Combinations of rational double points on the deformation of quadrilateral singularities III

Tohsuke Urabe

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3

Combinations of rational double points on the deformation of quadrilateral singularities III

by Tohsuke Urabe

§0. Introduction

In this Part III we would like to study the hypersurface quadrilateral singularity $W_{1,0}$. In addition to two kinds of transformations of Dynkin graphs - an elementary transformation and a tie transformation- (Urabe [2], [3], [4]), the notion of obstruction components (Urabe [4]) plays an essential role. We give a proof of following Main Theorem, which have been announced in Part I (Urabe [4]). Every algebraic variety is assumed to be defined over the complex number field \mathbf{C}. As for the exact definition of Dynkin graphs, see Part I.

We study a set of Dynkin graphs $P C=P C\left(W_{1,0}\right)$ in this article. Recall that a Dynkin graph G with components of type A, D, or E only belongs to $P C$ if and only if there exists a fiber Y in the semi-universal deformation family of a singularity of type $W_{1,0}$ satisfying the following two conditions depending on G.
(1) The fiber Y has only rational double points as singularities.
(2) The combination of rational double points on Y just corresponds to the graph G.

Main Theorem. A Dynkin graph G belongs to $P C\left(W_{1,0}\right)$ if and only if G can be made from one of the following essential basic Dynkin graphs with distinguished obstruction components by elementary or tie transformations applied 2 times (We can apply 2 different kinds of transformations once for each, or can apply 2 transformations of the same kind.), and G contains no vertex corresponding to a short root and no obstruction component.

The essential basic Dynkin graphs:
$E_{8}+B_{1}+G_{2}, \quad E_{7}+B_{3}+G_{1}, \quad B_{9}+G_{2}, \quad A_{11}$
(The component A_{11} is the obstruction component.)
Recall that by results in Part I that the "if" part under the condition (2) is true. Thus in this Part III we show the "only if" part.

Let Λ_{3} denote the even unimodular lattice of signature (19, 3), and P be the lattice associated with $W_{1,0}$. (See Part I.) P has rank 7. Let $Q(G)$ be the root lattice associated with a Dynkin graph G with components of type A, D or E only. By the results in Part I, the proof of the "only if" part can be reduced to showing only the following.
Proposition 0.1. Assume that $G \in P C\left(W_{1,0}\right)$. Then, with respect to some full embedding $Q(G) \hookrightarrow \Lambda_{3} / P$ without an obstruction component A_{11}, there exists a primitive isotropic element u in Λ_{3} / P in a nice position, i.e., such that either u is orthogonal to $Q(G)$, or there is a root basis $\Delta \subset Q(G)$ and a long root $\alpha \in \Delta$ such that $\beta \cdot u=0$ for every $\beta \in \Delta$ with $\beta \neq \alpha$ and $\alpha \cdot u=1$.

To show this proposition we use the theories developed in Part II (Urabe [5]).

Now, if $G \in P C$, then we have an embedding $S=P \oplus Q(G) \hookrightarrow \Lambda_{3}$ come from an actual deformation fiber Y. The embedding satisfies Looijenga's conditions $\langle a\rangle$ and $\langle b\rangle$ and the induced embedding $Q(G) \hookrightarrow \Lambda_{3} / P$ is full.

Also we have an elliptic K 3 surface $\Phi: Z \rightarrow C$ corresponding to the embedding. By $\Sigma=\left\{c_{1}, \ldots, c_{t}\right\}$ we denote the set of critical values of Φ. By F_{i} with $1 \leq i \leq t$ we denote the singular fiber $\Phi^{-1}\left(c_{i}\right)$. The elliptic surface $Z \rightarrow C$ has a singular fiber F_{1} of type I_{0}^{*} in our situation by definition. Moreover it has two sections $s_{0}, s_{1}: C \rightarrow Z$ whose images $C_{5}=s_{0}(C)$ and $C_{6}=s_{1}(C)$ are disjoint. The union $I F=F_{1} \cup C_{5} \cup C_{6}$ is called the curve at infinity. The lattice P has signature $(6,1)$ and it is defined associated with the dual graph of components of $I F$. The union \mathcal{E} of smooth rational curves on Z not intersecting $I F$ coincides with the union of components not intersecting $I F$ of singular fibers of $Z \rightarrow C$. The dual graph of \mathcal{E} is G by definition.

We use the same division of the case into three subcases as in Part II.
((1)) The surface $Z \rightarrow C$ has another singular fiber of type I^{*} apart from F_{1}.
((2)) $Z \rightarrow C$ has a singular fiber of type $I I^{*}, I I I^{*}$ or $I V^{*}$.
((3)) $Z \rightarrow C$ has no singular fiber of type $I^{*}, I I^{*}, I I I^{*}$ or $I V^{*}$ apart from F_{1}.
For each case we apply the theory in Part II. However, in the case $W_{1,0} I F$ contains 2 of images of sections, and the theories in Part II are not sufficient to treat $W_{1,0}$. Thus in the first step of the proof we write down the list of possible Dynkin graphs, and then we check each item G in the list case by case. We show either G can be made from one of the basic graphs by two transformations, or $G \notin P C$. To show $G \notin P C$ we apply the theory of symmetric bilinear forms, the theory of elliptic surfaces, and the theory of K3 surfaces, etc.

The case ((i)) is discussed in section i .
Assume that a Dynkin graph G with components of type A, D or E only can be made from one of the essential basic graphs by elementary or tie transformations applied twice and G has no obstruction component. Then we can construct a full embedding $Q(G) \hookrightarrow \Lambda_{3} / P$ without an obstruction component of type A_{11} which has a primitive isotropic element in a nice position. This is a consequence of the theories in [2], [3], [4]. (See Theorem 1.1 in [3], Theorem 4.4 etc. in [4].) Of course, the constructed embedding may not be equivalent to the given embedding. However, we can use this to show Proposition 0.1 without any problem. Note moreover that under the assumption we have $G \in P C(X)$ by the "if" part of Main Theorem.

§1. Two singular fibers of type I^{*}

By G we denote a Dynkin graph belonging to $P C\left(W_{1,0}\right)$ with the number of vertices r. By $\Phi: Z \rightarrow C$ we denote the corresponding elliptic: K3 surface. We assume that apart from the singular fiber F_{1} of type I_{0}^{*}, F_{2} is of type I^{*} in this section.

We have an embedding $S=P \oplus Q(G) \hookrightarrow \Lambda_{3}$ satisfying $\langle a\rangle$ and $\langle b\rangle$. Recall that the lattice P has a basis $e_{0}, e_{1}, \ldots, e_{6}$ whose mutual intersection numbers are described by the dual graph in the figure associated with the curve at infinity $I F$.

The bilinear form is denoted by a dot \cdot. We set

$$
u_{0}=2 e_{0}+e_{1}+e_{2}+e_{3}+e_{4}, \quad v_{0}=-u_{0}-e_{5}, \quad f=e_{6}-e_{5}-2 u_{0} .
$$

$u_{0}^{2}=v_{0}^{2}=0, u_{0} \cdot v_{0}=1, P=P^{\prime} \oplus\left(\mathbf{Z} u_{0}+\mathbf{Z} v_{0}\right)$, and P^{\prime} has a basis $e_{0}, e_{1}, e_{2}, e_{3}, f$.
By Proposition 1.2 in Part II there exists an element $u \in \Lambda_{3}$ satisfying the following conditions.
(1) u is isotropic.
(2) u is orthogonal to $Q(G)$.
(3) u is orthogonal to $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}$, and e_{5}.
(4) $u \cdot e_{6} \geq 0$.

Set $m=u \cdot e_{6}=u \cdot f$. If $m=0$, then the lattice S has an isotropic element in the orthogonal complement in Λ_{3}, and it is in a nice position. Thus in the following we consider the case $m \neq 0$. The element u is orthogonal to $\mathbf{Z} u_{0}+\mathbf{Z} v_{0}$. Set $M=P^{\prime}+\mathbf{Z} u$. M has signature $(5,1)$.

Lemma 1.1. Assume that M is not primitive in Λ_{3} and $u \cdot e_{6} \neq 0$. Then, the primitive hull \bar{M} of M in Λ_{3} contains an element u^{\prime} also satisfying the above conditions (1)-(4) and such that $u \cdot e_{6}>u^{\prime} \cdot e_{6}>0$.
Proof. By w_{0}, \ldots, w_{3}, z we denote the dual basis of e_{0}, \ldots, e_{3}, f. In particular $z=$ $\left(2 e_{0}+e_{1}+e_{2}+2 e_{3}+2 f\right) / 6$. Set $\xi=m\left(2 e_{0}+e_{1}+e_{2}+2 e_{3}+2 f\right)-6 u$. One knows that $\xi \in M, \xi \cdot e_{i}=0(0 \leq i \leq 3), \xi \cdot f=0, \xi \cdot u=2 m^{2}$ and $\xi^{2}=-12 m^{2}$. The element $y_{0}=\xi / 12 m^{2}$ satisfies $y_{0} \cdot \xi=-1$ and $u=m z-2 m^{2} y_{0}=m\left(z-2 m y_{0}\right)$. Set $N=P^{\prime} \oplus \mathbf{Z} \xi$. We have $N \subset M \subset \widetilde{M} \subset \widetilde{M}^{*} \subset M^{*} \subset N^{*}$. (Recall that by ${ }^{*}$ we denote the dual module.) Consider the discriminant group $N^{*} / N=P^{\prime *} / P^{\prime} \oplus \mathbf{Z} y_{0} / \mathbf{Z} \xi$. On this group we can define the discriminant bilinear form b and the discriminant quadratic form q. For $x \in N^{*}$ we denote $\bar{x}=x \bmod N^{*} \in N^{*} / N$. Set $I=M / N . I^{\perp}=M^{*} / N$ is the orthogonal complement of I with respect to b. I is generated by a unique element $\bar{u}=m \bar{z}-2 m^{2} \bar{y}_{0}$. On the other hand $P^{\prime *} / P^{\prime}$ is a cyclic group of order 12 generated by \bar{w}_{1}, and $\bar{z}=2 \bar{w}_{1}$. (Recall $w_{1}^{2}=13 / 12$ and thus $\left.\bar{w}_{1}^{2} \equiv 13 / 12 \bmod 2 Z\right)$. Since

$$
b\left(2 m \bar{w}_{1}-2 m^{2} \bar{y}_{0}, a \bar{w}_{1}+b \bar{y}_{0}\right) \equiv \frac{1}{6} m a+\frac{1}{6} b \bmod \mathbf{Z}
$$

$a \bar{w}_{1}+b \bar{y}_{0} \in I^{\perp} \Leftrightarrow m a+b \equiv 0(\bmod 6)$. Choose an element $\bar{x}_{0} \in \widetilde{M} / N$ with $\bar{x}_{0} \notin I=$ M / N. Since it is contained in I^{\perp}, we can write $\bar{x}_{0}=a\left(\bar{w}_{1}-m \bar{y}_{0}\right)+6 c \bar{y}_{0}$. Moreover,

$$
0 \equiv q\left(\bar{x}_{0}\right) \equiv a^{2}+\frac{a c m-3 c^{2}}{m^{2}} \bmod 2 \mathbf{Z}
$$

In particular $c^{2} \equiv a m(a m+c)(\bmod 2)$, and c is even. We set $c=2 d$.
First we would like to show that there is $\bar{x}_{1} \in \widetilde{M} / N$ with $\bar{x}_{1} \notin I$ in the form either $\bar{x}_{1}=2 A\left(\bar{w}_{1}-m \bar{y}_{0}\right)$ (In this case no restriction on m.), or $\bar{x}_{1}=2 A\left(\bar{w}_{1}+m \bar{y}_{0}\right)$ and $m \equiv 0 \quad(\bmod 3)$.
\diamond Case 1. $a m-12 d \not \equiv 0(\bmod 2 m)$.
Set $\bar{x}_{1}=m \bar{x}_{0}$. Since $12 m \bar{y}_{0}=-12\left(\bar{w}_{1}-m \bar{y}_{0}\right)$, we have $\bar{x}_{1}=a m\left(\bar{w}_{1}-m \bar{y}_{0}\right)+$ $d\left(12 m \bar{y}_{0}\right)=a^{\prime}\left(\bar{w}_{1}-m \bar{y}_{0}\right)$ for $a^{\prime}=a m-12 d$. The assumption $a^{\prime} \not \equiv 0(\bmod 2 m)$
implies $\bar{x}_{1} \notin I$. Since $0 \equiv q\left(\bar{x}_{1}\right) \equiv a^{\prime 2} \bmod 2 \mathbf{Z}$, we can write $a^{\prime}=2 A$. This \bar{x}_{1} satisfies the condition.
\diamond Case 2. $a m-12 d \equiv 0(\bmod 2 m)$.
Set $12 d=a m+2 m e . \bar{x}_{0}=a \bar{w}_{1}+2 m e \bar{y}_{0}$. Then $q\left(\bar{x}_{0}\right) \equiv 0 \bmod 2 \mathbf{Z} \Leftrightarrow 13 a^{2}-4 e^{2} \equiv 0$ $(\bmod 24)$. We can write $a=2 A^{\prime}$ and we have $\left(A^{\prime}+e\right)\left(A^{\prime}-e\right) \equiv 0(\bmod 6)$.

If $A^{\prime}+e \equiv 0(\bmod 3)$, set $3 C=A^{\prime}+e$. We have $C^{2} \equiv C\left(2 A^{\prime}-3 C\right) \equiv 0(\bmod 2)$. C is even. Thus $\bar{x}_{1}=\bar{x}_{0}=2 A^{\prime}\left(\bar{w}_{1}-m \bar{y}_{0}\right)+6 m C \bar{y}_{0}=2 A\left(\bar{w}_{1}-m \bar{y}_{0}\right)$ for $A=A^{\prime}-3 C$.

If $A^{\prime}-e \equiv 0(\bmod 3)$, set $3 C=-A^{\prime}+e$. We have $C^{2} \equiv 0(\bmod 2) . C$ is even. Thus $\bar{x}_{1}=\bar{x}_{0}=2 A^{\prime}\left(\bar{w}_{1}+m \bar{y}_{0}\right)+6 m C \bar{y}_{0}=2 A\left(\bar{w}_{1}+m \bar{y}_{0}\right)$ for $A=A^{\prime}+3 C$. If $m \equiv 0$ $(\bmod 3)$ we are done. Thus we can assume $m \not \equiv 0(\bmod 3)$. Since $\bar{x}_{1} \in I^{\perp}, A m \equiv 0$ $(\bmod 3)$, and thus $A \equiv 0(\bmod 3)$. Then $\bar{x}_{1}=2 A\left(-\bar{w}_{1}+m \bar{y}_{0}\right)=2(-A)\left(\bar{w}_{1}-m \bar{y}_{0}\right)$, since $6 \bar{w}_{1}=-6 \bar{w}_{1}$.

