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Abstract

We give a topological and geometrical classification of integrable Hamilto-
nian systems with nondegenerate singularities in terms of their singularities,
affine-structured orbit space, monodromies, and characteristic classes. In par-
ticular, we discover a new characteristic class, called the global Chern class,
which lies in H2(O,R), where O is the base space of the system and R is
some free Abelian (not locally constant in general} sheaf over O, called the
affine monodromy sheaf. This characteristic class allows to classify systems
topologically, and it coincides with the one found by Duistermaat for the case
of regular Lagrangian torus foliations and by Boucetta and Molino for the case
with only elliptic singularities. We discuss the obstructions to the construc-
tion of integrbale systems from a given stratified integral affine manifold as
the base space. As an application to symplectic geometry, we find a method,
called integrable surgery, for constructing many known and unknown sym-
plectic manifolds.
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1 Introduction

Integrable Hamiltonian systems (IHS’s for short) are known to play a very impor-
tant role in classical mechanics and physics, and it is a natural problem to study
their topological properties. For such a study is important for the understanding
of dynamical behavior of integrable systems and their perturbations, for finding ob-
structions to integrability, for detecting algebraically different or similar integrable
systems, ect. On the other hand, according to a conjecture told to me by A.T.
Fomenko, every symplectic manifold admits a nondegenerate IHS. Whether this
conjecture is true or not, a topological study of IHS’s will help us to understand
more about the symplectic structures on manifolds.

In the previous paper [40] in this series, we studied the topological structure
of nondegenerate singularities of IHS’s. In this paper, we will give a topological
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and geometrical classification of THS’s with nondegenerate singularities. Before de-
scribing it, let us recall that the first significant result concerning topology of IHS’s
is what called Arnold-Liouville theorem, which gives the normal form, in terms of
action-angle coordinates, for IHS’s near a regular compact level set of a moment map
(see e.g. [1]). The question about the existence of global action-angle coordinates
for (the regular parts of) IHS’s was studied, among other people, by Duistermaat
[16], who found two important topological invariants, which are called monodromy
and Duistermaat-Chern class respectively, and which together classify regular IHS’s
(i.e. without singulrities) over a given base space up to topological equivalence. The
work of Duistermaat was made more precise (and extended to the case of complete
isotropic foliations) by Dazord and Delzant [12], and was extended to the case of
systems with only elliptic singularities by Boucetta and Molino [9]. In these papers
[9, 12, 16], the Duistermaat-Chern class {or the Chern class as they call it) is de-
fined with the help of local sections of the torus fibration, and it is an element in
H?*(0,R), where O is the base space of the foliation, and R is a locally constant free
Abelian sheaf over O, which may be called the affine monodromy sheaf and defined
as the sheaf of local §' actions on the fibers of the Lagrangian fibration.

The main difficulty that we encountered while trying to generalize the above
characteristic class to the case of integrable systems with more general nondegenerate
singularities lies in the fact that we don’t have local sections in the sense of fiber
bundles: they do not exist near general hyperbolic singularities. There are two
approaches to overcome this difficulty: The first approach is to avoid the use of
local sections by dealing directly with local automorphism groups, and the second
approach is to generalize the notion of local sections so that they always exist.

Using the first approach, we find a cohomological class, called global Chern class
(cf. Subsection 4.1), which lies in H?(O,R), where O is the base space of the
associated (singular) Lagrangian foliation of the system, and R is the sheaf of local
Sl actions, just as before! Of course, our global Chern class coincides with the
one studied by Duistermaat, Dazord, Delzant, Boucetta and Molino in the above-
mentioned cases. The main differences from the regular case is that O is not a
manifold but a stratified manifold, and R is not locally constant though still free
Abelian. It is interesting to notice that the base space O has a natural affine
structure which makes it into a stratified integral affine manifold (cf. Subsection
3.3).

The second approach is also carried out, for a large subset of possible base spaces
(for which one can hope to have global generalized sections, cf. Subsection 4.3).

By generalizing the notion of monodromy from the regular case, we obtain the
notion of global monodromy, which is the isomorphism class of the sheaf over the
base space O, whose stalk at each point is the cohomology ring of the preimage
of this point under the projection map, with integral coefficients (cf. Subsection
3.4). Two integrable systems are called roughly topologically equivalent if their base
spaces can be identified via a homeomorphism, and under this identification, they
have the same singularities topologically, and the same global monodromy. In order
to define the global Chern class of an integrable system, we then have to compare it
with another fixed system lying in the same rough topological equivalence class. (In



the case of regular foliations, such a fixed system is the one which admits a global
section. In general we don’t have sections so the choice may be arbitrary).

Two integrable systems are called topologically equivalent if they have the same
associated singular torus foliations topologically (cf. Subsection 3.1). Our main
result is the following (cf. Subsection 4.1):

Theorem. Two integrable Hamiltonian systems with nondegenerate singular-
ities are topologically equivalent if and only if their base spaces can be identified
by a homeomorphism, and under this identification they have the same topological
structure of singularities, the same global monodromy and the same global Chern
class.

Two integrable systems are called geometrically equivelent if there is a smooth
symplectomorphism between the two manifolds which preserves the associated sin-
gular foliations. By using the so called Lagrangian global Chern class, we also obtain
a geometrical classification similar to the theorem stated above (cf. Subsection 4.1).

In the case of nondegenerate IHS’s on 3-dimensional isoenergy submanifolds,
studied by Fomenko and his school, the global Chern class vanishes, and the global
monodromy may be characterized in terms of some numerical marks as in the so-
called Fomenko-Zieschang invariant (cf. {19] and references therein). Let us mention
here a nice recent application of topological invariants in this case: together with
Maupertuis variational principle, they allowed Bolsinov and Fomenko to find some
metrics on the 2-sphere, whose geodesic flows are integrable with the aid of first
integrals of degree 3 or 4 in velocities, which cannot be reduced to linear or quadratic
integrals (cf. [8] and references therein). Such integrable metrics have not been
known before.

We want to advertise in this paper a simple idea, called integrable surgery, for con-
structing symplectic manifolds using integrable Hamiltonian systems. This method
may complement other known methods for constructing symplectic structures (see
e.g. [4, 30]). An integrable surgery is a symplectic surgery which respects some
integrable systems on symplectic manifolds. Such a surgery is of course present
implicitly in our definition of characteristic classes, and is important for integrable
systems themselves. If the conjecture that every symplectic manifold admits a non-
degenerate IHS is true then every symplectic manifold can be obtained from the
simplest ones by integrable surgery. Anyway, symplectic manifolds constructed ex-
plicitly by symplectic surgery form a very large class, and may be used to check
various conjectures in symplectic geometry, e.g. the conjecture about the ratio-
nal homotopy type of simply-connected symplectic manifolds (cf. [35]). We will
illustrate our idea by several simple examples throughout this paper.

The organization of this paper is as follows: Section 1 is this introduction. In
Section 2 we recall briefly the theory of Duistermaat, Dazord and Delzant of regular
torus Lagrangian foliations, for our work is a direct generalization of this theory to
the case with singularities. The only original thing in this Section are two examples
at the end: one is about the integrable point of view of Kodaira-Thurston example,
the other one is an exotic symplectic structure on R?* constructed using integrable
surgery. Section 3 starts with a geometrical definition of nondegenerate THS's, so



that one can forget about the moment maps and deal only with singular Lagrangian
foliations. Subsection 3.2 recalls the main results about nondegenerate singularities
from [40], which are indespensable for the topological classification of integrable
systems. In particular, these results allow us to study the integral affine structure
of the base spaces in Subsection 3.3, and the sheaves of local automorphism groups
in Subsection 3.5. In Subsection 3.4 we give the notion of affine and global mon-
odromies, and rough topological / geometrical equivalences. Section 4 starts with
the definition of characteristic classes, and classification theorems. Subsection 4.2 is
devoted to the problem of constructing integrable systems from given stratified inte-
gral affine manifolds as the base spaces. We will find some homological obstructions
for doing so. This Subsection also contains a few examples of integrable surgery.
Subsection 4.3 is devoted to the study of generalized sections. Subsection 4.4, the
last one, contains a theorem about the topology of the base space in the 2 degree
of freedom case, which is an analog of Milnor’s theorem about affine structures on
2-surfaces. It also contains some examples of integrable systems with two degrees
of freedom, which are related to complex algebraic surfaces.

In this paper we will define the characteristic classes only for IHS’s with non-
degenerate singularities, but I think that they can be defined in the same way for
IHS’s with some degenerate singularities. To make it more precise, we would have
to study in more detail degenerate singularities, and their automorphism groups in
particular. It is desirable to have a theory similar to the Arnold theory of Lagrangian
singularities, for degenerate singularities of IHS’s. It is also a natural problem to
study topological properties of IHS’s not on symplectic manifolds, but on Poisson
manifolds, i.e. allowing the systems to depend on some parameters....

2 Regular Lagrangian torus foliations

2.1 Local normal form

Let (M?",w) be a smooth paracompact symplectic manifold, H:(M™w) - R
a smooth Hamiltonian function. The Hamiltonian system & = Xy(z), defined by
ix,w = —dH, is called integrable in the sense of Liouville (in this case we say
that we have an IHS), if there exist n commuting first integrals F, = H, Fy, ..., F,
which are functionally independent almost everywhere: {F;, H} = {F;, f;} = 0,
dFy NdFy A ... AdF, # 0a.e.. The map F = (F},...,F,) : M*™ — R"* is called
the moment map. Of course, for a given Hamiltonian H, this moment map is not
unique. However, under the nonresonance condition for H, the regular level sets of
this moment map are uniquely determined by the original integrable Hamiltonian
vector field X;.

We will always assume that the level sets of the moment map F = (Fy,..., F,,) :
(M?* w) = R" are compact (without this assumption Arnold-Liouville theorem may
fail}. Let & = {y € R*|3z € F~'(y), rank dF(z) < n} be the bifurcation diagram.
Put My = M \ F}(Z), and denote by Oy the space of connected components of
the regular level sets of F in My. Then we have a natural projection 7 : My — O,
and the map F : My — R" can be factored through this projection to a map
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F : Op = R
The following well-known theorem is an analog of Darboux’s theorem in symplec-

tic geometry, and it gives the normal form for an integrable system near a regular
level set of the moment map.

Theorem 2.1 (Arnold-Liouville) 7 : My — Oy is a regular Lagrangian T" (torus)
fibration. Moreover, for each y € Oy there is a neighborhood D" = D(y) of
y i O such that (x~1(D"),w) can be written as (D™ x T, T dp; A dg;) via a
fibration-preserving sympletomorphism, where (p;) is e system of coordinates in
D", (q; mod 1) 1s a system of periodic coordinates in T", and the fibration of
(D™ x T*, Y1 dp; A dg;) into Lagrangian tori is the projection D™ x T* — D™,

The functions p; and ¢; are called action and angle coordinates. Each torus of
the fibration My — Oy is called a Liouville torus. The fact that My — O is a
torus fibration and the system Xp is quasi-periodic on each torus was known to
Liouville. The existence of action-angle coordinates was proved by Arnold under
some additional assumptions, and then by Jost and others (see e.g. [1]).

