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ON THE LOOP INEQUALITY
FOR EUCLIDEAN BUILDINGS

JACEK SWIATKOWSKI

The geometric study of euclidean buildings from the point of view presented
in this paper, is motivated by the idea of extending the results in analysis on dis-
crete groups to groups which act on buildings. The interesting examples of such
groups, acting simply transitively on sets of vertices of euclidean buildings of type
Ay, were discovered recently (see [Cartwright]). Since the Cayley graphs of those
groups, with respect to natural sets of generators, coincide with 1-skeletons of
buildings, the geometry of those 1-skeletons strongly influences analytical prop-
erties of the corresponding groups. The results of this paper will be applied in
above spirit in the forthcoming joint paper with Alain Valette.

I would like to express my thanks to Alain Valette, for hospitality during
my visit in Universite de Neuchatel, and for involving me into the subject. I also
acknowledge the hospitality of Max—Planck-Institut fuir Mathematik in Bonn,
where the essential part of this paper was written.

§0. Formulation of main results.

0.1. In this paper we deal with buildings A satisfying the following two properties:
(0.1.1) A is euclidean, i.e. its apartments are euclidean Coxeter complexes;
(0.1.2) A is uniformly thick, i.e. thereis q € N (called thickness of A), ¢ > 2, such
that each face of codim 1 in A is contained in exactly ¢ + 1 chambers.

The main reference book for buildings and other notions related to them, their prop-

erties, as well as the notation used in the paper, is [Tits].

0.2. Denote by A the i-skeleton of A. A polygonal curve in AW is a sequence
(vo, 1, ..., v5 ) of vertices v; € Al® such that (v, vi41) is an edge in AW for i = 0,1,...,n—
1. Number n is called the lenght of a polygonal curve. For vy,v; € A(©® define da (v1,v2)
to be the minimal lenght of a polygonal curve in AM) joining v; with vy. Then da is a
metric on A(®),

0.3. A ball of nadius N € N and center v € A© is the set

By(w):={w € A® : da(v,w) < N}.

Similarly, we define a sphere in A by



Sn(v) 1= {w e A : da(v,w) = N}.
A norm of the ball By(v) is the number
IBx@)llr:= D (1+dae,w),
wEBN(v)

where r € N.

0.4. Fix vop € A® and numbers N,k € N. An N-loop of length k in (A, vo) is a sequence
(vo,v1,...,vx) of vertices of A® such that d(vi,vi41) < N fori = 0,1,....,k — 1, and
Vp = Vo.

0.5. Theorem. Let A be a euclidean, uniformly thick building, and vy its vertex. Then
there exist constants C > 0 and r € N such that

#{N-loops of length 2k in (A,v0)} < [C - N" - # Bn(vo))t .

0.6. Theorem. Let A be a uniformly thick euclidean building of type Zn, and v its

vertex. Then there exist constants C’' > 0 and ' € N, such that

(a) #{strict N-loops of length 2k in (A,ve)} < [C'- N™ - # Sn(vo)]*, where the N-loop
(vo, ..., vk) 1s strict if da(vi,vit1) =N fori =0,1,...,k — 1.

(b) #{N-loops of length 2k in (A, v)} < [C’ - |\Bwn(vo)|lL]*.

Building of type ;{n is a one which appartments are Coxeter complexes of type An.
See [Tits], [Brown] or [Bourbaki| for more details.

0.7. Remark. Define an N—-path of length k in (A, vg) by omitting the condition vgy = v
in definition 0.4. Then it follows from lemma 1.13.(b) that '

(% . # Bn(v0))2* < #{N-paths of length 2k in (A,vo)} < (V - # B (vo))2* .

Since in our situation of thick euclidean building the number # By (vo) grows exponentially
with N, we can read the theorem in the following rough way:

The number of N-loops in A is "not much bigger” than the square root of the
number of N-paths in A, of the same length.

§1. Properties of buildings.
Definitions and natations.

1.1. Let A be a building and cham A the set of all its chambers. A gallery in A is a
sequence v = (Co,00,C1,01,...,Cn_1,0n-1,Cp) such that C; € cham A for: =0,1,,...,n,
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and o; is a codim 1 face in both C; and C;4q for71 =0,1,...,n — 1. The number n is called
the length of gallery v. We say that v starts at Cy and ends with C,,, or that v is a gallery
between Cy and Cp,. We say that v stammers at C;, if C; = Ciy;.

We shall write shortly v = (Co, Cy, ..., Cy,) if it doesn’t lead to a confusion.