Next, we consider the case $\bar{x}_{1}=2 A\left(\bar{w}_{1}-m \bar{y}_{0}\right)$. If we write $A=C m+B(0 \leq B<$ $m)$, then $B \neq 0$, since $\bar{x}_{1} \notin I$. The element $\bar{x}_{2}=\bar{x}_{1}-2 C m\left(\bar{w}_{1}-m \bar{y}_{0}\right)=2 B\left(\bar{w}_{1}-m \bar{y}_{0}\right)$ satisfies $\bar{x}_{2} \in \widetilde{M} / N$ and $\bar{x}_{2} \notin I$.

On the other hand we can check that $u^{\prime}=B u / m$ is an element in $N^{*}, u^{\prime 2}=0, u^{\prime} \neq$ $0, u^{\prime} \cdot e_{i}=0$ for $0 \leq i \leq 5$ and $m=u \cdot e_{6}>B=u^{\prime} \cdot e_{6}$. Moreover $u^{\prime} \in \widetilde{M}$ since $\bar{u}^{\prime}=\bar{x}_{2}$. We have the desired element.

The case $\bar{x}_{1}=2 A\left(\bar{w}_{1}+m \bar{y}_{0}\right), m \equiv 0(\bmod 3)$ is remaining. In this case $2 m \bar{w}_{1}=$ $-2 m \bar{w}_{1}$ since \bar{w}_{1} has order 12. If A is a multiple of m, then $\bar{x}_{1}=2 A\left(\bar{w}_{1}+m \bar{y}_{0}\right)=(-A)$. $2\left(\bar{w}_{1}-m \bar{y}_{0}\right) \in I$, which is a contradiction. Thus we can write $A=C m+B(0<B<m)$. Setting $\bar{x}_{2}=2 B\left(\bar{w}_{1}+m \bar{y}_{0}\right)=\bar{x}_{1}-2 C m\left(\bar{w}_{1}+m \bar{y}_{0}\right)=\bar{x}_{1}+2 C m\left(\bar{w}_{1}-m \bar{y}_{0}\right)$, we have $\bar{x}_{2} \in \bar{M} / N, \bar{x}_{2} \notin I$.

On the other hand setting $u^{\prime \prime}=B\left(z+2 m y_{0}\right)=B(2 z-(u / m))$, we can check $u^{\prime \prime 2}=0, u^{\prime \prime} \neq 0, u^{\prime \prime} \cdot e_{i}=0(0 \leq i \leq 5), u^{\prime \prime} \cdot u_{0}=u^{\prime \prime} \cdot v_{0}=0$, and $u^{\prime \prime} \cdot f=u^{\prime \prime} \cdot e_{6}=B$. Since $u^{\prime \prime} \in N^{*}$ and since $\bar{u}^{\prime \prime}=\bar{x}_{1}$, one knows $u^{\prime \prime} \in \widetilde{M}$. This $u^{\prime \prime}$ is the desired element.
Q.E.D.

By induction on $u \cdot e_{6}$ we can assume that u satisfies the following (5) in addition to (1)-(4).
(5) $M=P^{\prime}+Z u$ is primitive in Λ_{3}.

Then, of course, $M \oplus\left(\mathbf{Z} u_{0}+\mathbf{Z} v_{0}\right)=P+\mathbf{Z} u$ is also primitive in Λ_{3}.
Proposition 1.2. Assume that we have an element $u \in \Lambda_{3}$ satisfying above (1)-(4) and (5).

1. If $u \cdot e_{6}=0$, then the orthogonal complement of $P \oplus Q(G)$ contains an isotropic element.
2. If $u \cdot e_{6}=1$, then G is a subgraph of the Coxeter-Vinberg graph Γ of the lattice $Q\left(D_{12}\right) \oplus H$ (H denotes a hyperbolic plane.).
3. If $u \cdot e_{6} \geq 2$, then G can be obtained from a subgraph of the above Γ by one elementary transformation.
Proof. 1 is obvious.
4. Setting $v=f-2 u$, one has

$$
M=\left(\mathbf{Z} e_{0}+\mathbf{Z} e_{1}+\mathbf{Z} e_{2}+\mathbf{Z}\left(e_{3}-u\right)\right) \oplus(\mathbf{Z} u+\mathbf{Z} v)
$$

and $u^{2}=v^{2}=0, u \cdot v=1$. Thus $P+\mathbf{Z} u \cong Q\left(D_{4}\right) \oplus H \oplus H$. For their discriminant quadratic forms we know $q_{P+\mathrm{Z}_{u}}=q_{Q\left(D_{4}\right)}$.

Let L be the orthogonal complement of $P+\mathbf{Z} u$ in Λ_{3}. L has signature (13, 1). The discriminant quadratic form of L is $-q_{P+Z_{u}}=-q_{Q\left(D_{4}\right)}=q_{Q\left(D_{4}\right)}$. Since $Q\left(D_{12}\right) \oplus H$ and L have the same signature and the same discriminant quadratic form, they are isomorphic by Nikulin [1] Theorem 1.14.2 and Corollary 1.9.4. In particular the CoxeterVinberg graph of L coincides with Γ. Since $Q(G)$ is full in L, G is a subgraph of Γ.
3. Assume that $m=u \cdot e_{6} \geq 2$.

By L we denote the orthogonal complement of $R=P+\mathbf{Z} u$ in Λ_{3}. We have a natural isomorphism $R^{*} / R \cong L^{*} / L$ which preserves discriminant quadratic forms up to sign.

Set $u_{1}=u / m$ and $R_{1}=R+\mathbf{Z} u_{1} . R_{1}$ is an even overlattice of R with index m, and is isomorphic to $P+\mathbf{Z} u$ in the case of $m=u \cdot e_{6}=1$. In particular the discriminant quadratic form of R_{1} is the same as that of $Q\left(D_{4}\right)$.

By the above isomorphism one knows that L has an overlattice L_{1} with index m whose discriminant quadratic form is $q_{Q\left(D_{4}\right)}=-q_{Q\left(D_{4}\right)}$. By reasoning in $2 L_{1} \cong$ $Q\left(D_{12}\right) \oplus{ }_{\sim} H$.

Let \widetilde{Q}_{1} (resp. \widetilde{Q}) be the primitive hull of $Q(G)$ in L_{1} (resp. L). The Dynkin graph of \widetilde{Q}_{1} is a subgraph of the Coxeter-Vinberg graph Γ of L_{1}. Since $\widetilde{Q}_{1} / \widetilde{Q} \subset L_{1} / L \cong$ Z / m is cyclic, the Dynkin graph of \widetilde{Q} is obtained from that of \widetilde{Q}_{1} by one elementry transformation. Besides, by the fullness the Dynkin graph of \widetilde{Q} is G.
Q.E.D.

Now, we would like to draw the Coxeter-Vinberg graph Γ of $Q\left(D_{12}\right) \oplus H$.
Set $K=\sum_{i=0}^{13} \mathbf{Z} v_{i}$ where v_{0}, \ldots, v_{13} is a free basis with $v_{0}^{2}=-1, v_{i}^{2}=1(1 \leq$ $i \leq 13), v_{i} \cdot v_{j}=0(i \neq j)$. The sublattice $L=\left\{\sum_{i=0}^{13} x_{i} v_{i} \in K \mid \sum_{i=0}^{13} x_{i} \in 2 \mathbf{Z}\right\}$ is isomorphic to $Q\left(D_{12}\right) \oplus H$. We use v_{0} as the controlling vector. We can take

$$
\begin{aligned}
& \gamma_{i}=-v_{i}+v_{i+1}(1 \leq i \leq 12) \\
& \gamma_{13}=-\left(v_{12}+v_{13}\right)
\end{aligned}
$$

as a root basis for the orthogonal complement of v_{0} in L. By Vinberg's algorithm we get succeedingly;

$$
\begin{aligned}
& \gamma_{14}=v_{0}+v_{1}+v_{2}+v_{3} \\
& \gamma_{15}=3 v_{0}+v_{1}+v_{2}+\cdots+v_{11} .
\end{aligned}
$$

Drawing the graph for these 15 vectors, we get the following graph. This has no dotted edges, no Lannér subgraph and any extended Dynkin subgraph is a component of an extended Dynkin subgraph of rank 12. Thus this is Γ.

The Coxeter-Vinberg graph Γ for $Q\left(D_{12}\right) \oplus H$

Lemma 1.3. There are 26 kinds of maximal Dynkin subgraphs of Γ with 13 vertices. The following is the list.
(1) D_{13}
(2) $D_{12}+A_{1}$
(3) $D_{10}+A_{2}+A_{1}$
(4) $D_{9}+A_{4}$
(5) $D_{8}+D_{5}$
(6) $D_{7}+E_{6}$
(7) $E_{7}+D_{6}$
(8) $E_{8}+D_{5}$
(9) $A_{10}+3 A_{1}$
(10) $D_{10}+3 A_{1}$
(11) $A_{9}+4 A_{1}$
(12) $A_{7}+A_{2}+4 A_{1}$
(13) $A_{6}+A_{4}+3 A_{1}$
(14) $D_{5}+A_{5}+3 A_{1}$
(15) $E_{6}+A_{4}+3 A_{1}$
(16) $E_{7}+A_{3}+3 A_{1}$
(17) $E_{8}+A_{2}+3 A_{1}$
(18) $A_{9}+D_{4}$
(19) $D_{9}+D_{4}$
(20) $A_{8}+D_{4}+A_{1}$
(21) $A_{6}+D_{4}+A_{2}+A_{1}$
(22) $A_{5}+A_{4}+D_{4}$
(23) $D_{5}+D_{4}+A_{4}$
(24) $E_{6}+D_{4}+A_{3}$
(25) $E_{7}+D_{4}+A_{2}$
(26) $E_{8}+D_{4}+A_{1}$

We consider the following two conditions here.
(1) The Picard number $\rho=7+r$.
(2) The orthogonal complement of $\operatorname{Pic}(Z)$ in $H^{2}(Z, \mathbf{Z})$ does not contain an isotropic element.
Note that $7+r=\operatorname{rank}(P \oplus Q(G))$ and it is also equal to the rank of the subgroup S of $\operatorname{Pic}(Z)$ generated by classes of components of $I F$ and all components of singular fibers not intersecting $I F$. In particular, if $r=13$, then the above (1) and (2) are automatically satisfied. Moreover, by Theorem 1.2 in Part I (Urabe [4]) we can always assume the condition (1). It implies that $\operatorname{Pic}(Z)$ is the primitive hull of S. On the other hand, under the condition (1), the condition (2) is not satisfied if and only if the arithmetic condition in Part I Theorem 0.5 [II](A) holds. By Part I Theorem 0.5 we have nothing to verify, if (2) is not satisfied.

Thus we assume the above (1) and (2) in the following.
Lemma 1.4. Under the above assumptions, G has a component of type D, has 11, 12, or 13 vertices, and can be obtained from one of the 26 Dynkin graphs in Lemma 1.3 by one elementary transformation. Besides, the group E of sections of Φ has rank 1 and only one component of the singular fiber F_{i} intersects $I F$ for every $2 \leq i \leq t$.
Proof. For $2 \leq i \leq t$ by $n\left(F_{i}\right)$ we denote the number of components of F_{i} not intersecting the curve $I F$ at infinity. The equality $\sum_{i=2}^{t} n\left(F_{i}\right)=r$ holds. Thus by the equality (2) in Part II section 1 and by assumption we have

$$
1+\sum_{i=2}^{t} n\left(F_{i}\right)=a+\sum_{i=2}^{t}\left(m\left(F_{i}\right)-1\right)
$$

since $m\left(F_{1}\right)=5$.
Assume $a=0$. Then all elements in E have finite order. In particular the element u in Part II Proposition 1.2 is orthogonal also to the class of $C_{6}=s_{1}(C)$. Thus u is orthogonal to the subgroup S generated by the classes in the union of the set of components of $I F$ and the set of components not intersecting $I F$ of singular fibers. On the other hand by (1) $\operatorname{rank} S=\operatorname{rank}$ Pic, and Pic is the primitive hull of S. Consequently u is orthogonal to Pic. This contradicts the assumption (2). Thus $a>0$.

Since $n\left(F_{i}\right) \leq m\left(F_{i}\right)-1$, by the above equality we have $a=1$ and $n\left(F_{i}\right)=m\left(F_{i}\right)-1$ for $2 \leq i \leq t$. In particular only one component of F_{2} intersects $I F$. Note that the intersecting component has multiplicity 1 . The dual draph of components of F_{2} without intersection with $I F$ is of type D and it is a component of G. By Proposition 1.2 and Lemma 1.3 we have the characterization of G in terms of elementary transformations.

Since $\rho \leq 20, r \leq 13$. If $r \leq 10$, then the orthogonal complement of Pic in H^{2} is an indefinite lattice with rank ≥ 5. In this case by Meyer's theorem it contains an isotripic element.
Q.E.D.

For every singular fiber F_{i} with $2 \leq i \leq t$, let G_{i} be the Dynkin graph defined as the dual graph of components of F_{i} not intersecting C_{5}. Note that by Lemma 1.4 $G=\sum G_{i}$.

Lemma 1.5. (1) $\nu(A)+2 \nu(D)+2 \nu(E) \leq 18-r$, where $\nu(T)$ denotes the number of components of G of type T.
(2) If $r=13$, then G has no component of type D_{4}.

Proof. (1) In our situation we can substitute $\rho=7+r$, and $a=1$ into the equality (3) in the beginning of section 1 in Part II. Moreover, by the note just above one has $t-t_{1}=1+\nu(D)+\nu(E)+\nu(I I)+\nu(I I I)+\nu(I V), t_{1}=\nu(A)-\nu(I I I)-\nu(I V)+\nu\left(I_{1}\right)$. The inequality (1) follows from these ones.
(2) First assume that the functional invariant J is constant. Then $t_{1}=0$ in the equality (3) section 1 Part II, since J has never poles. Since $\rho=20$, and $a=1$ under our assumptions, we have $2 t=7$, which is a contradiction. Thus J is not constant. We can apply the inequality (4) in the beginning of Part II section 1 . We have the claim, since F_{1} is of type I_{0}^{*} and $\nu\left(I_{0}^{*}\right) \geq 1$.
Q.E.D.

