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Modular functors, cohomological field theories,
and topological recursion

Jørgen Ellegaard Andersen1, Gaëtan Borot2, Nicolas Orantin3

Abstract

Given a topological modular functor V in the sense of Walker [77], we construct vector bundles
over Mg,n, whose Chern classes define semi-simple cohomological field theories. This construction
depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element
actions. We show that the intersection of the Chern class with the ψ-classes in Mg,n is computed
by the topological recursion of [30], for a local spectral curve that we describe. In particular, we
show how the Verlinde formula for the dimensions Dλ⃗(Σg,n) = dimVλ⃗(Σg,n) is retrieved from the
topological recursion. We analyze the consequences of our result on two examples: modular functors
associated to a finite group G (for which Dλ⃗(Σg,n) enumerates certain G-principle bundles over a
genus g surface with n boundary conditions specified by λ⃗), and the modular functor obtained from
Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group G (for
which Vλ⃗(Σg,n) is the Verlinde bundle).
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1 Introduction

Background

The pioneering works of Atiyah, Segal and Witten turned 2d conformal field theories (CFT) [10]
into an effective machinery to design interesting 3-manifold invariants, known under the name of
"quantum invariants". More thoroughly, it allowed the construction of 3d topological quantum field
theories (TQFT), where the 2d CFT is thought as living on the boundary of 3-manifolds. There
exist several variants of axiomatizations that embody the concept of a CFT. This article deals with
one of these axiomatizations, called "modular functor", which was proposed by Segal in the context
of rational conformal field theory [68] and developed in Walker notes [77] in the purely topological
context. Namely, we consider functors from the category of marked surfaces – with projective tangent
vectors and labels in a finite set Λ at punctures, and a Lagrangian subspace of the first homology –,
to the category of finite dimensional complex vector spaces. In particular, such a functor determines
a representation of a central extension of the mapping class groups. The main property required to
be a modular functor is that the vector spaces attached to a surface enjoy a factorization property
when the surface is pinched. The full definitions are given in Section 2. From the data of a modular
functor in this sense, [53, 43] show how to obtain a (2 + 1)-dimensional TQFT.

The main source of modular functors are modular tensor categories (MTC) [72, 8]. At present,
it seems that all known examples of modular functors come from a modular tensor category, but
it is not known whether all modular functors are of this kind. Among examples of MTC, we find
some categories of representations of quantum groups [72], and categories of representations of vertex
operator algebras (VOA) [35, 46].

The Wess-Zumino-Witten models form a well-studied class of examples of this type. The MTC
here arises from representations of a VOA constructed from affine Kač-Moody algebras ĝ [52]. It
gives rise to Hilbert spaces of a TQFT, which come as vector bundles (the so-called Verlinde bundles)
over a family of complex curves with coordinates, equipped with a projectively flat connection [71],
which coincides with Hitchin connection from the point of view of geometric quantization [56]. The
choice of coordinates can actually be bypassed [71, 70, 57] and the Verlinde bundles exist as bundles
VWZW
g,n over the moduli space of curves, and extend nicely to the Deligne-Mumford boundary. The

explicit construction of a modular functor from this perspective – also called the CFT approach – was
described in [3, 4]. There is another approach, based on a category of representations of a quantum
group Uq(gC) at certain roots of unity. It leads to the Witten-Reshetikhin-Turaev TQFT, constructed
in [66, 12] for gC = sl2, and in [73] for any simple Lie algebra of type ABCD – see also [11] for slN . As
anticipated by Witten, the CFT approach and the quantum group approach should give equivalent
TQFTs. For instance, the equivalence of the modular functors was established by the first author of
this paper and Ueno in [5, 6] for g = suN .

The rank of the Verlinde bundle is already a non-trivial invariant, which is computed by the famous
Verlinde formula [76, 63, 32, 9]. Marian et al. [60] lately showed that the Chern polynomial of VWZW

g,n

defines a semi-simple cohomological field theory (CohFT). It can be characterized in terms of its R-
matrix thanks to the classification results of Givental and Teleman [69, 39]: from the R-matrix, one
can build the exponential of a second-order differential operator, which acts on a product of several
copies of the Witten-Kontsevich generating series of ψ-classes (the matrix Airy function/KdV tau
function of [54]), and returns the generating series of the intersection of the Chern class at hand with
an arbitrary product of ψ-classes. We call these invariants the "CohFT correlation functions". When
the variable t of the Chern polynomial is set to 0, these correlation functions return the rank of the
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bundle, which can be thought of as the "TQFT correlation functions".

Contribution of the article

In the present article, we generalize the results of [60] to any modular functor – hence not relying
on the peculiarities of the Wess-Zumino-Witten models. For a given modular functor, we construct
a trivial bundle [Zλ⃗]g,n over some decorated Teichmüller space, which, after twisting by suitable
line bundles, descends to a bundle over Mg,n (Theorem 2.5). When our modular functor satisfies the
unitarity axiom, we can use Chern-Weil theory to compute the Chern class of [Zλ⃗]g,n (Proposition 2.6)
in terms of ψ-classes and the first Chern class of the Hodge bundle – their coefficients are related
respectively to the central charge c and the log of Dehn twist eigenvalues rλ (aka conformal weights).
Besides, we show that our bundle extends to the boundary of Mg,n (Theorem 2.7). All together,
this constitutes our first main result. Since Mg,n is an orbifold, the Chern class of our bundle must
have rational coefficients, hence a new (geometric) proof of Vafa’s theorem [75] stating that c and rλ
must be rational. Since our bundle enjoys factorization implied by the axioms of a modular functor,
we can conclude that Cht([Zλ⃗]g,n) defines a semi-simple cohomological field theory on a Frobenius
algebra A whose underlying vector space is C[Λ] (Theorem 3.2). Because the twists can depend on
log-determinations for the central charge and the conformal weights, we actually produce a lattice of
CohFTs. The existence of an S-matrix that diagonalizes the product in A ensures the semi-simplicity of
these theories, and we compute the R-matrix of this CohFT in terms of the S-matrix (Proposition 3.4).

Then, from the general result of [25], we know that the correlation functions of these CohFTs is
computed by the topological recursion of [30] for a local spectral curve. We describe explicitly this
local spectral curve and the relevant initial data (ω0,1, ω0,2) in terms of the S-matrix of the modular
functor (Proposition 4.3). If the variable t of the Chern polynomial is set to 0, we retrieve Verlinde
formula for the rank of our bundle as a special case of the topological recursion (Proposition 4.2) ; in
general, we obtain that the ωg,n of the topological recursion for this spectral curve are expressed in
terms of integrals of the Chern polynomial and ψ-classes (Equation 52). This formula is our second
main result.

We illustrate our findings on two classes of Wess-Zumino-Witten models. In Section 5, we address
the modular functors associated to a finite group G [22, 21, 34]. They are also called "orbifold
holomorphic models". In the "untwisted case", their Frobenius algebra contains simultaneously the
fusion rules of the representation ring of G and (albeit undirectly) the decomposition of product of
conjugacy classes. The dimensions of the TQFT vector spaces count certain G-principle bundles over
the surface in question. We therefore find – in a rather trivial way – a topological recursion for these
numbers, where the induction concerns the Euler characteristics of the base. In the "untwisted case"
we obtain a degree 0 CohFT, which only remembers the dimension of the vector spaces, but in the
twisted case, the CohFT is in general non-trivial (see Lemma 5.1). In Section 6, we examine the
Wess-Zumino-Witten models based on a compact Lie group G at level `, for which [Zλ⃗]g,n is the
Verlinde bundle studied in [60]. Remarkably, for SU(N)`, we find that ω0,2 for the local spectral
curve is expressible in terms of a suitable truncation of double Hurwitz numbers (number of branched
coverings over the Riemann sphere). This poses the question of the combinatorial interpretation of
the correlation function of these CohFTs, maybe in relation with number of coverings over a surface
of arbitrary topology.