Arnold-Liouville theorem implies that each Liouville torus has a natural flat
structure given by angle coordinates, the Hamiltonian vector field in each Liouville
torus is constant, and the Hamiltonian flow is quasi-periodic. It also implies that
the (regular part of the) base space Oy has a unique natural integral affine structure
which makes it into an integral affine manifold (e.g., [16]): If (ps,q;) i =1,...,n,¢;—

mod 1) and (z;,v;) (i = 1,...,n,4 — mod 1) are two different systems of action-
angle coordinates near a Liouville torus, then (z;) and (p;) are related by an integral
affine transformation, that is (z;)7 = A (p:))T + ()7, where A is an element of

GL(n,Z) and (¢;) are some real constants. Thus the integral affine structure of the
base space is given locally by a system of action coordinates. We will call any first
integral of the Hamiltonian system near a Liouville torus, whose Hamiltonian flow
is periodic with minimal period equal to 1, a local action function. It is easy to see
that locally near every Liouville torus, any action function is a coordinate function
in some system of action-angle coordinatcs.

2.2 Global action-angle coordinates

Suppose now that we have a regular Lagrangian torus fibration 7 : (M&",w) — O3.
It is a natural geometric setting of intebrable systems without singularities, because
any two functions fi, fo : Op = R Poisson-commute if considered as functions on
My (i.e. {fiom, foom} = 0), and any Hamiltonian function of the type H = hon, h :
Oy — R, is integrable.

We can ask if there are global action-angle coordinates. That is, can (Mp,w) —
Oy be written in the form

n
(Og x T, Z dp; A dqi) — Oy
1
where (p;) : Op — R" is an immersion, ¢; mod 1 are periodic coordinates on T".
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More generally, we can ask for a topological or geometrical classification of such
fibrations 7 : (M&",w) — OF, assuming that the base sapce OF is known. Here two
regular Lagrangian torus fibrations (M,,w,) == O, and (M, w,) — O, are called
topologically equivalent if there are diffeomorphisms ® : M, - M,, ¢ : O, — O,
which make the following diagram commutative:

M, 2 M,
~L7ra ~L7rb
0. % o0,

They are called geometrically equivalent if ® can be chosen to be a symplectomor-
phism.

A natural way to solve the above problem is via obstruction theory. If 7 :
(MZ",w) — OF admits a global system of action-angle coordinates, then it has the
following properties:

a) m: M# — OF is a principal T*-bundle.
b) 7 : M3 — O} has a global section.
¢) Moreover, it has a global Lagrangian section.

Conversely, if the above conditions are satisifed then one can show easily that
7 (M$",w) = OF admits global action-angle coordinates. The obstruction for the
condition a) to be fulfilled is called the (affine) monodromy. It will be clear that
the monodromy, besides of being a topological invariant of the foliation, can also be
determined from the affine structure of the base space Oy alone. The obstructions to
b) and ¢) will be called Duistermaat-Chern class and Lagrangian Duistermaat-Chern
class. 1t will also be clear that two regular Lagrangian torus fibrations over the same
base space Oy are topologically equivalent if they have the same monodromy and
Duistermaat-Chern class, and geometrically equivalent if they induce the same affine
structure on Oy and have the same Lagrangian Duistermaat-Chern class.

In the next subsections we will discuss briefly affine monodromy and (Lagrangian)
Duistermaat-Chern class (for more details see {12, 16}).

2.3 Affine monodromy

As in the previous subsection, consider a Lagrangian torus fibration 7 : (MZ", w) —
Og. One has an associated vector bundle of first homology groups :

£ MW on

where k is a coefficient ring, say R. On this vector bundle there is a unique natural
locally flat connection, called the Gauss-Manin connection (e.g., [2]). The (affine)
monodromy is defined as the holomomy of this connection, and is an element of
hom(7(OF), GL{n,R)) defined up to conjugacy. By choosing the coefficient ring k
to be Z, we see that it is actually an element of hom(m(O}), GL(n, Z)).

From the definition it is clear that the monodromy is a topological invariant. We
will now show that it is also an invariant of Of as an integral affine manifold. Hence
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the adjective affine. Indeed, the vector bundle Eg Hlmﬁm O can be identified with

the bundle of constant vector fields on the fibers of  : (M, w) — OF. If X is
a constant vector field on Ty,y € Of, then oX) := —w(X,.) can be identified
with an element of 7O}, and the map X — «(X) is an isomorphism. Hence

Er H'E)’R) Of is isomorphic to the cotangent bundle 7*Op of Og, and we have
a natural flat connection on it. On the other hand, since Og is an integral affine
manifold, the tangent bundle T'Oq has a natural flat connection, defined by the local
trivializations given by the affine charts. The dual connection on the cotangent
bundle T*Qy is therefore also flat. The holonomy of this connection is obviously
an invariant of the affine structure. But it is easy to see, using Arnold-Liouville
theorem, that this connection coincides with the flat connection defined before.

Notice also that Fgz H’E)‘Z) Op is a discrete subbundle of Eg HLEFR) Og. Under
the natural identification of Eg with T Oy, Ez maps to a subbundle of 7Oy, con-
sisting of “integral” covectors. We will denoted this subbundle, or the discrete sheaf
associated to it, by R. It will be used in the definition of the Duistermaat-Chern
class in Subsection 2.4.

First examples of integrable systems with nontrivial monodromy, namely the
spherical pendulum and the Lagrange top, were observed by Cushman and others
(e.g., [11, 16]). In these examples and in all other known examples arising from
classical mechanics and physics, the nontriviality of the monodromy is due to the
presence of the so-called focus-focus singularities (see [41] and below).

2.4 Duistermaat-Chern class

The Duistermaat-Chern class is defined as the obstruction for the Lagrangian torus
fibration MZ" — OF to admit a global section. This fibration is locally trivial. Let
(U;) be a trivializing open covering of Oy. Over each U; there is a smooth section,
denoted by s;. The difference between two local sections, s; and s;, over U; N Uj,
can be written as

pij = 85— 8: € C¥(Er/Eg)(Ui N U;} = C%(T" 0o /R) (U N Uj)

Here C*°(.) denotes the sheaf of smooth sections. It is immediate that (i;) is an
1-cocycle, and it defines a Cech first cohomology class, not depending on the choice
of sections:

finc € H'(O, C*(T*0/R))
Since C*°(T*0y) is a fine sheaf, from the short exact sequence
0= R — C®(T*0y) = C®(T*Oy/R)) = 0

we obtain that the coboundary map § from H!(Ogy, C®(T*Op/R)) to H*(Op, R) in
the associated long exact sequence, is an isomorphism.

fipc, or its image ppc in H2(Op, R) under the isomorphism &, will be called the
Duistermaat-Chern class [16]. In case the monodromy is trivial, i.e. My — O is



a principal T" bundle, the Duistermaat-Chern class coincides with the usual Chern
class (cf. [12]).

If one requires local sections s; to be Lagrangian, then one has that
Hij < Z(T‘OQ/R)(U, N UJ)

(Z2 means closed 1-forms), and it will define the Lagrangian Duistermaat-Chern
class:

tLoc € H'Y(Oo, Z(T*0/R))
There is another short exact sequence
05 R — Z(T*0) & Z(T"Og/R) — 0

which leads to the following long exact sequence

... = H'(Oo,R) % H'(Oo, Z(T*0v)) = H(O4,R) — H'(O0, Z(T"O0/R))
B H*(00,R) S H2(Oy, Z(T*00)) = H3(0g,R) — H?(Oy, Z(T*Op/R)) — . ..

Under the maps A and d we have Uipe A Uoe 40

Thus, if the integral affine manifold Oy is given, then any element of the coho-
mology group H'(Oy, Z(T*0y/R)) will be the Lagrangian Duistermaat-Chern class
of some torus Lagrangian fibration over Oy, and the necessary and sufficient con-
dition for an element p in H?(Og,R) to be the Duistermaat-Chern class of some
Lagrangian torus fibration is that d(u) = 0. To each element ppe € H2(Op, R)
such that d(ppc) = 0 there are H2(Og, R)/dH'(Og, R) choices of the element pz,pc
such that A(u;pe) = ipe, and each choice corresponds to a geometrically different
Lagrangian torus fibration with the same topological structure. If pypec = 0 then

the corresponding fibration is geometrically equivalent to T*Os /R —> Oy (cf. [12]).

One can write down the following natural theorem, which is a reformulation of
the results due to Duistermaat [16], and Dazord and Delzant {12]:

Theorem 2.2 ([12, 16]) Two regular Lagrangian torus fibrations (M, w,) — Oy
and (My,wy) — O, are topologically equivalent if and only if there is a diffeomor-
phism of the base spaces ¢ : Oy — Oy which induces an identification of the affine
monodromies and Duistermaat-Chern classes. They are geometrically equivalent if
and only if ¢ can be chosen to preserve also the affine structure of the base spaces
and the Lagrangian Duistermaat-Chern class.

If Of is 2-connected, then there is no room for the monodromy and Lagrangian
Duistermaat-Chern class, and one obtains the following result due to Nekhoroshev:

Corollary 2.3 ({33]) If Of is an integral affine manifold with m (O}) = m(O}F) =
0, then there is o unique Lagrangian torus fibration over Of (which is compatible
with the given affine structure of OF ), and it admits global action-angle coordinates.
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I don’t know any example of a physically meaningful integrable system with
nontrivial Duistermaat-Chern class (for the regular part of the system). However,
it is not difficult to construct artificial examples:

Example 2.4 Kodaira- Thurston example:

Take Oy to be the standard flat torus T? = R? /Z?, with trivial monodromy. Then
H3(0p,R) = 0, and any element ppc € H?(Oy,R) = Z* is realizable. The au-
tomorphism group of the base space acts on H?(Oy, R), and the quotient space is
isomorphic to Z, (nonnegative integers). Thus each integrable system with the base
space T? is characterized topologically by a nonnegative integer m, and its ambient
symplectic manifold M}, has H,(M2,Z) = Z* & (Z/mZ) as can be computed easily.
For each m there are H2(Og, R)/dH'(Oy, R) = R/Z choices of the symplectic struc-
ture on the fibration M? — Op, up to geometrical equivalence. Let us notice that
the fibrations M?* — T? are topologically the same as a series of Kodaira primary
complex surfaces (see e.g. [5]). In particular, when m = 1, M} is the well-known
Kodaira-Thurston example [26, 36] of a manifold admitting both a conplex and a
symplectic structure but not a Kihler structure.

The results of Duistermaat, Dazord and Delzant lead to the following fact in inte-
grable surgery: Suppose Oy and O, are base spaces of integrable systems (M}, w;) —
O, and (Mj,wy) — O,, such that on the intersection O; N O, these two systems
are regular and induce the same integral affine structure on O, N Os. Then these
two systems can be glued together into an integrable system with the base space
O = 0, U O if and only if they have the same Lagrangian Duistermaat-Chern class
when restricted to Oy N O4. In particular, if O; N O, is contractible, then the above
two systems can always be glued together in a unique may. This very simple fact
already has an interesting application given in the following example.

