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ON THE LOOP INEQUALITY
FOR EUCLIDEAN BUILDINGS

JACEI{ SWLi}TKOWSI{I

The geometrie study of euclidean buildings from the point of view presented
in this paper, is motivated by the idea of extending the results in analysis on dis
crete groups to groups which act on buildings. The interesting examples of such
~oups, aeting simply transitivelyon sets of vertices of euelidean buildings of type
An, were discovered recently (see [CartwrightJ). Since the Cayley graphs of those
groups, with respect to natural sets of generators, eoineide with l-skeletons of
buildings, the geometry of those I-skeletons strongly influences analytical prop
erties of the corresponding groups. The results of this paper will be applied in
above spirit in the forthcoming joint paper with Alain Valette.

I would like to express my thanks to Alain Valette, for hospitality during
my visit in Universite de Neuchatel, and for involving me into the subject. I also
acknowledge the hospitality of Max-Planck-Institut für Mathematik in Bonn,
where the essential part of this paper was written.

§o. Fornlulation of main results.

0.1. In this paper we deal with buildings ~ satisfying the following two properties:
(0.1.1) ~ is euc1idean, Le. its apartments are euclidean Coxeter complexesj
(0.1.2) 6. is uniforlnly thick, i.e. there is q E N (called thickness of ~), q 2:: 2, such

that each face of codim 1 in 6. is contained in exactly q + 1 chambers.

The main reference book for buildings and other notions related to them, their prop
erties, as weH as the notation used in the paper, is [Ti ts] .

0.2. Denote by 6. (i) the i-skeleton of 6.. A polygonal curve in 6.(1) is a sequence
(va, VI, ••• , V n ) of vertices Vi E 6.(0), such that (Vi, Vi+l) is an edge in ~ (1) for i = 0, 1, ... ,n

1. Number n is called the lengh t of a polygonal curve. For VI, V2 E 6. (0
) define d.6 (VI , V2)

to be the minimallenght of a polygonal curve in 6.(1) joining VI with V2. Then dC:J. is a
metric on 6.(0).

0.3. A ball of nadius N E N and center V E 6.(0) is the set

BN(V) := {w E ~(O) : dC:J.(v,w) ::; N}.

Similarly, we, define a sphere in 6. by
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SN(V) : = {W E ß(a): dt1.(v, w) = N}.

A norm of the ball BN(v) is the number

llBN(v)llr : = L (1 + d~(v, w))r,
wEBN(V)

where rEN.

0.4. Fix Va E ~(a) and numbers N,k E N. An N~loop üflength k in (~,va) is a sequence
(va,Vl, ... ,Vk) ofvertices of ~(a) such that d(Vi,Vi+d::; N für i = O,l, ... ,k -1, and
Vk = Va.

0.5. Theorem. Let ß be a euclidean, uniformly thick building, and Va its vertex. Then
there exist constants C > 0 and rEN such that

#{N-loops of length 2k in (~, va)} ::; [C· N r
. # BN(Va)Jk .

0.6. Theorem. Let ~ be a uniformly thick euclidean building of type An, and Va its
vertex. Then there exist constants C' > 0 and r' E N, such that
(a) #{strict N-Ioops of length 2k in (ß, va)} :::; [C'· Nr' . # SN(va)]k, where the N-loop

(va, ... ,Vk) is strict if d~(Vi, Vi+l) = N for i = 0,1, ... , k - 1.
(b) #{N-loops of length 2k in (~,va)} ::; [C' ·1'BN(Va)II~]k.

- -Building of type An is a one which appartments are Coxeter complexes of type An.
See [Tits], [Brown] or [Bourbaki] for more details.

0.7. Remark. Define an N-path of length k in (~, va) by omitting the condition Vk = Va
in definition 0.4. Then it follows from lemma 1.13.(b) that .

Since in our situation of thick eucHdean building the number # B N ( vo) grows exponentially
with N, we can read the theorem in the following rough way:

The number of N-loops in ~ is "not much bigger" than the square root of the
number of N-paths in ~, of the same length.

§1. Properties of buildings.

Definitions and natations.

1.1. Let ~ be a building and cham ~ the set of all its chambers. A ga11ery in !J. is a
sequence,/ = (Co, 0"0, Cl, 0"1, ... , C n - l , O"n-l, C n ) such that Ci E cham!J. for i = 0,1" ... , n,
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and (Ji is a eodim 1 faee in both Ci and Ci+l for i = 0,1, ... , n - 1. The number n is ealled
the length of gallery /. We say that I starts at Co and ends with Cn , 01' that I is a gallery
between Co and Cn . We say that ,stammers at Ci, if Ci = Ci+l'

We shall write shortly I = (Co, Cl, ... , Cn ) if it doesn't lead to a eonfusion.