To summarize, from a physical point of view, we have associated to a modular functor a CohFT that
should encode encode Gromov-Witten theory of a target space X. Having a modular functor roughly
means that the worldsheet (a surface of genus g with n boundaries) carries a CFT. As we comment
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Figure 1: A → B means that B (or a set of quantities fulfilling the axioms of B) can be obtained
from the data of A ; these are not equivalences, i.e. in general A cannot be fully retrieved from B,
and neither all B come from an A. A wealth of definitions sometimes fall under the same names.
To avoid ambiguities: VOA are as in [47] ; the notion of modular functor we adopt is described in
Section 2.3, following the approach of Segal [68] and Walker [77] ; the notion of CohFT is described
in Section 3.1, simplifying the axiomatization given by Kontsevich and Manin [55] ; the topological
recursion is described in Section 4.1, following Eynard and the third author [31].

in Section 7, the local spectral curve used in Section 3 for the topological recursion, should describe
the vicinity of isolated singularities in a Landau-Ginzburg model X̃. As of now, the description of the
geometry of X and X̃ is unclear to us.

2 Construction of vector bundles from a modular functor

We introduce the category of marked surfaces, their automorphism groups, and review the axioms of
a modular functor. The target category is that of finite dimensional vector spaces over the field of
complex numbers. The motivation to introduce marked surfaces is explained e.g. in [77]: in quantum
field theory, if one works with a naive category of surfaces, the states have a phase ambiguity, so
that the target category would rather be that of projective vector spaces. The marking allows the
resolution of phase ambiguities and working with vector spaces.

We then explain, in Section 2.6, how to obtain from any given modular functor, a family of vector
bundles over the moduli space of curves. We compute its Chern class in terms of the basic data of
the modular functor (Theorem 2.6). A delicate but essential point for Section 3 is to prove that the
bundles extend to the Deligne-Mumford boundary of the moduli space. This is achieved in Section 2.7,
with a detour via a compactification of the Teichmüller space.

2.1 The category of marked surfaces

Let us start by fixing notations. By a closed surface we mean a smooth real 2-dimensional, compact
manifold. For a closed oriented surface Σ of genus g we have the non-degenerate skew-symmetric
intersection pairing:

(⋅, ⋅) ∶ H1(Σ,Z) ×H1(Σ,Z)→ Z.

Suppose Σ is connected. In this case a Lagrangian L ⊆ H1(Σ,Z) is by definition a subspace which is
maximally isotropic with respect to the intersection pairing. A Z-basis (α⃗, β⃗) = (α1, . . . , αg, β1, . . . βg)
for H1(Σ,Z) is called a symplectic basis if

(αi, βj) = δij , (αi, αj) = (βi, βj) = 0,

for all i, j ∈ J1, gK. If Σ is not connected, then H1(Σ,Z) = ⊕iH1(Σi,Z), where Σi are the connected
components of Σ. In this context, by definition in this paper, a Lagrangian subspace is a subspace of
the form L = ⊕iLi, where Li ⊂ H1(Σi,Z) is Lagrangian. Likewise a symplectic basis for H1(Σ,Z) is
a Z-basis of the form ((α⃗i, β⃗i)), where (α⃗i, β⃗i) is a symplectic basis for H1(Σi,Z).

For any real vector space V , we define PV = (V − {0})/R +.
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Definition 2.1 A pointed surface (Σ, P ) is an oriented closed surface Σ with a finite set P ⊂ Σ of
points.

Definition 2.2 A morphism of pointed surfaces f ∶ (Σ1, P1) → (Σ2, P2) is an isotopy class of orien-
tation preserving diffeomorphisms which maps P1 to P2. The group of automorphisms of a pointed
surface (Σ, P ) is the mapping class group, and will be denoted ΓΣ,P : it consists of the isotopy classes
of orientation preserving diffeomorphisms of Σ which are the identity on P . The framed mapping class
group of a pointed surface is denoted Γ̃Σ,P and it consists of isotopy classes of orientation preserving
diffeomorphisms which are the identity on P as well as on the tangent spaces at p ∈ P .

We stress that for the (framed) mapping class group, the isotopies allowed in the equivalence
relation must also be the identity on P (and on the tangent spaces at P ).

Lemma 2.1 There is a short exact sequence:

0Ð→ ZP Ð→ Γ̃Σ,P Ð→ ΓΣ,P → 0,

where the generator of the factor of Z corresponding to p ∈ P is given by the Dehn twist δp in the
boundary of an embedded disk in Σ − (P − {p}) and centred in p.

Proof. The only point that may not be obvious is that δp lies in the kernel of the projection π̃ ∶
Γ̃Σ,P → ΓΣ,P . To show this, we have to find an isotopy from δp to id by diffeomorphisms which are
identity on P (but maybe not on TPΣ). Consider an embedded disk D ≃ {z ∈ C, ∣z∣ ≤ 1} centered at p
in Σ− (P − {p}). The Dehn twist on D is by definition δp(z) = ze2π∣z∣, and fp(z, t) = ze2iπ(∣z∣(1−t)+t) is
an isotopy between δp∣D and idD that preserves p and ∂D. Therefore it can be glued with the identity
map outside D to obtain the desired isotopy between δp and idΣ. ◻

Definition 2.3 A marked surface Σ = (Σ, P, V,L) is an oriented closed surface Σ with a finite subset
P ⊂ Σ of points with projective tangent vectors V ∈ ∏p∈P PTpΣ and a Lagrangian subspace L ⊆
H1(Σ,Z).

Definition 2.4 A morphism f ∶ Σ1 → Σ2 of marked surfaces Σi = (Σi, Pi, Vi, Li) is an isotopy class
of orientation preserving diffeomorphisms f ∶ Σ1 → Σ2 that maps (P1, V1) to (P2, V2) together with an
integer s. Hence we write f = (f, s).

Let σ be Wall’s signature cocycle for triples of Lagrangian subspaces of H1(Σ,R) [78].

Definition 2.5 Let f1 = (f1, s1) ∶ Σ1 → Σ2 and f2 = (f2, s2) ∶ Σ2 → Σ3 be morphisms of marked
surfaces Σi = (Σi, Pi, Vi, Li). Then, the composition of f1 and f2 is

f2f1 = (f2f1, s2 + s1 − σ((f2f1)∗L1, f2∗L2, L3)).

With the objects being marked surfaces and the morphisms and their composition being defined
as above, we have constructed the category of marked surfaces.

The mapping class group ΓΣ of a marked surface Σ = (Σ, L) is the group of automorphisms of Σ.
ΓΣ is a central extension of the framed mapping class group Γ̃Σ,P of the pointed surface (Σ, P )

0Ð→ ZÐ→ ΓΣ Ð→ Γ̃Σ,P Ð→ 0

defined by the 2-cocycle γ ∶ ΓΣ → Z, γ(f2, f1) = σ((f2f1)∗L, f2∗L,L). It is known that this cocycle
is equivalent to the cocycle obtained by considering 2-framings on mapping cylinders, see [7] and [2].
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Briefly, the relation is as follows : a 2-framing is determined by the first Pontryagin number p1 ;
Hirzebruch’s formula says that p1 is three times the signature of the 4-manifold ; and, by construction
[78], σ expresses the non-additivity of the signature.