1.2. Let C,D € cham A. Put dista(C,D) to be the minimal length of gallery in A
between C and D. Then dista is a metric on the set cham A.

A minimal gallery between C and D is one (in general non unique) with length equal
to dista(C, D).

1.3. For v,w € A® put
ea(v,w) =min{N : VC € cham AN st(v) 3D € cham A N st(w) : dista(C,D) < N},

where st(v) = sta(v) := {C € cham A : v € C} is the star of vertex v.
Note that € is not symmetric in general, but it satisfies the triangle inequality

(1.3.1) ealu,w) <ealu,v) +ea(v,w) .

1.4. Fix an apartment ¥ in A, and a chamber C of ¥. Define the function A = A¢ :
Cham A — N U {0} by M(D) : = dista(C, D). Define then a folding map ¢ = pgc: A —
¥ to be the unique chamber map such that:

(1.4.1) ¢l =1dyg ;
(1.4.2) AMD) = Mep(D)) for any D € cham A .

For the existence and uniqueness of the folding map defined as above, see [Tits] the-
orem 3.3, page 42, where it is called retraction.

Statement of main results of the paragraph.

From now on A will always denote a euclidean, uniformly thick building, as defined
in 0.1. We formulate five propositions which will be used in next paragraph in the proofs
of Theorems 0.5 and 0.6. We give the proofs of Propositions 1.5 — 1.7 in the last part of
this Section, while the proofs of propositions 1.8 and 1.9 are left to §3 and §4.

1.5. Proposition. There is a constant ¥V € N such that for any vg,v,w € A® with
da(v,w) < N we have ¢#a(®) <V . (# By(vo)).

1.6. Proposition. Under notation of 1.4, let » € A® and 41,42 be two minimal galleries
in ¥ between chamber Cy such that ¢{v) € Cp, and chamber C,. Let 'y, for 1 = 1,2,
denotes the family of all galleries 7 in A such that ¢(n) = +; and n starts with a chamber
containing v. Denote by E(n) the ending chamber of the gallery n. Then

{E(m):nel}={E(m): neTs}.
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1.7. Proposition. Under notation of 1.4, let v € A(® and v be a gallery in & which
starts at a chamber Cy such that ¢(v) € Cp, ends with a chamber C,, and stammers L
times. Let I' be a family of all galeries  in A such that ¢(n) = v and 5 starts with a
chamber containing v. Then

#T < A - gt tMCn)=A(Co)+L]/2
where A > 0 is a constant depending only on A.

1.8. Proposition. Under notation of 1.4, there is a natural number M depending only
on A, such that the critical locus of the map ¢|g : &' — L, for any apartment ¥/ in A, is
contained in not more than M hyperplanes of ¥'.

(Critical locus is the set of these codim 1 faces o of &', for which both chambers in
L’ containing ¢ are mapped by ¢ on to the same chamber of Z.)

1.9. Proposition. For any uniformly thick euclidean building A of type A, there are
constants C > 0 and d € N, such that for any v € A and any natural N

#Bn(v) SC-(1+ N)*- #Sn(v) .

This last Proposition will be used in the proof of Theorem 0.6.

Proofs of propositions 1.5 — 1.7.

1.10. Lemma. Let A, 3, and A be as in 1.4.

(a) If Dy, D, are adjacent chambers in £, then A(Dy) — A(Dy) = £1.

(b) Let o be a codim 1 face in A, and let Dy be one of ¢ 4+ 1 chambers containing o, for
which the value A(Dp) is minimal. Then A(D) = A(Do) + 1 for all other ¢ chambers
containing ¢. In particuliar, (D) is the chamber in ¥ adjacent to ¢(Dy) by ¢(o),
for all other ¢ chambers containing o.

Proof of (a): Note that A(D) is the number of hyperplanes in ¥ that separate chamber C
from D. If chambers D;, D, are adjacent, the unique hyperplane containing their common
face separates exactly one of them from C.

Proof of (b): If ¥’ is an apartment containing C and Dy, denote by E the chamber in £’
adjacent to Do by face o. Then A(E) = A(Doy) + 1. Suppose that A(D) = A(Dyp) for some
other chamber D in A containing o. Then, there exists a minimal gallery from E to C
passing throngh D. Since C, E € £’, any minimal gallery joining them must be contained
in ©'. But D ¢ ¥', contradiction.

The last sentence in statement of (b) is a consequence of fact that the folding map ¢
preserves values of function A.

