake of
regularity) .

A fixed [Joint of an IHS with n degl'ees of freedom (M 2n l w,.c) is a point in thc
symplectic rnanifold at which the differential of any mOlnent Illap of the systenl is
equal to O. If the rnoment map can be chosen so that its quadratic part near a fixed
point gellerates a Cartan subalgebra of the syrllplectic algebra of quadratic functions
under the standard Poisson bracket, then this fixcd point is eallcd nondegenerate.
In general, a point x is called nondegenerate singular 01 corank k, if uuder a loeal
Nlarsden-\;Yeinstein reduction with respect to thc first (n - k) components of a
Illomcnt map, it bccomes a< nondegeneratefixed point of an IHS with k dcgrees of
freedoln.
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A singularity of an IHS is by definition the genn of the associated Lagrangian
foliation near a singular leaf, and is denoted by (U(N), L). Here N is the singular
leaf, U(N) Ineans a saturated sufficiently snlall tubular neighborhood, and L the
Lagrangian foliation. (U(N), L) is callcd nondegenerate if every singular point of
the systeIll in it is nondegencrate.

A nondegenerate singularity (U(N), L) is called topologically stable ifthe singular
value set of the moment map restricted to U(N) coincides with the singular value
set of the moment map restrictcd to a sIllall neighborhood of a singular point of
maximal corank in N. This topological stability is a rather natural condition, and
is satisfied by all nondegenerate singularities of aU known algebraically intcgrable
systeills. Hereafter, we will assume all nondegenerate singularities to be topologically
stable, though often wc will not Incntion it explicitly.

A singular point is called clean if it becomes an isolated fixed point after a local
Marsden-Weinstein reduction. Clearly, all nondegenerate singular points are clean.

Definition 3.1 An IHS is called strongly nondegenerate if all of its singularities
are topologically stable nondegenerate. An IHS is called nondegenerate if all of
its singular points are clean, a dense subset of these points lies in nondegenerate
singular leaves, and all nondegenerate singularities are topologically stable.

Each nondegenerate IHS gives rise to other nondegenerate IHS's with fewer dc­
grees of freedonl, in the following way: Consider the set of singular points of corank
at least k in an IHS with n degrees of freedoIn (lvJ 2n, W, L). Then, according to
Eliasson-Vey theorem about the local structure of nonclegenerate singular points
[18, 38], this set is an inlmersed synlplectic manifold of diInension 2(n - k) in lvJ2n,

which may be eInpty. We will caU it thc center submanifold of dimension 2(n - k)
of the system. Each center submanifold has a natural orientation given by the sym­
plectic structure. Moreover, it also has an induced nondegenerate IHS with (n - k)
degrees of freedom. It is a standard way to obtain "small" IHS's from the "big"
ones. These big IHS's luay be eveu infinite-diIncnsional.

Definition 3.2 Two strongly nondegenerate IHS's (MI, WI, Ld, (M2,W2, L2) are
called topologically equivalent if there is a diffeOInorphism cI> : lvII ---+ M2 which sends
LI to L2 aud which preserves thc orientation of MI and its center submanifolds.
They are called geometrically equivalent if the above diffeomorphism can be chosen
to be a sympectoInorphism.

Clearly, this definition is compatiblc with the one given in Subsection 2.2 for
the case of regular Lagrangian foliations. It nlay seem more natural to aSStune cI> :
AI1 ---+ M 2 to be only a homeomorphism in the definition of topological equivalence.
However, from thc theory of characteristic classes to be discussed below, it will be
clear that if such a foliation-prescrving hOIncomorphism exists, it can always be
chosen to be a diffeonl0rphisl11.
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3.2 Arnold-Liouville with singularities

A classical theor8ln of vVilliamson [39] asserts that the quadratic part of thc nl011lent
map near a nOlldegenerate fixeel point x can be decolnposed, after a linear transfor­
mation, into cornponents of three types: elliptic (Fi = p;+q;), hyperbolic (Fi = Piqi)

and locus-Iocus (Fi = Piqi + Pi+l Qi+l, Fi+1 = Piqi+l - Pi+l qi) (w(x) = Li dPi A dqi)'
If a nondegenerate fixed point bas kc elliptic, kh hyperbolic anel kf focus-focus C0111­
ponents (ke + kh + 2kf = n), then it is called 01 Williamson type (ke , kh , kf ). To
each nondegenerate singular point of corank k there is also a corresponding uniquely
determined vVilliamson type (ke , kh , kf ), with ke + kh + 2kf = k.

The codimension of a nondegenerate singularity (U(N),.c) is by definition the
maximal corank of singular points in N. Each (singular) leaf N of a strongly non­
degenerate IHS has a natural stratification (by tbe orbits of the Poisson }Rn action
of an appropriate local InOlnent 111ap). If thc codiInension of (U(N),.c) is k then
strata of Ininimal dimension in N are (n - k )-cliInensional tori and they are the only
c10sed strata in N. To each nondegenerClte singularity there is also a corresponding
uniquely cletermined Williamson type, which is the "Villiamson type of a singular
point of nlaximal corank in it.

Let (U(N),.c) be a nondegenerate singularity of Vvilliamson type (ke, kh , kf ) anel
codiInension k, of an IHS with n degrees of frcedom. The following three theorems,
which together form an analog of Arnold-Liollville theorel11, hold [40]:

Theorem 3.3 (Torus action) There is a natural Hamiltonian torus Tn-kh -kj ac­
tion in (U(N),.c) which preserves the rnoment rnap of the IHS and which is Iree
almost everywhere. This action is unique, up to automorphisms 01 r-kh -kJ which
preserves two special torus subgrou])s: the subgroup ~e C 1F-kh -kJ which is due to
elliptic components and which is the maximal subgroup acting triviallyon N, and

the subgroup ljJ C 'f71
-

kh -kJ which is due to locus-Iocus components and which acts
triviallyon closed (1ninimal) strata 01 N.

Theorem 3.4 (Action-angle coordinates) There is a unique natural normal fi­
nite covering U(N)can 01 U(N) with the lollowing properties:
i) U(N)can is symplectomorphic to the direct product Dn-k x 1F- k X p2k with the
symplectic form

n-k

W = L dXi A dYi + 1r*(wd
1

where Xi are Euclidean coordinates on D n - k
, Yi (lnod 1) are coordinates on r- k

,

Wl i,c; a sympleetic form on a 2k-dirnensional symplectic 1nanifold p2k, and 1r means
the projection. Under this syrnplectomorphism, the moment map (lijted frorn U(N)
to U(N)can) does not depend on Yi.
ii) U(N) = U(lV\an/fcan = (Dn-k x 1F-k x P2k)/fcan , where the finite group f can

acts on this product Ireely, symplectically, and component-wise, i. e. it cornmutes
with the projections. r can .is a subgroup 01 'Jr"-k, and all 01 its nontrivial elements
are 01 order 2.
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A system of coordinates (Xi, Vi) a.s in the above theoreln is called an equivariant
non-cornplete system 01 action-angle coordinates for the singularity (U(L), L:). Thc
above theoreIll iInplies in particular that every singularity, up to a normal finite
covering, can be reduced to singularitics which contain fixed points, by a Marsden­
\Veinstein reduction {28].

Theorem 3.5 (Canonical model) DijJeomorphically, (U(N), L:) can be written
in a unique canonical way as a quotient 0/ a direct product singularity by a free
cornponent-wise action 0/ a finite group f CAN: .

(U(N),E) = (U(N)CAN' LCAN)/fcAN = {(U('Jrl-k),Lr ) x (P2(Nd, EI) x ... X

X (P2(Nke+kh ), Lke+kh ) X (P4 (N{), L~) x ... X (P4(N~f)' E~f)}/rCAN

Here (U(1rn
-

k
), .er) denotes the Lagrangian /oliation in a tubular neighborhood 01 a

regular Lagrangian (n-k)-torus of an JHS with n-k degrees 0/ freedom; (P 2 (Ni ), Li)
for 1 ~ i ~ ke + kh denotes a codimension 1 nondegenerate sur/ace singularity (=
singularity of an IHS with one degree 0/ freedom),' (P4 (NI) , .e~) for 1 ~ i ~ k f
denotes a focus-focus singularity of an JHS with two degrees 01 freedom. f CAN acts
on the above product component-wise, and moreover, it acts triviallyon all possible
elliptic components 0/ the product.

By definition, (U(N)CAN' action of r CAN) is called the canonical model of the
singularity (U(JV), .e), and f CAN the Galois group of (U(N), 12). Its relation with
(U(N)e~ionof r ron) is as follows: In case of codiInension 1 they coincide. In
general U(N)CAN is a nonnal finite covcring ofU(N)ean' and f ean is a quotient group
of f CAN .

Elliptic anel hypcrbolic cOInponents of nondegenerate singularities of IHS's lie
on 2-diInensional surfaces anel are rather siInple. Focus-focus components lie on
4-diInensional Illanifolds anel deserve a special Illention:

Proposition 3.6 ([41]) Assume that (U(lV), L) has Williarnson type (0,0,1), i.e.
it is a focus-focus singularity 0/ a system with 2 degree 0/ freedorn J and assurne
that N contains exactly m ~ 1 fixed (focus-Iocus) points. Then N has a natural
stratification into m points and m cylinders. The base space 0/ (U(N), 12) is a disk
with a uremovable" singular point in the center which is the image of N. Affinely,
it can be obtained from a small disk near the origin in the standard affine space ]R2

by cuttingout the angle between two directions (0, 0) ---1 (m, 1) and (0, 0) -f (0, 1),
and gluing the remaining edges by the unimodular map (PI, P2) 1-+ (PI - 1np2, P2)'
The affine monodromy around the image 0/ N in the base space is generated by the

. (1 m)rnat/l,X 0 1 .