Notice also that for any morphism (f, s) ∶ Σ1 →Σ2, we can factor

(f, s) = ((Id, s′) ∶ Σ2 →Σ2) ○ (f, s − s′)
= (f, s − s′) ○ ((Id, s′) ∶ Σ1 →Σ1) .

In particular (Id, s) ∶ Σ→Σ is (Id,1)s.

2.2 Operations on marked surfaces

Definition 2.6 The operation of disjoint union of marked surfaces is

(Σ1, P1, V1, L1) ⊔ (Σ2, P2, V2, L2) = (Σ1 ⊔Σ2, P1 ⊔ P2, V1 ⊔ V2, L1 ⊕L2).

Morphisms on disjoint unions are accordingly (f1, s1) ⊔ (f2, s2) = (f1 ⊔ f2, s1 + s2).

We see that the disjoint union is an operation on the category of marked surfaces.

Definition 2.7 Let Σ be a marked surface. We denote by −Σ the marked surface obtained from Σ by
the operation of reversal of the orientation. For a morphism f = (f, s) ∶ Σ1 →Σ2 we let the orientation
reversed morphism be given by −f = (f,−s) ∶ −Σ1 → −Σ2.

We also see that orientation reversal is an operation on the category of marked surfaces.
Let us now consider glueing of marked surfaces. Let (Σ,{p−, p+} ⊔ P,{v−, v+} ⊔ V,L) be a

marked surface, where we have selected a couple of marked points with projective tangent vectors
((p−, v−), (p+, v+)), at which we will perform the glueing. Let C ∶ P(Tp−Σ) → P(Tp+Σ) be an orienta-
tion reversing projective linear isomorphism such that C(v−) = v+. Such a C is called a glueing map
for Σ. Let Σ̃ be the oriented surface with boundary obtained from Σ by blowing up p− and p+, i.e.

Σ̃ = (Σ − {p−, p+}) ⊔P(Tp−Σ) ⊔P(Tp+Σ),

with the natural smooth structure induced from Σ. Let now ΣC be the closed oriented surface obtained
from Σ̃ by using C to glue the boundary components of Σ̃. We call ΣC the glueing of Σ at the couple
((p−, v−), (p+, v+)) with respect to C.

Let now Σ′ be the topological space obtained from Σ by identifying p− and p+. We then have natural
continuous maps q ∶ ΣC → Σ′ and n ∶ Σ → Σ′. On the first homology group n induces an injection
and q a surjection, so we can define a Lagrangian subspace LC ⊆ H1(ΣC ,Z) by LC = q−1

∗ (n∗(L)).
We note that the image of P(Tp−Σ) (with the orientation induced from Σ̃) induces naturally a line in
H1(ΣC ,Z) and as such it is contained in LC .

Remark 2.8 If we have two glueing maps Ci ∶ P(Tp−Σ) → P(Tp+Σ), i = 1,2, we note that there is
a diffeomorphism f ∶ Σ → Σ inducing the identity on (p−, v−) ⊔ (p+, v+) ⊔ (P,V ) which is isotopic
to the identity among such maps, and such that (dfp+)−1C2dfp− = C1. In particular f induces a
diffeomorphism f ∶ ΣC1 → ΣC2 compatible with f ∶ Σ → Σ, which maps LC1 to LC2 . Any two such
diffeomorphisms of Σ induce isotopic diffeomorphisms from Σ1 to Σ2.
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Definition 2.9 Let Σ = (Σ,{p−, p+} ⊔ P,{v−, v+} ⊔ V,L) be a marked surface. Let

C ∶ P(Tp−Σ)→ P(Tp+Σ)

be a glueing map and ΣC the glueing of Σ at the couple ((p−, v−), (p+, v+)) with respect to C. Let
LC ⊆ H1(ΣC ,Z) be the Lagrangian subspace constructed above from L. Then the marked surface
ΣC = (ΣC , P, V,LC) is defined to be the glueing of Σ at the couple ((p−, v−), (p+, v+)) with respect to
C.

We observe that glueing also extends to morphisms of marked surfaces which preserves the couple
((p−, v−), (p+, v+)), by using glueing maps which are compatible with the morphism in question.

2.3 The axioms for a modular functor

We now give the axioms for a modular functor. This notion is due to G. Segal and appeared first in
[68]. We present them here in a topological form, which is due to Walker [77]. We note that similar,
but different, axioms for a modular functor are given in [72], relying on modular tensor categories. At
present, it is not known whether the definition in [72] is equivalent to ours.

Definition 2.10 A label set Λ is a finite set equipped with an involution λ↦ λ† and a trivial element
1 such that 1† = 1.

Definition 2.11 Let Λ be a label set. The category of Λ-labeled marked surfaces consists of marked
surfaces with an element of Λ assigned to each of the marked point. An assignment of elements of Λ

to the marked points of Σ is called a labeling of Σ and we denote the labeled marked surface by (Σ, λ⃗),
where λ⃗ is the labeling. Morphisms of labeled marked surfaces are required to preserve the labelings.

We define a labeled pointed surface similarly.

Remark 2.12 The operation of disjoint union clearly extends to labeled marked surfaces. When we
extend the operation of orientation reversal to labeled marked surfaces, we also apply the involution
† to all the labels.

Definition 2.13 A modular functor based on the label set Λ is a functor V from the category of labeled
marked surfaces to the category of finite dimensional complex vector spaces satisfying the axioms MF1
to MF5 below.

MF1

Disjoint union axiom. The operation of disjoint union of labeled marked surfaces is taken to the
operation of tensor product, i.e. for any pair of labeled marked surfaces there is an isomorphism

V((Σ1, λ⃗1) ⊔ (Σ2, λ⃗2)) ≅ V(Σ1, λ⃗1)⊗V(Σ2, λ⃗2).

The identification is associative.

MF2

Glueing axiom. Let Σ and ΣC be marked surfaces such that ΣC is obtained from Σ by glueing at
a couple of points and projective tangent vectors with respect to a glueing map C. Then there is an
isomorphism

V(ΣC , λ⃗) ≅ ⊕
µ∈Λ

V(Σ, µ, µ†, λ⃗),

8



which is associative, compatible with glueing of morphisms, disjoint unions and it is independent of
the choice of the glueing map in the obvious way (see Remark 2.8).

MF3

Empty surface axiom. Let ∅ denote the empty labeled marked surface. Then

dimV(∅) = 1.

MF4

Once punctured sphere axiom. Let Σ = (S2,{p},{v},0) be a marked sphere with one marked point.
Then:

dimV(Σ, λ) = { 1, λ = 1
0, λ ≠ 1.

MF5

Twice punctured sphere axiom. Let Σ = (S2,{p1, p2},{v1, v2},{0}) be a marked sphere with two
marked points. Then

dimV(Σ, λ, µ) = { 1, λ = µ†

0, λ ≠ µ†.