1.11. Lemma. Let A,Y,C and ¢ be as in 1.4, v be a vertex of C and w a vertex of Z.
Then



(a) for any w' € p= () da(o,w') = dn(v,w)
(b) # ¢~ (w) = ¢*, where k = min{\(D) : D is a chamber of ¥ adjacent to vertex w};
(¢) g2 < # o7 (w).

Proof of (a): Since we can push any polygonal curve in A®) by ¢ to (1), we have
dE(U,w) < dA(v:wl)'

Conversely, let &' be an apartment in A containing C and w’; then by the property
of the folding map, ¢|x/ : £ — ¥ is an isomorphism (compare [Tits] 3.3, page 42). Thus
we can lift any polygonal curve from (1) to ') getting da (v, w’) < dg(v,w).

Proof of (b): Put k as in the statement of part (b). Let v = (Co, C1, ..., Ci), with Co = C,
be a minimal gallery joining chamber C with a chamber Cy adjacent to w, for which the
value of function X is smallest among chambers of st(w). Then for any w' € ¢ ~!(w) there
is a gallery v = (C§,...,C}) with Cy = C,w’ € C}, lifted from v by ¢, i.e. such that
¢(v") = v, or more precisely ¢(C}) = C; for i = 0,1, ..., k. For distinct vertices of ¢~ (w)
the corresponding galleries are distinct, and vice versa. Since, by lemma 1.10.(b), there
are exactly ¢* of such lifted galleries, part (b) of the Lemma follows.

Proof of (c): Part (c) is a direct consequence of part (b) and the fact that ex(v,w) > k.

1.12. Recall that fixing a chamber C of A, there is a unique chamber map pc: A - C
such that pc|c = idc. It is called the contraction of A onto C (see [Tits] 3.8, p. 44-45).
Two vertices v,w € Al® are said to have the same type, if pc(v) = pc(w) (this does not
depend on the choice of C).

1.13. Lemma:

(a) The number # By (v) depends only on the type of v.

(b) There is a constant V € N depending only on the building A such that for any
v,v' € A® and any N € N

#Bn(v) <V -#Bn(v').

Proof of (a): Let type(v) = type(v’), £ and &' be any apartments in A containing v and
v'. Then, there is an isomorphism « : & — £’ such that x(v) = v’. Let C be a chamber
of £ containing v, and take C' = &(C). Consider functions A\, X' : cham A - N U {0}
defined with respect to C and C' respectively, and folding maps ¢ : pgc: A =2 E, ¢’ =
¥5i o+ A = T’ defined as in 1.4. For a vertex w € A® define M(w) :=min{\(D): D ¢
st(w) N cham A}, and similarly A'(w). Then if w' = x(w), we get AM(w) = M (w’), and thus
it follows from Lemma 1.11 (b) that # ¢~ (w) = #(¢') 7 (w').

Denote by BY(v), BY (v') the balls of radius N with respect to metrics dy, dy in
£ and £'() respectively (compare 0.2). Then, by lemma 1.11.(a), By (v) = ¢ (B (v)),
Bn(v!) = (¢')7! (.B]%‘(Ul)), and the lemma follows by noting that x(B%(v)) = Bj%'(v').

Proof of (b): Note that all types of vertices in A are represented by vertices of any
chamber. Thus, there exists r € N such that for any v,w € A there is v’ € A® guch
that type(w') = type(w) and da(v,w’) <.



Put A = max{#(st(v) Ncham A) : v € A®}, and note that
# Bn(v) < # Bnir(w') SAT-# By(w') = A - # By(w)

where the last equality follows from part (a). Now, the proof of part (b) is completed by
putting V = A",

1.14. Proof of Proposition 1.5.

Let C be a chamber containing v, ¥ an a apartment containing C, ¢ = px c: A = &
the folding map as defined in 1.4, and wo = @(w). Then, by 1.11.(c)

qca(v,w) — ch(v,wo) S #So_l(wo)
and since by 1.11.(2) ¢~ !(wo) C Bn(v), we use 1.13.(b) to get

g*2"*) < # By(v) <V - # By(vo) -

1.15. Proof of Proposition 1.6.

The proposition follows from the fact, that if ¢ : ¥ — ¥ is a type—preserving chamber
endomorphism of a Coxeter complex %, then the set X = {D € ChamX : ¢(D) = D} is
convex in ¥, i.e. for any chambers Dy, Dy € X all chambers of any minimal gallery in ¥
between D, and D; are in X (see [Tits], Remark 2.20, p. 26).