Example 2.5 Ezotic symplectic R*"s:

Start with the following two integrable systems: The first one is given by the moment
map F = (Fy, ..., F,) = (7z? + my?, ..., nz2 + 7y2) on the open ball of radius 1 of
R?" with coordinates z;,v; and with the standard metric and symplectic structure
(i.e. a harmonic oscillator). On the base space O; of this system, the functions
F; are also integral affine coordinates of the induced afhne structure outside the
singularities. Let O, be an open n-disk, attached to O in such a way that O, U O,
is diffeomorphic to O, rel. singularities of Oy, and O,NO; is contractible. Extend the
functions Fy,...F,, from Oy to O, in such a way that dFy A ... A dF,, # 0 everywhere
on Oy and there is a point y € Oy with Fi(y) = ... = F,(y) = 0. O, with the
integral affine structure given by the functions F; is the base space of a unique
integrable system (Mj,wz) — O,. This is our second system. By construction, our
two systems can be glued in a unique natural way into an integrable system living
on a symplectic manifold diffeomorphic to R?*. The preimage of y in this manifold
is a Lagrangian torus, and in fact it is an ezact Lagrangian torus (i.e. for any 1-form
« such that do is equal to the symplectic form, the restriction of & on this torus is
cohomologous to 0). On the other hand, a famous result of Gromov [23] (sce also
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[34]) says that in the standard symplectic space there can be no smooth closed exact
Lagrangian submanifold. Thus our symplectic space is exotic in the sense that it
can not be symplectically embedded into the standard symplectic space of the same
dimension. Let us notice here that the first explicit example of an exotic symplectic
space was found by Bates and Peschke [6]. Our example is a kind of modification
and simplification of their example. We have a conjecture that, by modifying our
example (e.g. by creating more points y in Op with Fi(y) = ... = F,(y) = 0), one
can get an infinite series of exotic symplectic spaces, which are essentially different.

3 Strongly nondegenerate IHS’s

3.1 Geometric definition of nondegenerate IHS’s

Since we will consider IHS’s only up to topological or geometrical equivalence,
throughout this paper we will adopt the following definition of THS’s which is a little
bit different from the usual one: An integrable Hamiltonian system (with n degrees
of freedom) on a symplectic manifold (M?*, w) is a triple (M,w, L), where L is an
admissible singular Lagrangian foliation, that is, a decomposition of M into disjoint
connected compact subsets (called leaves), satisfying the following condition: For
every leaf N of L there is a neighborhood U(N) of N in M saturated by the leaves
of £, and a smooth map (called the roment map) F = (F, ..., F,) : U(N) - R,
which is constant on each leaf of £ in U(N), nondegenerate almost everywhere, and
such that its components Poisson-commute.

1t follows from the definition and Arnold-Liouville theorem that most leaves of £
are Lagrangian tori. £ will be called, as usual, the (associated) singular Lagrangian
foliation of the system.

The space O of leaves of £ of an THS (M,w, £), equipped with the induced
topology from M, will be called the base space (or the orbit space) of the integrable
system. Under some nondegeneracy conditions (see below), O will turn out to be a
stratified manifold.

Notice that we don’t require the global cxistence of a moment map, but only
its existence near each leaf of the Lagrangian foliation. Thus, the moment map
is something which is not fixed, but can be changed if necessary (for the sake of
regularity).

A fized point of an THS with n degrees of freedom (M?* w, L) is a point in the
symplectic manifold at which the differential of any moment map of the system is
equal to 0. If the moment map can be chosen so that its quadratic part near a fixed
point generates a Cartan subalgebra of the symplectic algebra of quadratic functions
under the standard Poisson bracket, then this fixed point is called nondegenerate.
In general, a point z is called nondegenerate singular of corank k, if under a local
Marsden-Weinstein reduction with respect to the first (n — k) components of a
moment map, it becomes a’nondegenerate fixed point of an IHS with k£ degrees of
freedom.
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A singularity of an THS is by definition the germ of the associated Lagrangian
foliation near a singular leaf, and is denoted by (U(N), L). Here N is the singular
leaf, U(N) means a saturated sufficiently small tubular neighborhood, and £ the
Lagrangian foliation. (U(N), L) is called nondegenerate if every singular point of
the system in it is nondegenerate.

A nondegenerate singularity (U(N), £) is called topologically stable if the singular
value set of the moment map restricted to U (V) coincides with the singular value
set of the moment map restricted to a small neighborhood of a singular point of
maximal corank in N. This topological stability is a rather natural condition, and
is satisfied by all nondegenerate singularities of all known algebraically integrable
systems. Hereafter, we will assume all nondegenerate singularities to be topologically
stable, though often we will not mention it explicitly.

A singular point is called clean if it becomes an isolated fixed point after a local
Marsden-Weinstein reduction. Clearly, all nondegenerate singular points are clean.

Definition 3.1 An IHS is called strongly nondegenerate if all of its singularities
are topologically stable nondegenerate. An IHS is called nondegenerate if all of
its singular points are clean, a dense subset of these points lies in nondegenerate
singular leaves, and all nondegenerate singularities are topologically stable.

Each nondegenerate IHS gives rise to other nondegenerate IHS’s with fewer de-
grees of freedom, in the following way: Consider the set of singular points of corank
at least k in an IHS with n degrees of freedom (M2 w, £). Then, according to
Eliasson-Vey theorem about the local structure of nondegenerate singular points
(18, 38], this set is an immersed symplectic manifold of dimension 2(n — k) in M?",
which may be empty. We will call it the center submanifold of dimension 2(n — k)
of the system. Each center submanifold has a natural orientation given by the sym-
plectic structure. Moreover, it also has an induced nondegenerate IHS with (n — &)
degrees of freedom. It is a standard way to obtain “small” IHS’s from the “big”
ones. These big IHS’s may be even infinite-diinensional.

Definition 3.2 Two strongly nondegenerate IHS's (M;,w;, £;), (Ma,ws, L) are
called topologically equivalent if there is a diffeomorphism ® : M; — M, which sends
Ly to £, and which preserves the orientation of M), and its center submanifolds.
They are called geometrically equivalent if the above diffeomorphism can be chosen
to be a sympectomorphism.

Clearly, this definition is compatible with the one given in Subsection 2.2 for
the case of regular Lagrangian foliations. It may seem more natural to assume & :
M; — Mj; to be only a homeomorphism in the definition of topological equivalence.
However, from the theory of characteristic classes to be discussed below, it will be
clear that if such a foliation-preserving homeomorphism exists, it can always be
chosen to be a diffeomorphism.
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3.2 Arnold-Liouville with singularities

A classical theorem of Williamson [39] asserts that the quadratic part of the moment
map near a nondegenerate fixed point z can be decomposed, after a linear transfor-
mation, into components of three types: elliptic (F; = p?+q2), hyperbolic (F; = p;q;)
and focus-focus (F; = pigi -+ Piy19i+1, Fir1 = Pigiy1 — Pini @) (w(z) = X;dp; A dg;).
If a nondegenerate fixed point has k. elliptic, &k, hyperbolic and k; focus-focus com-
ponents (k. + kx + 2ky = n), then it is called of Williamson type (ke, kn, ks). To
each nondegenerate singular point of corank k there is also a corresponding uniquely
determined Williamson type (ke, ki, kf), with k. + kp + 2k, = k.

The codimension of a nondegenerate singularity (U(N), £) is by definition the
maximal corank of singular points in N. Each (singular) leaf N of a strongly non-
degenerate [HS has a natural stratification (by the orbits of the Poisson R* action
of an appropriate local moment map). If the codimension of (U(N), L) is k then
strata of minimal dimension in N are (n — k)-dimensional tori and they are the only
closed strata in N. To each nondegenerate singularity there is also a corresponding
uniquely determined Williamson type, which is the Williamson type of a singular
point of maximal corank in it.

Let (U(N), L) be a nondegenerate singularity of Williamson type (ke, ks, k) and
codimension k, of an IHS with n degrees of freedom. The following three theorems,
which together form an analog of Arnold-Liouville theorem, hold [40}:

Theorem 3.3 (Torus action) There is a natural Hamiltonian torus T % %5 g¢-
tion in (U(N), L) which preserves the moment map of the IHS and which is free
almost everywhere. This action is unique, up to automorphisms of T %%/ which
preserves two special torus subgroups: the subgroup T C T * %1 which is due to
elliptic components and which is the mazimal subgroup acting trivially on N, and
the subgroup T}’ C T~ %1 which is due to focus-focus components and which acts
trivially on closed (minimal) strata of N.

Theorem 3.4 (Action-angle coordinates) There is a unique natural normal fi-
nite covering U(N),,,. of U(N) with the following properties:
i) U(N),,, is symplectomorphic to the direct product D"=% x T"=* x P2 with the

symplectic form

n—k
w = Z dIi A d‘y; + ?T‘((.Ul)
1

where z; are EBuclidean coordinates on D" %, y; (mod 1) are coordinates on T *,
wy 18 @ symplectic form on a 2k-dirnensional symplectic manifold P*, and 7 means
the projection. Under this symplectomorphism, the moment mayp (lifted from U(N)
to Z:{(—N)mn)ﬂgi not depend on y;.

W) U(N) =U(N)_,,/Fean = (D" x TV * x P¥) /T 4n, where the finite group Tcan
acts on this product freely, symplectically, and component-wise, i.e. it commutes
with the projections. Tean 15 a subgroup of T %, and all of its nontrivial elements

are of order 2.
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A system of coordinates (z;, ;) as in the above theorem is called an equivariant
non-complete system of action-angle coordinates for the singularity ((L), £). The
above theorem implies in particular that every singularity, up to a normal finite
covering, can be reduced to singularities which contain fixed points, by a Marsden-
Weinstein reduction {28].

Theorem 3.5 (Canonical model) Diffeomorphically, (U(N),L) can be written
in a unique canonical way as a quotient of a direct product singularity by a free
component-unse action of a finite group Doan:

(UN), L) = UN) gans Lean)/Tean = {UT*), L,) x (P2(N,), L£1) X ... X
X (P} (Nkotk,), Lrerrn) X (PHND), L£7) x o x (PYNg ), Ly )}/ Tean

Here (U(T™ %), L,) denotes the Lagrangian foliation in a tubular neighborhood of a
regular Lagrangtan (n—k)-torus of an IHS with n—k degrees of freedom; (P2(N;), L;)
for 1 < i < k. + ky denotes a codimension 1 nondegenerate surface singularity (=
singularity of an IHS with one degree of freedom); (P*(N!),L}) for 1 < i < ky
denotes a focus-focus singularity of an THS with two degrees of freedom. U'can acts
on the above product component-wise, and moreover, it acts trivially on all possible
elliptic components of the product.

By definition, (U(N)o4x, action of Foan) is called the canonical model of the
singularity (U(N), L), and Tcan the Galois group of (U(N), L). Its relation with
(LWC ,action of T'up,) is as follows: In case of codimension 1 they coincide. In
general U(N) .,y is a normal finite covering of U(N)___, and [, is a quotient group

of FCAN-

can?

Elliptic and hyperbolic components of nondegenerate singularities of IHS’s lie
on 2-dimensional surfaces and are rather simple. Focus-focus components lie on
4-dimensional manifolds and deserve a special mention:

Proposition 3.6 ([41]) Assume that (U(N), L) has Williamson type (0,0,1), i.e.
it 18 @ focus-focus singularity of a system with 2 degree of freedom, and assume
that N contains ezactly m > 1 fized (focus-focus) points. Then N has a natural
stratification into m points and m cylinders. The base space of (U(N), L) is a disk
with a “removable” singular point in the center which is the image of N. Affinely,
it can be obtained from a small disk near the origin in the standard affine space R?
by cutting out the angle between two directions (0,0) = (m,1) and (0,0) — (0,1),
and gluing the remaining edges by the unimodular map (py,p2) — (p1 — mpo, p2).
The affine monodromy around the image of N in the base space is generated by the

matriz (1 m)
T 0 1 .