In addition to the above axioms one may require extra properties, namely:

MF-D

Orientation reversal axiom. The operation of orientation reversal of labeled marked surfaces is taken
to the operation of taking the dual vector space, i.e for any labeled marked surface (Σ, λ⃗) there is a
pairing

⟨⋅, ⋅⟩ ∶ V(Σ, λ⃗)⊗V(−Σ, λ⃗†)Ð→ C , (1) {PPO}

compatible with disjoint unions, glueings and orientation reversals (in the sense that the induced
isomorphisms V(Σ, λ⃗) ≅ V(−Σ, λ⃗†)∗ and V(−Σ, λ⃗†) ≅ V(Σ, λ⃗)∗ are adjoints).

and

MF-U

Unitarity axiom. Every vector space V(Σ, λ⃗) is furnished with a hermitian inner product

(⋅, ⋅) ∶ V(Σ, λ⃗)⊗V(Σ, λ⃗)Ð→ C

so that morphisms induce unitary transformations. The hermitian structure must be compatible with
disjoint union and glueing. If we have the orientation reversal property, then compatibility with the
unitary structure means that we have a commutative diagrams

V(Σ, λ⃗) ÐÐÐÐ→
≅

V(−Σ, λ⃗†)∗

×××Ö
≅ ≅

×××Ö
V(Σ, λ⃗)∗ ≅ÐÐÐÐ→ V(−Σ, λ⃗†),

where the vertical identifications come from the hermitian structure and the horizontal identifications
from the pairing (1).
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2.4 The Teichmüller space of marked surfaces

Let us first review some basic Teichmüller theory. Let Σ be a closed oriented smooth surface and let
P be a finite set of points on Σ. The usual Teichmüller space for a pointed surface (Σ, P ) consists of
equivalence classes of diffeomorphisms ϕ ∶ (Σ, P )→ (C,Q), where C is a Riemann surface and Q ⊂ C
is finite set of points.

TΣ,P = {ϕ ∶ (Σ, P )→ (C,Q)} / ∼ (2) {TSP}

where we declare that two diffeomorphisms ϕi ∶ (Σ, P ) → (Ci,Qi) for i = 1,2 are equivalent if
there exists a biholomorphic map Φ ∶ (C1,Q1) → (C2,Q2) such that Φ ○ ϕ1 is isotopic to ϕ2 by
diffeomorphisms preserving P . If P = ∅, this space is simply denoted TΣ. We will also consider
the “decorated Teichmüller space" consisting of equivalence classes of diffeomorphisms ϕ ∶ (Σ, P ) →
(C,Q), where C is a Riemann surface, Q ⊂ C is finite set of points, and W ∈ TQC non-zero tangent
vectors:

T̃Σ,P = {ϕ ∶ (Σ, P )→ (C,Q,W )} / ≈
where ≈ is now the equivalence relation where we ask that the isotopies preserve (P, (dPϕ)−1(W )).
We have natural projection maps π̃Σ,P ∶ T̃Σ,P → TΣ,P , πP ∶ TΣ,P → TPΣ and πΣ ∶ TΣ,P → TΣ.

Theorem 2.2 (Bers) There is a natural structure of a finite dimensional complex analytic manifold
on the Teichmüller spaces TΣ,P and T̃Σ,P . The mapping class group ΓΣ,P acts biholomorphically on
TΣ,P , as does Γ̃Σ,P on T̃Σ,P .

Proposition 2.3 T̃Σ,P is a principal CP -bundle over TΣ,P on which Γ̃Σ,P acts, covering the action
of ΓΣ,P on TΣ,P . Moreover T′Σ,P = T̃Σ,P /⟨δp ∣ p ∈ P ⟩ is a principal (C∗)P -bundle over TΣ,P , such that
the induced projection π̃′Σ,P ∶ T̃Σ,P → T′Σ,P is the fiberwise universal cover with respect to the projection
π′Σ,P ∶ T′Σ,P → TΣ,P , compatible with the exponential map e2πi⋅ ∶ CP → (C∗)P on the structure groups.

Proof. For every ϕ ∶ (Σ, P )→ (C,Q,W ) representing a point in TΣ,P , we have the map:

πP ∣π̃−1
Σ,P

([ϕ]) ∶ π̃−1
Σ,P ([ϕ])→ TPΣ,

induced by assigning (dPϕ′)−1(W ) to a diffeomorphism ϕ′ ∶ (Σ, P ) → (C,Q,W ) which represents a
point π̃−1

Σ,P ([ϕ]). By the very definition of T̃Σ,P this map is independent of the representative ϕ′ of
a point in π̃−1

Σ,P ([ϕ]). Now pick a ϕ′ ∶ (Σ, P ) → (C,Q,W ) representing a point in π̃−1
Σ,P ([ϕ]) and let

V ∈ TPΣ be given by

V = (dPϕ′)−1(W ).
Then consider the set (πP ∣π̃−1([ϕ]))−1(V ). We claim that the group ⟨δp ∣ p ∈ P ⟩ acts transitively on
this set. To see this, let ϕ′′ ∶ (Σ, P )→ (C,Q,W ) represent another point in (πP ∣π̃−1

Σ,P
([ϕ]))−1(V ). Since

the two diffeomorphisms ϕ′ and ϕ′′ must represent the same element in TΣ,P , there exists Φ such that

(ϕ′′)−1 ○Φ ○ ϕ′ ∶ (Σ, P )→ (Σ, P )

is isotopic to the identity. But then there exists a diffeomorphism ψ ∶ (Σ, P )→ (Σ, P ) which represents
an element in ⟨δp ∣ p ∈ P ⟩ such that

(ϕ′′)−1 ○Φ ○ (ϕ′ ○ ψ) ∶ (Σ, P )→ (Σ, P )

is isotopic to the identity within diffeomorphisms of (Σ, P, V ). This means that ϕ′ ○ ψ represents the
same point in T̃Σ,P as ϕ′′ does.

It now follows that T̃Σ,P is a principal CP -bundle over TΣ,P and that T′Σ,P = T̃Σ,P /⟨δp ∣ p ∈ P ⟩ is a
principal (C∗)P -bundle over TΣ,P . ◻
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2.5 Construction of line bundles over Teichmüller spaces
2.5.1 Fiber products

For each p ∈ P , we consider the representation %p ∶ (C∗)P → Aut(C), which is obtained by projection
on the factor corresponding to p. We denote L̃p the line bundle over TΣ,P associated to T′Σ,P and the
system of multipliers %p.

Suppose α ∈ C. We now show how to construct the α’s power of L̃p over TΣ,P . To this end consider
the map %̃p ∶ CP → C, which is simply the projection onto the factor corresponding to p ∈ P . Now we
define

L̃αp = T̃Σ,P ×α%̃p C,

where the action of CP on T̃Σ,P ×C is given by

w(ϕ, z) = (ϕw,e(α%̃p(w))z), e(t) = exp(2iπt).

We observe that Γ̃Σ,P acts on L̃αp covering the action of ΓΣ,P on TΣ,P , and that δp acts by multiplication
by e2πiα while δp′ acts trivially for p′ ∈ P − {p}.

2.5.2 Determinant of the Hodge bundle

The Hodge bundle is the vector bundle over TΣ, whose fiber at the class of ϕ ∶ Σ → C is H0(C,K∗
C).

There is a natural action of ΓΣ on the Hodge bundle. We denote the determinant line bundle associated
to this bundle by L̃D. It is isomorphic to the line bundle V

†
ab(Σ), which the first author and Ueno

constructs over TΣ using a certain abelian CFT, namely the CFT associated to the bc-ghost system.
We observe that for a marked surface Σ = (Σ, P, V,L), the Lagrangian L induces a section sL of L2

D

over TΣ, given by
sL = (u1 ∧⋯ ∧ ug)⊗2

where (u1, . . . , ug) is normalized on an integral basis of L. The isomorphism between L̃D and V
†
ab(Σ)

takes this section of L̃2
D to the preferred section of (V†

ab(Σ))2 over TΣ as described in [3]. By [4,
Theorem 11.3], this section allows us to construct L̃

−c/2
D for any c ∈ C, on which ΓΣ acts, such that

(Id,1) acts by e−iπc/2. We recall that the Hodge bundle over TΣ has a natural hermitian structure,
which is ΓΣ invariant. Hence it induces a hermitian structure on the holomorphic bundle LD which
is also ΓΣ invariant. Hence we get a unique unitary Chern connection in L̃D compatible with the
holomorphic structure on this line bundle, which by uniqueness is also ΓΣ invariant. By the proof
of [4, Theorem 11.3] we see that we get an induced ΓΣ-invariant unitary connection in L̃

−c/2
D , whose

curvature is −c/2 times the curvature of the Chern connection in L̃D. We continue to denote by L̃
−c/2
D

the pullback to TΣ,P of L̃−c/2
D .