Indeed, let 73 € I’y be a gallery between chambers Co and E(m), and let 3’ be an
apartment containing both Co and E(n1), and hence the whole gallery 7. There is a
unique isomorphism ¢ : ¥ — I’ such that ¢(y1) = m1. Then p oy = id on a convex hull of
{Co,Cr}, and thus poy)(v2) = 2. This implies that ¥(72) is in Iz, with E(¥(y2)) = E(m),

and the Proposition follows.
1.16. Observe that the lemma 1.10.(b) implies the following
Corollary. Let C1,C2 € cham T (not necessarily distinct), and o be their common codim

1 face. Fix Cy € cham A with ¢(Cp) = C1, and denote by o the face of Cy such that
@(00) = 0. Then the set

Y ={D € chamA: o(D)=Cs, oo € D}

satisfies
(1.16.1) #Y <gq if AMCq) 2 MCh)
(1.16.2) #Y =1 if ACr) < MCY) .

Note that the only case in which (1.16.1) is not the equality, happens when C; = Ca,
and A(Cy) < A(Dp), where Dy is the only chamber in ¥ adjacent to C; by o.
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1.17. Proof of Proposition 1.7.

Put A = max{#(st(v) N chamA) : v € A}, and denote by S(n) the starting
chamber of a gallery 7. It is easy to observe that # {S(n): n € T'} < A.
If v = (Co, Cy, ..., Cy), denote

a= a(")') L= # {i : /\(C,‘) < /\(CH—])} ;

b="b(v) :=#{i: MCi) > MCit1)};
c=c(y) = # {5 NCi) = N(Cisn)} -
Then

(1.17.1) at+btc=n,c=1 a-b=XAC,)-MCo).

By Corollary 1.16 we have #I' < A - ¢**¢, and since from (1.17.1) we have a + ¢ =
[n 4+ A(Crn) = A(Co) = 1]/2, the Proposition follows.

§2. Types of loops and the proofs of Theorems 0.5 and 0.6.

2.1. Let I, C and ¢ be as in 1.4. Then, a type of an N-loop (vp,v1,...,vx = vo) in (A, vo)
(with respect to folding map ¢) is a sequence (@(vo),®(v1),...,(vn)) of vertices of L.

Lemma: The number of all types of N-loops of length 2k in (A,vg) is bounded by
(C - NdmI)2k for some constant C depending only on A.

Proof: The lemma follows from the fact that there is a constant C such that
#{we 2O dg(v,w) < N} <C-NI™T

This estimate can be easily obtained, e.g. by considerations involving volumes of equal
disjoint euclidean balls around the vertices of Z.

2.2. Lemma. Let £ be a euclidean Coxeter complex, and let A = max{diamsty(v): v €
2(9}, where the diameter is taken with respect to the metric disty. Then for any vertices
v,w in ) we have

ex(v,w) < A dg(v,w) .

Proof: Observe that if dg(v1,v2) = 1, then there is D € stx(vy) N stg(ve), which implies
that for any C € stg(v1) it holds disty(C, D) < A and thus ex(vy,v2) < A. The lemma
follows by induction, with use of the triangle inequality (1.3.1) for eg.

2.3. Define an N—jump in A to be any pair (v, w) of vertices of A satisfying da(v,w) < N.
Note that any pair (v;,viy1) for ¢ = 0,1,...,k — 1, where (v, ...,vx) is an N-loop, is an
N-jump.

Let (v, w) be an N-jump. Then, by Lemma 2.2, for any C € cham A such that v € C,
there exists a minimal gallery v = (C = Cy, C1,...,Cr) in A, with w € C,, and the length
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m < A - N. Chosen such a gallery v, define a type of N-jump (v, w) (with respect to the
folding map ) to be the sequence

((v),0(Co),0(Ci,), 71,0(Cia), 72,0, 0(Ci ), 71, 0(Cim ), p(w)

with ¢; < 7;1, and such that ¢(C;;) for ¢ = 1,2,...,[ are all the chambers at which
the gallery ¢(v) in ¥ stammers, i.e. those for which ¢(Cy;) = ¢(Ci;+1); furthermore
7; = p(Ci; NCij4a) for j=1,2,...,1.

Note that a type of N—jump is a sequence of simplices in . The N—jump may have
many different types (with respect to fixed folding map ¢) depending on the choice of
minimal gallery +.

We will call the vertices ¢(v) and @(w) the starting and ending points of a type
respectively.

2.4. Lemma. The number of all types of N-jumps for which the starting and ending
points in ¥ are fixed is bounded by C - N4mZ-(M+1) for some constants C, M depending
only on A.