1.2. Let C, D E cham 6.. Put dist6. (C, D) to be the minimal length of gallery in 6.
between C and D. Then dist6. is ametrie on the set cham 6..

A minimal gallery between C and D is one (in general non unique) with length equal
to dist6.(C, D).

1.3. For v, w E ß (0) put

€6.(v, w) = min{N : VC E cham D.. n st(v) :l D E cham ß n st(w) : disti:l(C, D) ::; N},

where st(v) = st,6(v) := {C E chamß: v E C} is the star of vertex v.
Note that C6. is not symmetrie in general, but it satisfies the triangle inequality

(1.3.1 )

1.4. Fix an apartment E in 6., and a ehamber C of E. Define the function A = AC :
Chamß --+ Nu {O} by A(D) : = disti:l(C,D). Define then a folding Inap 'P = epE,C: ~--+

E to be the unique chamber map such that:

(1.4.1)

(1.4.2)

'PIE = idE j

A(D) = A(<p(D)) for any D E cham 6. .

For the existence and uniqueness of the folding map defined as above, see [Tits] the
orem 3.3, page 42, where it is called retraction.

Statement of main results of the paragraph.

From now on ~ will always denote a euclidean, uniformly thick building, as defined
in 0.1. We formulate five propositions which will be used in next paragraph in the proofs
of Theorems 0.5 and 0.6. We give the proofs of Propositions 1.5 - 1.7 in the last part of
this Section, while the proofs of propositions 1.8 and 1.9 are left to §3 and §4.

1.5. Proposition. There is a constant V E N such that for any va, v, w E 6.(0), with
di:l (v, w) ::; N we have q~ 11 ( VI W) ::; V . (# B N ( va )).

1.6. Proposition. Under notation of 1.4, let v E ~ (0) and ,1,,2 be two minimal galleries
in E between chamber Co such that ep(v) E Co, and ehalnber Cn. Let ri, for i = 1,2,
denotes the family of all galleries Tl in 6. such that ep (1]) = ,i and 1J starts wi th a chambel'
containing v. Denote by E(1]) the ending cha1nber of the gallery 7]. Then
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1.7. Proposition. Under notation of 1.4, let v E ß(O) and I be a gallery in E which
starts at achamber Co such that ep(v) E Co, ends with achamber Cn, and starnmers L
times. Let r be a family of all galeries 1] in ß such that ep (1]) = / and 1] starts with a
chamber containing v. Then

#r ::; A . q[n+,\(Cn)->.(Co)+Lj/2 1

where A > 0 is a constant depending only on ß.

1.8. Proposition. Under notation of 1.4, there is a natural number M depending only
on ß, such that the criticallocus of the map eph-:;I : ~' -1 E, for any apartInent ~' in ß, is
contained in not more than M hyperplanes of E'.

(Critica11ocus is the set of these codim 1 faces a of EI, for which both chambers in
E' containing a are mapped by ep on to the same chamber of E.)

1.9. Proposition. For any uniformly thick euclidean building ß of type An, there are
constants C > 0 and dEN, such that for any v E ~ (0) and any natural N

This last Proposition will be used in the proof of Theorem 0.6.

Proofs of propositions 1.5 - 1.7.

1.10. Lemma. Let ~,E, c.p and .x be as in 1.4.
(a) If D I , D2 are adjacent chambers in E, then .-\(DI ) - .-\(D2 ) = ±1.
(b) Let a be a codim 1 face in ~, and let Do be one of q + 1 chalnbers containing a, for

which the value .-\(Do) is minimal. Then .-\(D) = .-\(Do) + 1 for all other q chambers
containing u. In particuliar, c.p(D) is the chamber in ~ adjacent to ep(Do) by ep(u),
for all other q chambers containing u.

Proof of (a): Note that .-\(D) is the number of hyperplanes in E that separate chamber C
from D. If chambers Dl, D 2 are adjacent, the unique hyperplane containing their common
face separates exactly oue of them from C.

Proof of (b): If EI is an apartment containing C and Do, denote by E the chalnber in EI
adjacent to Do by face u. Then .-\(E) = .-\(Do) + 1. Suppose that .-\(D) = .-\(Do) for some
other chamber D in ~ containing a. Then, there exists a minimal gallery from E to C
passing throngh D. Since C, E E E', any minimal gallery joining them fiuSt be contained
in EI. Eut D t/:. E', contradiction.