Lemma 1.6. (1) $Q(G)$ is primitive in Λ_{3}.
(2) Let \widetilde{S} be the primitive hull of $S=P \oplus Q(G)$ in Λ_{3}. Then, the restriction to \widetilde{S} / S of the projection $S^{*} / S=P^{*} / P \oplus Q(G)^{*} / Q(G) \rightarrow P^{*} / P$ is injective.
(3) $(\widetilde{S} / S)_{p}=0$ for any prime $p \geq 5$, where M_{p} denotes the p-Sylow subgroup of a finite abelian group M.
(4) $l\left((\widetilde{S} / S)_{p}\right) \leq 1$ for $p=2$, 3 , where $l(M)$ denotes the minimum number of generators of an abelian group M.
Proof. (1) Let $\widetilde{Q}(G)$ be the primitive hull of $Q(G)$ in Λ_{3}. We will deduce a contradiction, assuming that $I_{Q}=\widetilde{Q}(G) / Q(G) \neq 0$.

Let \bar{P} be the sublattice of rank 6 in P generated by $e_{0}, e_{1}, \ldots, e_{5}$. Set $\bar{S}=\bar{P} \oplus Q(G)$ and $\widetilde{\bar{S}}$ be the primitive hull of \bar{S} in Λ_{3}. Note that $J=\widetilde{\bar{S}} / \bar{S}$ can be identified with the group of sections of finite order. Since $I_{Q} \subset J$, we have an image C^{\prime} of a section corresponding to a non-zero element $\bar{\alpha}$ in I_{Q}. In $J=\bar{P}^{*} / \bar{P} \oplus Q(G)^{*} / Q(G), \bar{\alpha}$ is
contained in the direct summand $Q(G)^{*} / Q(G)$. It implies that C^{\prime} and C_{5} intersect F_{1} on the same component. Thus $C^{\prime}=C_{5}$ since the homomorphism from $\widetilde{\bar{S}} / \bar{S}$ to the group $F_{1}^{\#}$ of the singular fiber F_{1} is injective, and every component of F_{1} contains at most one point of finite order. We have $\bar{\alpha}=0$, a contradiction.
(2) If it is not injective, then $(\widetilde{S} / S) \cap\left(Q(G)^{*} / Q(G)\right)=\widetilde{\widetilde{Q}}(G) / Q(G)$ is not zero, which contradicts (1).
(3), (4) By (2) $I=\widetilde{S} / S$ is isomorphic to a subgroup of $P^{*} / P \cong \mathrm{Z} / 12$. Since $l\left(I_{p}\right) \leq$ $l\left(\left(P^{*} / P\right)_{p}\right), l\left(I_{p}\right) \leq 1$ if $p=2$ or 3 , and it is zero if $p \geq 5$.
Q.E.D.

From here for a while we consider the case where G has 13 vertices. We can easily list up all the Dynkin graphs which can be made from each one of the above 26 graphs by one elementary transformation.
(1) D_{13}
(1.1) D_{13}
(1.2) $D_{11}+2 A_{1}$
(1.3) $D_{10}+A_{3}$
(1.4) $D_{9}+D_{4}$
(1.5) $D_{8}+D_{5}$
(1.6) $D_{7}+D_{6}$

Among these 6 graphs (1.1) and (1.5) can be made from an essential basic Dynkin graph A_{11} by tie transformations repeated twice. (By the first transformation we can make D_{12}.) Thus these graphs belong to $P C=P C\left(W_{1,0}\right)$.

On the other hand (1.4) can never be realized by Lemma 1.5. We can show that the remaining three graphs (1.2), (1.3), and (1.6) do not belong to $P C$ by considering discriminant quadratic forms.

Consider the case (1.2). Let $G=D_{11}+2 A_{1}$. Assume that we have an embedding $S=P \oplus Q(G) \hookrightarrow \Lambda_{3}$ satisfying Looijenga's condition $\langle a\rangle$ and $\langle b\rangle$. By \widetilde{S} we denote the primitive hull of S in Λ_{3}, and by T the orthogonal complement of S in Λ_{3}. The discriminant group of S can be written $S^{*} / S \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 3$, since $P^{*} / P \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 3, Q\left(D_{11}\right)^{*} / Q\left(D_{11}\right) \cong \mathbf{Z} / 4$, and $Q\left(A_{1}\right)^{*} / Q\left(A_{1}\right) \cong \mathbf{Z} / 2$. The discriminant quadratic form can be written

$$
q\left(a, b, c_{1}, c_{2}, x\right) \equiv-\frac{1}{4} a^{2}+\frac{3}{4} b^{2}+\frac{1}{2}\left(c_{1}^{2}+c_{2}^{2}\right)-\frac{2}{3} x^{2} \bmod 2 \mathbf{Z}
$$

for an element $\left(a, b, c_{1}, c_{2}, x\right) \in(\mathbf{Z} / 4)^{2} \oplus(\mathbf{Z} / 2)^{2} \oplus(\mathbf{Z} / 3)$ of the discriminant group.
$l\left(\left(S^{*} / S\right)_{2}\right)=4$. Since $\widetilde{S}^{*} / \widetilde{S} \cong T^{*} / T, 2=\operatorname{rank} T \geq l\left(T^{*} / T\right)=l\left(\widetilde{S}^{*} / \widetilde{S}\right) \geq$ $l\left(\left(\widetilde{S}^{*} / \widetilde{S}\right)_{2}\right)$. Thus we have an element $\bar{\alpha}=\left(a, b, c_{1}, c_{2}, 0\right) \in(\widetilde{S} / S)_{2}$ with $\bar{\alpha} \neq 0$. It satisfies $q(\bar{\alpha}) \equiv 0 \bmod 2 Z$.

By solving the congruence equation, one knows that $\bar{\alpha}=(2,2,0,0,0),(2,0,1,1,0)$ or $(0,2,1,1,0)$.

If $\bar{\alpha}=(2,2,0,0,0), \widetilde{S}$ contains an element in the form $\alpha=\xi+\omega$ with $\xi \in P^{*}$, $\omega \in Q\left(D_{11}\right)^{*}$ and $\omega^{2}=1$. The image of α by the quotient morphism $\Lambda_{3} \rightarrow \Lambda_{3} / P$ has self-intersection number $1\left(=\omega^{2}\right)$, and it is a short root. This short root is contained in the primitive hull of $Q(G)$ in Λ_{3} / P. It contradicts the fullness of $Q(G)$.

In the case $\bar{\alpha}=(2,0,1,1,0)$, we can also conclude that the primitive hull of $Q(G)$ contains a short root, which is a contradiction.

When $\bar{\alpha}=(0,2,1,1,0)$, we have an element $\alpha \in \widetilde{S}$ with $\alpha^{2}=2$ such that $\alpha \notin S$, which also contradicts the fullness.

Thus we can conclude $D_{11}+2 A_{1} \notin P C$.

For the cases (1.3) and (1.6) we can deduce a contradiction by the same argument as in (1.2).
(2) $D_{12}+A_{1}$
(2.1) $D_{12}+A_{1} \quad$ (2.2) $D_{10}+3 A_{1} \quad$ (2.3) $D_{9}+A_{3}+A_{1} \quad$ (2.4) $D_{8}+D_{4}+A_{1}$
(2.5) $D_{7}+D_{5}+A_{1} \quad$ (2.6) $2 D_{6}+A_{1}$

For the case (2.1) $G=D_{12}+A_{1}$ we can make it from a basic graph A_{11}. Thus it belongs to $P C=P C\left(W_{1,0}\right)$.

For the other 5 cases the Dynkin graph G is not an element of $P C$. For the case (2.4) it follows from Lemma 1.5. For the cases (2.3) and (2.5) by essentially same arguments as in the case (1.2) we can show it. (In these cases that we can choose an element of order 2 as the corresponging element to $\bar{\alpha}$ in the above. Under this note the argument becomes simpler.)

We can apply Lemma 1.6 to the cases (2.2) and (2.6).
We consider case (2.2). Set $G=D_{10}+3 A_{1}$. By S, \widetilde{S}, T we denote the same lattice as above. Now, we have $\left(S^{*} / S\right)_{2} \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 2$. Note that $2 \geq l\left(\left(\widetilde{S}^{*} / \widetilde{S}\right)_{2}\right) \geq l\left(\left(S^{*} / S\right)_{2}\right)-2 l\left((\widetilde{S} / S)_{2}\right)=6-2 l\left((\widetilde{S} / S)_{2}\right)$. We have $l\left((\widetilde{S} / S)_{2}\right) \geq 2$, which contradicts Lemma 1.6.

The case (2.6) is similar.
(3) $D_{10}+A_{2}+A_{1}$
$\begin{array}{lll}\text { (3.1) } D_{10}+A_{2}+A_{1} & \text { (3.2) } D_{8}+A_{2}+3 A_{1} & \text { (3.3) } D_{7}+A_{3}+A_{2}+A_{1} \\ \text { (3.4) } D_{6}+D_{4}+A_{2}+A_{1} & \text { (3.5) } 2 D_{5}+A_{2}+A_{1} & \end{array}$
(3.4) $D_{6}+D_{4}+A_{2}+A_{1} \quad$ (3.5) $2 D_{5}+A_{2}+A_{1}$

Among these graphs we can make (3.1) $D_{10}+A_{2}+A_{1}$ from A_{11}. Thus it belongs to $P C$. The graphs (3.2), (3.4), (3.5) cannot be elements in $P C$ because of Lemma 1.5. The graph (3.3) does not belong to $P C$, either. If it is in $P C$, we can show an extra root contradicting the fullness as in case (1.2).
(4) $D_{9}+A_{4}$
(4.1) $D_{9}+A_{4} \quad$ (4.2) $D_{7}+A_{4}+2 A_{1} \quad$ (4.3) $D_{6}+A_{4}+A_{3} \quad$ (4.4) $D_{5}+D_{4}+A_{4}$

The graph (4.1) can be made from A_{11}. Thus it is in $P C$. The graph (4.4) cannot be in $P C$ because of Lemma 1.5. For the remaining two cases (4.2) and (4.3), we can show an extra root contradicting the fullness by calculation on the discriminant group as in case (1.2), if they are in $P C$.
(5) $D_{8}+D_{5}$
(5.1) $D_{8}+D_{5}$
(5.2) $D_{6}+D_{5}+2 A_{1}$
(5.3) $2 D_{5}+A_{3}$
(5.4) $2 D_{4}+D_{5}$
(5.5) $D_{8}+A_{3}+2 A_{1}$
(5.6) $D_{6}+A_{3}+4 A_{1}$
(5.7) $D_{5}+2 A_{3}+2 A_{1} \quad(5.8) 2 D_{4}+A_{3}+2 A_{1}$

The graph (5.1) is equal to (1.5), and we can make the first graph (5.1) from A_{11}. It is in $P C$.

We can apply Lemma 1.5 to (5.2), (5.4), (5.6), (5.7), (5.8), and they are not in $P C$.
For the case (5.5) we can apply Lemma 1.6 as in (2.2). (5.5) is not in $P C$, either.
Here we explain the case (5.3). Set $S=P \oplus Q\left(2 D_{5}+A_{3}\right)$. We can consider only the 2-Sylow subgroup of the discriminant group $S^{*} / S \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 3$. For an element $\left(a, b_{1}, b_{2}, c\right) \in(\mathbf{Z} / 4)^{4}=\left(S^{*} / S\right)_{2}$ the discriminant quadratic form can be written

$$
q\left(a, b_{1}, b_{2}, c\right) \equiv-\frac{1}{4} a^{2}-\frac{3}{4}\left(b_{1}^{2}+b_{2}^{2}\right)+\frac{3}{4} c^{2} \bmod 2 \mathbf{Z}
$$

A solution of $q \equiv 0$ is one of the following; $(0,0,0,0), \bar{\alpha}_{1}=(2,0,0,2), \bar{\alpha}_{2}=(0,2,2,0)$, $\bar{\alpha}_{3}=(2,2,2,2), \bar{\alpha}_{4}=(2,\{2,0\}, 0), \bar{\alpha}_{5}=(0,\{2,0\}, 2), \bar{\alpha}_{6}=(\pm 1,\{2, \pm 1\}, 0), \bar{\alpha}_{7}=$ $(2,\{2, \pm 1\}, \pm 1), \bar{\alpha}_{8}=(0,\{ \pm 1,0\}, \pm 1), \bar{\alpha}_{9}=(\pm 1,\{ \pm 1,0\}, 2)$. Here $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ stands for $x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}$ for some permutation σ. Among these, $\bar{\alpha}_{6}, \bar{\alpha}_{7}, \bar{\alpha}_{8}$, and $\bar{\alpha}_{9}$ have order four. The group $I=\widetilde{S} / S$ contains one of $\bar{\alpha}_{i}, i=1,2,3,4,5$. We can see that if the contained element is $\bar{\alpha}_{i}, i=1,2,4,5$, the induced embedding $Q(G) \hookrightarrow \Lambda_{3} / P$ is not full. Thus I contains $\bar{\alpha}_{3}=(2,2,2,2)$. On the other hand since $2 \bar{\alpha}_{i} \neq \bar{\alpha}_{3}$ for $i=6,7,8,9$, one knows that I is generated by $(2,2,2,2)$. Let I^{\perp} be the orthogonal complement of I with respect to the discriminant bilinear form b on S^{*} / S. By easy calculation one knows $l\left(I^{\perp}\right) \geq 4$. Thus $3 \leq l\left(I^{\perp} / I\right)=l\left(\widetilde{S}^{*} / \widetilde{S}\right)=l\left(T^{*} / T\right)$, where T is the orthogonal complement of S in Λ_{3}. However, $l\left(T^{*} / T\right) \leq \operatorname{rank} T=2$, which is a contradiction. Thus $2 D_{5}+A_{3} \notin P C$.
$D_{7}+E_{6}$
By Lemma 1.5 we can omit graphs with a D_{4}-component.
(6.1) $D_{7}+E_{6}$
(6.2) $D_{7}+A_{5}+A_{1}$
(6.3) $D_{7}+3 A_{2}$
(6.4) $D_{5}+E_{6}+2 A_{1}$
(6.5) $D_{5}+A_{5}+3 A_{1}$
(6.6) $D_{5}+3 A_{2}+2 A_{1}$

We can make (6.1) from A_{11}. Thus the graph (6.1) is in $P C$.
The others are not in PC. For (6.4), (6.5), and (6.6) it follows from Lemma 1.5. For (6.3) we can show an extra root in the primitive hull. In this case an extra short root with length $\sqrt{2 / 3}$ appears.