In fact, (U(lV), 12) in the foclIs-focus case is a Hgoocl torus fibration" in the sense
of MatsuIlloto, anel the nionodromy can be given by 'thc classical Picard-Lefschetz
theorem (see [29] and refcrences therin).
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In a nondegenerate IHS, singular leaves whieh are not nondegcnerate are ealled
sirnply-degenerate. By continuation, oue sees easily that siInply-nondegenerate sin­
gularities also adnüt torus actions of appropriate dimensions, which Illuch them not
much worse than Ilondegellcrate sillgularities. In fact, we think that a thcory similar
to Arnold's Lagrangian singularities Inay be developed for degenerate singularities
of IHS's. In this paper we will deallnainly with strongly nondegenerate IHS's. How­
ever, we suspeet that our main rcsults are still valid for systems with "reasonable"
clegenerate singularities.

3.3 Affine structure of the base space

Let (M2n , w, L) be a strongly nondegenerate IHS, and 0 the associated base spaee.
Since A12n is paracompact, it follows easily that the base spaee 0 is also para­
compact, so we can use Cech cohoillologies für the sheaves over 0 (see e.g. [21]).
Theorem 3.5 shows that 0 is a stratified Inanifold in a most natural sense. Indeed,
for a eodiInension 1 surface singularity, the assoeiated loeal base spaee is a loeal
graph whieh is stratified iuto edges and olle vertex. For a eodinlension 2 focus-foeus
singularity of an IHS with two degrees of freedom, the assoeiated loeal base spaee is
homeomorphic to a disk with a marked point inside it, alld it is stratified into this
point and the two-stratunl arounel this point. Loeally near every singular point, 0
is homeomorphie to a quotient of a direct product of D n - k with sOlne 2-dilnensional
disks with marked points (focus-focus eOlllponents) and graphs (elliptie and hy­
perbolie eomponellts) by a finite group r CAN ' This dircct proeluct has a natural
stratifieation, and the action of r CAN preserves this stratifieation.

Naturally, the bnage of eaeh singular leaf of codimension k of (M 2n, w, L) is a
point lying in an (n - k )-diInensional stratum of O. In particular, points of n­
dbnensional strata of 0 eorrespond to nonsingular Liouville tori of the system.

Areal funetion f : 0 -t IR is called a srnooth function on 0 if its pllll-back to
A12n is smooth. Sinlilarly, a differential fonn on °corresponds to a basic differential
fonn on M 2

n in the sense of foliation thcory. The algebra of differential forms on°gives us the algebra of de Rhanl cohoillologies HDR(O, lR). Of particular interest
is the second eoholnology group HbR(O, IR): if n is a closed 2-fofln on 0 and n its
pulI-back on M then w+n (w plus a "magnetic tenn") will be a new symplectie form
of M for which L rCinains a Lagrangian foliation. It follows from our description of
singularities that the sheaf of differential forms of each degree on 0 is a fine sheaf,
the Poincare lemllla holds für standard neighborhoods of points in 0 (which are
balls in case of regular points). Hence the de Rham cohonlologies on 0 are the same
a.s the Ceeh cohOInologies of the constant sheaf IR over O.

For IHS's which are nondegenerate but not strongly nondegenerate, stratification
of the base spaee Illay be a delicate problein. However, if the system is algebraic 01'

analytic, then the base space itself has an analytic structure, and a natural strat­
ification always cxists. Only now a stratulll of codimension k of the base space
nlay correspond either to nondcgcllerate singularities of codimension k, or simply­
degenerate singularities of coclimellsion smalleI' than k. We willllOt enter this prob­
lein, anel will assulnc for sinlplicity that base spaces of all nonelegenerate IHS's under

14



investigation have a natural structure of a stratified manifold.

The theorems in the previous subsection give us something Inore. Namely, 0 has
a natural stratified integral affine structure. Indeed, n-strata of 0 have Cl natural
integral affine structure, which is given by local systems of action coordinates, as
discussed in Subsection 2.1. Each rn-dimensional stratuII1 Gm of 0 (rn< n) corr8­
sponds to an rn-diInensional family of nondegenerate codimension (n - m) singular
leaves. Then action functiolls (Xl, ... , X m ) given by Theorem 3.4 can be projected
to 0 and restricted to Gm to becoIne a local systeln of integral affine coordinates
in Gm. lt is easy to see that different systems of action functions when restricted
Cm will differ froln each other by an affine transfonnation with integral linear part.
Thus on Cm we have a weIl dcfincd integral affine structure. We will show that the
integral affine structures on different strata of 0 are compatible in an natural way.
First let us recall some definitions.

A nlanifold C m is said to have an affine structure if there is a family of open charts
U(k) C Gm with coordinates (X~k), ... ,x~») respectively, such that UU(k) = Gm, and
on each interscction u(k)nu(l) we have (x~k»)T = A(kl) (x~l))T+ (bikl»)T, whcrc A(kl) is

a constant invertible matrix and b~kl) are real constants, (.)T means transpose. This
affine structure is called integral if A(kl) belong to the discrete group GL(1T~,Z). In

this case, (x~k») are called local systems 0/ integral affine coordinates. Two different
integral affine structure on a Inanifold Gm, given by two different local systems of
coordinates (x~k») and (y~l»), are called commensurable, if 8xi k

) /ayY) are rational
numbers.

Areal function on an affine manifold is called an affine /unction if it is affine
in every affine chart of the Inanifold. An affine function 1 on an integral affine
manifold Gm is called an integral affine /unction if in every Iocal integral affine
system of coordinates (Xi), 81/Bxi are integers. Locally, this function belongs to a
systeIn of integral affine coordinates if alld only if the greatest conUllon divisor of
BI/8xi, i = 1, ... ,111, is 1.

Definition 3.7 A stratified Inanifold C is called a stratified integral affine mani/old
if: i) Each stratum Cm C C is equipped with an integral affine structure.
ii) These affine structures are cOInpatible in the following sense: If Gm is a stratuIn of
C of dimension m, then for every point X E C m

, in a sufficiently small neighborhood
U(x) of x in C there are 111 functions 11, ... , Im, whose restriction to each stratuIn in
U(.T) can be cOlnplctcd to a local system of integral affine coordinates

For every point x E 0, thc action functions (Xi) near the prcimage N x in A12n ,

given by Theorem 3.4, cau also play the role of functions (li) in Definition 3.7 (due
to the fact that the corresponding torus action is free almost everywhere by Theorem
3.3). Thus we have:

Theorem 3.8 For every strongly nondegenerate IHS) the associated base space has
a unique natural structure 01 a stratified integral affine maniJold.. .

Rema1'k. Though M 2
n has a natural orientation given by thc symplectic fonn,

the base space 0 does not have to be oricntable at all, even in the regular case.

15



Für every stratuln Cm cO, m < 11, denote by Q2m = Q~~ the set of singular
points of corank (n - m) in the preiInage of Cm in M 2n. As we notcd before, Q2m
is a sylnplectic sublnanifold of M 2n , and thc projection Q2m ~ cm gives risc to
a regular Lagrangian fibration in Q2m. In other words, Q2m is prüvided with an
induced IHS in tenns of Lagrangian foliations. However, thc fiber of Q2m ~ Cm

need not be connected in general, and tbe base space O(Q2m) of Q2m is a finite
covering of cm. On O(Q2m) we have two integral affine structures: one is given by
Arnold-Liouville theorem, thc otber one is lifted from Cm . These affine structures
Ina)' be different, but they are comlnensurable, as easily seen from Theorem 3.4.

An integral geodesie interval on a n-diIllcnsional integral affine Inanifold is a
curve given by tbe equation {fI = ... = !n-I = O} in some local systenl of integral
affine coordinates (f1, ... , In)' \A/e define thc affine length of this interval to be
I/n (x) - In (y) I where x, y are the end points of the interval. It is clcar that the
affine length is well-defined, i.e. it is independent of the choicc of local integral
affine coordinates. For the case of stratified integral affine manifolds, the analog of
an integral geodesie interval is an integral geodesie graph (l-ditnensional stratified
sublnanifold), whieh near each eoditncnsion-l stratum is given by {fI = ... = fn-1 =
O} whcre (/1, ... , !n-d are the integral affine functions in Definition 3.7. We define
thc affine length of a geoclesic graph to be the sUln of the affine legnths of its
I-dimensional strata. For the orbit spaces of strongly nondegeneratc IHS's, the
affine length function has thc following remarkable local linear variation property:
Consider an integral gcodesic graph I with end-points Xl, ... , X/t in thc bac;e space 0
of a strongly nondegeneratc IHS, and assume that I C {fI = = !n-l = O} where
/1, ... , fn-I are integral affine functions as before. For each i = 1, , h let f7~ be a local
integral affine functioH near Xi such that li(Xi) = 0 and (11,"" fn-1, f~) is a local
system of integral affine coordinates near Xi. Then we have a (n - 1)-dimensional
family of integral geodesie graphs lEl ...En-1 (lEII, ... , IEn-11 smalI) l lEl ...En-1 C {f1 =
EI, ... , fn-1 = En-l} with the end-points lying on {f~ = O}, ... , {f~ = O}. Denote the
affine length of lEl, ... ,En-1 by l(El' ... , En-d. Then l is a linear function: l = l(O, .. ,0) +
L liEi, where li are integers or half-integers. (For singularities with r can = 0, i.c. with
frce torus actions, li are intcgcrs). For thc proof, use thc description of codimension 1
hyperbolic singularities given in [40] or the previous scction, thc fact that l (Ei, ... , En )

is, up to a factor of 1 or 1/2, the synlplectic area of an appropriate surface in the
synlplectic luanifold whose image under the projection to the orbit space is lEI, ... ,En-ll

and of course the closeness of the symplectic form. The above linear variation
property of the affine length is analogous to the Duistermaat-Hcckman theorenl [17]
about the linear variation of the cohornology calss of the symplectic form on the
reduced phase spaces of a Halniltonian SI-action on a symplectic manifold. In Dur
case, we don't have a global SI-action in general, but instead we have many local
SI actions.