The moduli space of (Σ, P ) is by definition

MΣ,P = TΣ,P /ΓΣ,P (3) {MSP}

and since the stabilizers are finite, there is a natural structure of an orbifold on MΣ,P .
We see that there is a natural action of ΓΣ,P on L̃p, also acting with finite stabilizers and we define

the orbifold line bundle
Lp = L̃p/ΓΣ,P

over MΣ,P . By picking a orbifold Hermitian structure on the holomorphic bundle Lp and pulling it
back to L̃p, we see that the corresponding Chern connection in L̃p is ΓΣ invariant. Hence we get an
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induced unitary connection in L̃r̃p, which is ΓΣ invariant, whose curvature is r̃ times that of the Chern
connection of L̃p for any non-zero complex number r̃.

The moduli space MΣ,P also carries the Hodge bundle, simply by pulling the Hodge bundle over
MΣ back to MΣ,P . We also denote the determinant bundle of this pull back of Hodge line bundle over
MΣ,P by LD and it remains of course an orbifold line bundle over MΣ,P . We denote ψD = c1(LD)
and ψp = c1(Lp) and think of them as rational cohomology classes over MΣ,P .

2.6 Modular functor and vector bundles over Teichmüller space

We now fix a modular functor, without assuming the unitarity and orientation reversal axioms.

2.6.1 Scalars

● The modular functor gives a morphism:

Vλ⃗(id,1) ∈ GL(Vλ⃗(Σ),C)

and the axioms imply that it acts as multiplication by a scalar c̃ ∈ C× independent of λ⃗ and the
topology of Σ. This is proved by factoring the (IdΣ,1) along the boundary of an embedded disk Σ0

in Σ − P and writing it as (IdΣ,1) = (IdΣ0 ,1) ∪ (IdΣ′ ,0), where Σ′ = Σ −Σ0.

● For the sphere with 2 points, we have:

Aut(S2,{p1, p2},{v1, v2}, L) = Aut(S2,{p1, p2},{v1, v2}) ×Z, Aut(S2,{p1, p2},{v1, v2}) = ⟨δ⟩.

Here δ is the Dehn twist along the equator. The modular functor gives a morphism:

Vλ(δ) ∈ Aut(Vλ,λ†(S2, P, V,0)).

Since Vλ,λ†(S2, P, V,0) has dimension 1, this is the multiplication by a scalar r̃λ ∈ C×.

Lemma 2.4 The Dehn twists around the punctures have the following properties:

(i) r̃1 = 1.

(ii) For any marked surface (Σ, λ⃗), the Dehn twist around a marked point p with label λp acts on
Vλ⃗(Σ) by multiplication with r̃λp .

(iii) For any λ ∈ Λ, r̃λ = r̃λ† .

Proof. For (i) and (ii), we use the factorization axiom. (i) – The Dehn twist is trivial on S2 and
we can factor S2 along two curves, which are respectively the equator pushed a small amount into the
northern (resp. southern) hemisphere. It then follows by considering this factorisation that r̃1 = 1.
(ii) – We factor in the boundary of an embedded disk in Σ − (P − {p}), centred in p and then we
do the Dehn twist around p inside the disk. The result only depends on the label λp at p, and not
on the topology of the remaining surface neither on the labels at other punctures. (iii) – We can
choose the points (p1, p2) and vectors (v1, v2) such that the (orientation preserving) map z → −1/z
takes (S2,{p1, p2},{v1, v2}) to itself, and takes the equator to the itself. Hence, it commutes with the
Dehn twist, and that implies r̃λ = r̃λ† for all λ ∈ Λ. ◻
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2.6.2 Trivial vector bundles over TΣ,P

To a given Λ-marked surface (Σ, λ⃗), we associate the trivial vector bundle:

Z̃0
(Σ,λ⃗)

∶= TΣ,P ×Vλ⃗(Σ).

If the modular functor is unitary, this bundle carries a ΓΣ-invariant unitary structure. Then, we
can equip it with the trivial flat connection. Its parallel transport along any closed curve is identity,
therefore the connection is unitary, and ΓΣ equivariant (since the identity commutes with the action of
ΓΣ). Subsequently, the ΓΣ-equivariant Chern character is trivial. According to the above discussion
the Dehn twist δp around a point p acts by multiplication by r̃λ. Moreover (Id,1) in ΓΣ acts by
multiplication by c̃.

2.6.3 Vector bundle over the moduli space

Pick up c, rλ ∈ C such that4 c̃ = e(c/4) and r̃λ = e(rλ). We observe that δp, p ∈ P as well as (IdΣ,1)
act trivially on the vector bundle:

Z̃
(Σ,λ⃗) = Z̃0

(Σ,λ⃗)
⊗ L̃

−c/2
D ⊗

p∈P

L̃
rλp
p .

Therefore:

Theorem 2.5 The action of ΓΣ factors to an action of ΓΣ,P and hence we can define

Z
(Σ,λ⃗) = Z̃

(Σ,λ⃗)/ΓΣ,P

as an orbifold bundle over the moduli space MΣ,P .

Proposition 2.6 If V admits the structure of a unitary modular functor (axiom MF-U), then the
total Chern class of this vector bundle is:

Cht(Z(Σ,λ⃗)) = exp ( − c
2
Λ1 + ∑

p∈P

rλp ψp)

where Λ1 is the first Chern class of the Hodge bundle.

Proof. Assuming the modular functor admits a unitary structure, then the trivial connection in
Z̃0
(Σ,λ⃗)

is unitary and ΓΣ-invariant. We now consider the tensor product connection of this unitary

connection in Z̃0
(Σ,λ⃗)

and then the ΓΣ-invariant unitary connections constructed in the bundles L̃−c/2
D

and L̃
rλp
p in the previous section. By Chern-Weil theory we therefore have that:

Cht(Z(Σ,λ⃗)) = dimVλ⃗(Σ) exp{t( − c
2
c1(LD) + ∑

p∈P

rλp c1(Lp))}

= dimVλ⃗(Σ) exp{t( − c
2
Λ1 + ∑

p∈P

rλpψp)}.

◻

Since Chern classes of vector bundles over the orbifold MΣ,P are rational, c and rλ must all be
rationals if V is unitary. In the unitary case we thus get an alternative proof of Vafa’s theorem [75]:

Corollary 2.7 For any unitary modular functor, c̃ and r̃λ for any λ ∈ Λ are roots of unity.
4With these convention, c is the Virasoro central charge, and rλ the conformal dimension.
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We remind that Vafa’s original proof was based on an arithmetic argument following from relations
in the mapping class group. Corollary 2.7 can be improved to show that:

Corollary 2.8 For any γ ∈ Aut(Σ) which is the product of Dehn twists in non-intersecting curves,
the element Vλ⃗(γ) ∈ Aut(Vλ⃗(Σ)) has finite order.

This follows immediately by factoring along two simple closed curves on either side of the simple
closed curve of the Dehn twist. We remind that in general, not all elements in the representations of
the mapping class group provided by V have finite order.