In fact, (U(N), £} in the focus-focus case is a “good torus fibration” in the sense
of Matsumoto, and the monodromy can be given by the classical Picard-Lefschetz
theorem (see [29] and references therin).
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In a nondegenerate IHS, singular leaves which are not nondegenerate are called
simply-degenerate. By continuation, one sees easily that simply-nondegenerate sin-
gularities also admit torus actions of appropriate dimensions, which much them not
much worse than nondegenerate singularities. In fact, we think that a theory similar
to Arnold’s Lagrangian singularities may be developed for degenerate singularities
of IHS’s. In this paper we will deal mainly with strongly nondegenerate IHS’s. How-
ever, we suspect that our main results are still valid for systems with “reasonable”
degenerate singularities.

3.3 Affine structure of the base space

Let (M?* w, L) be a strongly nondegenerate IHS, and O the associated base space.
Since M?" is paracompact, it follows easily that the base space O is also para-
compact, so we can use Cech cohomologies for the sheaves over O (see e.g. [21]).
Theorem 3.5 shows that O is a stratified manifold in a most natural sense. Indeed,
for a codimension 1 surface singularity, the associated local base space is a local
graph which is stratified into edges and one vertex. For a codimension 2 focus-focus
singularity of an IHS with two degrees of freedom, the associated local base space is
homeomorphic to a disk with a marked point inside it, and it is stratified into this
point and the two-stratum around this point. Locally near every singular point, O
is homeomorphic to a quotient of a direct product of D®~* with some 2-dimensional
disks with marked points (focus-focus components) and graphs (elliptic and hy-
perbolic components) by a finite group TCcany. This direct product has a natural
stratification, and the action of T'c 4y preserves this stratification.

Naturally, the image of each singular leaf of codimension k of (M?*,w, L) is a
point lying in an (n — k)-dimensional stratum of O. In particular, points of n-
dimensional strata of O correspond to nonsingular Liouville tori of the system.

A real function f: O — R is called a smooth function on O if its pull-back to
M?" is smooth. Similarly, a differential form on O corresponds to a basic differential
form on M?" in the sense of foliation theory. The algebra of differential forms on
O gives us the algebra of de Rham cohomologies H},z(O, R). Of particular interest
is the second cohomology group H3 (O, R): if €1 is a closed 2-form on O and  its
pull-back on M then w+Q (w plus a “magnetic term”) will be a new symplectic form
of M for which £ remains a Lagrangian foliation. It follows from our description of
singularities that the sheaf of differential forms of each degree on O is a fine sheaf,
the Poincaré lemma holds for standard neighborhoods of points in O (which are
balls in case of regular points). Hence the de Rham cohomologies on O are the same
as the Cech cohomologies of the constant sheaf R over O.

For IHS’s which are nondegenerate but not strongly nondegenerate, stratification
of the base space may be a delicate problem. However, if the system is algebraic or
analytic, then the base space itself has an analytic structure, and a natural strat-
ification always exists. Only now a stratum of codimension k& of the base space
may correspond either to nondegenerate singularities of codimension k, or simply-
degenerate singularities of codimension smaller than k. We will not enter this prob-
lem, and will assume for simplicity that base spaces of all nondegenerate IHS’s under
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investigation have a natural structure of a stratified manifold.

The theorems in the previous subsection give us something more. Namely, O has
a natural stratified integral affine structure. Indeed, n-strata of O have a natural
integral affine structure, which is given by local systems of action coordinates, as
discussed in Subsection 2.1. Each rn-dimensional stratum C™ of O (m < n) corre-
sponds to an m-dimensional family of nondegenerate codimension (n — m) singular
leaves. Then action functions (z1, ..., 2,,) given by Theorem 3.4 can be projected
to O and restricted to C™ to become a local system of integral affine coordinates
in C™. 1t is easy to see that different systems of action functions when restricted
C™ will differ from each other by an affine transformation with integral linear part.
Thus on C™ we have a well defined integral affine structure. We will show that the
integral affine structures on different strata of O are compatible in an natural way.
First let us recall some definitions.

A manifold C™ is said to have an affine structure if there is a family of open charts
U® C C™ with coordinates (z(F) ..., z() respectively, such that JU® = C™, and
on each intersection UM NUW we have (#7)T = A (T4 (5NT | where A®D is
a constant invertible matrix and bgk” are real constants, (.)7 means transpose. This
affine structure is called integral if A®) belong to the discrete group GL(m,Z). In
this case, (J:Sk)) are called local systems of integral affine coordinates. Two different
integral affine structure on a manifold C™, given by two different local systems of
coordinates (z*) and ('y,(l)), are called commensurable, if Bxsk) /ayj.” are rational
numbers.

A real function on an affine manifold is called an affine function if it is affine
in every affine chart of the manifold. An affine function f on an integral affine
manifold C™ is called an integral affine function if in every local integral affine
system of coordinates (x;}, f/0z; are integers. Locally, this function belongs to a
system of integral affine coordinates if and only if the greatest common divisor of
Of 0z, i=1,...,m,is 1.

Definition 3.7 A stratified manifold C' is called a stratified integral affine manifold
if: 1) Each stratum C™ C C' is equipped with an integral affine structure.

ii) These affine structures are compatible in the following sense: If C™ is a stratum of
C of dimension m, then for every point z € C™, in a sufficiently small neighborhood
U(z) of z in C there are m functions fy, ..., fi;n, whose restriction to each stratum in
U(z) can be completed to a local system of integral affine coordinates

For every point z € O, the action functions (z;) near the preimage N, in M?",
given by Theorem 3.4, can also play the role of functions (f;) in Definition 3.7 (due
to the fact that the corresponding torus action is free almost everywhere by Theorem
3.3). Thus we have:

Theorem 3.8 For every strongly nondegenerate IHS, the associated base space has
a unique natural structure of a stratified integral affine manifold.

Remark. Though M?" has a natural orientation given by the symplectic form,
the base space O does not have to be orientable at all, even in the regular case.
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For every stratum C™ C O, m < n, denote by @™ = Q%% the set of singular
points of corank (n — m) in the preimage of C™ in M?*. As we noted before, @*™
is a symplectic submanifold of M?", and the projection @*™ — C™ gives rise to
a regular Lagrangian fibration in @Q**. In other words, @*" is provided with an
induced IHS in terms of Lagrangian foliations. However, the fiber of @*™ — C™
need not be connected in general, and the base space O(Q*") of Q*™ is a finite
covering of C™. On O{Q*") we have two integral affine structures: one is given by
Arnold-Liouville theorem, the other one is lifted from C™. These affine structures
may be different, but they are commensurable, as easily seen from Theorem 3.4.

An integral geodesic intervel on a n-dimensional integral affine manifold is a
curve given by the equation {f; = ... = f,_; = 0} in some local system of integral
affine coordinates (f),..., fr). We define the affine length of this interval to be
| fr(z) — fu(y)| where =,y are the end points of the interval. It is clear that the
affine length is well-defined, i.e. it is independent of the choice of local integral
affine coordinates. For the case of stratified integral affine manifolds, the analog of
an integral geodesic interval is an integral geodesic graph (1-dimensional stratified
submanifold), which near each codimension-1 stratum is given by {f, = ... = fu—1 =
0} where (fi, ..., fu-1) are the integral affine functions in Definition 3.7. We define
the affine length of a geodesic graph to be the sum of the affine legnths of its
1-dimensional strata. For the orbit spaces of strongly nondegenerate 1HS’s, the
affine length function has the following remarkable local linear variation property:
Consider an integral geodesic graph v with end-points z;, ..., z;, in the base space O
of a strongly nondegenerate IHS, and assume that v C {f; = ... = fu-) = 0} where
fi, ..., fa_1 are integral affine functions as before. Foreachi =1, ..., hlet f} be alocal
integral affine function near z; such that fi(z;) = 0 and (f1, ..., fa—1, f) is a local
system of integral affine coordinates near z;. Then we have a (n — 1)-dimensional
family of integral geodesic graphs e, . .., (|€1], .-, |€n=1] small}, Y¢, . .., € {fi =
€1,y fu1 = €u_1} with the end-points lying on {f! = 0},..., {f* = 0}. Denote the
affine length of v, . ..., by l{€1,...,€,_1). Then [l is a linear function: [ = {(0,..,0) +
> li€;, where [; are integers or half-integers. (For singularities with Iy, = 0, 1.e. with
free torus actions, [; are integers). For the proof, use the description of codimension 1
hyperbolic singularities given in [40] or the previous section, the fact that I(ey, ..., €,)
is, up to a factor of 1 or 1/2, the symplectic area of an appropriate surface in the
symplectic manifold whose image under the projection to the orbit space is ¥, ... c,_;.
and of course the closeness of the symplectic form. The above linear variation
property of the affine length is analogous to the Duistermaat-Heckman theorem [17]
about the linear variation of the cohomology calss of the symplectic form on the
reduced phase spaces of a Hamiltonian S!-action on a symplectic manifold. In our
case, we don’t have a global S'-action in general, but instead we have many local
St actions.

The integral affine structure provides the base space O with a natural volume
element, which is equal to dz,...dz, in any local system (z;) of integral affine coor-
dinates of its n-dimensional strata. This volume element is, up to orientation, the
image of the volume element w™/n! of (M?*,w) under the Gysin homomorphism of
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the foliation M*" — O:

/ w”/n!z/ doy Adyy A ... Adxy, Ady, = Xdzy A . ANdzy,
n TTI
Here (z;,y;) is a local system of action-angle coordinates. Thus we have:

Proposition 3.9 The volume of the symplectic manifold M*" is equal to the volume
of the base space O.

One can give to each stratum of the base space a triple (k., kx, ks) called the
Williamson type, which is the Williamson type of the (singular) Lagrangian leaves
in the preimage. For example, a stratum C™ of dimension m of the base space
O of (M?® w, L) is called elliptic if it corresponds to elliptic singularities, i.e. to
singularities of Williamson type (n — m,0,0). The base space behaves in a very
simple way near elliptic singularities. In fact, due to a result by Eliasson [18] and
Dufour and Molino [14] about the normal form of elliptic singularities, near every
point of an elliptic stratum C™ the base space is isomorphic as an stratified integral
affine manifold to a local 1/2" ™-gpace of the Euclidean space R*. A stratum
C™ of dimension m of the base space O of (M?*,w, L) is called hyperbolic if it
corresponds to (purely) hyperbolic singularities, i.e. to singularities of Williamson
type (0,n — m,0). It is called focus-focus if the corresponding Williamson type is
(0,0, (n—m)/2). Recall [40] that for hyperbolic singularities and only for them, the
action functions (z;) given in Theorem 3.4 are uniquely determined up to constants
and integral linear transformations. It corresponds to an interesting property of the
base space: near hyperbolic strata, the affine functions f; entering in Definition 3.7
are uniquely determined up to affine transformations.

3.4 Monodromies and rough equivalence

Let (M,w, L) be a strongly nondegenerate THS with the base space O and the
projection map 7 : M — 0. We can associate to it two discrete sheaves over O as
follows.

The sheaf R of local S'-actions: for each open subset U C O, the group R(U) of
the sheaf R over U consists of S'-actions on 7 1(U) which preserve the leaves of the
singular foliation £ and the affine structure on each leaf. Clearly, this is an Abelian
sheaf. Theorem 3.3 implies that the stalk of R over a point 2 € O is isomorphic
to Znkr=ks where (ke, kn, ks) is the Williamson type of the (singular) leaf 7=1(z).
In case of regular Lagrangian torus fibrations, this sheaf coincides with the sheaf R
defined in Subsection 2.3.