The integral affine structure provides the base space 0 with a natural volume
element, which is eqllal to dXJ ...dx n in any loeal systcln (Xi) of integral affine coor­
dinates of its n-dinlensional strata. This voluBle element is, up to orientation, the
image of the volulne elelnent wn In! of (lvJ2

n, w) under the Gysin hOInolnorphisln of
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the foliation M2n ---+ 0:

f wnIn! = f dX1 1\ dY1 1\ ... 1\ dXn 1\ dYn = ±dx1 1\ ... 1\ dXnJTn JTn

Here (Xi, Yi) is a Iocal system of action-angle coordinates. Thus we have:

Proposition 3.9 The volurne 0/ the sympleetie rnanifold M 2n is equal to the volu.me
0/ the base spaee O.

üne ean give to eaeh stratuln of the base spaee a tripie (ke , kh , kf ) called the
Williarnson type, which is thc Williarnson type of the (singular) Lagrangian leaves
in thc prein1age. Für example, a straturn Cm of dimension m of the base space
o of (A12n

, w,.c) is called elliptic if it corrcsponds to elliptic singularities, i.c. to
singularities of \Villian1son type (n - m, 0,0). The base spaee behaves in a very
sirnple way near elliptic singularities. In fact, duc to a result by Eliasson [18] and
Dufour and Molino (14] about the normal form of elliptic singularities, near every
point of an clliptic stratuln Cm the base spaee is isornorphie as an stratified integral
affine manifold to a loeal 1/2u - m-spaee of the Euclidean spaee IRn . A stratum
Cm of dimension m of the base space 0 of (lvI2n , w,.c) is called hyperbolic if it
corresponds to (purely) hyperbolic singulari ties, i.e. to singularities of \i\lilliamson
type (0, n - m, 0). It is ealled /ocus-/ocus if the eorresponding \Villiarnson type is
(0,0, (n - m)/2). Recall [40] that for hyperbolic singularities and only for thern, the
action functions (Xi) given in Theorern 3.4 are uniquely dctermined up to constants
anel integral linear transformations. It eorresponds to an interesting property of thc
base spaee: near hyperbolie strata, thc affine funetiüns Ji entering in Definition 3.7
are uniquely deterrnined up to affine transforrnations.

3.4 Monodromies and rough equivalence

Let (Al, w,.c) be a strongly nondegenerate IHS with the base space 0 anel the
projection luap 1f : !v! ---+ O. Vve can a..':isociate to it two discrete sheaves over 0 as
foliows.

Thc sheaf R of loeal §1-aetions: for each open subset U C 0, the group R(U) of
the sheaf n over U eonsists of SI-aetions on 1f-1(U) which prcscrve thc leavcs of thc
singular foliation .c and thc affine structure on eaeh leaf. Clearly, this is an Abelian
sheaf. Theorcln 3.3 implies that the stalk of R over a point x E 0 is isornorphic
to zn-kn-k" where (ke , kh , kf ) is the Williall1son type of the (singular) leaf 1f-l(X).
In case of regular Lagrangian torus fibrations, this sheaf coincides with the sheaf R
dcfined in Subsection 2.3.

Thc sheaf 1l of cohomologies with integral eoeffieients: The stalk of 1l at each
point x E 0 is Hx := H*(1f- 1(x),Z) = H*(7f- 1(U(x)),Z) where U(x) is a stan­
dard neighborhood of X E 0 (so that TheorCll1 3.5 holds for (1f- 1(U(x)), .c)). Thc
induced hOlllomorphisms "in cohorl1010gies 'givc us the restriction maps, henee 1l is
a well-defincd sheaf. In ease of regular foliations, 1l is isomorphie to the exterior
(Grassmann) algebra of the dual of R.
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Clearly, tbe discrete sbeaves R. and 1i are topological invariants of thc systeln,
which are elosely related. In case of regular foliations, thc isomorphism elass of R.
is detennined uniquely by the affine monodroIllY (holononlY representation). In the
general casc, the isolllorphism elass of thc rcstriction of Rand 1i to each stratuIll of
o is also determiued uniqucly by the bolouolny rcpresentations. By analogy, for a
strongly nondegencrate IHS, we will call the isolnorphislll dass of R (resp., 1i) the
affine monodromy (resp., global monodromy) of thc system. Noticc that, for general
strongly nondegenerate IHS's, R. is also determinecl uniquely by the affine structure
of the base space. We will call R the affine monodromy sheaf anel 1i the global
rnonodrorny sheaf

It is an interesting problem to characterize isomorphislu elasses of Rand 1i in
tenns of sOlue nUlllcrical invariants, reprcscntatioIlS, ect. It seelllS to be a delicate
problem because Rand 1i are not locally constant in general. In a silllpiest case
of IHS's with two degrees ef freedeln ncar an isoenergy hypersurface, the affine
anel global monoclramies can be classified in terms of SOIlle rational numbcrs, called '
marks in the so-called FOlllenko-Zieschang invariant (see e.g. [19]).

Two strongly nonclegcnerate IHS's over the sallle base space will be callecl roughly
equivalent if and only if they havc the same singularities and global monodromy.
More precisely:

Definition 3.10 Two nondegenerate IHS's (lI/fa, W a, La) ~ Oa and (A1a,W a,La) ~
Oa are callcd roughly topologically equivalent (ar have the same rough topological type)
if there is a homemnorphisrn cP : Oa -t Ob, a covering of Oa by opcn subsets Ui , a dif­
feomorphislll <I>i : 1r;; 1(Ui ) -+ tri; 1(cP(Ui )) for each i, such that 1rb 0 <I>i = 4> 0 1ra 11T~l(Ui)'

and ct>;l<I>j induces the idcntity Illap on the cohomology algebra H*(tr;;l(X), Z) for
each x E Vi n Uj . The two systenls are called 1'oughly geometrically equivalent (or
have the sanle rough geometrical type) if, in addition, <I>i are symplectolnorpbislns.

Two systems witbout singularities or with only elliptic singularities are roughly
equivalent if and only if they have thc sarne base space and affine monodromy. Thc
topological and geollletrical type of an IHS (lvI, w, C) -t 0 will be denoted by Otop
and Ogeom respectively. It may be considereel as a framed base space, thc framing
being given by singularities and global lllonodrorny. The following lemlna follows
ilnmediately from the above defitition:

Lemma 3.11 11 two strongly nondegenerate 1HS's are roughly topologically equiva­
lent, then they have the same affine monodromy. 11 they are r071ghly geometrically
equivalent, then the map cl> between the base spaces in the definition preserves the
affine structure.

Remark. The inverse to the first assertion of thc above lelnma is not true: one can
use some codimension 1 hyperbolic singularities to construct SOHle simple SYStCIUS
with the srune singularities, affine Illonodrolllies but different global monodroillies.
Of course, the inverse to the secolld assertion of thc above lCluma is not true either.

It is an interesting problem to find in cvery elass of roughly (topologically /
geolnetrically) equivalent systelus a particular, IllOSt remarkable one. Ir such a
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particular system cxists, then other systems in thc same rough equivalence dass
Inay be eompared to this one, anel their "difference" will be a characteristic c1ass
in SOl1le cohomology group. For cxalnple, in the case of regular fibrations, such a
particular system is the one with a (Lagrangian) section. ß10re generally, systelns
admitting so-called generalized scctions (see Subsection 4.3) are also particular. If
there is no such an apparently particular system, then we just fix an arbitrary system
in the dass alld take it as the "point of reference" .

Let us mention that, for 2 roughly topologically equivalcnt systel1ls to be roughly
geometrically equivalent, a necessary (and sufficient) eondition is that the affine
structure of the base spaces are the same anel the singularities are not only topo­
logically equivalent but also geolnctrically equivalent. Geometrical invariants of
simplest singularities (of Willialilson types (0,1,0) anel (0,0,1)) were stuclied by Du­
foul', Molino, Toulet [15, 37] ancl Grossi [24]' who founcl as thc invariants some
formal power series with arbitrary real coefficients. For example, considcr the case
of a siInplest hyperbolic singularity (whieh contains only one singular point) of a
Hamiltonian systCln with one degree of freedom. The singular lcaf is a number 8
figure. According to a result by Colin de Verclier alld Vcy [10], ncar the singular
point there are local coordinates (x, y) such that the symplectic form is w = dx 1\ dy
and the foliation is given by xy = constant. Take H = xy (and extclld it to a
neighborhood of the singular leaf). VVe can assurne that the set H = € consists
of two cirdes für € > 0 smalI. Consider the 2 cylinders lying bctween H = 0 anel
H = € and denote their symplectic areas by al (€) and a2 (€). Then al (€) + €19 € anel
al (€) + €19 € are smooth functions, anel the Taylor series of these functions at € = 0
form a complete set of geometrical invariants (modulo the topologieal structurc) of
this siInplest hyperbolie singularity (sec [37] for details).