Proof: Observe that, by proposition 1.8, the number ! appearing in the definition of type of
N—jump above, satisfies | < M. Moreover, by Lemma 2.2 we get dists(¢(Cj;), ¢(Ci; ., )) <

A-N for 7 =0,1,...,1, where we put 1o = 0 and ;47 = m. Then the lemma follows from
the fact that there is a constant o > 0 such that for any C € cham I

#{D € cham¥ : distg(C,D) < A- N} < o - NdimEn

This last estimate is clearly related to the one used in the proof of Lemma 2.1, and it can
be derived in the same way by passing to the dual of the complex ¥.

2.5. Proof of Theorem 0.5.
Let C,%,¢ and A be as in 1.4, and let vg € C be a vertex.
Step 1. We shall first estimate the number of all N—jumps (v, w) of the given type

T = (UO’EO)EI)TlaE2:T23"'aElaTl:El+1,u])

and with fixed starting point v.

For z = 0,1,...,1, fix a minimal gallery §; in ¥ joining E; with E;4;. Denote by £ a
gallery in ¥ composed out of galleries £; by putting them one after another in a sequence,
separating the last chamber of & and the first chamber of {4, (both being the same
chamber E;;1) by the face 7i4;.

To each N—jump of the given type T, there corresponds a minimal gallery v in A, with
respect to which the N—jump has type T. Then the gallery () can by cut into pieces ~;
for z = 0,1,...,! such that 4; is a minimal gallery between E; and E;y; in ¥. Applying
Proposition 1.6 consecutively to pairs of minimal galleries (vi,7;), for 1 = 0,1, ...,1, we get
that for any N—jump of type T, the corresponding gallery 4 can be chosen in such a way
that ¢(y) = £. We shall estimate the number of such galleries.
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Since we assume that the starting vertex v of N—jumps is fixed, we can apply directly
Proposition 1.7 to get a bound by

A. q[length (VA Er41) = A(Eo)+1)/2 ,

but since MEi1) < A(ur) + 4, MEo) 2 Muo) — 4, and | < M (where A, M are the
constants of Lemma 2.2 and Proposition 1.8 respectively), we get the estimate by

A qA+M/2 ] qlength(‘f)ﬂ . q[)\(m)—/\(uo)]/2 .

Finaly, for any N—-jump (v,w) of type T we have length(y) < ea(v,w), and thus by
Proposition 1.5
qlength(-r) S qca(v,w) S V. #BN(UO) .

This gives us the estimate
#{N-jumps of type T starting at v} < C - g =2wol/2 it B (w22 .
Step 2. By Step 1 and Lemma 2.4, for any ug,u; € 2(® with dg(ug,u;) < N, and for
any v € ¢~ !(ug) we obtain the following ineqality:
#{w € o (uy): (v,w)is an N—jump inA} < C-[# BN(vo)]1/2~Ndim z}(‘l'l'H)-q[)‘(“‘)_)‘(“")]/2 )

Step 3. Let u = (uo,u),...,uzk) be a type of N-loop in (A,vg). Then, by estimate of
Step 2 we get

#{N-loops of typeu} < [C-[# Bi(vo)]'/2-Nm BMHDIZE — (G2t Byy(ug))-N* O EGHDE
since

M) =2Mwo)l/2 | p[Muz)=AMul/2. L pMuan) = Muae-1))/2 = g[Mua) = Mwo)l/2 = 0 — 1
becouse usrp = up.

Step 4. The theorem follows by applying the estimate of lemma 2.1 for the number of
different types of loops.

2.6. Proof of Theorem 0.6.
Note that using Proposition 1.9 we get the inequality

(2.6.1) N7 #Bn(vg) < N"-C-(1+ N) - #Sy(vo) <C1 - N7 - #Sn(vo).
Furthermore, since NT . #Sn(vo) < (1 + N)"' - #Sn(vo) < [|Bn(vo)||w, we get
(2.6.2) N" - #Bn(vo) < Cy - ||Bn(vo)]|r.
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In view of Theorem 0.5, part (a) of Theorem 0.6 follows easily from (2.6.1), and part
(b) from (2.6.2).

§3. Proof of Proposition 1.8.

3.1. Denote by D the subcomplex of appartment £’ consisting of all faces of critical locus
of the folding map ¢, i.e. of those codimension 1 faces ¢ of &', for which both chambers
of £’ adjacent to o are mapped by ¢ onto the same chamber. Topological components of
the complement ¥’ \ D will be called regularity components of £/ with respect to ¢.