To treat (6.2) we have to use a p-adic method. (Nikulin [1] Theorem 1.12.2 etc.) Set $S=P \oplus Q\left(D_{7}+A_{5}+A_{1}\right)$. Assume that we have an embedding $S \hookrightarrow \Lambda_{3}$ satisfying Looijenga's conditions $\langle a\rangle$ and $\langle b\rangle$. We will deduce a contradiction. By \widetilde{S} we denote the primitive hull of S in Λ_{3}, and by T we denote the orthogonal complement of S. Consider the discriminant group $S^{*} / S \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 2 \oplus \mathbf{Z} / 3 \oplus \mathbf{Z} / 3$. The first component $\mathbf{Z} / 4$ and the fifth component $\mathrm{Z} / 3$ are associated with the lattice P. The second $\mathbf{Z} / 4$ is associated with the component D_{7}. The third $\mathbf{Z} / 2$ and the last $\mathbf{Z} / 3$ are associated with A_{5}, and the fourth $\mathbf{Z} / 2$ with A_{1}. We have a non-zero element $\bar{\alpha}=(a, b, c, d, x, y)$ in $I=\widetilde{S} / S$. For the discriminant quadratic form q,

$$
q(\bar{\alpha}) \equiv-\frac{1}{4}\left(a^{2}+b^{2}\right)-\frac{1}{2} c^{2}+\frac{1}{2} d^{2}-\frac{2}{3}\left(x^{2}+y^{2}\right) \equiv 0 \bmod 2 \mathbf{Z} .
$$

$\bar{\alpha}$ is one of the following; $\bar{\alpha}_{1}=(0,0,1,1,0,0), \bar{\alpha}_{2}=(2,2,0,0,0,0), \bar{\alpha}_{3}=(2,2,1,1,0,0)$, $\bar{\alpha}_{4}=(\pm 1, \pm 1,0,1,0,0)$. If $\bar{\alpha}=\bar{\alpha}_{1}$, then \widetilde{S} contains a long root orthogonal to P such that it is not in S. It contradicts the assumption. If $\bar{\alpha}=\bar{\alpha}_{2}$, then \widetilde{S} / P contains a short root with length 1 , which is a contradiction. If $\bar{\alpha}=\bar{\alpha}_{4}$, then I contains $2 \bar{\alpha}_{4}=\bar{\alpha}_{2}$ and we can reduce the problem to the second case. Thus we can assume that I is a cyclic group of order 2 generated by $\bar{\alpha}_{3}$. Set $\bar{\beta}_{1}=(2,1,0,1,0,0), \bar{\beta}_{2}=(1,0,0,1,0,0)$, $\bar{\gamma}_{1}=(0,0,0,0,1,0)$, and $\bar{\gamma}_{2}=(0,0,0,0,0,1) \in S^{*} / S$. We can check that the orthogonal complement I^{\perp} of I with respect to b is a direct sum of I and 4 cyclic groups generated by these 4 elements. $\bar{\beta}_{i}(i=1,2)$ generates a cyclic group of order 4 , and $\bar{\gamma}_{i}(i=1,2)$ generates a cyclic group of order 3 . We have $\widetilde{S}^{*} / \widetilde{S} \cong I^{\perp} / I \cong \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 3 \oplus \mathbf{Z} / 3$. Here note that $\bar{\beta}_{1}, \bar{\beta}_{2}, \bar{\gamma}_{1}$, and γ_{2} are mutually orthogonal with respect to b, and $q\left(\bar{\beta}_{1}\right) \equiv-3 / 4, q\left(\bar{\beta}_{2}\right) \equiv 1 / 4, q\left(\bar{\gamma}_{i}\right) \equiv-2 / 3 \bmod 2 \mathrm{Z}(i=1,2)$. Thus we can compute the
discriminant form of \widetilde{S}. Reversing the sign of the discriminant quadratic form on $\widetilde{S}^{*} / \widetilde{S}$ we get the discriminant form q_{T} on T^{*} / T. We have

$$
q_{T}(a, b, x, y) \equiv \frac{3}{4} a^{2}-\frac{1}{4} b^{2}+\frac{2}{3}\left(x^{2}+y^{2}\right) \bmod 2 Z
$$

for $(a, b, x, y) \in \mathbf{Z} / 4 \oplus \mathbf{Z} / 4 \oplus \mathbf{Z} / 3 \oplus \mathbf{Z} / 3$.
Now we consider the lattice $T_{2}=T \otimes \mathbf{Z}_{2}$ over 2 -adic integers \mathbf{Z}_{2}. Note that $T_{2}^{*} / T_{2}=\left(T^{*} / T\right)_{2}$. Thus the discriminant quadratic form of T_{2} has the form $3 a^{2} / 4-b^{2} / 4$. This implies that T_{2} is equivalent over \mathbf{Z}_{2} to the lattice whose intersection form is defined by the matrix $\left(\begin{array}{cc}3 \cdot 2^{2} & 0 \\ 0 & -2^{2}\end{array}\right)$. Therefore we can conclude that the discriminant D of T satisfies $D \equiv-3 \cdot 2^{4} \bmod \mathbf{Z}_{2}^{* 2}$. However, on the other hand, $|D|=$ the order of $T^{*} / T=$ the order of $\widetilde{S}^{*} / \widetilde{S}=3^{2} \cdot 2^{4}$, and moreover $D=|D|$ since T has signature (0,2). One knows that there exists an element $\xi \in \mathbf{Z}_{2}^{*}=\mathbf{Z}_{2}-2 \mathbf{Z}_{2}$ with $3=-\xi^{2}$. It implies $3 \equiv-1$ $(\bmod 8)$, which is a contradiction.
(7) $E_{7}+D_{6}$

We can omit a graph with a D_{4}-component and a graph without a component of type D.
(7.1) $E_{7}+D_{6}$
(7.2) $2 D_{6}+A_{1}$
(7.3) $D_{6}+2 A_{3}+A_{1}$
(7.4) $D_{6}+A_{5}+A_{2}$
(7.5) $D_{6}+A_{7}$

We can make the graph (7.1) from A_{11}. Thus (7.1) belongs to $P C$.
The others are not in $P C$. The graph (7.2) is equal to (2.6).
For (7.2), (7.3), we can apply Lemma 1.6 as in (2.2). For (7.4) the method in the case (1.2) can be applied and we can show extra roots by considering the 3-Sylow subgroup. To (7.5) we can apply a 2 -adic method and we can deduce a contradiction similarly as in the case (6.2).
(8) $E_{8}+D_{5}$

We can omit graphs without a component of type D.
(8.1) $\quad E_{8}+D_{5}$
(8.2) $E_{7}+D_{5}+A_{1}$
(8.3) $E_{6}+D_{5}+A_{2}$
(8.4) $2 D_{5}+A_{3}$
(8.5) $D_{5}+2 A_{4}$
(8.6) $D_{5}+A_{5}+A_{2}+A_{1}$
(8.7) $A_{7}+D_{5}+A_{1}$
(8.8) $D_{8}+D_{5}$
(8.9) $D_{5}+A_{8}$
(8.10) $D_{5}+2 A_{3}+2 A_{1} \quad$ (8.11) $D_{8}+A_{3}+2 A_{1}$

Note that (8.4) is equal to (5.3), (8.8) is equal to (1.5) $=(5.1)$, and (8.11) is equal to (5.5), which have been previously discussed above.

Among them we can make the graph (8.1) from the graph A_{11}, (8.2) from $E_{8}+$ $B_{1}+G_{2}$, and (8.8)=(1.5)=(5.1) from A_{11}. (8.1), (8.2) and (8.8) belong to PC.

On the other hand, the others do not belong to $P C$. For $(8.4)=(5.3)$ and (8.11)= (5.5), we have shown it in the above. For (8.10) it follows from Lemma 1.5. For (8.3) and (8.6) we can apply similar arguments to those in (1.2). By a similar argument as in (5.3) we can conclude it for the case (8.7).

For the remaining (8.5) and (8.9) we apply a p-adic method.
Here we discuss (8.9) $D_{5}+A_{8}$. Assume that there is an embedding $S=P \oplus Q(G) \hookrightarrow$ Λ_{3} satisfying Looijenga's $\langle a\rangle$ and $\langle b\rangle$ for $G=D_{5}+A_{8}$. We will dedice a contradiction. The induced embedding $Q(G) \hookrightarrow \Lambda_{3} / P$ is full. By \widetilde{S} we denote the primitive hull of S in Λ_{3}, and by T we denote the orthogonal complement of $S . \operatorname{rank} T=2$.

First assume that $m=[\widetilde{S}: S]$ is prime to 3 . Then $\left(T^{*} / T\right)_{3} \cong\left(\widetilde{S}^{*} / \widetilde{S}\right)_{3} \cong\left(S^{*} / S\right)_{3}$. Here note that $\left(S^{*} / S\right)_{3} \cong \mathbf{Z} / 3 \oplus \mathbf{Z} / 9$. The first $\mathbf{Z} / 3$-component of $\left(S^{*} / S\right)_{3}$ corresponds to the lattice P and the second component $\mathbf{Z} / 9$ corresponds to the A_{8}-component of G respectively. The discriminant quadratic form on $\left(S^{*} / S\right)_{3}$ can be written

$$
q_{3} \equiv-\frac{2}{3} x^{2}+\frac{8}{9} y^{2} \bmod 2 \mathbf{Z}
$$

The discriminant quadratic form on $\left(T^{*} / T\right)_{3}$ is $-q_{3}$.
We consider the lattice $T_{3}=T \otimes \mathbf{Z}_{3}$ over 3 -adic integers \mathbf{Z}_{3}. Since $T_{3}^{*} / T_{3} \cong$ $\left(T^{*} / T\right)_{3}$, the discriminant quadratic form of T_{3} coincides with $-q_{3}$. This implies that T_{3} is equivalent over \mathbf{Z}_{3} to the lattice defined by the diagonal matrix whose diagonal entries are $6,-72$. Thus the discriminant D of T satisfies $D \equiv-2^{4} \cdot 3^{3} \bmod \mathbf{Z}_{3}^{* 2}$. On the other hand, $|D|=\#\left(T^{*} / T\right)=\#\left(\widetilde{S}^{*} / \widetilde{S}\right)=\#\left(S^{*} / S\right) / m^{2}=2^{4} \cdot 3^{3} / m^{2}$ (By \#M we denote the order of an abelian group M.), and $D>0$ since T has signature (0,2). In conclusion we have $-2^{4} \cdot 3^{3} \equiv 2^{4} \cdot 3^{3} / m^{2} \bmod Z_{3}^{* 2}$. It implies that $x^{2} \equiv-1(\bmod 3)$ has an integral solution, which is a contradiction.

Now, we can assume that there is a non-zero element $\bar{\alpha} \in(\widetilde{S} / S)_{3} \subset\left(S^{*} / S\right)_{3}$. Since $q(\bar{\alpha}) \equiv 0 \bmod 2 \mathbf{Z}$, one knows $\bar{\alpha}=(0, \pm 3)$. Then, \widetilde{S} contains an element α with $\alpha^{2}=2$ which is not in S. This contradicts Looijenga's condition $\langle a\rangle$ and the fullness.

Thus we can conclude $D_{5}+A_{8} \notin P C$.
The case (8.5) is similar. We consider $p=5$ in this case.
All the graphs in the remaining cases (9)-(26) turn out that they do not belong to $P C$.
(9) $A_{10}+3 A_{1}$

From this graph we can make no graph with a D-component by elementary transformations.

$$
\begin{array}{lll}
D_{10}+3 A_{1} & \tag{10}\\
\text { (10.1) } D_{10}+3 A_{1} & \text { (10.2) } D_{8}+5 A_{1} & \text { (10.3) } D_{7}+A_{3}+3 A_{1} \\
\text { (10.4) } D_{6}+D_{4}+3 A_{1} & \text { (10.5) } 2 D_{5}+3 A_{1} &
\end{array}
$$

We have already treated the case (10.1)=(2.2). It is not in PC. For (10.2)-(10.5) by Lemma 1.5 one knows that they are not in $P C$.
$A_{9}+4 A_{1}$
(12) $A_{7}+A_{2}+4 A_{1}$
(13) $A_{6}+A_{4}+3 A_{1}$

Obviously we cannot make a graph with a component of type D from any one of these three graphs (11)-(13).
(14) $D_{5}+A_{5}+3 A_{1}$
(15) $\quad E_{6}+A_{4}+3 A_{1}$
(16) $E_{7}+A_{3}+3 A_{1}$
(17) $E_{8}+A_{2}+3 A_{1}$

Let G be a graph with 13 vertices and with a component of type D made by an elementary transformation from one of the above 4 graphs (14)-(17). G has the form $G=G^{\prime}+A_{k}+3 A_{1}$ with $k \geq 2$. By Lemma 1.5 one knows $G \notin P C$.
(18) $A_{9}+D_{4}$
(19) $D_{9}+D_{4}$
(20) $\quad A_{8}+D_{4}+A_{1}$
(21) $A_{6}+D_{4}+A_{2}+A_{1}$
(22) $A_{5}+A_{4}+D_{4}$
(23) $D_{5}+D_{4}+A_{4}$
$E_{6}+D_{4}+A_{3}$
(25) $\quad E_{7}+D_{4}+A_{2}$
(26) $\quad E_{8}+D_{4}+A_{1}$

Omitting graphs without a D-component or with a D_{4}-component, only the following items remain for these cases (18)-(26).
(19.1) $D_{9}+4 A_{1}$
(19.2) $D_{7}+6 A_{1}$
(19.3) $D_{6}+A_{3}+4 A_{1}$
(23.1) $D_{5}+A_{4}+4 A_{1}$
(25.1) $D_{6}+A_{2}+5 A_{1}$
(26.1) $D_{5}+A_{3}+5 A_{1}$
(26.2) $D_{8}+5 A_{1}$

By Lemma 1.5 one knows that all of them cannot belong to $P C$.
By the above we complete the case of the number of vertices 13 .
We would like to proceed to the case of 12 vertices.
Let G be a Dynkin graph with components of type A, D, or E only. For simplicity by $\epsilon_{p}(G)$ and by $d(G)$ we denote the Hasse invariant $\epsilon_{p}(Q(G))$ and the discriminant $d(Q(G))$ of the root lattice $Q(G)$ of type G respectively.

In the following we assume further that G has 12 vertices and has a component of type D. Here recall our assumption (1) and (2). By assumption (1) $\rho=19$. By assumption (2) $\epsilon_{p}(G) \neq(3, d(G))_{p}$ for some prime number p.

Let G^{\prime} be the sum of components of G of type A or E. The number of vertices of G^{\prime} is less than or equal to 8 . Then we have

$$
\epsilon_{p}\left(G^{\prime}\right) \neq\left(3, d\left(G^{\prime}\right)\right)_{p} \text { for } p=3,5, \text { or } 7
$$

In what follows we explain this assertion.
Here recall that $d\left(G_{1}+G_{2}\right)=d\left(G_{1}\right) d\left(G_{2}\right)$ and $\epsilon_{p}\left(G_{1}+G_{2}\right)=\epsilon_{p}\left(G_{1}\right) \epsilon_{p}\left(G_{2}\right)$. ($\left.d\left(G_{1}\right), d\left(G_{2}\right)\right)_{p}$ for Dynkin graphs G_{1}, G_{2}, and that for $p \neq 2, \infty(a, b)_{p}=1$ if integers a, b satisfy $p \nmid a$ and $p \nmid b$. Besides, $\left(a, b^{2}\right)_{p}=1$ for every a, b, p.