3.5 Sheaves of loeal automorphisms

Besides the cliscrete I1lonodmomy sheaves discussed in the previous subsection, over
the base space 0 of a system (M, w,.c) -4 0 we also have the following sheaves of
groups of local autolnorphisms:

Thc sheaf A top of local topologieal autolnorphisms: Thc group of A top over an
open subset U C 0, denoted by Atop(U), consists of diffeomorphisms from 7[-l(U)
to itsclf which leave the leaves of .c invariant and inducc thc identity hOIJlOrnorphism
on the COh0l110logy ring with integral coefficients of each leaf.

The sheaf Ageom of loeal geornetrical autornorphisms: The grüup of Agcom over
an open subset U C 0, clenoted by Agcom(U), is the subgroup of Atop(U) eonsisting
of the elements which preserve the symplectic structure w.

It is deal' that A top anel A geom satisfy the axiolns of sheaves. ""/e can rnake
Atop(U) and Ageom(U) into topologjcal groups by giving them, say, Coo topology.

The aiIn of this subsection is to stucly an iInportant natural extension of A top
anel Agcom by the affine I1lonodrolny sheaf R.

An important property of the elements of Atop(U(x)) which will be used is that
thcy preserve each stratUl1l of N = 7[-1 (x):
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Lemma 3.12 Assume that 'lj; : 7f-l(U(X)) ---7 7f-l(U(X)) is a homeomorphism com­
muting with the projection 7f and inducing the identity homomorphism on each coho­
mology algebra H* (1r -1 (y), Z2), y E U(x). Then 'lj; preserves every stratum 0f every
leaf7f-l(y), y E U(x).

Proof. By continuity, it is enough to prove that 'lj; preserves every n-dirnensional
stratum, because smaller-diInensional strata lie in their boundary. Again by con­
tinuity, it suffices to deal only with leaves of Williamson type (0,1,0) or (0,0,1).
(If an n-clitnensional stratunl 5 lies in a leaf of \iVilliamson type say (0,2,0), then
there are two families of n-dimensional strata 5lt , 52t , t E Il4, which lie in leaves of
Williamsoll type (0,1,0), anel such that 5 = limt-to SIt n limt-to S2t). Thus we can
redllce thc above lemIlla to the following two cases: 1) 7f- 1(x) is of vVilliamson type
(0,1,0) and 2) 7f-I(X) is of Willianlsoll type (0,0,1). In the second case, the Galois
group is trivial, and the statillent follows easily from Künneth fonnular and by COIl­

sidering second cohonl0logy groups H2 (7f-
1(x), Z2)' In the first case, the statement

also follows easily by considering the group H n (1r- I (x), Z2)' D

Recall from Theorem 3.3 that we have the action of the torus group r-kh -kj
on (1r- 1(U), w, C), if U = U(x) is a standard neighborhood of a point x E 0 allel
(ke , kh , kf) is the Vvilliamson type of thc leaf 1r- l (x), and this action gives a natural
embedding of r-kh-kj into Ageom(U) and Atop(U). The fundanlental group of this
torus, zn-kh-kj is naturally isomorphic to the group R(U) of the affine monodromy
sheaf.

Vve now deRne a topologically trivial fibration Atop(U(x)) ---7 1rn - kh -kj as folIows:
Take a point p of Inaxitnal corank in N = 1r- I (.:c). In other words, p lies in a stratU111
of N isoIllorphic to a torus 1rn , 711, = n - ke - kh - 2kf. Consider the normal vector
space at p to this stratum in 7f- l (U). Since the \rVilliamson type of N is (ke , kh , kf ),
this normal vector space dccomposes in a unique natural \Vay into a direct SUITI

of ke + kh 2-climensional subspaces (elliptic ancl hyperbolic components) and kf 4­
dimensional subspaces (focus-focus conlponents). On each of these components we
have a nonclegenerate linear Poisson action of IRl (elliptic and hyperbolic case) or
IR2 (focus-focus case). In each of these components take a ray (a nonzero vector
consiclered only up to positive scalars) , which is tangent to an invariant subspace
(of dirnension 1 or 2 respectively) of the Poisson action in the hyperbolic anel foclls­
focus case. The set of these ke + kh + kf rays is called a frarning of p. p with
such a franling will be callecl a frautcd ]Joint and denoted by < P >. An ilnportant
observation is that the torus group T-kh -kj acts freely on the set of framed points
of each closed stratum of N = 1r-1(x) (though it may act not frcely Oll the stratum
itself). rvIoreover, the condition of preserving cohomologies and Lemma 3.12 implies
that, for any element 'lj; in Atop(U(x)) there is a unique eletnent X in r-kh-kj such
that the diffeomorphisIll x- Ie1j; preserves the framed point p. Denote by A~>(U(x))

the subgroup of Atop(U(x)) consisting of clelncnts which preserve < ]J >. Then it
follows that the Illap 'IjJ 1-+ (X- l e'lj;, X) is a hOlneomorphis111 between Atop(U(x)) and
A~~?(U(x)) x r-kh-kj.

As a consequence, we have

1rl(Atop(U(x)),Id) = 7fl(A~:>(U(x)),Id) x 7f1(r-kh-kj, 0)
7f1 (A~> (U(x)), I d) x R(U(x), 0)
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where Id denotes the identity Inap, 0 denotes the zero element in r-kh-kJ. (Gonjec­
ture: all homotopy groups of A;;;?(U(x)) are trivial). In partieular, 7f1(A;;'~>(U(x)))

is a nonnal subgroup of 7f} (Atop(U(x))) with the quotient group equal to R(U(x)),
and we have the following extension of Atop(U(x)) with respect to that sllbgroup of
the fundamental group:

0--+ R(U(x)) --+ Atop(U(x)) --+ Atop(U(x)) --+ 0

Moreover, R(U(x)) lies in the center of Atop(U(x)). Apparently, the above defi­
nition of Atop(U(x)) depends Oll the choiee of the fraIlled point< p >. However, the
following lelnma shows that it is in fact canonical and does not depend on < p >:

Lemma 3.13 Tlte subgroup 7fl (A;;'~>(U(x))) of 7f1 (Atop(U(x))) does not depend on
the choice of < p >.

Proo! Let< p > and < q > be two framed points (of maximal corank) in
N = 7f-1(X). Then the lemma is reduced to the following two cases:

Gase 1: There is an element X E l'n- k
h ~kJ such that X( < P » =< q >. Take

any curve Xt E 1r~-khkf 1 t E [0 , I}, such that XO = 0, Xl = X. Then A~~>(U(x)) is
homotopic to A~>(U(x)) in Atop(U(x)) via XtA~~>(U(X))Xt1.

Gase 2. There is no such X as above, but there is a curve , : [0,1] --+ f\l such that,0 = p, r1 = q and Tt for all other t lie in a same stratuIIl of N and have vVilliamson
type (ke,kh -l.kf ) 01' (k e1 kh,kf -1) where (ke,kh,k f ) is the Willianlson type of
lV. vVe can assllille in addition that if p and q lie in the same stratuln of N then
p = q. Denote by A~,q>(U(x)) the set of eleillents of Atop(U(x)) whieh preserve
both < p > and < q >. Then it is easy to construct bundles A~~>(U(x)) --+
A~,q> (U (x)), A~> (U (x)) --+ A~,q> (U (x)) \Vi th contractible fi bers and inclusion
maps A~~,q>(U(x)) --+ A~>(U(x)), A~,q>(U(x)) --+ A~~>(U(x)) as sections, and
itwill follow that A~> (U (x)) is hOIIlOtOpie to A~,q>(U (x)) and A~> (U (x)) in
Atop(U(x)). For example, consider the case when N has \~Tilliamson type (0,1,0),
the r- 1 action is free, and p and q lie in different (n -1 )-strata. take a fucntion f in
7r- I (U(x)) whieh is invariant under the "Jrl-l-actioll, such that f(p) = 0, ](q) = l.
Denote the projection IR.n-l --+ 'f1~-1 by p. For each 7/J E A~~> (U(x)) there is a
unique X E lRn

-
1 such that the curve t H p(f('if;(,(t)))X)'if;(,(t)) is homotopie to

,(t) rel. p, q. In particular, p(!(7/J(q))X)7/J(q) = q. We have a family of eleulCnts
7/Js E A~~>(U(x)), s E [0, I}, with '1/;0 = 'l/J and '1/;1 E A~,q>(U(x)), which is defined
by 7/Jß (w) = p(s] (7/J(w) )X)'l/J(7J)). The map 'l/Jo H W1 defines the bandIe that we are
looking for. 0

Usillg the above leIllina, we can define a natural extension of the sheaf A top by
the sheaf R:

o--+ R --+ Atop -+ A top -+ 0

Here the sheaf Atop is defined by its stalk at each point x E 0 to be limU(x)-+x Atop (U(x)).