3.2. Lemma.
(a) Regularity components are convex.
(b) Each regularity component contains a cone sector of ¥'.

See 3.7 below, or [Brown] VL6, page 164, for the definition of cone sector (which is
called a sector in [Brown]).

3.3. Proof of Lemma 3.2 (a): It is well known that for chamber subcomplexes of Cox-
eter complexes the (affine) convexity condition is equivalent to the combinatorial convexity
condition expressed in the obvious manner in terms of minimal galleries (compare [Brown],
Exercise 2, page 15). Therefore, to prove Lemma 3.2 (a), it is enough to prove that no
minimal gallery between two chambers Cy,C> of the same regularity component, passes
through the critical locus. (We say that a chamber belongs to regularity component, if its
interior is contained in this component.)

Since each regularity component of £’ is embedded isometrically into & by the folding
map ¢, we get that

(331) di.‘jt[}! (Cl 3 CQ) = distg(cp(Cl), (,D(Cz))

for any chambers Cy, Cy of the same regularity component in ¥'. If a minimal gallery
crossed the critical locus, then its image by ¢ would stammer, and hence be not minimal.
But then there would be a shorter gallery between ¢(C1) and ¢(C2), giving a contradiction
to (3.3.1). Thus the part (a) of the Lemma follows.

3.4. Proposition. Let Cy, Cy be two chambers of a euclidean Coxeter complex £. Denote
by Ray(Co,C:) the subcomplex of I, consisting of all chambers D, for which there is a
minimal gallery from Cy to D passing through C;. Then Ray(Co,C)) contains a cone
sector of X.

We will first apply Proposition 3.4 to prove Lemma 3.2 (b), and skip the proof of it
until 3.7-3.9.

3.5. Proof of Lemma 3.2 (b): Consider a chamber C of some regularity component R
of ¥, and denote Cy : = ¢(C) to be the image of chamber C by the folding map ¢.
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Claim. Theimage ©(R) of the regularity component R contains all chambers of Ray(Co, C1),
where Cp is the chamber with respect to which the folding map ¢ is defined via the function
ACo, as In 1.4,

Proof of Claim: Consider a cell D of Ray(Cy,C}), and a minimal gallery v from C to
D, which is a part of some minimal gallery from Cy to D (it exists by the definition of
Ray(Cu,C4)). Then the values of the function A = Mg, strictly increase along the gallery
v. fv=(Eo,00,E1,...,0k-1,Ex), where Ey = C and E; = D, then according to Lemma
1.10 (b), to each chamber F of ¢ ~!(E;) there correspond g chambers of ¢ =1 (E;.4.1) adjacent
to F. But this means that the codimension 1 face 7 of F lying in ¢ ~1(c;) cannot belong
to the critical locus, since there is no other chamber adjacent to 7 in ¢ ™' (E;). This shows
that all the gallery + is contained in the image ¢(R), and the claim follows.

In view of the above Claim, part (b) of Lemma 3.2 follows from Proposition 3.4.

3.6. Proof of Proposition 1.8. Denote by N; the maximal number of non-parallel
reflection hyperplanes in a euclidean Coxeter complex. This number is well defined for a
building A, since appartments in A are isomorphic Coxeter complexes.

Since, by Lemma 3.2 (a), each regularity component is convex, it is equal to the inter-
section of several open halfspaces. The number of those (essential) halfspaces is bounded
by 2N, since at most two of the hyperplanes bounding these halfspaces can be parallel
to each other. (In fact, since each regularity component contains a cone sector, no two
bounding hyperplanes can be parallel, and thus their number is not bigger than N;.)

On the other hand, if two cone sectors in a Coxeter complex ¥ are disjoint, they
determine distinct chambers in the spherical Coxeter complex £, at infinity (see [Brown)|
VI.9, Lemma 4, page 176). Thus, in view of Lemma 3.2 (b), the number of regularity
components of appartment L’ is bounded by the number N, of chambers of the spherical
Coxeter complex L/ at infinity. But this number N, is also a well defined number for
building A.

We can now estimate the number of hyperplanes in which the critical locus of appart-
ment ¥’ is contained, by the number of boundary walls in all regularity components of ¥'.
But this is not bigger than N; - Ny, and the Proposition 1.8 follows.

3.7. Notation. Following [Brown| VL6, view the Coxeter complex £ as a vector space
with fixed zero vector o € . Denote by H the set of all hyperplanes in ¥ through o,
parallel to reflection hyperplanes of £. Then the components of the space & \ |JH are
called open cone sectors of ¥ based at o. Using vector space notation, if P is an open
cone sector based at o, then for any z € ¥ the set of form z + P will be called an open
cone sector based at z. By cone sectors of & we will mean closures of open cone sectors.
Observe that for each cone sector I? based at o, the set —P is also a cone sector and it is
called to be opposite to P.