2.7 Extension to the boundary

In order to extend the above constructions to the Deligne-Mumford compactification of the moduli
space, we introduce the augmented Teichmüller space and extend all our constructions in a mapping
class group equivariant way to the augmented Teichmüller space.

Let (Σ, P ) be a pointed surface. We introduce the set of contraction cycles C(Σ,P ) on (Σ, P ). It
consists of isotopy classes of 1-dimensional submanifolds C of Σ−P , such that connected components
of C are non-contractible, and that no two connected components of C are isotopic in Σ−P , and non
of the components are contractible on Σ − P , nor are any of the components contractible into any of
the points in P . We remark that C = ∅ is allowed.

The augmented Teichmüller space TaΣ,P for a pointed surface (Σ, P ) consists of equivalence classes
of continuous maps ϕ ∶ (Σ,C,P )→ (X,N,Q), where C ∈ C(Σ,P ), X is a nodal Riemann surface with
nodes N , and Q ⊂ X is finite set of points of X − N , such that ϕ(C) = N and the restricted map
ϕ ∶ (Σ −C,P )→ (X −N,Q) is a diffeomorphism.

TaΣ,P = {ϕ ∶ (Σ,C,P )→ (X,N,Q)} / ∼a

where we declare that two continuous maps ϕi ∶ (Σ,C,P )→ (Xi,Ni,Qi) for i = 1,2 are ∼a-equivalent
if there exists a biholomorphic map Φ ∶ (X1,N1,Q1) → (X2,N2,Q2) such that Φ ○ ϕ1 is isotopic to
ϕ2 via continuous maps from (Σ,C,P ) to (X2,N2,Q2) which are diffeomorphisms from (Σ−C,P ) to
(X2 −N2,Q2). If P = ∅, this space is simply denoted TaΣ.

The augmented Teichmüller space TaΣ,P has the structure of a complex manifold uniquely deter-
mined by following property. Suppose π ∶ Z →D is a holomorphic map from a complex 2-dimensional
manifold Z to the unit disk D in the complex plane, such that π−1(x) is a nodal Riemann surface
for all x ∈ D. Suppose further that we are given a continuous map Φ ∶ Σ ×D → Z, satisfying the two
conditions:

● Φ(Σ × {x}) ⊆ π−1({x}) ;

● ifNx are the nodes of π−1(x) then Cx = Φ−1(Nx) is a submanifold of Σ−P such that [Cx] ∈ C(Σ,P ),
and the restricted map Φ ∶ Σ −Cx → π−1(x) −Nx is a diffeomorphism for all x ∈D.

Then, the map from D to TaΣ,P , which sends x to the restricted map Φ ∶ (Σ,Cx, P ) →
(π−1(x),Nx,Φ(P × {x})) is holomorphic.

We observe that the mapping class group ΓΣ,P acts on TaΣ,P , and the quotient is the Deligne-
Mumford compactification Mg,n of the moduli space of genus g curves with n = ∣P ∣ marked points.

We will also consider the “decorated augmented Teichmüller space" consisting of equivalence classes
of continuous maps ϕ ∶ (Σ,C,P ) → (X,N,Q), where X is a Riemann surface, Q ⊂ X is finite set of
points, and W ∈ TQX non-zero tangent vectors:

T̃aΣ,P = {ϕ ∶ (Σ,C,P )→ (X,N,Q,W )} / ≈a

14



where ≈a is now the equivalence relation where we ask that the isotopies preserve (P, (dPϕ)−1(W )).
We have natural projection maps among the augmented Teichmüller spaces:

π̃aΣ,P ∶ T̃aΣ,P → TaΣ,P , πaP ∶ TaΣ,P → TPΣ, and πaΣ ∶ TaΣ,P → TaΣ.

The proof of Proposition 2.3 applies word for word to extend the Proposition to the augmented set-
ting. But then we get that all the constructions of Section 2.6 extend to constructions over augmented
Teichmüller spaces and hence also to the Deligne-Mumford compactification Mg,n of the moduli spaces
of genus g curves with n marked points.

Concerning the extension of the bundle L̃D and the section sL of L̃2
D to augmented Teichmüller

space, we appeal to the constructions of the first author and Ueno presented in [3]. By the constructions
of [3, Section 5] we see that the bundle V

†
ab(Σ) extends to a holomorphic bundle over augmented

Teichmüller space. Moreover the preferred section of V†
ab(Σ) extends to a nowhere vanishing section

of the extension of V†
ab(Σ) to augmented Teichmüller space as is proved in [3, Section 6]. From this

we conclude that the bundle L̃−c/2
D extends to augmented Teichmüller space and that the action of ΓΣ

also extends.

2.8 Remark on ordering of punctures

In the usual definition of the moduli space Mg,n, it is assumed that the marked points are ordered
from 1 to n.

If (Σ, P ) is a pointed surface such that Σ has genus g and ∣P ∣ = n, in our definition of the Teichmüller
space TΣ,P in (2), the permutations of the n points are divided out. We therefore have:

MΣ,P ≃Mg,n/Sn

and likewise for the Deligne-Mumford compactifications. Later in the text, we work only with the
pull-back to Mg,n of the bundle Vλ⃗ that was so far obtained over MΣ,P . The formula for the Chern
classes in Theorem 2.5 is the same for the bundle over Mg,n.

3 Cohomological field theories

3.1 Generalities
3.1.1 Frobenius algebras

A Frobenius algebra is a finite dimensional complex vector space A, equipped with a symmetric,
non-degenerate bilinear form b ∶ A ⊗ A → C, and an associative, commutative C-linear morphism
× ∶ A⊗A→ A such that:

∀a1, a2, a3 ∈ A, b(a1, a2 × a3) = b(a1 × a2, a3).

We require the existence of a unit for the product, denoted 1.
A is semi-simple if there exists a C-linear basis (ε̃1, . . . , ε̃n) such that:

∀(i, j) ∈ J1, nK, ε̃i × ε̃j = δij ε̃i. (4) {ija1}

The unit is then 1 = ∑i ε̃i, and (4) implies that the bilinear form is diagonal in this basis:

b(ε̃i, ε̃j) =
δij

∆i
.
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We say that (ε̃i)i is a canonical basis. It is sometimes more convenient to work with the orthonormal
basis εi = ∆

1/2
i ε̃i:

εi × εi = δij∆
1/2
i εi, b(εi, εj) = δij .

Then b induces a bivector b† ∈ A⊗A, that will play an important role. In a canonical or an orthonormal
basis:

b† =∑
i

εi ⊗ εi.

3.1.2 CohFTs

A cohomological field theory (CohFT) is the data of a finite dimensional complex vector space A with
a symmetric bilinear non-degenerate b ∶ A ⊗A → C and a sequence Ωg,n ∈ H●(Mg,n) ⊗A⊗n indexed
by integers g ≥ 0 and n ≥ 1 such that 2g − 2 + n > 0, satisfying the axioms given below. Since b gives a
canonical identification of A with its dual A∗, we can equivalently consider Ω∗

g,n ∈H●(Mg,n)⊗(A∗)⊗n.
The axioms are:

● There is a non-zero element 1 ∈ A such that the pairing is given by:

∀a1, a2 ∈ A, b(a1, a2) = ∫
M0,3

Ω∗
0,3(a1 ⊗ a2 ⊗ 1).

● Ωg,n is symmetric by simultaneous permutations of the n factors in A⊗n and the n punctures in
Mg,n.

● Pulling back with the glueing map π ∶ Mg,2+n →M1+g,n, we should have:

π∗Ω1+g,n = b(Ωg,2+n)

where b applies to the two first factors of A.