Let $G^{\prime \prime}=G-G^{\prime}$ be the sum of components of type D. Note that $d\left(G^{\prime \prime}\right)=4^{m}$ for some m, and $\epsilon_{p}\left(G^{\prime \prime}\right)=1$ for every prime p. We have $\epsilon_{p}(G)=\epsilon_{p}\left(G^{\prime}\right) \epsilon_{p}\left(G^{\prime \prime}\right)$. $\left(d\left(G^{\prime}\right), 4^{m}\right)_{p}=\epsilon_{p}\left(G^{\prime}\right)$, and $(3, d(G))_{p}=\left(3,4^{m}\right)_{p}\left(3, d\left(G^{\prime}\right)\right)_{p}=\left(3, d\left(G^{\prime}\right)\right)_{p}$.

Thus $\epsilon_{p}\left(G^{\prime}\right) \neq\left(3, d\left(G^{\prime}\right)\right)_{p}$ for some prime p.
If $p \geq 3$ and $p y d\left(G^{\prime}\right)$, then $\epsilon_{p}\left(G^{\prime}\right)=1$, since $\epsilon_{p}\left(A_{k}\right)=\left(-1, d\left(A_{k}\right)\right)_{p}$ and $\epsilon_{p}\left(D_{l}\right)=$ $\epsilon_{p}\left(E_{m}\right)=1$. Moreover, if $p \geq 5$ and $p \nmid d\left(G^{\prime}\right)$, then we have $\left(3, d\left(G^{\prime}\right)\right)_{p}=1$. Therefore if $p \geq 5$ and $p \nmid d\left(G^{\prime}\right)$, then $\epsilon_{p}\left(G^{\prime}\right)=\left(3, d\left(G^{\prime}\right)\right)_{p}$. Thus we can consider only the case where $p=2,3$ or $p \mid d\left(G^{\prime}\right)$. Here note that $d\left(A_{k}\right)=k+1, d\left(E_{m}\right)=9-m$ and G^{\prime} has at most 8 vertices. Thus $p=2,3,5$ or 7 , if $p \mid d\left(G^{\prime}\right)$. Consequently we can assume $p=2,3,5$ or 7 .

Finally we can omit $p=2$ further, because of the product formula:

$$
\prod_{p, \text { incl. } \infty} \epsilon_{p}\left(G^{\prime}\right)=1, \quad \prod_{p, \text { incl. } \infty}\left(3, d\left(G^{\prime}\right)\right)_{p}=1
$$

$\left(\epsilon_{\infty}\left(G^{\prime}\right)=1\right.$ since $Q\left(G^{\prime}\right)$ is positive definite. $\left(3, d\left(G^{\prime}\right)\right)_{\infty}=1$ since $d\left(G^{\prime}\right)>0$.)
Assume that $\epsilon_{7}\left(G^{\prime}\right) \neq\left(3, d\left(G^{\prime}\right)\right)_{7}$. (We omit the lower index $p=7$ in the following.) We can write $G^{\prime}=A_{6}+G_{1}$ since $7 \mid d\left(G^{\prime}\right)$. $G_{1}=A_{2}, 2 A_{1}, A_{1}$ or \emptyset. In any case $7 \gamma d\left(G_{1}\right)$, and thus $\left(3, d\left(G^{\prime}\right)\right)=\left(3, d\left(A_{6}\right)\right)\left(3, d\left(G_{1}\right)\right)=(3,7)=-1$. Calculating $\epsilon\left(G^{\prime}\right)$ for the four possible cases, one has $G^{\prime}=A_{6}+A_{2}$.

Assume that $\epsilon_{5}\left(G^{\prime}\right) \neq\left(3, d\left(G^{\prime}\right)\right)_{5}$. (We omit the lower index $p=5$ in the following.) We can write $G^{\prime}=A_{4}+G_{1} . G_{1}$ has at most 4 vertices.

Case 1. $5 \mid d\left(G_{1}\right)$
$G^{\prime}=2 A_{4}$. However in this case $\epsilon\left(G^{\prime}\right)=1=\left(3, d\left(G^{\prime}\right)\right)$.
Case 2. $5 y d\left(G_{1}\right)$
$\left(3, d\left(G^{\prime}\right)\right)=-1$. We have only to check whether $\epsilon\left(A_{4}+G_{1}\right)=\left(5, d\left(G_{1}\right)\right)$ is equal to 1 . This is equivalent to $d\left(G_{1}\right) \equiv \pm 1(\bmod 5)$. Among the 11 possibilities only the following 6 graphs satisfy $\epsilon\left(G^{\prime}\right)=1$.

$$
A_{4}+2 A_{2}, \quad A_{4}+4 A_{1}, \quad A_{4}+A_{3}, \quad A_{4}+A_{2}+A_{1}, \quad A_{4}+2 A_{1}, \quad A_{4} .
$$

Assume that $\epsilon_{3}\left(G^{\prime}\right) \neq\left(3, d\left(G^{\prime}\right)\right)_{3}$. (We omit the lower index $p=3$ in the following.) Note that in this case we cannot conclude $3 \mid d\left(G^{\prime}\right)$.
Case 1. $3 \ d\left(G^{\prime}\right)$
In this case $\epsilon\left(G^{\prime}\right)=1$. Thus the assumption $\Longleftrightarrow\left(3, d\left(G^{\prime}\right)\right)=-1 \Longleftrightarrow d\left(G^{\prime}\right) \equiv$ $-1(\bmod 3) . G^{\prime}$ has at most 8 vertices and its component is either $A_{1}, A_{3}, A_{4}, A_{6}$, A_{7}, E_{7}, or E_{8}. We can pick up the following 15 graphs satisfying the assumptions from 34 possibilities.

$$
\begin{array}{llllllll}
E_{7} & A_{7} & A_{6}+A_{1} & A_{4}+4 A_{1} & A_{4}+A_{3} & A_{4}+2 A_{1} & A_{4} & 2 A_{3}+A_{1} \\
A_{3}+5 A_{1} & A_{3}+3 A_{1} & A_{3}+A_{1} & 7 A_{1} & 5 A_{1} & 3 A_{1} & A_{1} &
\end{array}
$$

Case 2. G^{\prime} contains A_{8}.
$G^{\prime}=A_{8} . \epsilon\left(A_{8}\right)=(-1,9)=1 .\left(3, d\left(A_{8}\right)\right)=(3,9)=1$. This does not satisfy the assumption.

Case 3. G^{\prime} contains E_{6}.
There are only 4 possibilities for G^{\prime}. Only the following three satisfy the assumption.

$$
E_{6}+2 A_{1}, \quad E_{6}+A_{1}, \quad E_{6} .
$$

Case 4. G^{\prime} contains A_{5}.
There are only 7 possibilities for G^{\prime}. Among them only the following six satisfy the assumption.

$$
A_{5}+A_{3}, \quad A_{5}+A_{2}, \quad A_{5}+3 A_{1}, \quad A_{5}+2 A_{1}, \quad A_{5}+A_{1}, \quad A_{5}
$$

Case 5. G^{\prime} contains just 4 of A_{2}.
$G^{\prime}=4 A_{2}$. In this case $\epsilon=1=(3, d)$. It does not satisfy the assumption.
Case 6. G contains just 3 of A_{2}.
We can write $G^{\prime}=3 A_{2}+G_{1}$ with $3 y d\left(G_{1}\right)$. Then we have $\epsilon\left(G^{\prime}\right)=\left(3, d\left(G_{1}\right)\right)$, and $\left(3, d\left(G^{\prime}\right)\right)=-\left(3, d\left(G_{1}\right)\right)$. Thus every possibility automatically satisfies the assumption. There are three possibilities.

$$
3 A_{2}+2 A_{1}, \quad 3 A_{2}+A_{1}, \quad 3 A_{2}
$$

Case 7. G contains just 2 of A_{2}.
Writing $G^{\prime}=2 A_{2}+G_{1}$, one knows $\epsilon \neq(3, d) \Longleftrightarrow d\left(G_{1}\right) \equiv 1(\bmod 3)$. Only the following four among possibilities satisfy the assumption.

$$
2 A_{2}+4 A_{1}, \quad 2 A_{2}+A_{3}, \quad 2 A_{2}+2 A_{1}, \quad 2 A_{2} .
$$

Case 8. G contains just one of A_{2} and it does not contain A_{5} and E_{6}.
We can write $G^{\prime}=A_{2}+G_{1}$ with $3 \gamma d\left(G_{1}\right)$. We have $\epsilon\left(G^{\prime}\right)=-\left(3, d\left(G_{1}\right)\right)$ and $\left(3, d\left(G^{\prime}\right)\right)=-\left(3, d\left(G_{1}\right)\right)$. Thus the assumption is never satisfied in this case.

We have the following proposition.
Proposition 1.7. Let G be a Dynkin graph with components of type A, D, or E only. We assume that G has 12 vertices and it contains a component of type D. If $\epsilon_{p}(G) \neq(3, d(G))_{p}$ for some prime p, then G is one of the following 40.

(1) $D_{11}+A_{1}$	(2) $D_{8}+A_{4}$	(3) $D_{8}+A_{3}+A_{1}$
(4) $D_{7}+A_{5}$	(5) $D_{6}+D_{5}+A_{1}$	(6) $D_{6}+E_{6}$
(7) $D_{6}+A_{5}+A_{1}$	(8) $D_{5}+A_{7}$	(9) $D_{5}+E_{7}$
(10) $D_{5}+A_{6}+A_{1}$	(11) $D_{5}+E_{6}+A_{1}$	(12) $D_{5}+A_{5}+2 A_{1}$
(13) $D_{5}+A_{4}+A_{3}$	(14) $D_{5}+A_{4}+A_{2}+A_{1}$	
(15) $D_{9}+3 A_{1}$	(16) $D_{7}+D_{4}+A_{1}$	(17) $D_{6}+A_{4}+2 A_{1}$
(18) $D_{6}+3 A_{2}$	(19) $D_{6}+2 A_{2}+2 A_{1}$	(20) $D_{5}+3 A_{2}+A_{1}$
(21) $D_{4}+E_{6}+2 A_{1}$	(22) $D_{4}+A_{5}+A_{3}$	
(23) $D_{6}+A_{3}+3 A_{1}$	(24) $D_{4}+A_{5}+3 A_{1}$	
(25) $D_{5}+2 A_{3}+A_{1}$		
(26) $D_{8}+2 A_{2}$	(27) $D_{5}+A_{5}+A_{2}$	(28) $D_{5}+A_{3}+2 A_{2}$
(29) $D_{4}+A_{6}+A_{2}$	(30) $D_{4}+A_{4}+2 A_{2}$	
(31) $D_{7}+5 A_{1}$	(32) $D_{5}+D_{4}+3 A_{1}$	(33) $D_{5}+7 A_{1}$
(34) $2 D_{4}+A_{4}$	(35) $2 D_{4}+A_{3}+A_{1}$	(36) $2 D_{4}+2 A_{2}$
(37) $D_{4}+A_{4}+4 A_{1}$	(38) $D_{4}+A_{3}+5 A_{1}$	(39) $D_{4}+3 A_{2}+2 A_{1}$
(40) $D_{4}+2 A_{2}+4 A_{1}$		

Among the above, 14 items (1)-(14) can be made from one of the essential basic Dynkin graphs by elementary or tie transformations repeated twice. (For example we can make D_{12} from a basic graph A_{11} by one tie transformation. From D_{12} we can make the graphs (1)-(14) by the same transformation.)
Lemma 1.8. In addition to our assumptions on the elliptic K3 surfaces we assume that the number r of vertices of $G \in P C\left(W_{1,0}\right)$ is 12 . Then G has at most only one component of type D_{4}.
Proof. If G has 2 or more components of type D_{4}, then the functional invariant must be constant. (See Lemma 1.5.) One has $\rho=19, a=1, t_{1}=0$, and $t=4$ by assumption and by the equality (3) in Part II section 1. Thus the combination of singular fibers must be $4 I_{0}^{*}$ and $G=3 D_{4}$. However, then, $\epsilon_{p}\left(3 D_{4}\right)=\left(3, d\left(3 D_{4}\right)\right)_{p}$ for every p, which contradicts the assumption.
Q.E.D.

The ten items (31)-(40) do not satisfy the condition in Lemma 1.8 or Lemma 1.5 (1). Thus they do not belong to $P C$.

Items (15)-(30) are remaining. For (15)-(22) we can apply a similar argument to that in the case (1.2), $r=13$ in the above. Only by solving the congruence equation $q \equiv 0$, we can conclude that they are not in $P C$.

For (23) and (24) we can use the method applying Lemma 1.6 explained in the case (2.2) in the above. To (25) we can apply the method in the case (5.3) above.

To (26)-(30) we can apply the same method as in (8.9). Namely, first by the p adic method, we show that $S=P \oplus Q(G)$ has no primitive emdedding into Λ_{3}. Next assuming $\widetilde{S} / S \neq 0$ by solving $q \equiv 0$ we can deduce a contradiction from the fullness.

Anyway we can show that any one of the items (15)-(40) does not belong to PC.
We complete the case of 12 vertices.
Now, the last remaining case is the case of 11 vertices. Also in this case we use the abbriviations $d(G)$ and $\epsilon_{p}(G)$.

Proposition 1.9. Let G be a Dynkin graph with 11 vertices with components of type A, D, or E only. Assume that G has a component of type D and satisfies the following condition \vee.

For some prime number $p, 3 d(G) \in \mathbf{Q}_{p}^{* 2}$ and $\epsilon_{p}(G) \neq(-1,3)_{p}$.
Then, $G=D_{5}+E_{6}, D_{5}+A_{5}+A_{1}$ or $D_{5}+3 A_{2}$.
Proof. Let G^{\prime} be the sum of components of G of type A or E. G^{\prime} has at most 7 vertices. One knows easily that \mathcal{Q} is equivalent to the following ∇^{\prime}.

$$
\text { For } p=2,3,5 \text { or } 7,3 d\left(G^{\prime}\right) \in \mathbf{Q}_{p}^{* 2} \text { and } \epsilon_{p}\left(G^{\prime}\right) \neq(-1,3)_{p}
$$

In the first step we determine all the pairs $\left(G^{\prime}, p\right)$ such that $\epsilon_{p}\left(G^{\prime}\right) \neq(-1,3)_{p}$, where G^{\prime} is a Dynkin graph with at most 7 vertices with components of type A or E only, and $p=2,3,5$ or 7 . We can omit the calculation in the case $p=2$ thanks to the product formula.

We do not present the result here. However, the list of such pairs contains 33 kinds of Dynkin graphs, and each graph corresponds to just 2 prime numbers. The two graphs $A_{6}+A_{1}$ and A_{6} correspond $p=3$ and 7. The three graphs $A_{4}+3 A_{1}, A_{4}+A_{2}$ and $A_{4}+A_{1}$ correspond to $p=3$ and 5 . The others correspond to $p=2$ and 3 .