The sheaf H of cohomologies with integral coefficients: The stalk of H at each
point z € O is Hy := H*(n"!(z),Z) = H*(n='(U(z)),Z) where U(z) is a stan-
dard neighborhood of z € O (so that Theorem 3.5 holds for (m~1(U(x)), £)). The
induced homomorphisms in cohomologies 'give us the restriction maps, hence H is
a well-defined sheaf. In case of regular foliations, H is isomorphic to the exterior
(Grassmann) algebra of the dual of R.
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Clearly, the discrete sheaves R and H are topological invariants of the system,
which are closely related. In case of regular foliations, the isomorphism class of R
is determined uniquely by the affine monodromy (holonomy representation). In the
general case, the isomorphism class of the restriction of R and H to each stratum of
O is also determined uniquely by the holonomy representations. By analogy, for a
strongly nondegenerate IHS, we will call the isomorphism class of R (resp., H) the
affine monodromy (resp., global monodromy) of the system. Notice that, for general
strongly nondegenerate IHS’s, R is also determined uniquely by the affine structure
of the base space. We will call R the affine monodromy sheaf and ‘H the global
monodromy sheaf.

It is an interesting problem to characterize isomorphism classes of R and H in
terms of some numerical invariants, representations, ect. It seems to be a delicate
problem because R and H are not locally constant in general. In a simplest case
of THS’s with two degrees of freedom near an isoenergy hypersurface, the affine
and global monodromies can be classified in terms of some rational numbers, called
marks in the so-called Fomenko-Zieschang invariant (see e.g. [19]).

Two strongly nondegenerate IHS’s over the same base space will be called roughly
equivalent if and only if they have the same singularities and global monodromy.
More precisely:

Definition 3.10 Two nondegenerate IHS’s (M,, wq, £o) == Og and (Mg, wq, L) —=
O, are called roughly topologically equivalent (or have the same rough topological type)
if there is a homeomorphism ¢ : O, — Oy, a covering of O, by open subsets U;, a dif-
feomorphism ®; : 77 1(U;) — m; (¢(U;)) for each i, such that m, o0 ®; = ¢ 0 Tal 1wy
and ®;'®, induces the identity map on the cohomology algebra H*(n;!(z),Z) for
each z € U; N U;. The two systems are called roughly geometrically equivalent (or
have the same rough geometrical type) if, in addition, ®; are symplectomorphisimns.

Two systems without singularities or with only elliptic singularities are roughly
equivalent if and only if they have the same base space and affine monodromy. The
topological and geometrical type of an THS (M, w, £) — O will be denoted by O,
and Ogeom respectively. It may be considered as a framed base space, the framing
being given by singularities and global monodromy. The following lemma follows
immediately from the above defitition:

Lemma 3.11 If two strongly nondegenerate IHS’s are roughly topologically equiva-
lent, then they have the same affine monodromy. If they are roughly geometrically
equivalent, then the map ¢ between the base spaces in the definition preserves the
affine structure.

Remark. The inverse to the first assertion of the above lemma is not true: one can
use some codimension 1 hyperbolic singularities to construct some simple systems
with the same singularities, affine monodromies but different global monodromies.
Of course, the inverse to the second assertion of the above lemma is not true either.

It is an interesting problem to find in every class of roughly (topologically /
geometrically) equivalent systems a particular, most remarkable one. If such a
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particular system exists, then other systems in the same rough equivalence class
may be compared to this one, and their “difference” will be a characteristic class
in some cohomology group. For cxample, in the case of regular fibrations, such a
particular system is the one with a (Lagrangian) section. More generally, systems
admitting so-called generalized sections (see Subsection 4.3) are also particular. If
there is no such an apparently particular system, then we just fix an arbitrary system
in the class and take it as the “point of reference”.

Let us mention that, for 2 roughly topologically equivalent systems to be roughly
geometrically equivalent, a necessary (and sufficient) condition is that the affine
structure of the base spaces are the same and the singularities are not only topo-
logically equivalent but also geometrically equivalent. Geometrical invariants of
simplest singularities (of Williamson types (0,1,0) and (0,0,1)) were studied by Du-
four, Molino, Toulet [15, 37] and Grossi [24], who found as the invariants some
formal power series with arbitrary real coefficients. For example, consider the case
of a simplest hyperbolic singularity (which contains only one singular point) of a
Hamiltonian system with one degree of freedom. The singular leaf is a number 8
figure. According to a result by Colin de Verdier and Vey [10], near the singular
point there are local coordinates (z,y) such that the symplectic form is w = dz A dy
and the foliation is given by zy = constant. Take H = zy (and extend it to a
neighborhood of the singular leaf). We can assume that the set H = ¢ consists
of two circles for € > 0 small. Consider the 2 cylinders lying between H = 0 and
H = ¢ and denote their symplectic areas by a;(€) and as(€¢). Then a,(€) + €¢lge and
a1(€) + elg e are smooth functions, and the Taylor series of these functions at € = 0
form a complete set of geometrical invariants (modulo the topological structure) of
this simplest hyperbolic singularity (see [37] for details).

3.5 Sheaves of local automorphisms

Besides the discrete monodmomy sheaves discussed in the previous subsection, over
the base space O of a system (M,w, £) 5 O we also have the following sheaves of
groups of local automorphisms:

The sheaf Ay, of local topological automorphisms: The group of A, over an
open subset U C O, denoted by A,,,(U), consists of diffeomorphisms from #n~1(U)
to itself which leave the leaves of £ invariant and induce the identity homomorphism
on the cohomology ring with integral coeflicients of each leaf.

The sheaf Ageon of local geometrical automorphisms: The group of Ageem over
an open subset U C O, denoted by Ageom(U), is the subgroup of A, (U) consisting
of the elements which preserve the symplectic structure w.

It is clear that A, and Ay, satisfy the axioms of sheaves. We can make
Awop(U) and Ageom(U) into topological groups by giving them, say, C* topology.

The aim of this subsection is to study an important natural extension of A,
and Age.m by the affine monodromy sheaf R.

An important property of the elements of A,,,(U(z)) which will be used is that
they preserve each stratum of N = n~1(z):
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Lemma 3.12 Assume that ¢ : 7~ (U(z)) = 7~ (U(z)) is a homeomorphism com-
mating with the projection m and inducing the identity homomorphism on each coho-
mology algebra H*(w~Y(y),Z,), y € U(z). Then v preserves every stratum of every

leaf 7= 1(y), v € U(z).

Proof. By continuity, it is enough to prove that 1 preserves every n-dimensional
stratum, because smaller-dimensional strata lie in their boundary. Again by con-
tinuity, it suffices to deal only with leaves of Williamson type (0,1,0) or (0,0, 1).
(If an n-dimensional stratum S lies in a leaf of Williamson type say (0, 2,0), then
there are two families of n-dimensional strata Sy, Sy, t € Ry, which lie in leaves of
Williamson type (0,1,0), and such that S = lim,_,¢ .Sy N lim,_,q Sz;). Thus we can
reduce the above lemma to the following two cases: 1) #~!(z) is of Williamson type
(0,1,0) and 2} 7~'(z) is of Williamson type (0,0,1). In the second case, the Galois
group is trivial, and the statment follows easily from Kiinneth formular and by con-
sidering second cohomology groups H?*(n~1(z), Z,). In the first case, the statement
also follows easily by considering the group H*(r~!(z),Z,). O

Recall from Theorem 3.3 that we have the action of the torus group T" *s=*s
on (m~Y(U),w, L), if U = U(z) is a standard neighborhood of a point z € O and
(ke, kn, kr) is the Williamson type of the leaf 7=!(z), and this action gives a natural
embedding of T %%/ into Ageom(U) and Ay, (U). The fundamental group of this
torus, Z"~**=¥/ is naturally isomorphic to the group R(U) of the affine monodromy
sheaf.

We now define a topologically trivial fibration A,,,(U(z)) — T* % =%/ as follows:
Take a point p of maximal corank in N = 7~ !(z). In other words, p lies in a stratum
of N isomorphic to a torus T™, m = n — k. — kj, — 2k;. Consider the normal vector
space at p to this stratum in 71 (U). Since the Williamson type of N is (k,, kn, ky),
this normal vector space decomposes in a unique natural way into a direct sum
of ke + kn 2-dimensional subspaces (elliptic and hyperbolic components) and k; 4-
dimensional subspaces (focus-focus components). On each of these components we
have a nondegenerate linear Poisson action of R' (elliptic and hyperbolic case) or
R? (focus-focus case). In each of these components take a ray (a nonzero vector
considered only up to positive scalars), which is tangent to an invariant subspace
(of dimension 1 or 2 respectively) of the Poisson action in the hyperbolic and focus-
focus case. The set of these k. + k, + kjy rays is called a framing of p. p with
such a framing will be called a frammed point and denoted by < p >. An important
observation is that the torus group T*~*+—%; acts freely on the set of framed points
of each closed stratum of N = 7=!(z) (though it may act not freely on the stratum
itself). Moreover, the condition of preserving cohomologies and Lemma 3.12 implies
that, for any element v in A,,,(U(x)) there is a unique element x in T"~* %7 such
that the diffeomorphism x~'o1 preserves the framed point p. Denote by Ajh” (U(z))
the subgroup of A;,,(U(z)) consisting of elements which preserve < p >. Then it
follows that the map ¥ — (x~' o, x) is a homeomorphism between A,,,(U(z)) and
AP (U(z)) x Tr=kn=ks,

As a consequence, we have

T (Awp(U(2)), Id) T (Af,,f," (U(z)), Id) x m;(T*~*»—k1 ()

m(AS (U()), 1d) x R(U(z),0)
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where Id denotes the identity map, 0 denotes the zero element in T %%/, (Conjec-
ture: all homotopy groups of Agh” (U(z)) are trivial). In particular, m (455" (U(z)))
is a normal subgroup of m; (A, (U(z))) with the quotient group equal to R(U(z)),
and we have the following extension of A,,,(U(x)) with respect to that subgroup of
the fundamental group:

0 = R(U(z)) = Awp(U(2)) = Awy(U(z)) =0

Moreover, R(U(z)) lies in the center of A,,,(U(z)). Apparently, the above defi-
nition of A, (U(z)) depends on the choice of the framed point < p >. However, the
following lemma shows that it is in fact canonical and does not depend on < p >:

Lemma 3.13 The subgroup m (Ash” (U(z))) of mi(Awp(U(z))) does not depend on
the choice of < p >.

Proof. Let < p > and < ¢ > be two framed points (of maximal corank) in
N = 7~Y(z). Then the lemma is reduced to the following two cases:

Case 1: There is an element x € T" %%/ guch that x(< p >) =< ¢ >. Take
any curve x; € T' %% ¢ € [0,1], such that xo = 0,x1 = x. Then AL (U(z)) is
homotopic to Agt” (U(z)) in Ap(U(z)) via x Anh” (U(z))x: -

Case 2. There is no such x as above, but there is a curve v : [0,1] = N such that
Yo = P, 1 = q and y, for all other £ lie in a same stratum of N and have Williamson
type (ke, kn — 1.ks) or (ke, kn, ks — 1) where (k, kn, k;) is the Williamson type of
N. We can assume in addition that if p and ¢ lie in the same stratum of N then
p = g. Denote by Agh9(U(z)) the set of elements of A;,(U(z)) which preserve
both < p > and < ¢ >. Then it is easy to construct bundles A;7”(U(z)) —
AP (U(z)), Ay’ (U(z)) = Agh®(U(z)) with contractible fibers and inclusion
maps Ajh? (U(z)) — A<p>(U(:c)) A9 (U(z)) = ASE (U(z)) as sections, and
it will follow that A<”>(U(:z;)) is homotopic to Agh? (U(z)) and A5p (U(z)) in
A1op(U(z)). For example, consider the case when N has Williamson type (0, 1,0),
the T*~! action is free, and p and ¢ lie in different (n—1)-strata. take a fucntion f in

7~ Y(U(z)) which is invariant under the T" !-action, such that f(p) = 0, f(q) =

Denote the projection R*=! — T*~! by p. For each ¥ € A;r”(U(z)) there is a
unique ¥ € R™! such that the curve t — p(f(¥(v(t)))x)¥ (7(t)) is homotopic to
v(t) rel. p,q. In particular, p(f(¥(q))x)¥(g) = ¢. We have a family of elements
Yy € A7 (U(z)), s € [0,1], with 1 = 4 and ¢; € ASP? (U(z)), which is defined
by ¥, (w) = p(sf(P(w))X)¥(w). The map ¥ — 1 defines the bundle that we arc
looking for. O

Using the above lemma, we can define a natural extension of the sheaf A,,, by
the sheaf R.:

Here the sheaf ./itop is defined by its stalk at each point z € O to be limy (g5 Amp(U (z)).