The last sentence in statement of (b) is a consequence of fact that the folding map ep
preserves values of function A.

1.11. Lemma. Let ~,E,C and ep be as in 1.4, v be a vertex of C and w a vertex of E.
Then
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(a) for any w' E <p-1(W) dö,(v, w') = d~(v, w) ;
(b) # <p-1 (w) = qk, where k = min{ A(D) : D is achamber of ~ adjacent to vertex w};
(c) qe I; ( v! w) S; # <p -1 (w) .

Proof of (a): Since we cau push any polygonal curve in 6,(1) by <p to ~(I\ we have
dE(V,W) :::; d.o.(v,w').

Conversely, let ~' be an apartment in 6, containing C and W'j then by the property
of the folding map, <p1~' : E' --+ 2; is an isomorphism (compare [Tits] 3.3, page 42). Thus
we cau lift any polygonal curve from 2;(1) to 2;'(1), getting d.o.(v,w') :::; d~(v,w).

Proof of (b): Put k as in the statement of part (b). Let f = (Co, Cl, ... , Ck ), with Co = C,
be a minimal gallery joining chaInber C with achamber Ck adjacent to 10, for which the
value of function A is smallest among chambers of st(w). Then for any 10' E <p-1 (10) there
is a gallery " = (Ch, ... , C~) with Ch = C,1o' E CI., lifted from , by <p, i.e. such that
<p(,') =,,01' more precisely <p(CI) = Ci for i = 0,1, ... ,k. For distinct vertices of <p-I(1O)
the corresponding galleries are distinct, and vice versa. Since, by lemma 1.10.(b), there
are exactly qk of such lifted galleries, part (b) of the Lemma follows.

Pro 0 f 0 f (c): Part (c) is a direct consequence of part (b) and the fact that e~ (v, 10) 2:: k.

1.12. Recall that fixing achamber C of ~, there is a unique chamber map pe : ~ --+ C
such that pele = ide . It is called the contraction of ~ onto C (see [Tits] 3.8, p. 44-45).
Two vertices V,1O E ~ (0) are said to have tbe same type, if pc(v) = pe(10) (this does not
depend on the choice of C).

1.13. Lemma:
(a) The number # BN(V) depends only on the type of v.
(b) There is a constant V ENdepending only on the building ~ such that for any

v,v' E ~(O) and any N E N

Proof of (a): Let type(v) = type(v'), E and E' be any apartments in 6. containing v and
v'. Then, there is an isomorphisIll K, : E --+ ~' such that K,(v) = v'. Let C be achamber
of E containing v, and take C' = K,(C). Consider functions A, A' : cham ~ --+ N U {O}
defined with respect to C and C' respectively, and folding maps tp : <P~,C : ~ --+ E, <p' =
<PE! C' : 6, --+ E' defined as in 1.4. For a vertex w E 6,(0) define A(1O) : = min{A(D) : D E
st(~) n cham ~}, and similarly A'(1O). Then if 10' = K,(1O), we get A(1O) = A'(1O'), and thus
it follows from Lemma 1.11 (b) that #tp-1(1O) = #(tp')-l(W' ).

Denote by BR,(v), BYjj (v') the balls of radius N with respect to metrics d~, d~, in
E(O) and E ' (O) respectively (compare 0.2). Then, by lemma 1.11.(a), BN(V) = <p-I(BR,(v)),
B N (vI) = (tp')-l (BR: (vI)), and the lemma follows by noting that K,(BRr (v)) = Br: (v').

Proof of (b): Note that all types of vertices in 6. are represented by vertices of any
chamber. Thus, there exists rEN such that for any v, 10 E ..6.(0 ) there is v' E 6.(0 ) such
that type(1O') = type(w) and d.o.(v, w') :::; r.
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Put A = max{#(st(v) n cha1nß) : v E ß(O)}, and note that

where the last equality follows from part (a). Now, the proof of part (b) is completed by
putting V = Ar.

1.14. Proof of Proposition 1.5.
Let C be achamber containing v, E an a apartment containing C, r.p = r.pE,C : ß -+ E

the folding map as defined in 1.4, and Wo = r.p ('W ). Then, by 1.11. (c)

and since by 1.11.(a) r.p-1(WO) C BN(V), we use 1.13.(b) to get

q~~(v,w) ::; # BN(V) ::; V . # BN(VO) .