Next, we check whether each item satisfies $3 d\left(G^{\prime}\right) \in \mathbf{Q}_{p}^{* 2}$ or not. (Note that an integer $p^{m} a$ with $p \nmid a$ belongs to $Q_{p}^{* 2}$ if and only if m is even and $\left(\frac{a}{p}\right)=+1$ (when p is an odd prime number. (\bar{p}) is Legendre's quadratic residue symbol.), m is even and $a \equiv 1(\bmod 8)($ when $p=2)$.$) Then, one knows that only three graphs satisfy the$ condition, and we have the above three graphs. Each of the three satisfies the condition for $p=2$ and 3 .
Q.E.D.

If O is not satisfied, then there exists an isotropic element in a nice position by Theorem 0.5 [II] in Part I (Urabe [4]). Thus we can assume 0 . Consequently we can consider only the above three graphs.

For $D_{6}+E_{6}$ and $D_{6}+A_{5}+A_{1}$ we can make them from the basic graph A_{11} by tie transformations repeated twice. Thus they belong to $P C=P C\left(W_{1,0}\right)$. Indeed we can make D_{12} from A_{11} easily. From D_{12} we can make them.

On the contrary, the third graph $D_{5}+3 A_{2}$ does not belong to $P C$. To see this we can apply the same method as in (8.9) above.

We can complete this section. We have shown Proposition 0.1 under the assumption ((1)) in the introduction.

§2. A singular flber of type $I I^{*}, I I I^{*}, I V^{*}$

Let G be a Dynkin graph belonging to $P C\left(W_{1,0}\right)$ with r vertices. Throughout this section we assume that the corresponding elliptic K3 surface $\Phi: Z \rightarrow C$ has a singular fiber of type $I I^{*}, I I I^{*}$, or $I V^{*}$, which is denoted by F_{2}.
Proposition 2.1. (1) G is a subgraph of the Coxeter-Vinberg graph of the unimodular lattice of signature $(14,1)$.
(2) G has a component of type E.

Proof. (1) We have the associated embedding $P \oplus Q(G) \hookrightarrow \Lambda_{3}$ satisfying Looijenga's conditions $\langle a\rangle,\langle b\rangle$. Let \bar{P} denote the sublattice in P of rank 6 which has a basis e_{0}, \ldots, e_{5} corresponding to C_{5} and 5 components of F_{1}. This \bar{P} is isomorphic to P defined in the case $J_{3,0}$. It is easy to check that the induced embedding $\bar{P} \oplus Q(G) \hookrightarrow \Lambda_{3}$ also satisfies the conditions $\langle a\rangle,\langle b\rangle$. Thus the embedding $Q(G) \hookrightarrow \Lambda_{3} / \vec{P}$ is full. By Proposition 2.1 in Part II the orthogonal complement of $Q(G)$ in Λ_{3} / \bar{P} contains an element ξ with $\xi^{2}=-4$. (Though we can write $\xi=2 \eta$ in Λ_{3} / \bar{P}, we do not use this fact.) The orthogonal complement L of $\mathbf{Z} \xi$ in Λ_{3} / \bar{P} is a unimodular lattice of signature $(14,1)$, and $Q(G)$ is full in L. The claim follows from these facts.
(2) Consider the dual graph G_{1} associated with the set of components of F_{2} not intersecting $I F$. The dual graph of all components of F_{2} minus 1 or 2 vertices corresponding to components with multiplicity 1 is G_{1}.

Assume that G_{1} is not of type E. We will deduce a contradiction. One knows immediately that F_{2} is of type $I V^{*}$ and G_{1} is of type D_{5}.

For $2 \leq i \leq t$, let $n\left(F_{i}\right)$ denote the number of components not intersecting $I F$ of the singular fiber $F_{i} . n\left(F_{2}\right)=5$ and $r=\sum_{i=2}^{t} n\left(F_{i}\right)$. Recall that we can assume $\rho=7+r$ without loss of generality. Then, by the equality (2) in the beginning of section 1 in Part II, we have $\sum_{i=3}^{t}\left(m\left(F_{i}\right)-n\left(F_{i}\right)-1\right)+a=0$, since $m\left(F_{1}\right)=5$ and $m\left(F_{2}\right)=7$. We have $a=0$ and $m\left(F_{i}\right)-1=n\left(F_{i}\right)$ for $3 \leq i \leq t$. In particular the group E of sections is finite.

Here we recall that we denoted by Tor M the subgroup of an abelian group M consisting of all elements of finite order.

In our case the section s_{1} corresponding to C_{6} belongs to $\operatorname{Tor} E=E$. We consider $F_{i}^{\#}=F_{i} \cap Z^{\#}$ for $i=1,2$. Recall that they carry the group structure. Since F_{1} is of type I_{0}^{*}, Tor $F_{1}^{\#} \cong \mathrm{Z} / 2+\mathrm{Z} / 2$. One knows that s_{1} has order 2 in E since $E \rightarrow$ Tor $F_{1}^{\#}$ is injective. Thus Tor $F_{2}^{\#}$ has an element of order 2, since $E \rightarrow$ Tor $F_{2}^{\#}$ is injective. However, Tor $F_{2}^{\#} \cong \mathrm{Z} / 3$, since F_{2} is of type $I V^{*}$. It is a contradiction.
Q.E.D.

Here recall Proposition 3.5 in Part II, which claims that if a Dynkin graph G can be obtained from a basic Dynkin graph G_{0} by elementary or tie transformations applied twice, then any subgraph G^{\prime} of G can be obtained from G_{0} by elementary or tie transformations applied twice.

By the concrete form of the Coxeter-Vinberg graph in Part II section 2, one knows that a Dynkin graph G satisfying the conditions (1) and (2) in Proposition 2.1 is a subgraph of $E_{8}+E_{6}$ or $2 E_{7}$.

By Theorem 0.5 in Part I [4] we can treat only the case $r=13,12$ or 11.
The first case is $r=13$. Then G is one of the following 18 graphs.
(1) $E_{8}+A_{4}+A_{1}$
(2) $E_{8}+D_{5}$
(3) $E_{7}+A_{6}$
(4) $E_{7}+D_{6}$
(5) $E_{7}+D_{5}+A_{1}$
(6) $2 E_{6}+A_{1}$
(7) $E_{6}+D_{7}$
(8) $E_{8}+2 A_{2}+A_{1}$
(9) $E_{6}+A_{4}+A_{2}+A_{1}$
(10) $E_{6}+D_{5}+A_{2}$
(11) $E_{8}+A_{5}$
(12) $E_{7}+A_{5}+A_{1}$
(13) $E_{7}+A_{3}+A_{2}+A_{1}$
(14) $E_{7}+A_{4}+A_{2}$
(15) $E_{7}+E_{6}$
(16) $E_{6}+A_{7}$
(17) $E_{6}+A_{6}+A_{1} \quad$ (18) $E_{6}+A_{4}+A_{3}$

The 7 graphs (1)-(7) can be made from one of the essential basic Dynkin graphs by tie transformations repeated twice. The following shows an example of the initial basic graph.
(1) $\leftarrow E_{8}+B_{1}+G_{2}$
(2) $\leftarrow B_{9}+G_{2}$
(3) $\leftarrow E_{7}+B_{3}+G_{1}$
(4) $\leftarrow E_{7}+B_{3}+G_{1}$
$(5) \leftarrow E_{8}+B_{1}+G_{2}$
(6) $\leftarrow E_{8}+B_{1}+G_{2}$
(7) $\leftarrow B_{9}+G_{2}$

The other 11 graphs do not belong to $P C=P C\left(W_{1,0}\right)$.
For (8), (9), and (10) we can use the method explained in (1.2) in section 1 to show it. We can construct an extra root for each non-zero solution of $q \equiv 0$.

For 7 graphs (11)-(18) we apply the p-adic method for $p=3$, and argue as in the case (8.9) $D_{5}+A_{8}$.

Let us proceed to the case of $r=12$. Thanks to Proposition 3.5 in Part II, we can assume that G is not isomorphic to a subgraph of the above (1)-(7) of case $r=13$ in addition to the conditions in Proposition 2.1. It is not difficult to see that a graph satisfying the conditions is one in the following list.

$$
\begin{array}{ll}
\diamond 1 \diamond E_{8}+2 A_{2} & \diamond 2 \diamond E_{7}+2 A_{2}+A_{1} \\
\diamond 3 \diamond E_{6}+A_{3}+A_{2}+A_{1} & \diamond 4 \diamond E_{6}+A_{4}+A_{2}
\end{array}
$$

It turns out that all of these 4 graphs do not belong to $P C$.
For these graphs we can apply the p-adic method for $p=3$. By arguments similar to the case (8.9) $D_{5}+A_{8}$, we can show that any one of them is not in $P C$.

Lastly we consider the case $r=11$. However, in this case every graph satisfying the conditions in Proposition 2.1 is isomorphic to a subgraph of the above (1)-(7) in the case $r=13$. By Proposition 3.5 in Part II we can complete the proof.

We have shown Proposition 0.1 under the assumption ((2)) in the introduction in this section.

§3. Combinations of graphs of type A

In this section we consider under the assumption ((3)) in the introduction. As in the previous sections G denotes a Dynkin graph in $P C\left(W_{1,0}\right)$ with r vertices. The corresponding elliptic K3 surface $\Phi: Z \rightarrow C$ has t singular fibers F_{1}, \ldots, F_{t} and one of them, say F_{1}, is of type I_{0}^{*} and the others are of type $I, I I, I I I$ or $I V$. The union $I F=F_{1} \cup C_{5} \cup C_{6}$ is the curve at infinity. By C_{0}, \ldots, C_{4} we denote the components of $I F$. We assume that C_{0} has multiplicity $2, C_{5}$ intersects C_{4}, and C_{6} intersects C_{3}. Let $A_{n_{i}}$ be the dual graph of the set of components not intersecting C_{5} of a singular fiber F_{i} for $2 \leq i \leq t$. (A_{0} stands for an empty graph \emptyset.)

Lemma 3.1.(1) If $\rho=r+7$, then $a=0$ or 1. If $\rho=r+7$ and $a=1$, then every singular fiber F_{i} with $2 \leq i \leq t$ has only one component intersecting IF. If $\rho=r+7$ and $a=0$, then $G=2 A_{5}+G_{1}$ for some Dynkin graph G_{1}.
(2) $r \leq 13$. If $r=13$, then $a=1$.
(3) $\nu(G) \leq 18-r$.

Proof. (1) For $2 \leq i \leq t$ by $n\left(F_{i}\right)$ we denote the number of components of F_{i} not intersecting $I F$. By definition $r=\sum_{i=2}^{t} n\left(F_{i}\right)$. By the equaliy (2) in Part II section 1, we have $1-a=\sum_{i=2}^{t}\left(m\left(F_{i}\right)-n\left(F_{i}\right)-1\right)$. Obviously $m\left(F_{i}\right) \geq n\left(F_{i}\right)+1$ by definition, and $a \leq 1$.

If $a=1$, then $m\left(F_{i}\right)=n\left(F_{i}\right)+1$ for all i with $2 \leq i \leq t$.
Assume $a=0$. There is a unique singular fiber, say F_{2}, different from F_{1} such that C_{5} and C_{6} hit different components of F_{2}. Let S_{i} be the subgroup of $\operatorname{Pic}(Z)$ generated by the classes of components of F_{i} not intersecting C_{5}. We can write [C_{6}] $=$ $[F]+m\left[F+C_{5}\right]+\omega_{3}+\chi$, where $\omega_{3} \in S_{1}^{*}, \chi \in S_{2}^{*}$ and $m \in \mathbf{Z}$. We have $m=1$, since $\left[C_{6}\right] \cdot\left[C_{5}\right]=0$.

Under the isomorphism $S_{1}^{*} \cong Q\left(D_{4}\right)^{*} \omega_{3}$ corresponds to the fundamental weight associated with the vertex of the Dynkin graph D_{4} with one edge corresponding to the component C_{3} of F_{1}. In particular $\omega_{3}^{2}=-1$.

On the other hand, under $S_{2}^{*} \cong Q\left(A_{n_{2}}\right)^{*} \chi$ corresponds to the fundamental weight associated with the vertex of $A_{n_{2}}$ corresponding to the component of F_{2} hit by C_{6}.

However, by injectivity of $E=\operatorname{Tor} E \rightarrow F_{2}^{\#}$, the image of χ in the quotient $Q\left(A_{n_{2}}\right)^{*} / Q\left(A_{n_{2}}\right)$ has order 2 . Thus n_{2} is odd, and χ corresponds to the central vertex of $A_{n_{2}}$. In particular $\chi^{2}=-\left(n_{2}+1\right) / 4$. We have $-2=\left[C_{6}\right]^{2}=2-1-\left(n_{2}+1\right) / 4$. Thus $n_{2}=11$. G contains the graph A_{11} minus the central vertex, i.e., $2 A_{5}$.
(2) Since $20 \geq \rho \geq 7+r$, the first claim is obvious.

Assume $r=13$. Then $\rho=20=7+r$. We have $a \geq \nu\left(I_{0}^{*}\right) \geq 1$ by the inequality (4) in Part II section 1 when J is not constant.

Thus we can assume moreover that J is constant. Then $t_{1}=0$ in the equality (3) in Part II section 1, and we have $2(t-1)=4+a \leq 5$.

On the other hand, every component of G is of type A_{1} or A_{2} under our assumption, since every singular fiber except F_{1} is of type $I I, I I I$ or $I V$. Therefore we have $7 \leq$ $\nu(G) \leq t-1 \leq 2$, which is a contradiction.
(3) We can assume without loss of generality that $\rho=r+7$. If $a=0$, then the inequality obviously holds by (1). Thus we assume moreover $a=1$. We apply the equality (3) in Part II section 1. First obviously $t-t_{1}-1=\nu(I I)+\nu(I I I)+\nu(I V)$ under our assumption. Secondly $t_{1}=\nu(G)+\nu\left(I_{1}\right)$ by (1) above. The claim follows from the equality (3) in Part II.
Q.E.D.

Note that by Lemma 3.1 (1) $G=\sum A_{n_{i}}$ if $\rho=r+7$ and $a=1$.
Let P be the lattice associated with the singularity $W_{1,0} . \operatorname{rank} P=7$. Recall that e_{0}, \ldots, e_{6} denote the basis of P which has a one-to-one correspondence with the components C_{i} 's of $I F$. The surface Z defines an embedding $P \oplus Q(G) \hookrightarrow \Lambda_{3}$ satisfying Looijenga's conditions $\langle a\rangle$ and $\langle b\rangle$. The induced embedding $Q(G) \hookrightarrow \Lambda_{3} / P$ is full and has no obstruction component of type A_{11}, i.e., if G has a component G_{1} of type A_{11}, then $\left[P\left(Q\left(G_{1}\right), \Lambda_{3} / P\right): Q\left(G_{1}\right)\right]<12$. Here recall that we have denoted the primitive hull of a submodule M in L by $P(M, L)=\{x \in L \mid$ For some non-zero integer $m ; m x \in M\}$.