In an absolutely simila-r way, the group Ageom(U(x)) adIllits a natural extension

o --+ R(U (x)) --+ Ageom ( U (x)) --+ Ageom ( U (x)) --+ 0,
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and so does the sheaf Ageom :

o --+ R --+ Ageom --+ Ageom --+ 0

Lemma 3.14 Ageom(V(X)) is naturally isornorphic to the Abelian group, denoted by
Zl(V(X)), of closed l-form on V(x) (i.e. basie closed l-forins on ('rr-l(V(x)),L)).
Thus the sheaf Ageom is isomorphie to the sheaf Z1 0/ Zoeal closed differentiall-forms
on 0, and A geom is isornorphie to ZI IR.

Proof. By definition, there is a 111ap F = (Fl , ... , Fn ) : U(x) --+ Rn such that
F 0 1r : (1r- 1(U(x)), L) --+ !Rn is a 'lgood" rnoment map, that is, singular points
of F 0 1r are nondegenerate and coincide with singular points of [, in X-I (U(x)).
Let 7jJ be an eleIllent of Ageom(U(x)). Then 'IjJ preserves Fand the sYIllplectic fonn
w, therefor it C0l11mutes with the Poisson IRn-action generated by F. Denote the
Hamiltoniall vector fields of FI , ...Fn which generates the above Poisson action by
X I, .. ,Xn respectively. Since 7/J also preservcs each orbit of this Poisson action,
there exist (locally well-defined) n functions al, ... , an : X-I (U (x)) --+ IRn, which
invariant on each orbit of the Poisson action, such that 7/J is equal to the I-Inap of
the flow of the vector field L aiXi (which is SI1100th on each orbit of the Poisson
action). COllsidering only regular points in X-I (U (x)), one obtains that ai are
smooth funetions. Considering 7jJ near a singular point of maxiInal corank in 1r- 1 (x),
one obtains that ai can be made single-valued. Thus ai ean be viewed as sInooth
functions on U. Since 7jJ is syrnplectic, thc l-forIn L aidFi is c1osed, just like in
the regular case. Conversely, if L aidFi is a closed I-form on U then thc I-map
of thc flow of thc vector field L aU\i will be an element in Agcom(U(x)). Just we
have a surjeetive luap ZI(U(X)) --+ Ageom(U(x)), whose kernel can be easily seen
to be R(V(x)). In particular, Zl(V(:r)) is the universal covering of Ageom(U(x)),
xl(Ageom (V(x))) = R(U(x)), and it follows that Ageom(U(X)) = Zl(U(X)). 0

4 Charateristic classes and integrable surgery

4.1 Characteristic classes and classification

In each class of roughly topologically or geolnetrically equivalent strongly nondegen­
erate IHS's, we choose an elenlCnt (A1a,Wa, La) ~ Da of it, and eonsider this ele­
ment as a "point of reference" for defining characteristie c1asses of the other elements
in the same dass. Over Da we have the sheaves R, 1i, Atop , Atop , Ageom = Z1 IR,
Ageom = Z1 as defined in Subsection 3.4 anel 3.5.

Assurne that another systeln (kI, w, l,) ~ 0 has the salne rough (topological
or geOllletrical) equivalence typc as (kIa , Wa , La)' Here for eOllvcnience we assulnc
that the base spaces are already identified by an appropriate hOIne0l110rphisil1. Let
Vi be a fine enough open covering of 0 = Da' Reeall froln thc definition of rough
equivalence that we have loeal isolnorphisrns <Pi : X~>l (Vd --+ X-I (Ui ), whieh give HS

loeal "seetions" /-Lij := <P j 0 <p;II1r,;-l(UinUj) E Atype(Ui n Vj) of the sheaf A type , where
type = top 01' geonL Thus we have an I-cocycle in A top or Ageom ' Its eohoIllology
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- c1ass will be denotecl by {lgC or J-LLgC respcctively. By analogy with thc regular case,
we have:

Definition 4.1 The first COhOIllOlogy c1ass p,gC (resp., J-LLgC) will be called the global
Chern dass (resp., Lagr'angian global Chern dass) of thc system (M, w,.c) with
repect to the systelo (!vIa, Wal .ca).

FroIll the above definition we iIllluediately obtain the following:

Theorem 4.2 Two roughly topologically (re.9p., geometrically) equivalent strongly
nondegenerate IHS's are topologically (resp., geometrically) equivalent ij and only
ij, after appropriate homeomorphisrns between the base spaces oj thern with the base
space 0/ a reference system in the same rough equivalence dass are chosen, they
have the same global Chern dass (resp., Lagrangian global Chern class). In other
words, two strongly nondegenerate IHS's are topologically (geornetrically) equivalent
ij and only ij they have the sarne structure 0/ singularities, global monodromy and
(Lagrangian) global ehern dass.

The short exact sequences

0 -7 R -7 Ä top -7 A top -7 0

11 t t
0 -+ R -+ Z1 -+ Ageom -+ 0

give us the associated long exact sequcnces of cohomologies over the base space Da,
anel the following COIllmutative diagram:

-+ H 1(A top ) -7 H 1(A top ) ~ H 2 (R) -+ H 2 (Atop ) -+ ...

t t 11 t
~ H1(ZI) -7 H 1(Ageom ) ~ H 2 (R) ~ H 2 (Z1 ) -+ ...

11 11

H 2 (Da , IR) H3 (Da , IR)

Definition 4.3 The image of j'J'gC in B 2(Da1 R) uneler the coboundary lnap J in thc
above sequences will be denoted by ligc, and will also be called the (second) global
ehern dass of the systelll.

It follows from the above COIllluutative cliagram that if the system (A1, w,.c) is
roughly geometrically equivalent to the rcferenee system (!vIa, W a, .ca), then under

A 6 d
the maps ß and d we have J-LLgC -+ J-LgC -t O. It follows from thc eonstruction of
characteristic c1asses that any element in BI (Agcom ) is the Lagrangian global ehern
dass of SOIue IHS whieh is roughi)' gcometrieally equivalent to (1'1a,W a, .ca)' Thus
we have the following proposition whieh is similar toa result of Dazord and Dclzant
(12] for the regular case:
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Proposition 4.4 An elernent J-L E H 2 (Oa, R) is the second global Chern dass of
some IHS roughly geometrically equivalent to (Ma , Wal La) if und only if d(J-l) =
O. Under this eondition, the spaee of IHS's roughly geometr'ically equivalent to
(Ma , W a , La) (considered together with appropriate homeornorphisrns between theil'
base spaces and Oa), which have the same seeond global Chern dass J-L, is naturally
isomorphie to H 2 (Oa, JR)/d(H1(R)). (The systems in this space differ only by a
Umagnetic lernt" in the syrnpleetic forrn).

Open question: Does the condition dJ-lgc = 0 still hold if (AI, w, L) is roughly
equivalent to (Ma , W a , La) only topologically, but not geometrically? In other
words, can W always be changed so that (Al, w, L) becomes roughly geometrically to
(Mal Wa, Ca)? For systenlS with two degrees of freedom, the condition dJ-lgC = 0 is
empty because H 3 (O, IR) = 0, SO in this case the answer is YES. For systenls \vhich
are regular or have only elliptic singularities, the answer is also YES. Thc answer
seerns to be YES in sorne other sinlple cases as weIl.

Of course, if two systems are topologically equivalent, then they have the sarne
second cohomology dass J-Lgc, Thc inverse is also true, which justifies our definition:

Proposition 4.5 1f two roughly topologically equivalent systems have the same sec­
ond global Chern dass J-lgC J then they are topologically equivalent.

Für thc case of IHS's whieh have only elliptic singularities, the shcaf R is lücally
isomorphie to zn everywhere (n - kh - kf = n). In this case, thc global Chern dass
J-lgC was defined and studied by Boucetta anel Molino [9]. The definition of P'gC

given by Boucetta and IVlolino is different frorn ours: they use the notion of loeal
(Lagrangian) sections, which for the ease with only elliptic singularities is absolutcly
similar to the regular ease, and proceeds like Duistermaat. (It should be dear that
their definition and that of ours give the same result). In particular, it turns out
that in eaeh dass of roughly topologically (geornetrically) equivalent systerns with
only elliptic singularities, there is a unique particular element up to topological
(geornetrical) equivalence, whieh admits aglobai (Lagrangian) section [9].

Example 4.6 Torie manifolds:

Consider a Hanliltonian rrn action on a closed sympleetie 2n-dirnensional rnanifold
(M, w), \vhieh is [ree somewhere. (M, w) together with this torus action rnay be
callcd a Harniltonian torie manifold. Thc regular (singular) orbits of this 'fT1 action
are Lagrangian (isotropie) tori, and thcy are leaves of an IHS with only elliptic sin­
gularities. The base spaee of this systern is integral-affinely equivalent to a polytope
in the Euclidean space Rn J whose each vertex has exaetly n edges anel these edges
can be moved to the principal axis of lRn by an integral affine transfonnation. (This
fact follows easily frolll the normal fOrIn of elliptic singulartities given by Eliasson
[18] and Dufour and Molino [14]). A falllous theorenl of Delzant [13] says that each
polytope satisfying the above condition on vertices is the base spaee of a Harniltonian
toric rnanifold which is unique up to geon1etrical equivalence. (These Hamiltonian
toric manifolds admit a Kähler structure and a cOIl1plex torus action which make
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them toric Inanifolds in the sense of complex algebraic geometry, see [13, 3]). The
uniqueness in Delzant's theorcln is evident froln our point of view: Since n in this
case is isonlorphic to the constant sheaf zn, anel the base space is contractible, there
is no rOOln for characteristic classes. The existence is also simple: one starts from
a Lagrangian section, and reconstructs the system (and the ambient manifold) in a
unique way (cf. [9]).