Given two chambers C;, C; of a Coxeter complex ¥, denote by B(C4,C3) the combi-
natorial convex hull of Cy U Cy, i.e. the subcomplex consisting of all chambers appearing
in minimal galleries from C; to Cs.

3.8. Lemma. Let Cy,C; be two chambers of a euclidean Coxeter complex X, z; € C;
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and z, € Cy two points of £ (not necessarily vertices), and let z; + P be a cone sector
containing vector 3:1_:1:2) . Then

(a) (371 +P)ﬂ («'132 —P) C B(C],Cz);

(b) for any z € (z7 + P) it holds z2 € (z; + P) N (z — P);

() (22 + P) C Ray(C1.Cy).

Proof: Part (a) follows from the Lemma in [Brown] VI.6, page 164; part (b) is obvious.
To prove part (c), consider a point ¢ € (z3 4+ P), and a chamber C containing z. Then by
(a) and (b) we have

22 € (z1 + P)N(z — P) C B(Cy,C),

and thus there is a minimal gallery from C; to C passing through C3. But this means that
C C Ray(Cy,C?), and part (c) of Lemma 3.8 follows.

3.9. Proof of Proposition 3.4.
It follows directly from Lemma 3.8 (c).

$4. Proof of Proposition 1.9.

The proof of Proposition 1.9 is contained in 4.4. We precede it by stating Lemmas
4.2 and 4.3, necessary in the proof. We skip proofs of these Lemmas until 4.5 and 4.6.

4.1. Property. Let ¥ be a Coxeter complex of type A,. Let v,w € SO be any
two vertices of ¥, and denote by T a translation (in ¥ viewed as a euclidean space),
which transforms v to w. Then T induces a combinatorial authomorphism of the chamber
complex ¥.

The property stated above distinguishes Coxeter complexes of type ;{n in the class of
all euclidean Coxeter complexes. This property is well known, and can be seen easily i.e.
in the explicit model of the Coxeter complex, as described in [Brown] VI.1F, page 147.
The proofs of the following Lemmas 4.2 and 4.3 are based on this Property.

4.2. Lemma. Let ¥ be a Coxeter complex of type ;1’,,, and dy the metric on (9, as
defined in 0.2. Let L be a straight line contained in the 1-skeleton L) (in T vieved as a
euclidean, or at least affine space), and view L as a subcomplex of . Then for any two
vertices v, w € L(® we have

ds(v,w) = dp(v,w).

4.3. Lemma. Let v,w be any adjacent vertices in a Coxeter complex ¥ of type Zn, and
let T be the translation of ¥ transforming v to w. Moreover, let C be any chamber of &
containing edge (T~'v,v). Then

ex(v,T"v) =n-ex(v,w) = distx(C,T"C).
Recall that ey used above, is the useful distance-like function defined in 1.3.
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4.4. Proof of Propsition 1.9.

Let ¥ be an appartment in A through vertex v. Consider a vertex w € £(®), adjacent
to v, for which the value of ¢a(v,w) is maximal among vertices adjacent to v, and put
m := ea(v,w). Since for any two vertices vy,vs € Al® it holds eal(vi,v2) = ex(v1,ve),
for any appartment ¥ containing vy and vs, it is clear that we can choose w € T(0) ag
above. Denote by T the translation of ¥ transforming v to w, and by C any chamber of
¥ containing the edge (T~ 'v,v). Finally, consider the folding map ¢ : A — £, defined as
in 1.4, with respect to the chamber C.

We will procede with a serie of claims under above notation.

Claim 1. 7 }(T™v) C Sp(v).

Proof: For each u € ¢ ~!(T™v) there is a polygonal path of length n in AM)| joining u to
v, namely the path lifted from the straight path in £(") joining v and T™v. If there were a
shorter path, it would project by ¢ onto a shorter path in T joining v and T™v, which
is impossible in view of Lemma 4.2. Thus the Claim follows.

The above argument could be shortened a little by reffering to Lemma 1.11 (a).

Claim 2. #¢p~}(T™v) = ¢™", where ¢ is the thickness of A.

Proof: According to Lemma 1.11 (b), we have #¢~1(z) = ¢*, where k = min{\(D) : D €
cham ¥ N sty (z)}. But in our case A(D) = dists(C, D), and thus the Claim follows from
Lemma 4.3.