We regard $P \oplus Q(G)$ as a submodule of Λ_{3} via the induced embedding.
Proposition 3.2. $P C\left(W_{1,0}\right) \subset P C\left(J_{3,0}\right)$.
Proof. Let \bar{P} be the sublattice of rank 6 in P generated by $e_{0}, e_{1}, \ldots, e_{5}$. This \bar{P} is isomorphic to P defined in the case of $J_{3,0}$.

If $G \in P C\left(W_{1,0}\right)$, then we have an embedding $P \oplus Q(G) \hookrightarrow \Lambda_{3}$ satisfying the conditions $\langle a\rangle,\langle b\rangle$. It is easy to check that the induced embedding $\bar{P} \oplus Q(G) \hookrightarrow \Lambda_{3}$ also satisfies $\langle a\rangle$ and $\langle b\rangle$. It implies $G \in P C\left(J_{3,0}\right)$.
Q.E.D.

Proposition 3.3. Assume that $\rho=r+7$ and $a=1$.
(1) $Q(G)$ is primitive in Λ_{3}.
(2) For every element $\bar{\alpha} \in P\left(P \oplus Q(G), \Lambda_{3}\right) /(P \oplus Q(G))$ with order 2 , there is a subset $T \subset N(2)=\left\{i \mid 2 \leq i \leq t, n_{i}+1 \equiv 0(\bmod 2)\right\}$ satisfying $\sum_{i \in T}\left(n_{i}+1\right)=12$ and $\bar{\alpha}$ can be written $\bar{\alpha}=\bar{\omega}+\sum_{i \in T} \bar{\chi}_{i}$, where $\bar{\omega} \in P^{*} / P$, and $\bar{\chi}_{i} \in Q\left(A_{n_{i}}\right)^{*} / Q\left(A_{n_{i}}\right)(i \in T)$ have order 2 .

Proof. (1) The proof is same as in Lemma 1.6 (1).
(2) We can write $\bar{\alpha}=\bar{\omega}+\sum_{i=2}^{t} \bar{\chi}_{i}$, where $\bar{\omega} \in P^{*} / P \cong \mathrm{Z} / 12$, and $\bar{\chi}_{i} \in Q\left(A_{n_{i}}\right)^{*} / Q\left(A_{n_{i}}\right) \cong \mathbf{Z} /\left(n_{i}+1\right)$ for $2 \leq i \leq t$.

Set $T=\left\{i \mid 2 \leq i \leq t, \bar{\chi}_{i} \neq 0\right\}$. If $\bar{\chi}_{i} \neq 0$ it has order 2 by assumption, and n_{i} is odd.

If $\bar{\omega}=0$, we have a contradiction by above (1). Thus $\bar{\omega} \neq 0$. By assumption $\bar{\omega}$ has order 2. It can be checked that the element of order 2 in P^{*} / P is $\omega_{0} \bmod P$ where $\omega_{0}=\left(e_{1}+e_{2}\right) / 2+e_{0}+e_{3} \in P^{*}$ and thus it is contained in $\left(P^{*} \cap \bar{P}^{*}\right)+P / P \cong\left(P^{*} \cap \bar{P}^{*}\right) / \bar{P}$. Namely, we can regard $\bar{\alpha}$ as an element in $(\bar{P} \oplus Q(G))^{*} /(\bar{P} \oplus Q(G))$. Thus we have a section $s^{\prime}: C \rightarrow Z$ whose image $C^{\prime}=s^{\prime}(C)$ represents the class $\bar{\alpha}$. Since for every point $a \in C$ the homomorphism from $\widetilde{\bar{S}} / \widetilde{S}$ to the group $F_{a}^{\#}$ of the fiber over a is injective, $C^{\prime} \cdot C_{5}=0$. Let S_{i} be the same group as in the proof of Lemma 3.1 (1). We can write

$$
\left[C^{\prime}\right]=[F]+\left[F+C_{5}\right]+\omega+\sum_{i \in T} \chi_{i}
$$

where F denotes a general fiber, $\chi_{i} \in S_{i}^{*}$ is the fundamental weight associated with the central vertex of the Dynkin graph $A_{n_{i}}$. In particular $\chi_{i}^{2}=-\left(n_{i}+1\right) / 4$. The element $\omega \in S_{1}^{*}$ corresponds to $\omega_{0} \in P_{0}^{\prime *} \cong Q\left(D_{4}\right)$ under $S_{1}^{*} \xrightarrow{\sim} P_{0}^{\prime *}$. We have $-2=$ $\left[C^{\prime}\right]^{2}=\left([F]+\left[F+C_{5}\right]\right)^{2}+\omega^{2}+\sum_{i \in T}\left(n_{i}+1\right) / 4$. Therefore $\sum_{i \in T}\left(n_{i}+1\right)=12$, since $\left([F]+\left[F+C_{5}\right]\right)^{2}=2$ and $\omega^{2}=-1$.
Q.E.D.

Corollary 3.4. We consider a Dynkin graph $G=\sum_{i \in I} A_{k_{i}} \in P C=P C\left(W_{1,0}\right)$ under the condition ((3)). Assume moreover that $\rho=r+7$ and $a=1$. Set $S=P \oplus Q(G)$ and $\widetilde{S}=P\left(S, \Lambda_{3}\right)$.
(1) For any prime p with $p \geq 5(\widetilde{S} / S)_{p}=0$. (M_{p} denotes the p-Sylow subgroup of $\left.M\right)$.
(2) For $p=2,3, l\left((\widetilde{S} / S)_{p}\right) \leq 1$. ($l(M)$ denotes the minimum number of generators of $M)$.

Proof. The proof is same as that of Lemma 1.6 (3), (4).

First we consider the case $r=13$. Then, we have $\rho=r+7=20$ and by Lemma 3.1 (2) we have $a=1$.

By Lemma 3.1 (3) items to be checked are graphs corresponding to the division of 13 into 5 pieces. By Proposition 3.2 we can assume moreover that the graph belongs to $P C\left(J_{3,0}\right)$. Recall that there are 25 kinds of such graphs. 24 graphs of 25 was explained in paragraph \mathbf{A} in Part II section 3 and we can make them from $E_{8}+F_{4}$ by two tie transformations. The last one is (57) $3+3+3+2+2,3 A_{3}+2 A_{2}$. The following is the list of 25 graphs. We use the numbering in Part II section 3.
(1) A_{13}
(2) $A_{12}+A_{1}$
(3) $A_{11}+A_{2}$
(5) $A_{9}+A_{4}$
(6) $A_{8}+A_{5}$
(8) $A_{11}+2 A_{1}$
(9) $A_{10}+A_{2}+A_{1}$
(10) $A_{9}+A_{3}+A_{1}$
(11) $A_{9}+2 A_{2}$
(12) $A_{8}+A_{4}+A_{1}$
(17) $2 A_{6}+A_{1}$
(18) $A_{6}+A_{5}+A_{2}$
(20) $2 A_{5}+A_{3}$
(21) $A_{5}+2 A_{4}$
(23) $A_{9}+A_{2}+2 A_{1}$
(26) $A_{7}+A_{4}+2 A_{1}$
(27) $A_{7}+A_{3}+A_{2}+A_{1}$
(30) $A_{6}+A_{4}+A_{2}+A_{1}$
(32) $A_{6}+A_{3}+2 A_{2}$
(34) $A_{5}+A_{4}+A_{3}+A_{1}$
(43) $A_{7}+2 A_{2}+2 A_{1}$
(47) $2 A_{5}+3 A_{1}$
(49) $A_{5}+2 A_{3}+2 A_{1}$
(53) $2 A_{4}+2 A_{2}+A_{1}$
(57) $3 A_{3}+2 A_{2}$
(a). For (1) and (2) we can make the corresponding graph G from the essential basic Dynkin graph A_{11} by two tie transformations. Thus $G \in P C$.

In the other 23 cases the corresponding graph G is not a member of $P C$.
(b). Consider the case (3) $G=A_{11}+A_{2}$. Note the obstruction component A_{11}.

Set $S=P \oplus Q(G)$. We assume that there is an embedding $S \hookrightarrow \Lambda_{3}$ satisfying Looijenga's $\langle a\rangle$ and $\langle b\rangle$. By \widetilde{S} we denote the primitive hull of S in Λ_{3}. We set $I=\widetilde{S} / S$. T denotes the orthogonal complement of S in $\Lambda_{3} . D$ is the discriminant of T.

We have $S^{*} / S \cong(\mathbf{Z} / 4)^{2} \oplus(\mathbf{Z} / 3)^{3}$. The first $\mathbf{Z} / 4$-component and the third component isomorphic to $\mathbf{Z} / 3$ correspond to P, the second and the fourth correspond to A_{11}, and the last fifth $\mathbf{Z} / 3$-component corresponds to A_{2}. We have $D=2^{4} \cdot 3^{3} / m^{2}$ for $m=[\tilde{S}: S]$.

Assume that $m=[\widetilde{S}: S]$ is odd. $\left(T^{*} / T\right)_{2} \cong\left(S^{*} / S\right)_{2}$. Since the discriminant quadratic form on $\left(S^{*} / S\right)_{2} \cong(\mathbf{Z} / 4)^{2}$ can be written $-a^{2} / 4+b^{2} / 4, D \equiv-2^{4} \bmod \mathbf{Z}_{2}^{* 2}$. Thus we have $-3^{3} \equiv m^{2} \quad(\bmod 8)$, which is a contradiction. One knows that m is even.

Assume that m is not a multiple of 4 . Then, by Proposition $3.3(2) I_{2}$ is generated by $(2,2) \in\left(S^{*} / S\right)_{2}$. One can check that the finite quadratic form on $(\widetilde{S} / \widetilde{S})_{2} \cong I_{2}^{\perp} / I_{2} \cong$ $\mathbf{Z} / 2+\mathbf{Z} / 2$ can be written $a b$ for $(a, b) \in \mathbf{Z} / 2+\mathbf{Z} / 2$. Thus one has $D \equiv-2^{2} \bmod \mathbf{Z}_{2}^{* 2}$ and $-3^{3} \equiv m^{\prime 2} \quad(\bmod 8)$ for $m^{\prime}=m / 2$, which is a contradiction. Thus m is a multiple of 4 .

Next, we consider $p=3.3-2 l\left(I_{3}\right)=l\left(\left(S^{*} / S\right)_{3}\right)-2 l\left(I_{3}\right) \leq l\left(\left(\widetilde{S}^{*} / \widetilde{S}\right)_{3}\right) \leq \operatorname{rank} T=2$ and we have $l\left(I_{3}\right) \geq 1$. Let $\bar{\alpha} \in I_{3}$ be non-zero element. The discriminant quadratic form on $\left(S^{*} / S\right)_{3}$ can be written $q_{3} \equiv-2 x^{2} / 3+2\left(y_{1}^{2}+y_{2}^{2}\right) / 3$. Thus $\bar{\alpha}$ is equal to either $\bar{\alpha}_{1}=(\pm 1, \pm 1,0)$, or $\bar{\alpha}_{2}=(\pm 1,0, \pm 1)$. If $\bar{\alpha}=\bar{\alpha}_{2}, \widetilde{S}$ contains an element $\alpha=\chi+\omega$ where $\chi \in P^{*}, \omega \in Q\left(A_{2}\right)^{*}$ and $\omega^{2}=2 / 3$. The image of α under $\Lambda_{3} \rightarrow \Lambda_{3} / P$ defines a short root in the primitive hull of $Q(G)$. It contradicts fullness. Thus $\bar{\alpha}=\bar{\alpha}_{1}$. Note that the third component of $\bar{\alpha}_{1}=(\pm 1, \pm 1,0)$ is 0 . It implies that $\left(\left(P\left(P \oplus Q\left(A_{11}\right), \Lambda_{3}\right) /(P \oplus\right.\right.$ $\left.\left.Q\left(A_{11}\right)\right)\right)_{3} \neq 0$.

In conclusion one has $\left[P\left(P \oplus Q\left(A_{11}\right), \Lambda_{3}\right): P \oplus Q\left(A_{11}\right)\right] \geq 12$. It implies that A_{11} is an obsrtuction component with respect to $Q(G) \hookrightarrow \Lambda_{3} / P$. Thus $A_{11}+A_{2} \notin P C$.
(c). Consider (8) $G=A_{11}+2 A_{1}$. We define $S=P \oplus Q(G), \widetilde{S}, T, D$, and I as above.

In this case we have $S^{*} / S \cong(\mathbf{Z} / 4)^{2} \oplus(\mathbf{Z} / 2)^{2} \oplus(\mathbf{Z} / 3)^{2}$ The first $\mathbf{Z} / 4$-component and the fifth $\mathbf{Z} / 3$-component correspond to P, the second and the sixth to A_{11}, and the middle third, fourth $\mathbf{Z} / 2$-component correspond to 2 of A_{1}.

Since $l\left(\left(S^{*} / S\right)_{2}\right)=4>2, I_{2} \neq 0$. Assume that I_{2} has order 2. Then $(2,2,0,0) \in$ $\left(S^{*} / S\right)_{2}$ is the generator of I_{2} and $l\left(I_{2}^{\perp}\right) \geq 4$. One has $3 \leq l\left(I_{2}^{\perp} / I_{2}\right)=l\left(\left(\widetilde{S}^{*} / \widetilde{S}\right)_{2}\right)=$ $l\left(\left(T^{*} / T\right)_{2}\right) \leq \operatorname{rank} T=2$, a contradiction. Thus I_{2} is cyclic of order 4. Let $\bar{\alpha}=$ $\left(a_{1}, b, c_{1}, c_{2}\right) \in\left(S^{*} / S\right)_{2}$ be the generator. Note that $2 \bar{\alpha}=(2,2,0,0)$. Since the discriminant quadratic form q_{2} on $\left(S^{*} / S\right)_{2}$ can be written $-a^{2} / 4+b^{2} / 4+\left(c_{1}^{2}+c_{2}^{2}\right) / 2$, solving $q_{2}(\bar{\alpha}) \equiv 0$, one has $\bar{\alpha}=(\pm 1, \pm 1,0,0)$.