1.15. Proof of Proposition 1.6.
The proposition follows from the fact, that if r.p: ~ -+ E is a type-preserving chamber

endOlTIorphism of a Coxeter complex E, then the set X = {D E Cham E : r.p(D) = D} is
convex in E, i.e. for any chambers Dt, D2 E X all chambers of any minimal gallery in E
between D 1 and D 2 are in X (see [Tits], Remark 2.20, p. ~6).

Indeed, let 1]1 E r 1 be a gallery between chambers Co and E(TJI), and let E' be an
apartment containing both Co and E (1]1 ), and hence the whole gallery 7]1. There is a
unique isomorphism 7f;: E --t E' such that 1/;(,1) = 7]1. Then r.p 0 7f; = id on a convex hull of
{Co, Cn }, and thus r.po'ljJ('2) = ,2. This implies that 'l/J(,2) is in r 2, with E('l/J(,2)) = E(1]I),
and the Proposition follows.

1.16. Observe that the lemma 1.10.(b) implies the following

Corollary. Let Cl, C2 E cham E (not necessarily distinct), and Cf be their common codim
1 face. Fix Co E chaln ß with r.p (Co) = C1, and denote by Cfo the face of Co such that
r.p( Cfo) = Cf. Then the set

Y = {D E cham ß : r.p(D) = C2 , Cfo E D}

satisfies

(1.16.1)

(1.16.2) #Y= 1

if

if

Note that the only case in which (1.16.1) is not the equality, happens when Cl = C2 ,

and A(Cd < A(Do), where Da is the only chamber in E adjacent to Cl by Cf.
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1.17. Proof of Proposition 1.7.
Put A = max{#(st(v) n cham b..) : v E b..(0)}, and denote by 8(7]) the starting

ehamber of a gallery 1]. It is easy to 0 bserve that # {8(7]) : 7] Er} ::; A.
If i = (Co, Cl, ... , Cn), denote

a = a(i) := # {i: ..\(C;) < ..\(Ci+d} ;

b = b(,) : = # {i : ..\(C;) > "\(Ci+1 )} ;

C = C(i) : = # {i : ..\(C;) = "\(Ci+1 )} •

Then

(1.17.1) a+b+c=n, c=l, a-b=..\(Cn)-..\(CO)'

By Corollary 1.16 we have # r ::; A· qa+c, and since from (1.17.1) we have a + c
[n + ..\(Cn) - ..\(Co) = l]/2, the Proposition follows.

§2. Types of loops al1d the proofs of Theorenls 0.5 and 0.6.

2.1. Let~, C and <.p be as in 1.4. Then, a type of an N-loop (VO,Vl, ... ,Vk = va) in (.6,vo)
(wi th respect to folding map <.p) is a sequenee (<p(va), <p (V] ), ... ,<p (v n )) of vertices of Lj.

Lelnma: The number of all types of N-loops of length 2k in (b.., vo) is bounded by
(C . Nd im ~ ) 2k, for some constant C depending only on b...

Proof: The lemma follows from the fact that there is a constant C such that

#{w E ~(O) : d~(v, w) ::; N} ::; C . N dim ~ .

This estimate can be easily obtained, e.g. by considerations illvolving vülumes of equal
disjoint euelidean balls around the vertices of Lj.

2.2. Lem ma. Let E be a eucliclean Coxeter cornplex, and let A = max{diam si~ (v) : v E
E(O)}, where the diameter is taken with respect to the lnetric distr,. Thell für any vertices
v w in Lj(O) we have,

cE (v, w) ::; A . dE (v, w) .

Proof: Observe that if dE (VI, V2) = 1, then there is D E st~ (vd n st~(V2), whieh inlplies
that for any C E str,(VI) it holds dist~(C,D) ::; A and thus eE(VJ, V2) ::; A. The lemma
follows by induetion, with use of the triangle inequality (1.3.1) for er,.

2.3. Define an N -jump in b.. to be any pair (v, w) of vertices of ~ satisfying d~ (v, w) :::; N.
Note that any pair (Vi, Vi+d for i = 0,1, ... , k - 1, where (va, ... ,Vk) is an lV-loop, is an
N-jump.

Let (v, w) be an N -jump. Then, by Lemma 2.2, for any C E cham.6 such that v E C,
there exists a lninimal gallery , = (G = Co, Cl, ... , Gm) in b.., with w E Cm and the length
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m ~ A . N. Chosen such a gallery " define a type of N-jump (v, w) (with respect to the
folding map r.p) to be the sequence

with i j < i j+1, and such that r.p (Cij ) for i = 1, 2, ... , l are all the chambers at which
the gallery r.p(,) in ~ stammers, i.e. those for which r.p(Cij) = r.p(Cij+t}; furthermore
Tj = r.p(Cij n Cij+l) for j = 1,2, ... ,1.