In an absolutely similar way, the group Ageom (U (z)) admits a natural extension
0 = R(U(2)) = Ageorn(U(2)) = Ageo(U(z)) — 0,
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and so does the sheaf Ageom:

0_>R_)J&geofn_)AgeO‘fn—)0

Lemma 3.14 flge,,m(U(:c)) is naturally isomorphic to the Abelian group, denoted by
ZY(U(x)), of closed 1-form on U(x) (i.e. basic closed 1-forms on (x~Y(U(z)), £)).
Thus the sheaf./igeom is isomorphic to the sheaf Z' of local closed differential 1-forms
on O, and Ageom is isomorphic to ZYR.

Proof. By definition, there is a map F = (Fy,.., F,) : U(z) — R* such that
For : (7' (U(z)),L£) — R" is a “good” moment map, that is, singular points
of F o 7 are nondegenerate and coincide with singular points of £ in 7= (U(z)).
Let 1 be an element of Ay, (U(z)). Then 9 preserves F and the symplectic form
w, therefor it commutes with the Poisson R"-action generated by F. Denote the
Hamiltonian vector fields of Fy,...F,, which generates the above Poisson action by
X\, ...X, respectively. Since 1 also preserves each orbit of this Poisson action,
there exist (locally well-defined) n functions ay,...,a, : 7~ (U(z)} — R*, which
invariant on each orbit of the Poisson action, such that % is equal to the 1-map of
the flow of the vector field ¥ a;X; (which is smooth on each orbit of the Poisson
action). Cousidering only regular points in 77!'(U(z)), one obtains that a; are
smooth functions. Considering ¢ near a singular point of maximal corank in 77!(z),
one obtains that a; can be made single-valued. Thus a; can be viewed as smooth
functions on U. Since % is symplectic, the 1-form Y a;dF; is closed, just like in
the regular case. Conversely, if 3 a;dF; is a closed 1-form on U then the 1-map
of the flow of the vector field ¥~ a;X; will be an element in Ageom(U(z)). Just we
have a surjective map Z'(U(z)) = Ageom(U(z)), whose kernel can be easily seen
to be R(U(z)). In particular, Z'(U(z)) is the universal covering of Ageom(U(z)),
T1(Ageon (U (2))) = R(U(2)), and it follows that Ageom(U(z)) = 2 (U(z)). O

4 Charateristic classes and integrable surgery

4.1 Characteristic classes and classification

In each class of roughly topologically or geometrically equivalent strongly nondegen-
erate [HS’s, we choose an element (M,,w,, £,) —= O, of it, and consider this ele-
ment as a “point of reference” for defining characteristic classes of the other elements
in the same class. Over O, we have the sheaves R, H, Ay, ./iwp, Ageom = Z'/R,
./igwm = Z! as defined in Subsection 3.4 and 3.5.

Assume that another system (M,w, £) ——+ O has the same rough (topological
or geometrical) equivalence type as (M,,w,, £,). Here for convenience we assume
that the base spaces are already identified by an appropriate homeomorphism. Let
U; be a fine enough open covering of O = O,. Recall from the definition of rough
equivalence that we have local isomorphisms ®; : 7 (U;) — 7~ 1(U;), which give us
local “sections” p; := ®; 0 q)i_llﬂ'a_l(U.-ﬁUj) € Appe(Ui NU;) of the sheaf Ay, where
type = top or geom. Thus we have an l-cocycle in Aoy O Ageom. Its cohomology
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- class will be denoted by fi,¢ or prec respectively. By analogy with the regular case,
we have:

Definition 4.1 The first cohomology class ji,c (resp., prgc) will be called the global
Chern class (resp., Lagrangian global Chern class) of the system (M,w, L) with
repect to the system (M, w,, L,).

From the above definition we immediately obtain the following:

Theorem 4.2 Two roughly topologically (resp., geometrically) equivalent strongly
nondegenerate THS’s are topologically (resp., geometrically) equivalent if and only
if, after appropriate homeomorphisms between the base spaces of them with the base
space of a reference system in the same rough equivalence class are chosen, they
have the same global Chern class (resp., Lagrangian global Chern class). In other
words, two strongly nondegenerate IHS’s are topologically (geometrically) equivalent
if and only if they have the same structure of singularities, global monodromy and
(Lagrangian) global Chern class.

The short exact sequences

0 = R = App = Agp — 0

I 0 T

0 - R = 2! 5 Apem — 0

give us the associated long exact sequences of cohomologies over the base space O,,
and the following commutative diagram:

- H'(Aw) — H'Y(Aw,) > HYAR) - H(A,) -
T ) I t
4 HYZY o H'(Apem) D HXR) & HY(2Y) o

] I
H?(Ou,R) H*Ouw R)

Definition 4.3 The image of ji;c in H%(O,, R) under the coboundary map § in the
above sequences will be denoted by 14, and will also be called the (second) global
Chern class of the system.

It follows from the above commutative diagram that if the system (M, w, L) is
roughly geometrically equivalent to the reference system (M,,w,, L,), then under

the maps A and d we have KLgC 4 HeC 2 0. It follows from the construction of
characteristic classes that any element in H'(Aye0m) is the Lagrangian global Chern
class of some IHS which is roughly geometrically equivalent to (M,,w,, £,). Thus
we have the following proposition which is similar to a result of Dazord and Delzant
[12] for the regular case:
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Proposition 4.4 An element p € H*(O,,R) is the second global Chern class of
some IHS roughly geometrically equivalent to (M, w,, Lo) if and only if a?(,u) =
0. Under this condition, the space of THS’s roughly geometrically equivalent to
(M,,wa, Lo) (considered together with appropriate homeomorphisms between their
base spaces and O, ), which have the same second global Chern class p, is naturally
isomorphic to H2(O4, R)/d(HY(R)). (The systems in this space differ only by a
“magnetic term” in the symplectic form).

Open question: Does the condition a;,ugc = 0 still hold if (M,w, £) is roughly
equivalent to (M,,w,, L;) only topologically, but not geometrically?. In other
words, can w always be changed so that (M, w, £} becomes roughly geometrically to
(Ma,w,, £4)7 For systems with two degrees of freedom, the condition duy,e = 0 is
empty because H3(O,R) = 0, so in this case the answer is YES. For systems which
are regular or have only elliptic singularities, the answer is also YES. The answer
seems to be YES in some other simple cases as well.

Of course, if two systems are topologically equivalent, then they have the same
second cohomology class p,c. The inverse is also true, which justifies our definition:

Proposition 4.5 If two roughly topologically equivalent systems have the saume sec-
ond global Chern class pigc, then they are topologically equivalent.

For the case of THS’s which have only elliptic singularities, the sheaf R is locally
isomorphic to Z" everywhere (n — ky — k; = n). In this case, the global Chern class
poc was defined and studied by Boucetta and Molino [9]. The definition of ¢
given by Boucetta and Molino is different from ours: they use the notion of local
(Lagrangian) sections, which for the case with only elliptic singularities is absolutely
similar to the regular case, and proceeds like Duistermaat. (It should be clear that
their definition and that of ours give the same result). In particular, it turns out
that in each class of roughly topologically (geometrically) equivalent systems with
only elliptic singularities, there is a unique particular element up to topological
(geometrical) equivalence, which admits a global (Lagrangian) section [9].

Example 4.6 Toric manifolds:

Consider a Hamiltonian T" action on a closed symplectic 2n-dimensional manifold
(M,w), which is free somewhere. (M,w) together with this torus action may be
called a Hamiltonian toric manifold. The regular (singular) orbits of this T" action
are Lagrangian (isotropic) tori, and they are leaves of an THS with only elliptic sin-
gularities. The base space of this system is integral-affinely equivalent to a polytope
in the Euclidean space R”, whose each vertex has exactly n edges and these edges
can be moved to the principal axis of R® by an integral affine transformation. (This
fact follows easily from the normal form of elliptic singulartities given by Eliasson
[18] and Dufour and Molino [14]). A famous theorem of Delzant [13] says that each
polytope satisfying the above condition on vertices is the base space of a Hamiltonian
toric manifold which is unique up to geometrical equivalence. (These Hamiltonian
toric manifolds admit a Kahler structure and a complex torus action which make
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them toric manifolds in the sense of complex algebraic geometry, see [13, 3]). The
uniqueness in Delzant’s theorem is evident from our point of view: Since R in this
case is isomorphic to the constant sheaf Z", and the base space is contractible, there
is no room for characteristic classes. The existence is also simple: one starts from
a Lagrangian section, and reconstructs the system (and the ambient manifold) in a
unique way (cf. [9]).

Example 4.7 Twisted products:

We may call a twisted product of two THS’s (M), wy, £,) == Oy and (M, ws, L) —
O, an integrable system over O, x O,, which is not topologically equivalent but
roughly geometrically equivalent to the direct product of the two systems, and with
the following property: the Marsden-Weinstein reduction of this system to {y} x O,
(resp., Oy x {y}) is geometrically equivalent to (M, ws, £2) (resp., (M, w, L;)) for
any y € O (resp., y € Oq). For example, if M; are symplectic 2-tori, with the sys-
tems given by Morse functions, then H?(0; x Oz, R) = Z* (here R is the correspond-
ing affine monodromy sheaf, and the formula is obtained easily via Meyer-Vietoris
sequences), and non-zero elements of this group correspond to twisted products.