On the other hand, by considering $T \otimes \mathrm{Z}_{3}$ one knows $I_{3} \neq 0$.
In conclusion $\left[P\left(P \oplus Q\left(A_{11}\right), \Lambda_{3}\right): P \oplus Q\left(A_{11}\right)\right] \geq 12$, and A_{11} is an obstruction component. Thus $A_{11}+2 A_{1} \notin P C$.
(d). For (47) and (49) the division of 13 consists of 5 odd numbers. Thus the corresponding graph is not a member of $P C$. Indeed, $l\left(\left(S^{*} / S\right)_{2}\right)=6$. By Corollary 3.4(2) $l(\widetilde{S} / S) \leq 1$. Thus $4 \leq l\left((\widetilde{S} / \widetilde{S})_{2}\right)=l\left(\left(T^{*} / T\right)_{2}\right) \leq \operatorname{rank} T=2$, which is a contradiction.
(e). For the following 7 cases we have $l\left(\left(S^{*} / S\right)_{3}\right) \geq 3$. Thus $(\widetilde{S} / S)_{3} \neq 0$. For every element in the 3-Sylow subgroup $\left(S^{*} / S\right)_{3}$ at which the discriminant quadratic form takes 0 , one can construct an extra root with length $\sqrt{2 / 3}$ or $\sqrt{2}$ in the primitive hull of $Q(G)$ in Λ_{3} / P. Thus the corresponding graph $G \notin P C$.

$$
(6),(11),(18),(32),(43),(53),(57)
$$

(f). In the following 6 cases, by computing D by the 3 -adic method, one can show $(\widetilde{S} / S)_{3} \neq 0$. However, for each non-zero solution of $q \equiv 0$ in the 3-Sylow subgroup, we can construct an extra root in the primitive hull.

$$
(9),(12),(23),(27),(30),(34)
$$

(g). If we can conclude $(\widetilde{S} / S)_{p} \neq 0$ for $p=5$ or 7 by calculating the discriminant of $T \otimes \mathbf{Z}_{p}$, then it contradicts Corollary 3.4 (1). Thus the corresponding graph $G \notin P C$. We can apply this method to the following 3 cases.

$$
(5),(17),(21)
$$

(h). The remaining cases are the following 3. For each one of them $l\left(\left(S^{*} / S\right)_{2}\right) \geq 3$. Thus $I_{2}=(\widetilde{S} / S)_{2} \neq 0$. By Proposition 3.3 (2) we can easily find an element $\bar{\alpha} \in I_{2}$ of order 2. However, for every element $\bar{\beta} \in\left(S^{*} / S\right)_{2} 2 \bar{\beta} \neq \bar{\alpha}$, and thus I_{2} is generated by $\bar{\alpha}$. Computing the discriminant quadratic form of \widetilde{S} and computing the discriminant D in two different ways, one can deduce a contradiction. Thus the corresponding graph $G \notin P C$.

$$
(10),(20),(26) .
$$

Let us proceed to the case $r=12$. We can assume $\rho=r+7=19$. By Lemma 3.1 (1) $a=0$ or 1 .

If $a=0$, then G is either $2 A_{5}+A_{2}$ or $2 A_{5}+2 A_{1}$ by Lemma 3.1 (1). Now, we can make $2 A_{5}+A_{1}$ from a basic graph A_{11} by a tie transformation. From $2 A_{5}+A_{1}$ we can make both of them by a tie transformation. In particular, $2 A_{5}+A_{2}, 2 A_{5}+2 A_{1} \in P C$.

In the following we assume $a=1$ and $\rho=r+7=19$. By Lemma 3.1 (3) it is enough to examine the divisions of 12 into 6 pieces. Recall that there are 57 kinds of them. We use the numbering [1]-[57] in Part II section 3.

$[1] 12$	$[2] 11+1$	$[3] 10+2$	$[4] 9+3$
$[5] 8+4$	$[6] 7+5$	$[7] 6+6$	$[8] 10+1+1$
$[9] 9+2+1$	$[10] 8+3+1$	$[11] 8+2+2$	$[12] 7+4+1$
$[13] 7+3+2$	$[14] 6+5+1$	$[15] 6+4+2$	$[16] 6+3+3$
$[17] 5+5+2$	$[18] 5+4+3$	$[19] 4+4+4$	$[20] 9+1+1+1$
$[21] 8+2+1+1$	$[22] 7+3+1+1$	$[23] 7+2+2+1$	$[24] 6+4+1+1$
$[25] 6+3+2+1$	$[26] 6+2+2+2$	$[27] 5+5+1+1$	$[28] 5+4+2+1$
$[29] 5+3+3+1$	$[30] 5+3+2+2$	$[31] 4+4+3+1$	$[32] 4+3+3+2$
$[33] 3+3+3+3$	$[34] 8+1+1+1+1$	$[35] 7+2+1+1+1$	$[36] 6+3+1+1+1$
$[37] 6+2+2+1+1$	$[38] 5+4+1+1+1$	$[39] 5+3+2+1+1$	$[40] 5+2+2+2+1$
$[41] 4+4+2+1+1$	$[42] 4+3+3+1+1$	$[43] 4+3+2+2+1$	$[44] 4+2+2+2+2$
$[45] 3+3+3+2+1$	$[46] 3+3+2+2+2$	$[47] 7+1+1+1+1+1$	$[48] 6+2+1+1+1+1$
$[49] 5+3+1+1+1+1$	$[50] 5+2+2+1+1+1$	$[51] 4+4+1+1+1+1$	$[52] 4+3+2+1+1+1$
$[53] 4+2+2+2+1+1$	$[54] 3+3+3+1+1+1$	$[55] 3+3+2+2+1+1$	$[56] 3+2+2+2+2+1$
$[57] 2+2+2+2+2+2$			

[a]. For some of 57 the corresponding graph is a subgraph of a graph which can be made from one of the essential basic Dynkin graph by tie transformations repeated twice. Thus we can apply Proposition 3.5 in Part II.
\triangle A subgraph of A_{13}
[1], [3]-[7]
\triangle A subgraph of $A_{12}+A_{1}$
[8], [9], [10], [12], [14]
\triangle A subgraph of $E_{7}+A_{6}$
[15], [25]
\triangle A subgraph of $D_{9}+A_{4}$
[18]
Δ A subgraph of $D_{12}+A_{1}$
[20]
\triangleright A subgraph of $E_{8}+A_{4}+A_{1}$
[24], [31], [41]
\triangle A subgraph of $D_{10}+A_{2}+A_{1}$
[b]. Some of them can be constructed from a basic graph by two transformations. Below every arrow except the left one at the bottom three lines indicates a tie transformation.

[2] $A_{11}+A_{1}$	\longleftarrow	A_{12}	\longleftarrow	A_{11}
[11] $A_{8}+2 A_{2}$	\longleftarrow	$A_{8}+A_{2}+A_{1}$	\longleftarrow	$E_{8}+B_{1}+G_{2}$
[13] $A_{7}+A_{3}+A_{2}$	\longleftarrow	$A_{7}+A_{3}+A_{1}$	\longleftarrow	$E_{7}+B_{3}+G_{1}$
[17] $2 A_{5}+A_{2}$		$2 A_{5}+A_{1}$	\longleftarrow	A_{11}
[21] $A_{8}+A_{2}+2 A_{1}$	\longleftarrow	$A_{8}+A_{2}+A_{1}$	\longleftarrow	$E_{8}+B_{1}+G_{2}$
[22] $A_{7}+A_{3}+2 A_{1}$	\longleftarrow	$A_{7}+A_{3}+A_{1}$	\longleftarrow	$E_{7}+B_{3}+G_{1}$
[27] $2 A_{5}+2 A_{1}$		$2 A_{5}+A_{1}$	-	A_{11}
[30] $A_{5}+A_{3}+2 A_{2}$	elemen	$E_{7}+B_{3}+G_{2}$	\longleftarrow	$E_{7}+B_{3}+G_{1}$
[45] $3 A_{3}+A_{2}+A_{1}$	ner	$E_{7}+B_{3}+G_{2}$	\longleftarrow	$E_{7}+B_{3}+G_{1}$
[50] $A_{5}+2 A_{2}+3 A_{1}$	ए	$E_{8}+B_{2}+G_{2}$	\longleftarrow	$E_{8}+B_{1}+G_{2}$

Note that in the case [2] $A_{11}+A_{1}$, the component A_{11} is not an obstruction.
[c]. The following 13 items do not belong to $P C\left(J_{3,0}\right)$. (The 13 items treated in paragraph [A] in Part II section 3.) By Proposition 3.2 we can exclude them from our consideration.

$$
[16],[32],[33],[34],[36],[40],[44],[47],[48],[51],[52],[56],[57] .
$$

In what follows we define $S=P \oplus Q(G), \widetilde{S}, I=\widetilde{S} / S, T$ and D corresponding to the graph G under consideration similarly as in the above paragraph (b).
[d]. For the following two items the division of 12 consists of 6 odd numbers, and thus the corresponding graph $G \notin P C$.

$$
[49],[54] .
$$

Indeed, by Corollary 3.4 (2) $l\left(I_{2}\right) \leq 1$. Thus we have $5=7-2 \leq l\left(\left(S^{*} / S\right)_{2}\right)-$ $2 l\left(I_{2}\right) \leq l\left(\left(\widetilde{S}^{*} / \widetilde{S}\right)_{2}\right)=l\left(\left(T^{*} / T\right)_{2}\right) \leq \operatorname{rank} T=3$, a contradiction.
[e]. For the following 3 cases we have $l\left(\left(S^{*} / S\right)_{3}\right) \geq 4$. Thus we can apply reasoning like the one in the above paragraph (e), we can conclude $G \notin P C$.

$$
[26],[46],[53] .
$$

[f]. In the following 6 cases, we can apply the 3 -adic method as in the above paragraph (f) and we can conclude $G \notin P C$.

$$
[23],[28],[37],[39],[43],[55] .
$$

[g]. We can conclude $(\widetilde{S} / S)_{p} \neq 0$ for $p=5$ in the case [19] by calculating D in 2 ways. Thus by Corollary 3.4 (1) $G \notin P C$.
[h]. In the cases [29], [38], [42] we have $l\left(\left(S^{*} / S\right)_{2}\right) \geq 4$, and by the same argument as in the above paragraph (h) we can infer $G \notin P C$.

In the following we proceed to the last case $r=11$.
Proposition 3.5. For every division $\left(k_{1}, k_{2}, \ldots, k_{7}\right)$ of $11=\sum_{i=1}^{7} k_{i}$ into a sum of 7 non-negative integers $k_{1} \geq k_{2} \geq \cdots \geq k_{7} \geq 0$ consider the Dynkin graph $G=\sum A_{k_{i}}$, the root lattice $Q=Q(G)$ of type G, the discriminant $d(G)=d(Q)$ of Q, and the Hasse invariant $\epsilon_{p}(G)=\epsilon_{p}(Q)$ of Q, where p is a prime number. The arithmetic condition in Part I Theorem 0.5 [II] (A) (2)

$$
3 d(G) \notin \mathbf{Q}_{p}^{* 2} \text { or } \epsilon_{p}(G)=(-1,3)_{p}
$$

is not satisfied if and only if G and p are one in the following list:

$$
\begin{array}{lrl}
p=3, & A_{5}+A_{4}+2 A_{1}, A_{5}+A_{3}+3 A_{1}, A_{4}+3 A_{2}+A_{1}, A_{3}+3 A_{2}+2 A_{1} . & \text { (4 items:) } \\
p=2, & A_{5}+A_{3}+3 A_{1}, & A_{3}+2 A_{1} .
\end{array}(2 \text { items.) }
$$

Proof. It is not difficult to make the list of p and the division $\left(k_{1}, \ldots, k_{7}\right)$ such that $\epsilon_{p}(G) \neq(-1,3)_{p}$. We can omit the calculation for $p=2$ by the product formula. We do not present the list here but it contains 36 kinds of graphs, and each graph in it corresponds just 2 prime numbers. $A_{6}+A_{3}+2 A_{1}$ and $A_{6}+5 A_{1}$ correspond to $p=7$ and 3. $A_{6}+2 A_{2}+A_{1}$ corresponds to $p=7$ and 2. $A_{7}+A_{4}, A_{5}+A_{4}+A_{2}, A_{4}+2 A_{3}+A_{1}$ and $A_{4}+A_{3}+A_{2}+2 A_{1}$ correspond to $p=5$ and $3 . A_{9}+A_{2}$ and $A_{4}+2 A_{2}+3 A_{1}$ correspond to $p=5$ and 2 . The other 27 graphs correspond to $p=3$ and 2 .

Checking whether $3 d(G) \in \mathbf{Q}_{p}^{* 2}$ for each item, we get the proposition.
Q.E.D.

By Theorem 0.5 [II] in Part I, we can consider only the 4 graphs in the above proposition.

Obviously $A_{5}+A_{4}$ and $A_{5}+A_{3}+A_{1}$ are subgraphs of A_{11}. Thus we can make $A_{5}+A_{4}+2 A_{1}$ and $A_{5}+A_{3}+3 A_{1}$ from A_{11} by tie transformations repeated twice. In particular they are members in $P C$.

Next, let us consider $G=A_{4}+3 A_{2}+A_{1}$. By using 3 -adic integers Z_{3}, we can show $(\widetilde{S} / S)_{3} \neq 0$ for every embedding $S=P \oplus Q(G) \hookrightarrow \Lambda_{3}$. Any element $\bar{\alpha} \in(\widetilde{S} / S)_{3}$ satisfies $q(\bar{\alpha}) \equiv 0 \bmod 2 \mathbf{Z}$, where q is the discriminant quadratic form of S. However, for every non-zero element $\bar{\alpha} \in\left(S^{*} / S\right)_{3}$ with $q(\bar{\alpha}) \equiv 0$ we can construct an extra root not in $Q(G)$ but in the primitive hull of $Q(G)$ in Λ_{3} / P. It contradicts the fullness. Thus $A_{4}+3 A_{2}+A_{1} \notin P C$.

By the same method we can show $A_{3}+3 A_{2}+2 A_{1} \notin P C$.
In this section we have shown Proposition 0.1 under the assumption ((3)) in the introduction. We can complete this article.

References

[1] Nikulin, V. V.: Integral symmetric bilinear forms and some of their applications. Mat. USSR Izv. 43 No. 1, (1979). (English translation: Math. USSR Izv. 14 No. 1, 103-167 (1980)).
[2] Urabe, T.: Elementary transformations of Dynkin graphs and singularities on quartic surfaces. Invent. math. 87, 549-572 (1987).
[3] Urabe, T.: Tie transformations of Dynkin graphs and singularities on quartic surfaces. preprint MPI/87-60, Bonn, Max-Planck-Institut für Mathematik (1987).
[4] Urabe, T.: Combinations of rational double points on the deformation of quadrilateral singularities I. preprint MPI/88-49, Bonn, Max-Planck-Institut für Mathematik (1988).
[5] Urabe, T.: Combinations of rational double points on the deformation of quadrilateral singularities II.