Note that a type of N-jump is a sequence of sünplices in ~. The N-jump may have
many different types (with respect to fixed folding map r.p) depending on thc choice of
minimal gallery ,.

We will call the vertices r.p( v) and r.p(w) the starting and ending points of a type
respectively.

2.4. Lemma. The number of all types of N-jumps for which the starting and ending
points in L: are fixed is bounded by C . Ndim E.(M+l), for some constants C, lI/I depending
onlyon .6..

Prüof: Observe that, by proposition 1.8, the number I appearing in the definition of type of
N-jump above, satisfies I ::; M. Moreover, by Lemma 2.2 we get distE(<P(Cij ), r.p(Cij+l)) ::;
A . N for j = 0,1, ... ,1, where we put io = 0 and i

'
+1 = m. Then the lemma follows from

the fact that there is a constant Q' > 0 such that for any C E cham ~

#{D E cham ~ : distE (C, D) ::; A . N} ::; Q' • N dim En

This last estimate is clearly related to the one used in the proof of Lemma 2.1, and it can
be derived in the same way by passing to the dual of the complex ~.

2.5. Proof of Theorenl 0.5.

Let C, L:, r.p and A be as in 1.4, and let Va E C be a vertex.

Step 1. We shall first estimate the nUlnber of all N-jumps (v, w) of the given type

and with fixed starting point v.
For i = 0, 1, ... , l, fix a minimal gallery ~ i ,in L: j oining Ei with Ei+1. Denote by ~ a

gallery in L: composed out of galleries ~i by putting them one after another in a sequence,
separating the last chamber of ~i and the first chalnber of ~i+l (both being the same
chamber Ei+d by the face Ti+l.

To each N-jump of the given type T, there corresponds a minimal gallery, in .6., with
respect to which the N-jump has type T. Then the gallery r.p(,) can by cut into pieces ri
for i = 0,1, ... ,1 such that ,i is a minimal gallery between Ei and Ei+l in~. Applying
Proposition 1.6 consecutively to pairs of minimal galleries (ri, 7Ji), for i = 0, 1, ... , I, we get
that for any N-jump of type T, the corresponding gallery r can be chosen in such a way
that r.p(r) =~. We shall estimate the number of such galleries.
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Since we assurne that the starting vertex v of N-jumps is fixed, we can apply directly
Proposition 1.7 to get a hound hy

hut since ..\(El+d ~ ..\(UI) + A, ..\(Eo) 2: ..\(uo) - A, ancll ::; M (where A,M are the
constants of Lemma 2.2 and Proposition 1.8 respectively), we get the estirnate hy

Finaly, for any N-jump (v, w) of type T we have length(,) ::; cD. (v, w), and thus by
Proposition 1.5

This gives us the estimate

#{N-jumps of type T starting at v} ::; C· q[>,(u d ->,(u o)]/2 . (# B N (vo)P/2 .

Step 2. By Step 1 anel Lemma 2.4, for any Uo, Ul E ~(O) with dE(uo, UI) ~ N, and for
any v E cp-l (uo) we obtain the following ineqality:

Step 3. Let U = (uo, UI, ... , UZk) be a type of N-loop in (.6., vo). Then, by estimate of
Step 2 we get

slllce

hecouse UZk = Uo.

Step 4. The theorem follows by applying the estimate of lemma 2.1 for the number of
different types of loops.

2.6. Proof of Theorem 0.6.
Note that using Proposition 1.9 we get the inequality

(2.6.1)

(2.6.2)
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In view of Theorem 0.5, part (a) of Theorem 0.6 follows easily from (2.6.1), and part
(b) from (2.6.2).

§3. Proof of Proposition 1.8.

3.1. Denote by V the subcomplex of appartment E' consisting of all faces of criticallocus
of the folding luap ep, i.e. of those codimension 1 faces (J' of E', for which both chambers
of E' adjacent to a are mapped by ep onto the saIue chamber. Topological compouents of
the complement E' \ V will be called regularity conlponents of E' with respect to ep.

3.2. Lemma.
(a) Regularity components are convex.
(b) Each regularity cOlnponent contains a cone sector of E'.

See 3.7 below, 01' [Brown] VI.6, page 164, for the definition of cone sector (which is
called a sector in [Brown]).