Example 4.7 Twisted pToducts:

Vve may call a twisted product of two IHS's (1111, Wl, Ld ~ 0 1 and (A12,W2, L2) ~
O2 an intcgrable systcln over 0 1 X O2 , which is not topologically equivalent but
roughly geolnetrically equivalent to the direct product of the two systelns, and with
the following property: the Marsclen-\Veinstein reduction of this systeln to {y} X O2

(resp., 0 1 X {y}) is gcolnetrically equivalent to (M2 , W2, L2) (resp., (A11, Wl, Ld) for
any y E 0 1 (resp., Y E O2 ), For cxample, if Mi are sYlnplectic 2-tori, with the sys­
tems given by ivIorse fllnctions, then H 2 (01 x O2 , n) = Z4 (here n is the correspond­
ing affine IIlonodrolny sheaf, and the fornntla is obtained easily via Meyer-Vietoris
sequences), and non-zero elements of this group correspond to twisted products.

4.2 Realization problem and integrable surgery

Given a stratified integral affine Inanifold 0, wc can ask wether it cau be realized as
the base space of sOlne nondegenerate IHS. If it is the case, we say that 0 is realizable.
Of course, if 0 is to be realizable, it has to be locally realizable: each singular point
y in 0 corresponcls to some singularity of SOIlle integrable system, that is a singular
Lagrangian foliation with the base space U(y) where U(y) is a neighborhood of Y
in 0, in such a way that the following cOlnpatibility conditions are satisfiecl: If
U(Yd n U(Y2) =1= 0 then there is a foliation-preserving symplectolnorphism <I>YIY2

between the two foliations over U(Yd and U(Y2) restricted to U(Yd n U(Y2); If
U(Yd n U(Y2) n U(Y3) =1= 0 then for the restriction of the corresponding 3 foliations
over U(Yd n U(Y2) n U(Y3), the IIlap <I>YIY2 0 <I>Y2Y3 0 <PY3Y1 is isotopic to identity.
A stratified integral Inanifold 0 equipped with such singularities will be called a
formal rough geometrical type allel elenoted by Ogeom before. The problem now is:
given a fonnal rough gcolnetrical type Ogcom, is there any integrable systern roughly
geometrically equivalent to it? A natural way to solve this probleIn is via integrable
surgery: Olle tries to glue (a finite number of) integrable systenls over subsets of
o to obtain an integrable systenl over O. At each step, we are in the following
situation: Assurne given two IHS (M1,Wl' Ld ---7 0 1 and (M2 'W2, L2) ---7 O2 , with
0 1 U O2 = 0, such that they are roughly gcolnetrically equivalent when restricted
to the con11110n base space 0 1 n O2 - Is there exists an integrable system over 0,
which is roughly gCOlnetrically equivalent to the above two systems when restricted
to 0 1 and 0 2? Thc answer to this question Inay be given in tenns of characteristic
classes:

Proposition 4.8 Denote the difference between the Lagrangian global ehern classes
01 the systems (MI, Wl, Ld ---7 0 1 and (A12,W2, L2) ---7 O2 restricted to 0 1 n O2 by
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J-LLgC E H I (01 n O2 , Zl IR). Then there is an integrable system with the base space
o and roughly geometrically eq71.ivalent to the above two systems when restricted
to 0 1 and O2 il and only il J-LLgC lies in the sum 01 the images 01 Hl(Oll Z1 IR)
and H 1 (02' ZI IR) in HI(OI n O2 , ZI In) 7l.nder restriction rnaps. In pariicular,
il (1'11 , Wl, .cl) ----1 0 1 and (A12 , W2, .(2 ) ----1 O2 are topologically equivalent when re­
stricted to 0 1nO2 , then the 0 bstruction to such a system over 0 lies in the quotient 01
H 2(01n02, IR)jdH1(01 n02, R) by the sum 01 the images 01 H 2(01' R)jdH1(01' R)
and H 2 (02, IR) j (iH l (02,R) in H 2 (01n021 IR) IdH l (01nO2, n) under the Testrietion
maps.

Proof. It is a direet consequence of the results of the previous subsection. 0

Ir 0 is 2-diInensional, then we have:

Proposition 4.9 Any rough geornetrical type Ogcom with 0 two-dirnensional is re­
alizable.

Proof. Ir 0 is 2-dimensional, then we can always ehoose 0 1 n O2 in Proposition
4.8 to be a tubular neighborhood of sornething I-dimensional, so all the obstruetions
vanish. 0

Proposition 4.8 suggests that there Inay be obstructions for a given stratified
integral affine rnanifold of dimension greater 01' equal to 3 to be the base space of
some IHS. It is really the case, as the following exalllpie shows.

Example 4.10 A fake base space:

Let (82, w) be a syrnplectic 2-spherc, f : (82,w) -+ lR. a Morse funetion with 2
Inaxilnal points of thc same val He (= 1) 1 2 minimal points of thc same value (= -1),
two saddle points of different values (= ±1/2), such that f is invariant under an
involution of 82 which preserves the sYlnplectic form and two saddle points. Denote
the base space of this integrable system with one dcgree of freedorn by G = G+ uG_,
\vhere G+ (resp., G_) correponds to thc part of the sphere with f 2: 0 (resp., f ::; 0).
G is a tree with 5 edges: 2 upper, 1 micldle, and 2 lower. Denote by (J" the involution
of Gwhich preserves f anel lower edges but interchanges two upper edges (so (J"

cannot be lifted to an involution on 82). Denote by I{2 thc Klein bottle with a
standard integral affine structure. We have 7f1 (K2

) =< a, blabab- 1 = 1 >. Denote
by ]? the double covering of K 2 corresponding to the subgroup of 1fl (I{2) whieh is
generated by a2 and b (so i? is also a Klein bottle), and denote the involution Oll k
corresponding to that double covering also by 0. Put 0 = I? X q G = (k X G)/Z2'
with thc integral affine structurc induced frorn thc product of the integral affine
structures of k and G. Vve have 0 = O+uO_ with 0_ = k xqG_ = K2 x G_ and
0+ = k X q G+ a twisted product. 0_ anel 0+ are base spaces of integrable systeIns
induced from the direct product of thc subsystems over G_ anel G+ with a systelll
ovef ](. These two systems are roughly equivalent ovef 0 0 = 0+ n 0_ = ](2,
but they are not equivalent, so that thc)' cannot be glued together to obtain a
system over O. More precisely, the affine Inonodromy sheaf over 0 0 = 1(2 in 0
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is 'R = 'RK2 ffi Z where 'RK 2 is the affine monodromy of 1(2 as an affine rnanifold
itself; H2(00,'R) = H 2(1(2,'RJ(2)ffiH2(1(2,Z) = H2(l<2,'RK2)ffiZ2, and we have a
natural projection map to the second component p : H2(OO' 'R) --+ Z2. Any systeln
over 0_ will have aglobaI Chern dass, which when restricted to 00 will map to
o under the map p; but any systeln over 0+ will have aglobai Chern dass, whieh
when restricted to 0 0 will map to the nontrivial element of Z2- Thus those systelns
can never be glued together to a system with the base space O. In other words, 0
is not realizable.

Besides gluing, integrable surgery may be used also for cutting, for changing a
system over asnlall piece of the base space, ect. In the rest of this subsection we
will discuss some simple examples of integrable surgcry.

Exarnple 4.11 Blowing-up:

Blowing up and down, one of the main tools in algebraic geometry, is also a natural
and useful process in symplectic geonlctry, see e.g. [4, 25, 30]. (By the way, it is
also usefnl for the study of elliptic singularities of integrable systeills, cf. [14]). In
symplectic catcgory, it consists of cutting away a sYlnplectic 2n-dimensional ball and
collapsing the boundary of this ball to cpn by collapsing each of the characteristic
curves on this boundary to a point. Since a symplectic ball admits a simple natural
integrable systcln, nalnely the harmonie oscillator, blowing up can be done also by
integrable surgery: Start with a purei.)' elliptic singularity of rank 0 and corank n
of an IHS with n degrees of freedoln. The corresponding loeal base space is locally
equivalent to the corner {Xl ;::: 0, ... , X n ;::: O} of the Euclidean space Rn. Cut out
froln this corner a small sirnplex by the cutting hyperplane {Xl + ... + X n = f > O}.
The new base space achnits an integrable system which is different from the fonner
one only near that corner, and the new ambient sYlnplectic manifold is the result
of a blowing up (in the symplcctic sense) at the elliptic fixed point from the former
one. If instead of an elliptic fixed point, we consider a symplectic submanifold in
!v! consisting of elliptic singular points of sorne constant positive rank, and cut the
base space by an appropriate "hyperplane" near thc image of that elliptic sYlnplectie
subrnanifold, then the result will be a blowing up along a syrnplcctic subrllanifold.

Example 4.12 Dehn surgery:

Consider an IHS over a 2-dinlensional base space 0 with the projection Inap 1r, and
let D 2 E 0 a closed disk lying in the regular part of o. Cut out the piece 1r-1 (D2 )

from thc systern, and thcn glue it back after some twisting along the fiber. This
operation may be called a Dehn surgery, in cOlnplete analogy with the well known
Dehn surgery in low-diInensional topology. It is easy to sec that any two 2-degree­
of-freedoln integrable systems over thc same base space can be transformed to each
other by Dehn surgeries and adding of a magnatic term.