● Pulling back with the glueing map π ∶ Mg1,1+n1 ×Mg2,1+n2 →Mg1+g2,n1+n2 , we should have:

π∗(Ωg1+g2,n1+n2) = b(Ωg1,1+n1 ⊗Ωg2,1+n2)

where the pairing is taken with respect to the first factor of A in each Ω-factor.

● Pulling back with the forgetful map π ∶ Mg,1+n →Mg,n, we should have:

π∗(Ωg,n)⊗ 1 = Ωg,1+n.

The axioms imply that A is a Frobenius algebra with the product:

b(a1 × a2, a3) = ∫
M0,3

Ω∗
0,3(a1 ⊗ a2 ⊗ a3).

Givental [38] describes two basic actions on the set of CohFT over the same Frobenius algebra.
We follow the presentation of [60].

3.1.3 Translations

Let T (u) ∈ u2A[[u]], and consider the forgetful maps πm ∶ Mg,m+n → Mg,n. One can define a new
CohFT by the formula:

(T̂Ω∗)g,n(a1 ⊗ . . .⊗ an) = ∑
m≥0

1

m!
∑

k1,...km≥2

(πm)∗{Ω∗
g,n+m(Tk1 ⊗⋯⊗ Tkm ⊗ a1 ⊗⋯⊗ an)ψk1

1 . . . ψkmm }

where T (u) = ∑m≥2 Tm u
m for Tm ∈ A. The pushforward map (πm)∗ is defined in homology, and to

make sense of this formula at the level of cohomology classes, one uses Poincaré duality for Mg,n as
it is a smooth compact orbifold.
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3.1.4 R-matrix actions

Let R(u) ∈ End(A)[[u]] such that R(0) = id and satisfying the symplectic condition:

R(u)R†(−u) = id

where R†(u) ∈ End(A)[[u]] is the adjoint for the pairing b. One then defines5 :

B(u1, u2) ∶=
b† −R(u1)⊗R(u2) ⋅ b†

u1 + u2
∈ (A⊗A) [[u1, u2]].

The symplectic condition guarantees that B is a formal power series in u1 and u2. One can define a
new CohFT by the formula:

(R̂Ω)g,n ∶= ∑
Γ

stable graph

1

∣Aut Γ∣ (πΓ)∗( ∏
l=leaf

R(ψl) ∏
e=edge
{v′e,v

′′
e }

B(ψv′e , ψv′′e ) ∏
v=vertex

Ωg(v),n(v)) (5) {ushf}

The sum is over stable graphs of topology (g, n), namely Γ meeting the requirements:

● vertices v are trivalent, carry an integer label h(v) ≥ 0 (the genus), and their valency n(v) satisfy
2g(v) − 2 + n(v) > 0.

● there are n leaves (1-valent vertices), labeled from 1 to n.

● rank(H1(Γ,Z)) +∑v=vertex g(v) = g.

In (5), the endomorphisms are naturally composed along the graph, and we use the pushforward by
the glueing map along the graph:

πΓ ∶ ∏
v

Mg(v),n(v) →Mg,n.

3.1.5 Classification of semi-simple CohFT

Given a CohFT defined by correlators Ωg,n, its restriction to the degree 0 part ωg,n ∈H0(Mg,n)⊗A⊗n

is sometimes called (abusively) a topological quantum field theory (TQFT). Teleman [69], building
upon the work of Givental [38, 39], has classified semi-simple CohFT whose underlying Frobenius
algebra has dimension k:

Theorem 3.1 [69] Any semi-simple CohFT can be obtained from a degree 0 CohFT by the composi-
tion of the action of an R-matrix, and a translation such that:

T (u) = u(1 −R(u) ⋅ 1). (6) {TRmat}

More precisely, if Ω denote the correlators of the CohFT, and ω the correlators of its underlying
TQFT, we have Ω = R̂T̂ω.

This reconstruction is a powerful tool since the correlators ωg,n of a degree 0 CohFT with canonical
basis (ε̃i)i such that b(ε̃i, ε̃j) = δij/∆i and ε̃i × ε̃j = δij ε̃i are:

Ωdeg 0
g,n =

k

∑
i=1

∆g−1
i [Mg,n]⊗ ε̃i ⊗⋯⊗ ε̃i. (7)

where the Poincaré duality is implicitly used in this formula. The knowledge of the R-matrix is enough
for reconstructing the correlators of a semi-simple CohFT.

5Let us remark that this notation differs from the one used in the topological recursion literature. In the topological
recursion setup, B refers usually to the so-called Bergman kernel while our B corresponds to its Laplace transform often
denoted by B̌.
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3.2 Reference vector spaces attached to a modular functor

We shall now describe the CohFT defined by a modular functor, starting by the definition of the
reference vector spaces underlying it. We start with a general modular functor V. We shall work with
marked surfaces of reference, and choose basis in their corresponding vector spaces.

3.2.1 Once-punctured sphere

Σ0,1 is the 2-sphere with P = {0} and V = {v0} with v0 pointing to the positive real axis. V1(Σ0,1)
is a line, and we pick up a generator ζ̃[1]. This induces an isomorphism V1(Σ0,1) ≅ V1(Σ0,1)⋆, and
allows us to project the isomorphism from propagation of vacua:

Vλ(Σ, P, V,L) ≅ Vλ,1(Σ, P ⊔ {p′}, V ⊔ {v′}, L)⊗V1(Σ0,1)

to an isomorphism:
Vλ(Σ, P, V,L) ≅ Vλ,1(Σ, P ⊔ {p′}, V ⊔ {v′}, L).

Later on, this will be used systematically.

3.2.2 Twice-punctured sphere

Σ0,2 is the 2-sphere with P = {0,∞} and V = {v0, v∞} with v∞ pointing to the negative real axis.
Vλ,λ†(Σ0,2) is a line. The property of propagation of vacua provides an isomorphism:

V1,1(Σ0,2) ≅ V1(Σ0,1)⊗V1,1(Σ0,2) (8) {firstiso}

and the property of factorization provides isomorphisms:

Vλ,λ†(Σ0,2) ≅ Vλ,λ†(Σ0,2)⊗Vλ†,λ(Σ0,2) = Vλ,λ†(Σ0,2)⊗2. (9) {secondiso}

They determine for each λ ∈ Λ a unique generator ζ[λ] of Vλ,λ†(Σ0,2) such that ζ[1] = ζ[1] ⊗ ζ̃[1]
using (8), and ζ[λ] = ζ[λ]⊗ ζ[λ] using (9).

3.2.3 Thrice-punctured sphere

Σ0,3 is the 2-sphere with P = {0,1,∞} and V = {v0, v1, v∞} with v1 pointing in real direction to ∞.
We denote:

Nλµν = dim Vλ,µ,ν(Σ0,3).

Since the points on a marked surface are not ordered, this symbol is invariant under permutation of
(λ,µ, ν). Propagation of vacua gives an isomorphism:

Vλ,λ†(Σ0,2) ≅ Vλ,λ†,1(Σ0,3)⊗V1(Σ0,1). (10) {iso03}

We fix a basis ζi[λµν] of the space Vλ,µ,ν(Σ0,3), indexed by i = 1, . . . ,Nλµν . Without loss of generality,
we can require that under (10):

ζ[λ] = ζ1[λλ†1]⊗ ζ̃[1].