Claim 3. For any vertex u € £(®) we have #p~1(u) < g™ 9=(®4),

Proof: Since ex:(uy,u2) £ m for any two vertices at distance 1, by the triangle inequality
for ex we get ex(ui,uz) < m - dg(ug,ug), for arbitrary vertices uq,uq € Y. Since
moreover min{A(D) : D € cham¥ N st(u)} < ex(v,u), the Claim follows easily from
Lemma 1.11 (b).

Recall the following Fact, which we have already used in the proof of Lemma 2.1.

Fact. There exist constants C; > 0 and d € N, such that #SZ(v) < C;(1 + n)%.

Now, we estimate using above Claims, the Fact, and Lemmma 1.11 (a):

N N
#BN Z#SA Z(#SE Z 1+nd mn<C(l+N) qun:
n=0 n=0 n=0 n=0
g qm(N+1) -1 m 4 mN qm g A

=C'(1+ N)(#58(v)).
Thus the Proposition 1.9 follows.
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4.5. Proof of Lemma 4.2.
The Lemma follows easily from the following,.

Claim. View X as a euclidean space. Then the orthogonal projection of any edge e of
(1) onto the straight line containing any other edge f of £(*), is not longer than f.

We will first derive the Lemma, and then prove the Claim.

Choose an arbitrary polygonal path in £(!) joining v with w, and project it orthogo-
nally onto L. Since the images of path edges under this projection are not longer than the
edges of L itself, it follows that the combinatorial length of the path is not smaller than
the combinatorial length of the straight path joining v with w in L. By this the Lemma
follows.

Proof of Claim: By Property 4.1, we may assume that edges e and f have common
vertex p; let then f = (p,q) and e = (p,r). Denote by s the vertex symmetric to ¢ with
respect to p, and by Hy, H, the hyperplanes in £, orthogonal to the line through p, ¢ and
s, passing through ¢ and s respectively (note that these hyperplanes needn’t be contained
in the 2-skeleton of £). Then it is enough to show that all vertices of £ adjacent to p lie
in the closed streep F' between parallel hyperplanes Hy and H,. We will show that the
subcomplex stz (p) is contained in F'.

It is well known that the star stz (p) is convex (see e.g. [Brown], Exercise 2, page 15).
Thus it is enough to show that H, and H, are the supporting hyperplanes for stz (p). But
since it is a polytope, it is enough to show that its any boundary vertex ¢ adjacent to g (or
s) lies in F. If t is such a vertex, then (p, ¢,t) is a 2-simplex of 2, and thus its angles are
not bigger than 7 /2 (cf. [Bourbaki] V.3.5, Lemma 6 (ii)). But then ¢t € F, and the Claim
follows, thus finishing also the proof of Lemma 4.2.

4.6. Proof of Lemma 4.3.
We start with the following.
Claim 1. ex(v,w) = dg(T™'C,C).

Proof: First observe that among the chambers of sty (w), the closest (with respect to the
gallery metric distg) to T7!(C) is C, since T7!C lies in a simplicial sector centered at w
and determined by C, and thus the number of reflection hyperplanes in ¥ separating it
from T~1C is the smallest.

Second, note that dists (77! C, C) does not depend on the choice of chamber C' con-
taining (v, w), since the Coxeter subgroup fixing the line through v and w acts transitively
on the set of such chambers, and moreover this subgroup commutes with the translation
T.

Finally, consider the sector S containing C, being the intersection of halfspaces bounded
by hyperplanes of those faces of C which contain (v, w). Then both chambers C and T71C
are contained in this sector, and moreover, any reflection hyperplane through v that meets
interior of this sector, separates C from T™'C. But this means that any chamber of
S N stg(v) other than T~1C, is closer to C, since it is separated by less number of reflec-
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tion hyperplanes.
Combining the above three observations, the Claim follows.

Claim 2. diStE(C,T"+IC) = distg(C,T"C) + dists(T™C, Tu-f-lcv)_

Proof: This follows from the observation, that chamber T"C lies in the convex hull of
the sum of chambers C and T"71C, and thus a minimal gallery from C to T"T1C passes
through T"C' (compare [Brown], Exercise 2 on page 15).

From Claim 2 it follows by induction that dists(C,T"C) = n - distg(C,TC). Now,
since according to the proof of Claim 1, any chamber of S N sty (v) other than T7'C is
closer to C, it follows from triangle inequality that any such chamber is closer to T"~1C
also. But this means that

ex(v,T") = distg(T™'C,T""'C) = dists(C, T"C),

and the Lemma follows.
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