Example 4.13 Hopj bijurcation:
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The bifureation frorn elliptic (codirnension 2) to focus-focus singularities (from lin­
early stable to linearly unstable critical orbits) under some parameter change (e.g.
ellergy) happens in Inany Hamiltonian systenls, e.g. the Lagrange and Kirkhoff
tops, and it is usually ealled a Hanliltonian Hopf bifurcation (see e.g. [31]). Inte­
grable surgery allows us to do the same thing, i.c. changing elliptic codirnension 2
to focus-focus singularities, in a way that does not affect the system outside a small
neighborhood of the (center manifold containing the) codimension 2 elliptic point. It
rnay be deseribed locally as follows: Consider a parallelopiped P, which is obtained
from a right triangle T (base space of Cp2 under torus action) by a blowing-up.
This blowing up consists of cutting from T a small horllothetic T' triangle at one of
its vertices. Now push T' inside a little bit along an edge of T to get a new small tri­
angle T" which stilllics on this edge but does not contain any vcrtice of T. Cutting
TU away from T and gluing the edges of the angle that have been cut cut together,
we obtain a new triangle Q with one focus-focus inside it. The process of going frorn
P to Q (which can be made without the use of T) is our Hopf bifurcation: in it, a
vertice of P goes inside and becolne a foeus-foeus point; two eadgcs of P Ineeting
at that elliptic point becomes one cdge of Q, thc other edges being untouchcd. Of
course, Hopf bifurcation can also be performed in higher dimensions: it consists of
changing elliptie codimension 2 strata into focus-focus codimension 2 strata. by re­
peating this process, one can kill all elliptic singularities of codirnension 2 or higher,
from any strongly nondegenerate IHS on a compact symplectic manifold.

4.3 Generalized sections

In topology, a cross section of a bundle map 7r : M --+ 0 is usually defined to be a
continuous map cP : 0 --+ k! such that 7r 0 cP = id on O. If 7r is the projeetion map
of an integrable SyStCIU, then in general near hyperbolic singularities cross sections
do not exist even locally, except for the sirnplest cases. However, we can generalize
the notion of cross sections as follows, to assure that they always exist locally:

Definition 4.14 Let (1'1, w, [,)~ 0 be a strongly nondegenerate IHS. A general­
ized smooth section of this systern is a subset SeM with the following properties:
i) The induced projection map 7r : S --+ 0 is surjective, and it is injective outside
the singularities of O.
ii) S is a subset of some SI C AI, where SI is an n-dirnensional submanifold of
1'1 transversal to the foliation [, in a natural sense. (So each point of SI is either
nonsingular 01' purely clliptic).
iii) If C c 0 is a straturn which cooresponds to singularities having same hyperbolic
compollents, then thc preimage of C in SI is a union of a finite number of topologi­
cal seetions of the topological locally trivial fibration 7r- 1(C) --+ C. (The number of
seetioDs is equal to the number of local n-strata adjacent to C). Vle require these
seetions to bc homotopie.
S is ealled a generalized Lagrangian section if SI ean be chosen to be a Lagrangian
submanifold.

If in the above definition we replace 0 by a subset of it, then we get thc defini­
tion of a local gcneralized section. Clearly, gencralized scctions always exist locally.
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Moreovcr, they are sections in the classical sense at elliptic and focus-foctIS singu­
larities. That is, they are really gelleralized only at singularities which have SOlne
hyperbolic cOlllponents. It is also clear that the existence of a generalized seetion
implies some conditions on the global monoclrolny.

Definition 4.15 A rough topological type Otop iso called sectionable if there is an

integrable Halniltonian systeln whgieh is roughly topologically equivalent to Otop
and which adlnits a generalized section. A rough geometrical type 09com is called

sectionable if there is an integrablc systenl roughly geometrieally equivalent to Ogeom

which adlnits a generalized Lagrangian section.

For exalnple, a direct procluct of a finite nUlnber of IHS's with one degree of
freeeloln aellnits a generalized section, so its rough topological type is sectionable.
An exalnple of a non-seetionable rough topologieal type is al ready present in the
construction of a fake base space (Example 4.10).

If we have two loeal generalized sections in the neighborhood of a hyperbolie
singularity, then it Inay happen that they eannot be deformecl from Olle to another
by smooth isotopy. However, thcy can be deformed from one to another after a
finite nUlnber of "jumping over singular points" (more precisely, singular points for
which kh = 1, kf = °01' kh = 0, kf = 1 in the Williamson type). It is important to
notice that such jumpings can be made in a hOlnotopically eaninieal way. Henee,
such jUlnpings ean also be perfornlecl globally if we have global generalized sections.
By using these jumpings one can overcolne difficulties eaused by hyperpolic and
foeus-focus singularities in the study of the global ehern class.

Proposition 4.16 1f two 1HS's (NII,wI,.cr) and (A12 ,W2, .c2 ) are roughly topolog­
ically equivalent, and if both of them adrnit a generalized section, then they are
topologically equivalent.

Proof. It follows clirectly from proposition 4.5. 0

The above proposition shows that if Otop is sectionable then in the class of all

systems roughly topologically equivalent to Otop there is a natural distinguishecl ele­
ment, and the global ehern dass Inay be defined as the obstruction to the existenee
of a generalized seetion .

Proposition 4.17 1f two 1HS's (lvII, Wt, .cl) and (A12 , wz, .cz) are roughly geomet­
rically equivalent, and if both of tltem admit a generalized Lagrangian sectionJ then
they are geometrically equivalent.

Proof. The proof is similaI' to thc regular case. First \ve try to Inap the La­
grangian generalized section of the first system to that of the second system. To
do this, we can change the first Lagrangian generalized section by a finite nUlnber
of jumpings whieh preserve thc property of being Lagrangian, and then by a La­
grangian isotopy, so that it becolnes locally isolnorphic to the second Lagrangian
generalized section in a natural way. Then we identify the two Lagrangian general­
ized sections are, and after that there is a unique way to extend this identification
to a foliation prcserving symplcctolllorphisln between the two systelns. 0
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Proposition 4.18 1f (M, w, [,) ~ 0 admits a generalized section, then we can
change W by a magnetic term, i.e. a closed 2-form Wl on 0, such that (M, w +
1T·Wl'.c) admits a generalized Lagrangian section.

Proof. The proof follows from the previous proposition, by uSlng integrable
surgery. 0

Proposition 4.19 1f a rough geometrical type Ogeom is roughly topologically equiv­
alent to a rough topological type Otop and Otop is sectionable, then Ogeom is also
sectionable. In particular, for any 1HS (lv!, w, [,) 01 the rough topological type Otop,

we have that dlLgC (M, w, .c) = 0 in H 3(0, IR), if Otop is sectionable.

Prooj. It fo11ows easily from the prcvious propositions. 0

Example 4.20 Systems on cornpact coadjoint orbits:

On coadjoint orbits of compact Lie algebras, one can construct integrable systelns
using argunlent shift Inethod (see e.g. [20, 7]), and if the shift is generated by an
elenlent lying in the compact Lie algebra itself, then the obtained systerns have no
hyperbolic singularities (cf. the last section of [7}). Since there are 110 hyperbolic
singularities, oue can speak of sections instead of generalized sections, and I suspect
that all sush systems admit sections. Ir thc generator of the shift lies outside thc
conlpact Lie algebra, then thc obtaincd systeIlls may have hyperbolie singularities,
and it is also an interesting question wether all sush systems adnlit generalized
seetions.

4.4 When the dimension is 4

In this subsection we will first prove an analog of rvIilnor's theorel11 [32] for the case
of stratified affine manifolds which are base spaces of nondegenerate (but not neces­
sarily strongly nondegeneratc) integrable Hamiltonian systems. Then we will discuss
same interesting exaroples of syroplectic 4-manifolds achllitting nondegenerate IHS's.

Let 0 2 bc the base space of a nondegenerate IHS with two dcgrees of freedoIll.
Thcn besides the usual stratification a.s an affine manifold, 0 2 has another, topolog­
ical stratification, which is crllder than the affine stratification. Namely, Proposition
3.6 allows HS to forgct focus-focus points in 0 2 as O-dimensional strata, and consider
thenl as ordinary points in 2-dimensional strata. In other \vords, if C is a 2-straturn
in 0 2 then we will add to C all focus-focus points in its boundary. As a result, we
will get a 2-dilnensional topological stratum, dClloted by C, of thc new stratificatioll
of 0 2 . vVe will call cach such C a (topological) 2-dornain of 0 2 . Of course, if the
IHS contains no focus-focus singularities, then 2-domains of 0 2 coincide with affine
2-strata.

Theorem 4.21 Let 0 2 be the base space of a nondegenerate integrable Hamilto­
nian system on a C07Ttpact (may be with boundary) syrnplectic manifold M 4 and C
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a topological 2-domain 01 it. Assurne that the image 01 the boundary 01 M does
not intersect with the closure 01 C (il k!4 is closed then this condition is satisfied
automatically). Then C is h01TteOmorphic to either an annulusJ a Mobius band, a
Klein bottle, a torus J a diskJ a projective space, or a sphere (in case 01 sphere or
projective spacc, C must contain locus-Iocus points).