3.3. Proof of Lemma 3.2 (a): It is weH known that for chamber subcomplexes of Cox
eter complexes the (affine) convexity condition is equivalent to the combinatorial convexity
condition expressed in the obvious manner in terms of minimal galleries (compare [Brown],
Exercise 2, page 15). Therefore, to prove Lemma 3.2 (a), it is enough to prove that no
minimal gallery between two chambers Cl, C2 of the same regularity component, passes
through the criticallocus. (We say that achamber belongs to regularity component, if its
interior is contained in this component.)

Since each regularity component of E' is embedded isometrically into E by the folding
map ep, we get that

(3.3.1)

for any chambers Cl, C2 of the same regularity component in E'. If a miniInal gallery
crossed the criticallocus, then its image by ep would stammer, and hence be not ulinimal.
But then there would be a shorter gallery between ep(CJ) anel ep(C2 ), giving a contradiction
to (3.3.1). Thus the part (a) of the Lemma foHows.

3.4. Proposition. Let Co, Cl be two chambers of a euclidean Coxeter complex E. Denote
by Ray(Co, Cl) the subcomplex of E, consisting of all chambers D, for which there is a
minimal gallery from Co to D passing through Cl. Then Ray(Co, Cd contains a cone
sector of E.

We will first apply Proposi tion 3.4 to prove Lemma 3.2 (b), and skip the proof of it
until 3.7-3.9.

3.5. Proof of Lemma 3.2 (b): Consider achamber C of some regularity component 'R
of E', and denote Cl : = ep(C) to be the image of chamber C by the folding map ep.
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Claim. The image ep(R) of the regularity component n contains all chambers of Ray(Co, Cl),
where Co is the chamber with respect to which the folding map ep is defined via the function
Aco ' as in 1.4.

Proof of Claitn: Consider a cell D of Ray(Co, Cd, and a minimal gallery / from C to
D, which is apart of some minimal gallery from Co to D (it exists by the definition of
Ray(Co, Cl))' Then the values of the function A = ACo strictly increase along the gallery
(. If I = (Eo, 0'0, EI, ... ,O"k-l, E k ), where Eo = C and Ek = D, then according to Lemma
1.10 (b), to each chamber F of ep -1 (Ei) there correspond q chambers of ep -1 ( Ei+1) adjacent
to F. But this means that the codimension 1 face T of F lying in ep-l(ad cannot belong
to the criticallocus, since there is no other chamber adjacent to T in ep-l (Ed. This shows
that all the gallery 1 is contained in the image ep(R), and the claim follows.

In view of the above Claim, part (b) of Lemma 3.2 follows from Proposition 3.4.

3.6. Proof of Proposition 1.8. Denote by NI the maxitnal number of non-parallel
reflection hyperplanes in a euclidean Coxeter complex. This number is well defined for a
building .6., since appartments in .6. are isomorphie Coxeter complexes.

Since, by Lemma 3.2 (a), each regularity conlponent is convex, it is equal to the inter
section of several open halfspaces. The number of those (essential) halfspaces is bounded
by 2Nl , since at most two of the hyperplanes bounding these halfspaces cau be parallel
to each other. (In fact, since each regularity component contains a cone sector, no two
bounding hyperplanes can be parallel, and thus their number is not bigger than NI.)

On the other hand, if two cone sectors in a Coxeter complex E are disjoint, they
determine distinct chambers in the spherical Coxeter complex ~co at infinity (see [Brown]
VI.9, Lemma 4, page 176). Thus, in view of Lemma 3.2 (b), the number of regularity
components of appartment E' is bOlUlded by the number N2 of chambers of the spherical
Coxeter complex ~~ at infinity. But this number N2 is also a weH deflned number for
building .6..

We can now estimate the number of hyperplanes in which the criticallocus of appart
ment E' is contained, by the number of boundary walls in all regularity components of E'.
But this is not bigger than NI . N 2 , and the Proposition 1.8 follows.

3.7. Notation. Following [Brown] VI.6, view the Coxeter complex E as a vector space
with fixed zero vector ° E E. Denote by 1-l the set of all hyperplanes in E through 0,

parallel to reflection hyperplanes of E. Then the compollents of the space E \ U1-l are
called open cone sectors of E based at 0. Using vector space notation, if P is an open
cone sector based at 0, then for any x E E the set of form x + P will be called an open
cone sector based at x. By cone sectors of E we willlnean closures of open cone sectors.
observe that for each cone sector P based at 0, the set - P is also a cone sector and it is
called to be opposi te to P.