4.2 Realization problem and integrable surgery

Given a stratified integral affine manifold O, we can ask wether it can be realized as
the base space of some nondegenerate [HS. If it is the case, we say that O is realizable.
Of course, if O is to be realizable, it has to be locally realizable: each singular point
y in O corresponds to some singularity of some integrable system, that is a singular
Lagrangian foliation with the base space U(y) where U(y) is a neighborhood of y
in O, in such a way that the following compatibility conditions are satisfied: If
Ul(yr) NU(y2) # O then there is a foliation-preserving symplectomorphism ®,,,,
hetween the two foliations over U(y,) and U(y,) restricted to U(yy) N U(ys); If
U(y1) N U(y2) NU(y3) # @ then for the restriction of the corresponding 3 foliations
over U(y;) N U{yy) N U(ys), the map By, o @y © Dy, 18 isotopic to identity.
A stratified integral manifold O equipped with such singularities will be called a
formal rough geometrical type and denoted by Oggom before. The problem now is:
given a formal rough geometrical type OAgcom, is there any integrable systemn roughly
geometrically equivalent to it? A natural way to solve this problem is via integrable
surgery: one tries to glue (a finite number of} integrable systems over subsets of
O to obtain an integrable system over O. At each step, we are in the following
situation: Assume given two IHS (M, w;, £;) = O and (M, wq, £2) — Oy, with
0, U Oz = O, such that they are roughly geometrically equivalent when restricted
to the common base space O; N O,. Is there exists an integrable system over O,
which is roughly geometrically equivalent to the above two systems when restricted
to O, and 0,7 The answer to this question may be given in termns of characteristic
classes:

Proposition 4.8 Denote the difference between the Lagrangian global Chern classes
of the systems (My,wi, L1) = O, and (My,woq, L) — Oy restricted to Oy N Oy by
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prgc € H'(O1N 02, Z1[R). Then there is an integrable system with the base space
O and roughly geometrically equivalent to the above two systems when restricted
to Oy and O, if and only if pr.c lies in the sum of the images of H'(Oy, 2'/R)
and HY(O,, Z'/R) in HY (O, N Oy, Z'/R) under restriction maps. In particular,
if (My,wr,Ly) = Op and (Ms,wq, La) — Oy are topologically equivalent when re-
stricted to OyNOy, then the obstruction to such a system over O lies in the quotient of
H*(0:N02,R)/dH'(01N0,, R) by the sum of the images of H*(O1,R)/dH' (O}, R)
and H*(O,, R)/dHY(Oy, R) in H2(01NO4, R)/dH' (01N 04, R) under the restriction
maps.

Proof. 1t is a direct consequence of the results of the previous subsection. O

If O is 2-dimensional, then we have:

Proposition 4.9 Any rough geometrical type ngm with O two-dimensional is re-
alizable.

Proof. If O is 2-dimensional, then we can always choose O; N O, in Proposition
4.8 to be a tubular neighborhood of something 1-dimensional, so all the obstructions
vanish. [

Proposition 4.8 suggests that there may be obstructions for a given stratified
integral affine manifold of dimension greater or equal to 3 to be the base space of
some IHS. It is really the case, as the following example shows.

Example 4.10 A fake base space:

Let (5%, w) be a symplectic 2-sphere, f : (5?,w) ~— R a Morse function with 2
maximal points of the same value (= 1), 2 minimal points of the same value (= —1),
two saddle points of different values (= +1/2), such that f is invariant under an
involution of S? which preserves the symplectic form and two saddle points. Denote
the base space of this integrable system with one degree of freedom by G = G, UG _,
where G (resp., G_) correponds to the part of the sphere with f > 0 (resp., f < 0).
G is a tree with 5 edges: 2 upper, 1 middle, and 2 lower. Denote by ¢ the involution
of G which preserves f and lower edges but interchanges two upper edges (so ¢
cannot be lifted to an involution on §?%). Denote by K? the Klein bottle with a
standard integral affine structure. We have m(K?) =< a,blabab™! = 1 >. Denote
by K the double covering of K? corresponding to the subgroup of m (K?) which is
generated by a? and b (so K is also a Klein bottle), and denote the involution on K
corresponding to that double covering also by . Put O = K x, G = (K x G)/Z,,
with the integral affine structure induced from the product of the integral affine
structures of K and G. We have O = O, UO_ with O_ = K x,G_ = K*x G_ and
0. = K x, G, atwisted product. O_ and O.,. are base spaces of integrable systems
induced from the direct product of the subsystems over G_ and G, with a system
over K. These two systems are roughly equivalent over Oy = O, N O_ = K?,
but they are not equivalent, so that they cannot be glued together to obtain a
system over O. More precisely, the affine monodromy sheaf over Oy = K? in O
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is R = Ry2 @ Z where Rg: is the affine monodromy of K? as an affine manifold
itself; H2(Og,R) = H*(K?, Ry2) ® H*(K* Z) = H*(K? Ry2) ® Z,, and we have a
natural projection map to the second component p: H2(Og, R) = Z,. Any system
over O_ will have a global Chern class, which when restricted to Oy will map to
0 under the map p; but any system over O, will have a global Chern class, which
when restricted to Oy will map to the nontrivial element of Z,. Thus those systems
can never be glued together to a system with the base space O. In other words, O
1s not realizable.

Besides gluing, integrable surgery may be used also for cutting, for changing a
system over a small piece of the base space, ect. In the rest of this subsection we
will discuss some simple examples of integrable surgery.

Example 4.11 Blowing-up:

Blowing up and down, one of the main tools in algebraic geometry, is also a natural
and useful process in symplectic geometry, see e.g. [4, 25, 30]. (By the way, it is
also useful for the study of elliptic singularities of integrable systems, cf. [14]). In
symplectic category, it consists of cutting away a symplectic 2n-dimensional ball and
collapsing the boundary of this ball to CP™ by collapsing each of the characteristic
curves on this boundary to a point. Since a symplectic ball admits a simple natural
integrable system, namely the harmonic oscillator, blowing up can be done also by
integrable surgery: Start with a purely elliptic singularity of rank 0 and corank n
of an IHS with n degrees of freedom. The corresponding local base space is locally
equivalent to the corner {z; > 0,...,2, > 0} of the Euclidean space R*. Cut out
from this corner a small simplex by the cutting hyperplane {z, + ... + z, = ¢ > 0}.
The new base space admits an integrable system which is different from the former
one only near that corner, and the new ambient symplectic manifold is the result
of a blowing up (in the symplectic sense) at the elliptic fixed point from the former
one. If instead of an elliptic fixed point, we consider a symplectic submanifold in
M consisting of elliptic singular points of some constant positive rank, and cut the
base space by an appropriate “hyperplane” near the image of that clliptic symplectic
submanifold, then the result will be a blowing up along a symplectic submanifold.

Example 4.12 Dehn surgery:

Consider an IHS over a 2-dimensional base space O with the projection map m, and
let D% € O a closed disk lying in the regular part of O. Cut out the piece 7' (D?)
from the system, and then glue it back after some twisting along the fiber. This
operation may be called a Dehn surgery, in complete analogy with the well known
Dehn surgery in low-dimensional topology. It is easy to see that any two 2-degree-
of-freedom integrable systems over the same base space can be transformed to each
other by Dehn surgeries and adding of a magnatic term.

Example 4.13 Hopf bifurcation:
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The bifurcation from elliptic (codimension 2) to focus-focus singularities (from lin-
early stable to linearly unstable critical orbits) under some parameter change (e.g.
energy) happens in many Hamiltonian systems, e.g. the Lagrange and Kirkhoff
tops, and it is usually called a Hamiltonian Hopf bifurcation (see e.g. [31]). Inte-
grable surgery allows us to do the same thing, i.e. changing elliptic codimension 2
to focus-focus singularities, in a way that does not affect the system outside a small
neighborhood of the (center manifold containing the) codimension 2 elliptic point. It
may be described locally as follows: Consider a parallelopiped P, which is obtained
from a right triangle T (base space of CP? under torus action) by a blowing-up.
This blowing up consists of cutting from T" a small homothetic 7" triangle at one of
its vertices. Now push 7" inside a little bit along an edge of 7" to get a new small tri-
angle T" which still lies on this edge but does not contain any vertice of 7. Cutting
T" away from T and gluing the edges of the angle that have been cut cut together,
we obtain a new triangle ) with one focus-focus inside it. The process of going from
P to @ (which can be made without the use of T') is our Hopf bifurcation: in it, a
vertice of P goes inside and become a focus-focus point; two eadges of P meeting
at that elliptic point becomes one edge of ), the other edges being untouched. Of
course, Hopf bifurcation can also be performed in higher dimensions: it consists of
changing elliptic codimension 2 strata into focus-focus codimension 2 strata. by re-
peating this process, one can kill all elliptic singularities of codimension 2 or higher,
from any strongly nondegenerate IHS on a compact symplectic manifold.

4.3 Generalized sections

In topology, a cross section of a bundle map 7 : M — O is usually defined to be a
continuous map ¢ : O — M such that 7 o ¢ = id on O. If 7 is the projection map
of an integrable system, then in general near hyperbolic singularities cross sections
do not exist even locally, except for the simplest cases. However, we can generalize
the notion of cross sections as follows, to assure that they always exist locally:

Definition 4.14 Let (M,w, £) = O be a strongly nondegenerate IHS. A general-
ized smooth section of this system is a subset § C M with the following properties:
i) The induced projection map 7 : S — O is surjective, and it is injective outside
the singularities of O.

ii) S is a subset of some S; C M, where S; is an n-dimensional submanifold of
M transversal to the foliation £ in a natural sense. (So each point of S is either
nonsingular or purely elliptic).

ii) If C C O is a stratum which cooresponds to singularities having some hyperbolic
components, then the preimage of C in S! is a union of a finite number of topologi-
cal sections of the topological locally trivial fibration 7=!'(C) — C. (The number of
sections is equal to the number of local n-strata adjacent to C). We require these
sections to be homotopic.

S is called a generalized Lagrangian section if S; can be chosen to be a Lagrangian
submanifold.

If in the above definition we replace O by a subset of it, then we get the defini-
tion of a local generalized section. Clearly, generalized sections always exist locally.
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Moreover, they are sections in the classical sense at elliptic and focus-focus singu-
larities. That is, they are really generalized only at singularities which have some
hyperbolic components. It is also clear that the existence of a generalized section
implies some conditions on the global monodromy.

Definition 4.15 A rough topological type Otop is' called sectionable if there is an
integrable Hamiltonian system whgich is roughly topologically equivalent to Oy
and which admits a generalized section. A rough geometrical type Ogeom is called

sectionable if there is an integrable system roughly geometrically equivalent to Ogeom
which admits a generalized Lagrangian section.

For example, a direct product of a finite number of IHS’s with one degree of
freedom admits a generalized section, so its rough topological type is sectionable.
An example of a non-sectionable rough topological type is already present in the
construction of a fake base space (Example 4.10).

If we have two local generalized sections in the neighborhood of a hyperbolic
singularity, then it may happen that they cannot be deformed from one to another
by smooth isotopy. However, they can be deformed from one to another after a
finite number of “jumping over singular points” {more precisely, singular points for
which k, = 1,k; =0 or ky, = 0,k; = 1 in the Williamson type). It is important to
notice that such jumpings can be made in a homotopically caninical way. Hence,
such jumpings can also be performed globally if we have global generalized sections.
By using these jumpings one can overcome difficulties caused by hyperpolic and
focus-focus singularities in the study of the global Chern class.

Proposition 4.16 [If two IHS’s (M), w,, L) and (My,ws, Lo) are roughly topolog-
wcally equivalent, and if both of them admit a generalized section, then they are
topologically equivalent.

Proof. 1t follows directly from proposition 4.5. O

The above proposition shows that if Otop is sectionable then in the class of all
systems roughly topologically equivalent to Otop there is a natural distinguished ecle-
ment, and the global Chern class may be defined as the obstruction to the existence
of a generalized section.

Proposition 4.17 If two IHS’s (M), w,, £,) and {My,w,, L2) are roughly geomet-
rically equivalent, and if both of them admit a generalized Lagrangian section, then
they are geometrically equivalent.