Proof. 'lle will prove for the case C is orientable. Then the non-orientable case
ean be treated by taking a double covering. Suppose that C eontains exactly k
handles (k ~ 0). Take a simple smooth oricnted loop , = ,(t), Xo = ,(0) = ,(1)
a regular point in C, such that it divieles C into 2 parts, one of whieh contains no
handle and thc other one contains all the handles but no focus-focus point and has
, as the only boundary component.

Assume that k > O. Provide, with such an orientation that the handles of
C are inside of ,. Then hOIllotopically I = alblallbll ... a;;lb;;', where ai, bi are
generators of the fundamental group of the corresponding handles. Fix a Rielnannian
metric on C. Cut C along snlooth loops ai, bi (with the common point Xo = 1'(0))
to obtain a polygone with 4k cdges, every angle of whieh equal to rr /2k, as usual.

Take a non-zero veetor f at xo. Transport it parallelly along I with respect to
the affine structure, we get a family I,(t) of vectors at r(t). Consider the angle
funetion A,(t) := L(/,(t),"Y(t)) whieh is thc algebraie angle spanned from f,(t) to
the curve ,. Of course, this angle funetion can be chosen to be eontinuous, and we
will make so.

We want to cvaluate thc difference of thc value of this angle funetion betwecn
thc end points. First note that, by construetion, the value A"f(l) - A,,f(O) does
not change whcn ! changes slTIoothly leaving Xo fixed. Moreover, the vector 1,(1)
depends only on the hmllotopy type of, anel on thc initial veetor f = f, (0). For any
srnooth closeel curve c with the end point at Xo and any vector 9 at Xo, redenote ge(1),
t.hc result of parallel transporting of 9 along c with rcspect to thc affine structure,
siInply by ge, allel the differenee Ae,g(l) - Ae,g(O) by D(c, g). Note that for any two
nOIl-zcro vectors g and g' we have ID (c, g) - D (c, g') I < 1r, since if, for exanlpie,
Ac,g(O) < Ae,g' (0) < Ae,g(O) + 1r, then also Ae,g(l) < Ac,g' (1) < Ae,g(l) + rr. It follows
that D (c, g) + D(c- 1l, g') < rr for any closed eurve c anel veetors g, g'.

By eonstruction, wc ean decompose D(" f) = A,,/(l) - A,,/(O) as folIows:
D(" f) =
(D(al, f) + 1r/2k - rr) + (D(b1, faI) + rr /2k - rr) +
(D(a11, falb}) + rr /2k - rr) + (D(b11

, Ja b a 1-) + rr /2k - rr) +
1 1 I

... +
(D(a;;l, f atfha"ll b"ll, ..bn) + rr /2k - rr) + (D(b~ 1, falblai- b"ll.,.bna~l) + rr /2k - rr) =

L::[D(ai, Jd + D(ai1
, fi' )] + L::[D(bi, fi") + D(bi 1

, filII)} - (4k - 2)rr
where fi' Ji' , ... are short notes for f b -1 •

fil la l , ..

Using inequalities of the type D(c,g) +D(C-1,g') < rr, we obtain that D(" j) <
krr + k1r - (4k - 2)rr = - (2k - 2)1r ::; O. Thus we have proved:

Lemma 4.22 If k 2: 1 then for any initial non-zero vector f we have D(" f) :=
A,,/(I) - A,,/(O) < O.
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Furthermore, we have:

Lemma 4.23 Ass1lrne that a sirrLple smooth loop f with the end point :ro goes arouud
some boundary component E of C in the positive direction (i. e. so that the bound­
al'Y component is outside of f), so that the domain between fand this boundal'Y
component is an annulus without any locus-Iocus point. Then a non-zero vector I
at Xo can be chosen in such a way that D(r, f) > O.

Proof of Lemma 4.23 . We divide the lemma into 3 cases.

Case 1: The boulldary eomponent E is a slnooth c10sed curve eorresponding to
coditnension 1 elliptic singularities. Then an action function, whieh is zero on this
boundary eOlnponent and positive elsewhere, is weIl defined near it. In this ease,
take the vector f to be tangent to a level set of this action function, and we will
have D(f, f) = O.

Case 2: Points of E eorrespond to only codilnension 1 singlliarities, most of which
are hyperbolie and a finite number of whieh can be simply-degenerate. Then near
this boundary component there is a well-defined affine geodesie direction transversal
to it, called the preferred geodesie direction (which is given by the parallel level sets of
a unique action function given by Theorem 3.4). Then take thc vector f to bc parallel
to this transversal direetion. If E has a eusp due to some silnply degenerate points
then D(r, f) will be a positive multiple of 1f. Otherwise wc will have D(f, f) = O.

Case 3: There are nondegenerate fixed points (of saddle-saddle, center-saddle or
center-center type) on E. For silnplicity, we will assume that all fixed points are
of saddle-saeldle type. The other cases can be treated similarly. Then near every
saddle-saddle point there are two preferred geodesie directions, whieh are transversal
to two loeal parts of E at this point respectively. Note that every preferred geoclesie
direction is a preferred dircetion for siInllltaneously 2 saddle-saddle points (which
are connecteel by a path of eodiInension 1 singular points). Let f be parallel to Olle

of thc two preferred direetions near Olle of the saddle-saddlc points. Thcn simple
comparisons show that D(f, f) > O. 0

Lemma 4.24 Let 6., 6(0) = xo, be a sirnple closed curve going around a locus-Iocus
point (i. e. it divides C into 2 parts, one of which is a disk containing a locus-Iocus
point and no more singularities), which is oriented in negative way (so that the
locus-Iocus point is outside 01 6). Then 101' any initial non-zero vector f we have
D(~, f) 2:: -21f.

The proof of the above lelnlna follows directly froln Proposition 3.6.

Now suppose C has k halldies, rn boundary components anel 11, focus-foeus points
(k l m l 11, 2:: 0). In casc m = 11, = 0, C is a sphere, and it Inust contain singular foeus­
focus points beeause §2 has no regular affine structure. Suppose now that rn,+n > O.
Let 'Y a simple closed curve as in Lelllina 4.22, f 1, ... , f m be simple closed curves
corresponding to boundary components as in Lelnma 4.23, anel ~l, ... ,6.n be sünple
closed curves going aroulld focus-foeus points as in Lelnlna 4.24. Thell we can choose
them so that the cycle f 1 ... r m,-l ~l ... ~n is homotopically trivial. It follows that
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D(r1, f) + ... + D(fm, frl ...rm-J + D(')'-I , fr} ...rm ) +D(~11 1...) + ... + D(~n, f...) =
-2(m + n)71'" for any initial non-zero vector f at XQ. Here each 1... denotes SOllle
appropriatc vector.

Using Lernllla 4.24 wc obtain that

D(r11 f) + ... + D(fn, f...) + D(')'-I, f...) ::; -2m71'".

But by Lemrnas 4.22 anel 4.23, D( ')'-1, f...) > 0 if k > 0, D(fi ,1...) > -71'" anel if
171 > 0 we can choose f so that D(f I, f) 2:: O. It follows that there are only threc
possible cases: (171 = 0, n = 1) (disk), (m = 0, n = 2) (annulus), (m = 1, n = 0)
(torus). 0

Example 4.25 K3J ruled mani/alds, ect.:

It is easy to eonstruct IHS's for whieh a 2-dornain C of the orbit spaee is any of
the allowed eases listed in Theorem 4.21. Thc most interesting ease is 8 2. 82 admits
an integral affine strueture with 24 singular points of foeus-foeHs type, whieh may
be eonstrueted as follows: Start frolll an integral affine triangle (base space of Cp2
under torus action). Cut out frorn this triangle 3 small homothetie triangles, eaeh
Iying on one edge. Gluing together thc edges of each of the 3 angles that have been
cut out, we obtain a triangle with an integral affine strueture with 3 singular points
of foeus-foeus type. 'o\'e ean glue 8 copies of this new triangle togcther to obtain
a 2-sphere with an integral affine strllcture with 24 focus-focus points. Proposition
4.9 shows that this 8 2 is the base spaee of some IHS with 24 (sirnple) focus-focus
singularities. Topologically, it is a torus fibration over 8 2 with 24 singular fibers
of type j+, in the sense of Matsumoto, anel the arnbient manifold is diffeomorphic
to a 1<3 surface (see [29] and refercnces thcrein). We can also go the other way
around (less explicitly): Start with a holomorphic integrable system on an K3 surface
(cf. [27]). Forgetting about thc complex structure and taking the real part of the
holornorphic synlpleetic form, we get an intcgrable systenl with 2 degrees of freedorn
whose base space is horneomorphic to 8 2

.

Assurne now that thc base space has no foeus-foeus singular point and is home­
OInorphic to the direct pfl?duct of a graph 01' a circle with a closed interval. (The
affine structure on 0 neeels not be a direct proeluct). The arnbient manifolds of IHS's
with such an orbit space 0 are rational anel fuled syrnplectic 4-manifolds in the sense
of McDuff (see e.g. [4, 30]). They are symplectic analogs of cornplex ruled surfaces
(see e.g. [5]). It can be shown easHy that in this ease, as in thc ease of S2 with 24
focus-foeus points, we have H 2 (0, R) = 0 (for any realizable affine structure on 0).
Ir we take as 0 a product of 2 graghs whieh are not trees, then it will eorrespond
to rnany topologieally different IHS's, like in Exarnple 4.7. Using integrable surgery,
one cau create rnore eornplieated 2-elitnensional base spaces. It is an interesting
problern to study such 2-ditnensional base spaces, and their correspollding systerns
and 4-nlanifolcls, in rnore eletail.
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