Given two chambers Cl, C2 of a Coxeter cOlnplex E, denote by B(Gl1 , C2 ) the combi
natorial convex hull of Cl u C2 , i.e. the subcomplex cOllsisting of all chambers appearing
in minimal galleries from Cl to C2 .

3.8. Lemma. Let Cl, C2 be two chambers of a euclidean Coxeter complex E, Xl E Cl
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and X2 E O2 two points of ~ (not necessarily vertices), and let Xl + P be a cone sector
containing vector Xl x~. Then
(a) (Xl + P) n (X2 - P) C 8(0], 02);
(b) for any X E (X2 + P) it holds X2 E (Xl +P) n (x - P);
(c) (x2+P)CRay(01,02).

Proof: Part (a) follows from the Lemma in [Brown] VI.6, page 164; part (b) is obvious.
To prove part (c), consider a point x E (X2 +P), and achamber 0 containing x. Then by
(a) and (b) we have

X2 E (Xl +P) n (x - P) c B(C],C),

and thus there is a minimal gallery from Cl to 0 passing through 02. But this means that
C C Ray(OI' O2 ), and part (c) of Lemlna 3.8 folIows.

3.9. Proof of Proposition 3.4.
It follows directly from Lemma 3.8 (c).

$4. Proof of Proposition 1.9.

The proof of Proposition 1.9 is contained in 4.4. We precede it by stating Lemmas
4.2 and 4.3, necessary in the proof. We skip proofs of these Lemmas until 4.5 and 4.6.

4.1. Property. Let"E be a Coxeter complex of type An. Let v, w E "E(O) be any
two vertices of E, and denote by T a translation (in "E viewed as a euclidean space),
which transforms v to w. Then Tinduces a combinatorial authomorphism of the chamber
complex "E.

The property stated above distinguishes Coxeter complexes of type An in the dass of
all euclidean Coxeter cOlnplexes. This property is weIl known, and cau be seen easily i.e.
in the explicit model of the Coxeter complex, as described in [Brown] VI.1F, page 147.
The proofs of the following Lerrunas 4.2 and 4.3 are based on this Property.

4.2. Lemma. Let "E be a Coxeter complex of type An, and dE the metric on E(O), as
defined in 0.2. Let L be a straight line containecl in the I-skeleton "E(I) (in "E vieved as a
euclidean, 01' at least affine space), and view L as a subcomplex of E. Then for any two
vertices v, w E L(O) we have

4.3. Lemnla. Let v, w be any acljacent vertices in a Coxeter complex E of type Anl and
let T be the translation of E transforming v to w. Moreover, let C be any chamber of E
containing edge (T-Iv,v). Then

Recall that c;E used above, is the useful distance-like function defined in 1.3.
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4.4. Proof of Propsition 1.9.
Let ~ be an appartment in ß through vertex v. Consider a vertex 'W E ~(O), adjacent

to v, for which the value of ci},. (v, w) is maximal among vertices adjacent to v, and put
m : = ci},.(v,w). Since for any two vertices Vl,V2 E ~(O) it holds Ci},.(VI,V2) = cE(Vl,V2),

for any appartment ~ containing VI and V2) it is clear that we can choose w E ~(O) as
above. Denote by T the translation of E transforming V to 'W, and by C any chamber of
~ containing the edge (T-1v, v). Finally, consider the folding map r..p : ~ --+ E, defined as
in 1.4, with respect to the chamber C.

We will procede with a serie of claims under above notation.

Claim 1. r..p-l(Tnv ) C Sn(v).

Proof: For each u E r..p-I (Tnv) there is a polygonal path of length n in ~ (1), joining u to
v, namely the path lifted from the straight path in E(I) joining v and Tn v. If there were a
shorter path, it would project by r..p onto a shorter path in E(l) joining v and Tn v , which
is impossible in view of Lemma 4.2. Thus the Claim follows.

The above argument could be shortened a little by reffering to Lemma 1.11 (a).

Claim 2. #r..p-l (Tn v ) = qmn) where q is the thickness of ~.

Proof: According to Lemma 1.11 (b), we have #r..p-l(x) = qk, where k = min{A(D) : D E
cham E n stE(X)}. But in our case A(D) = distE(C, D), and thus the Claim follows from
Lemma 4.3.

Clahn 3. For any vertex u E E(O) we have #r..p-I(u) :::; qm.dl;(v,U).