Proof. The proof is similar to the regular case. First we try to map the La-
grangian generalized section of the first system to that of the second system. To
do this, we can change the first Lagrangian generalized section by a finite number
of jumpings which preserve the property of being Lagrangian, and then by a La-
grangian isotopy, so that it becomes locally isomorphic to the second Lagrangian
generalized section in a natural way. Then we identify the two Lagrangian general-
ized sections are, and after that there is a unique way to extend this identification
to a foliation preserving symplectomorphism between the two systems, O
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Proposition 4.18 If (M,w, L) —— O admits a generalized section, then we can
change w by a magnetic term, i.e. a closed 2-form w, on O, such that (M,w +
m*wy, L) admits a generalized Lagrangian section.

Proof. The proof follows from the previous proposition, by using integrable
surgery. O

Proposition 4.19 If a rough geometrzcal type Ogeom s roughly topologzcally equiv-
alent to a rough topological type Ot,,,, and pr 1s sectionable, then ngm is also
sectionable. In particular, for any IHS (M,w, L) of the rough topological type Otop,
we have that cfpgc(M,w, L) =0 in H}O,R), if Otop 1s sectionable.

Proof. 1t follows easily from the previous propositions. O
Example 4.20 Systems on compact coadjoint orbits:

On coadjoint orbits of compact Lie algebras, one can construct integrable systems
using argument shift method (see e.g. [20, 7]), and if the shift is generated by an
element lying in the compact Lie algebra itself, then the obtained systems have no
hyperbolic singularities (cf. the last section of {7]). Since there are no hyperbolic
singularities, one can speak of sections instead of generalized sections, and I suspect
that all sush systems admit sections. If the generator of the shift lies outside the
compact Lie algebra, then the obtained systems may have hyperbolic singularities,
and it is also an interesting question wether all sush systems admit generalized
sections.

4.4 When the dimension is 4

In this subsection we will first prove an analog of Milnor’s theorem [32] for the case
of stratified affine manifolds which are base spaces of nondegenerate (but not neces-
sarily strongly nondegenerate) integrable Hamiltonian systems. Then we will discuss
some interesting examples of symplectic 4-manifolds admitting nondegenerate THS’s.

Let. O? be the base space of a nondegenerate IHS with two degrees of freedom.
Then besides the usual stratification as an affine manifold, O? has another, topolog-
ical stratification, which is cruder than the affine stratification. Namely, Proposition
3.6 allows us to forget focus-focus points in O? as 0-dimensional strata, and consider
them as ordinary points in 2-dimensional strata. In other words, if C is a 2-stratum
in O? then we will add to C all focus-focus points in its boundary. As a result, we
will get a 2-dimensional topological stratum, denoted by C, of the new stratification
of O?. We will call each such C a (topological) 2-domain of O%. Of course, if the
IHS contains no focus-focus singularities, then 2-domains of O? coincide with affine
2-strata.

Theorem 4.21 Let O? be the base space of ¢ nondegenerate integrable Hamilto-
nian system on a compact (may be with boundary) symplectic manifold M* and C
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a topological 2-domain of 1t. Assume that the image of the boundary of M does
not intersect with the closure of C (if M* is closed then this condition is satisfied
automatically). Then C is homeomorphic to either an annulus, a Mobius band, a
Klein bottle, a torus, a disk, a projective space, or a sphere (in case of sphere or
projective space, C must contain focus-focus points).

Proof. We will prove for the case C is orientable. Then the non-orientable case
can be treated by taking a double covering. Suppose that C contains exactly k
handles (k > 0). Take a simple smooth oriented loop v = ¥(t),zo = v(0) = ¥(1)
a regular point in C, such that it divides C into 2 parts, one of which contains no
handle and the other one contains all the handles but no focus-focus point and has
v as the only boundary component.

Assume that & > 0. Provide v with such an orientation that the handles of
C are inside of v. Then homotopically v = a bia7 b7’ . .. a,:lb;‘, where a;, b; are
generators of the fundamental group of the corresponding handles. Fix a Riemannian
metric on C. Cut C along smooth loops a;, b; (with the common point z5 = v(0))
to obtain a polygone with 4k edges, every angle of which equal to m/2k, as usual.

Take a non-zero vector f at ;. Transport it parallelly along v with respect to
the affine structure, we get a family f,(¢) of vectors at y(t). Consider the angle
function A,(t) := Z(f,(t),¥(t)) which is the algebraic angle spanned from f,(t) to
the curve . Of course, this angle function can be chosen to be continuous, and we
will make so.

We want to evaluate the difference of the value of this angle function between
the end points. First note that, by construction, the value A, (1) — A, ;(0) does
not change when v changes smoothly leaving z, fixed. Moreover, the vector f,(1)
depends only on the homotopy type of v and on the initial vector f = f,(0). For any
smooth closed curve ¢ with the end point at zy and any vector g at z, redenote g.(1),
the result of parallel transporting of ¢ along ¢ with respect to the affine structure,
simply by g., and the difference A 4(1) — A;4(0) by D(c, g). Note that for any two
non-zero vectors g and ¢’ we have |D(c,g) — D(c, ¢’)| < =, since if, for example,
Acg(0) < A g(0) < A y(0) +, then also Ag (1) < Ac (1) < Agg(l) -+ m. It follows
that D(c, g) + D(c™'1,¢') < = for any closed curve ¢ and vectors g, g'.

By construction, we can decompose D(v, f) = A, (1) — A, £(0) as follows:
D(v, f) =
(D(ar, f) +7/2k = ) + (D(by, fu,) + /2 — 7) +
(D(at", faip,) +m/2k = 7) + (DT, fo 1= ) + 7/2k — 1) +
oot
(D(az’, wbra o7t b,) T T/2k — ) + (D(bT, arbral =T bpart) T /2R — ) =
Y[D(a, fi) + D(a7?, fu)l + Z[D(bi, fir) + D67, fom)] — (4k — 2)7
where f;, fi, ... are short notes for fulblal—lm.

Using inequalities of the type D(c, g) + D(c™!,¢') < m, we obtain that D(y, f) <
km + km — (4k — 2)m = —(2k — 2)7 < 0. Thus we have proved:

Lemma 4.22 If k > 1 then for any initial non-zero vector f we have D(y, f) :=
Ay (1) = Ay y(0) < 0.
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Furthermore, we have:

Lemma 4.23 Assume that a sitnple smooth loop I' with the end point xy goes around
some boundary component E of C in the positive direction (i.e. so that the bound-
ary component is outside of I'), so that the domain between I' and this boundary
component s an annulus without any focus-focus point. Then a non-zero vector f
at Ty can be chosen in such a way that D(T, f} > 0.

Proof of Lemma 4.283 . We divide the lemma into 3 cases.

Case 1: The boundary component E is a smooth closed curve corresponding to
codimension 1 elliptic singularities. Then an action function, which is zero on this
boundary component and positive elsewhere, is well defined near it. In this case,
take the vector f to be tangent to a level set of this action function, and we will
have D(T, f) = 0.

Case 2: Points of E correspond to only codimension 1 singularities, most of which
are hyperbolic and a finite number of which can be simply-degenerate. Then near
this boundary component there is a well-defined affine geodesic direction transversal
to it, called the preferred geodesic direction (which is given by the parallel level sets of
a unique action function given by Theorem 3.4). Then take the vector f to be parallel
to this transversal direction. If £ has a cusp due to some simply degenerate points
then D(T, f) will be a positive multiple of 7. Otherwise we will have D(T, f) = 0.

Case 3: There are nondegenerate fixed points (of saddlie-saddle, center-saddle or
center-center type) on E. For simplicity, we will assume that all fixed points are
of saddle-saddle type. The other cases can be treated similarly. Then near every
saddle-saddle point there are two preferred geodesic directions, which are transversal
to two local parts of E at this point respectively. Note that every preferred geodesic
direction is a preferred direction for simultaneously 2 saddle-saddle points (which
are connected by a path of codimension 1 singular points). Let f be parallel to one
of the two preferred directions near one of the saddle-saddle points. Then simple
comparisons show that D(T, f}) > 0. O

Lemma 4.24 Let A, A(0) = o, be a simple closed curve going around a focus-focus
point (i.e. it divides C into 2 parts, one of which is a disk containing a focus-focus
point and no more singularities), which is oriented in negative way (so that the

focus-focus point is outside of A). Then for any initial non-zero vector f we have
D(Aa f) Z —27.

The proof of the above lemma follows directly from Proposition 3.6.

Now suppose C has k handles, n boundary components and n focus-focus points
(k,m,n > 0). In case m =n = 0, C is a sphere, and it must contain singular focus-
focus points because $% has no regular affine structure. Suppose now that m+n > 0.
Let v a simple closed curve as in Lemma 4.22, 'y, ..., T, be simple closed curves
corresponding to boundary components as in Lemma 4.23, and A}, ..., A, be simple
closed curves going around focus-focus points as in Lemma 4.24. Then we can choose
them so that the cycle Iy ... T,y 1Ay ... A, is homotopically trivial. It follows that
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DTy, f)+...+ Do, frivme) DO frora) + DAL L)+ .+ D(A, fL) =
—2(m + n)7 for any initial non-zero vector f at xy. Here each f  denotes some
appropriate vector.

Using Lemma 4.24 we obtain that

DLy, fY+...+ DTy, )+ D(y7 L, f.) < —2mn.

But by Lemmas 4.22 and 4.23, D(y"}, f.) > 0if k > 0, D(T;, f.) > —= and if
m > 0 we can choose f so that D(T'y, f) > 0. It follows that there are only three
possible cases: (m = 0,n = 1) (disk), (m = 0,n = 2) (annulus), (m = 1,n = 0)
(torus). O

Example 4.25 K3, ruled manifolds, ect.:

It is easy to construct IHS’s for which a 2-domain C of the orbit space is any of
the allowed cases listed in Theorem 4.21. The most interesting case is 5%. 5% admits
an integral affine structure with 24 singular points of focus-focus type, which may
be constructed as follows: Start from an integral affine triangle (base space of CP?
under torus action}. Cut out from this triangle 3 small homothetic triangles, each
lying on one edge. Gluing together the edges of each of the 3 angles that have been
cut out, we obtain a triangle with an integral affine structure with 3 singular points
of focus-focus type. We can glue 8 copies of this new triangle together to obtain
a 2-sphere with an integral affine structure with 24 focus-focus points. Proposition
4.9 shows that this S? is the base space of some IHS with 24 (simple) focus-focus
singularities. Topologically, it is a torus fibration over S? with 24 singular fibers
of type I*, in the sense of Matsumoto, and the ambient manifold is diffeomorphic
to a K3 surface (see [29] and references therein). We can also go the other way
around (less explicitly): Start with a holomorphic integrable system on an K3 surface
(cf. [27]). Forgetting about the complex structure and taking the real part of the
holomorphic symplectic form, we get an integrable system with 2 degrees of freedom
whose base space is homeomorphic to S2.

Assume now that the base space has no focus-focus singular point and is home-
omorphic to the direct product of a graph or a circle with a closed interval. (The
affine structure on O needs not be a direct product). The ambient manifolds of IHS’s
with such an orbit space O are rational and ruled symplectic 4-manifolds in the sense
of McDuff (see e.g. [4, 30]). They are symplectic analogs of complex ruled surfaces
(see e.g. [5]). It can be shown easily that in this case, as in the case of S% with 24
focus-focus points, we have H?(O,R) = 0 (for any realizable affine structure on O).
If we take as O a product of 2 graghs which are not trees, then it will correspond
to many topologically different THS’s, like in Example 4.7. Using integrable surgery,
one can create more complicated 2-dimensional base spaces. It is an interesting
problem to study such 2-dimensional base spaces, and their corresponding systems
and 4-manifolds, in more detail.
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