Pro0 f: Since cE (u 1, U2) :::; m for any two vertices at distance 1, by the triangle inequality
for cE we get €E(U], U2) ~ m . dE(UI' U2), far arbitrary vertices Ul) u2 E E(O). Since
moreover min{A(D) : D E chan~E n st(u)} :::; €E(V,U), the Claim follows easily from
Lemma 1.11 (b).

Recall the following Fact, which we have already used in the proof of Leffilna 2.1.

Fact. There exist constants Cl > 0 and dEN, such that #S;;(v) :::; C1(1 +n)d.

Now, we estimate using above Claims, the Fact, and Lelnma 1.11 (a):

N N N N

#B~(v) = L #S~(v) :::; L(#S~(v)).qmn :::; L C1(1+n)dqmn ::; C1(1+N)d L qmn =
n=O n=O n=O n=O

Thus the Proposition 1.9 follows.
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4.5. Proof of Lemma 4.2.

The Lemma follows easily from the following.

Claim. View"E as a eudidean spaee. Then the orthogonal projeetion of any edge e of
"E(1) onto the straight Ene eontaining any other edge f of "E(l), is not longer than f.

We will first derive the Lemma, and then prove the Claim.

Choose an arbitrary polygonal path in "E(l) joining v with 10, and projeet it orthogo
nally outo L. Sinee the images of path edges under this projeetion are not longer than the
edges of L itself, it follows that the eombinatoriallength of the path is not slualler than
the eombinatoriallength of the straight path joining v with tu in L. By this the Lemma
follows.

Proof of Claim: By Property 4.1, we may assume that edges e and f have e0l11mOn
vertex p; let then f = (p, q) and e = (p, r). Denote by s the vertex symmetrie to q with
respeet to p, and by Hq , H~ the hyperplanes in "E, orthogonal to the Ene through p, q and
s, passing through q and s respeetively (note that these hyperplanes needn't be eontained
in the 2-skeleton of "E). Then it is enough to show that all vertices of "E adjacent to p He
in the closed streep F between parallel hyperplanes H q and H s . We will show that the
suhcomplex stE (p) is eontained in F.

It is weIl known that the star stI:;(p) is convex (see e.g. [Brown], Exercise 2, page 15).
Thus it is enough to show that Hq and Hs are the supporting hyperplanes for stE(P), But
since it is a polytope, it is enough to show that its any boundary vertex t adjacent to q (or
s) lies in F. If t is such a vertex, then (p, q, t) is a 2-silnplex of~, and thus its angles are
not bigger than rr /2 (cf. [Bourbaki] V.3.5, Lemma 6 (ii)). But then t E F, and the Claim
follows, thus finishing also the proof of Lemma 4.2.

4.6. Proof of Lemma 4.3.

We start with the following.

Claim 1. cE(V, w) = dE(T-1C, C).

Proof: First observe that among the chambers of stE(1O), the dosest (with respect to the
gallery metric distE) to T- 1 (C) is C, since T- 1 C lies in a silnplicial sector centered at 10

and determined by C, and thus the number of reflection hyperplanes in E separating it
from T- 1 C is the smallest.

Second, note that distE (T- 1 C, C) does not depend on the choice of chamber C con
tainiug (v, 10 ), since the Coxeter subgroup fixing the line through v and 10 acts transitively
on the set of such chambers, and moreover this subgroup commutes with the translation
T.

Finally, consider the sector S containing C, heing the intersection ofhalfspaces bounded
by hyperplanes of those faces of C which contain (v, 10). Then both chambers C and T-1 C
are contained in this sector , and moreover, any reflection hyperplane through v that meets
interior of this sector , separates C from T- 1C. But this lneans that any chamber of
Sn stE (v) other than T- 1C, is closer to C, since it is separated by less number of reflec-
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tion hyperplanes.
Combining the above three observations, the Claim follows.

Claim 2. distr,(C, T n+1C) = distr,(C, Tnc) + distr,(Tnc, Tn+lC).

Proof: This follows from the observation, that chamber Tnc lies in the convex huB of
the surn of chambers C anel Tn+1C, and thus a minimal gallery from C to Tn+lC passes
through Tnc (compare [Brown], Exercise 2 on page 15).

From Claim 2 it follows by induction that distr, (C, Tnc) = n . distE (C, TC). Now,
since according to the proof of Claim 1, any chamber of S n stE (v) other than T -1 C is
doser to C, it follows from triangle inequality that any such chanlber is eIoser to T n

-
1 C

also. But this means that

and the Lemma follows.
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