3.2.4 Torus

Σ1 is the torus C/(Z⊕ iZ). We denote α – resp. β – the closed, oriented, simple curve based at o and
following the positive real axis – resp. the positive imaginary axis.
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3.3 The Frobenius algebra of a modular functor
3.3.1 As a vector space

If γ is a simple oriented closed curve on Σ1, we obtain a marked surface Σ
(γ)
1 by considering the

Lagrangian spanned by the homology class of γ. In this paragraph, we shall define a structure of
Frobenius algebra on the vector space of a torus. For convenience, we choose a torus with a marked
point:

A ∶= V1(Σ(α)
1 ). (11) {Adef}

By applying a diffeomorphism that takes (α,β) to (β,−α), we also have a natural isomorphism:

A ≅ V1(Σ(β)
1 ). (12) {Bdef}

By propagation of vacua, then factorization along α and application of a suitable diffeomorphism, we
obtain from (11) an isomorphism:

A ≅ ⊕
λ∈Λ

Vλ,λ†(Σ0,2).

Our previous choices of generators in the right-hand side carries to a basis eλ of A. Similarly, the
factorization along β from (12) would give another basis ελ of A. The change of basis is called the
"S-matrix". It is the linear map S ∶ A→ A defined by:

S(eλ) ∶= ελ = ∑
µ∈Λ

Sλµeµ.

3.3.2 Pairing

We define a pairing on A by the formula:

b(eλ, eµ) ∶= δλµ† . (13) {pairingMF}

3.3.3 Involutions

We define the charge conjugation, which is the involutive linear map C ∶ A→ A such that C(eλ) = eλ† .
If O ∶ A→ A is a linear map, we denote O⊺ its adjoint with respect to the scalar product in which eλ
is an orthonormal basis, and O† its adjoint for the bilinear product b. We have:

C = C⊺ = C† = C−1.

We may sometimes confuse the operator O with its matrix (Oλ,µ)λ,µ∈Λ in the basis (eλ)λ∈Λ. In terms
of matrices, O⊺ is the transpose, while M † = CO⊺C.

3.3.4 Curve operators and S-matrix

For any marked surface (Σ, P ) and a simple oriented closed curve γ on Σ ∖ P and label λ ∈ Λ,
following [5], we introduces curve operators, that we denote C[γ;λ]. We consider in particular the
curve operators (C[β;λ])λ∈Λ acting on A, as multiplication by eλ. In the basis related to α they have
the expression:

C[β;λ](eµ) = ∑
ν∈Λ

Nλµν† eν ,

whereas they are simultaneously diagonalized in the basis related to β:

C[β;λ](εµ) = cµ[λ] εµ. (14) {eigne1}
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>From these two facts, the eigenvalue can easily be computed. Indeed, we compute from the defini-
tions:

C[β;λ][e1] = ∑
µ∈Λ

Nλ1ν† eν = eλ = ∑
µ∈Λ

(S−1)λµ εµ

while, if we first go to the ε-basis:

C[β;λ][e1] = ∑
µ∈Λ

(S−1)1µ cµ[λ] εµ.

The comparison gives that (S−1)1µ is non-zero and the eigenvalue reads:

cµ[λ] =
(S−1)λµ
(S−1)1µ

. (15) {eigne2}

One then deduce the standard formula:

Nλµ†ν = ∑
τ∈Λ

(S−1)λτSτµ(S−1)ντ
(S−1)1τ

. (16) {nlm}

This formula does not depend on the normalization of the basis diagonalizing the curve operator
action, i.e. it is invariant under rescalings Sτµ → aτSτµ with (aτ)τ∈Λ ∈ [C∗]Λ. In particular, one can
write the formula with respect to the orthogonal basis (ελ) = ∑µ∈Λ Sλµeµ defined in (25) to get

Nλµ†ν = ∑
τ∈Λ

(S−1)λτSτµ(S−1)ντ
(S−1)1τ

. (17) {nlm2s}

3.3.5 Relation between S and C

Setting µ = 1 in (16) yields Nλ1ν = δλν† , which gives the relation:

Cλµ ∶= δλµ† = ∑
τ∈Λ

Sτ1

(S−1)1τ
(S−1)λτ(S−1)µτ . (18) {nlm2}

In terms of a rescaled6 S-matrix, it can be rewritten:

Sλµ ∶=
√

(S−1)1λ

Sλ1
Sλµ, C = S−1(S−1)⊺ (19) {SST}

or equivalently:
S⊺S = C. (20) {SSJ}

Whenever possible, we prefer to avoid the occurrence of † indices, so we will use (20) to convert it in
entries of the inverse S-matrix.

3.3.6 Symmetric formula

This relation between S and C allows to write down the action of the curve operator in a more
symmetric form avoiding the † indices:

Nλµν = ∑
τ∈Λ

(S−1)λτ(S−1)µτ(S−1)ντ
[(S−1)1τ ]2

Sτ1.

6It follows from the definition that b is non-degenerate, so Sλ1/(S−1)1λ = b(ελ, ελ) computed in (24) below cannot
be 0, i.e. Sλ1 ≠ 0. Then, Sλµ depends on the arbitrary choice of a sign for the squareroot, which does not affect any of
the Verlinde formula since an even number of S−1 factors appear.
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Once again, one can express this symmetric formula in the orthonormal basis to get a more natural
form

Nλµν = ∑
τ∈Λ

(S−1)λτ(S−1)µτ(S−1)ντ
(S−1)1τ

. (21) {symnlm}

The rescaling from S to S also does not affect the formula for the eigenvalues of the curve operators:

cµ[λ] =
(S−1)λµ
(S−1)1µ

. (22) {eignde}

3.3.7 Extra relations

If MF-D is satisfied or if the modular functor comes from a modular tensor category [72, page 97-
98], then Sλµ = S−1

µλ† . In particular, we have (S−1)1λ = Sλ1, therefore S = S and the basis ελ is
already orthonormal. If MF-U is satisfied, the matrix S is unitary. In particular, S−1

1λ = S∗λ1. These
properties are justified in Appendix A. In this text, we study modular functors where MF-D is not
assumed, but MF-U is assumed for the computation of the Chern character in Proposition 2.6. In
later computations, we however do not use unitarity of the S-matrix to transform expressions.

3.3.8 As a Frobenius algebra

We define a product on A by the formula:

eλ × eµ ∶= C[β;λ](eµ). (23) {productMF}

A direct check from the previous formulas shows that A is now a Frobenius algebra, with unit e1 = 1.
We also find respectively from (16) and (18):

ελ × εµ = δλµ
ελ

(S−1)1λ
and b(ελ, εµ) =

Sλ1

(S−1)1λ
δλµ.

The canonical basis (ε̃λ)λ is obtained by a rescaling of the ελ:

ε̃λ = (S−1)1λ ελ

which satisfies:
ε̃λ × ε̃µ = δλµ ε̃λ and b(ε̃λ, ε̃µ) = (S−1)1λSλ1 δλ,µ. (24) {canonical}

A third interesting normalization gives the orthonormal basis:

ελ =
ε̃λ√

(S−1)1λSλ1

=
√

(S−1)1λ

Sλ1
ελ ∶= ∑

µ∈Λ

Sλµeµ (25) {orthoba}

which satisfies:
ελ × εµ = δλµ

ελ√
(S−1)1λSλ1

and b(ελ, εµ) = δλµ.

The unit expressed in the various basis is:

1 = e1 = ∑
λ∈Λ

ε̃λ = ∑
λ∈Λ

√
(S−1)1λSλ1 ελ = ∑

λ∈Λ

(S−1)1λελ.

The norm of the canonical basis will appear in subsequent computations and is read from (24):

∆λ ∶=
1

b(ε̃λ, ε̃λ)
= 1

(S−1)1λSλ1
= 1

[(S−1)
1λ

]2
.
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3.4 CohFTs associated to a modular functor

We shall build, for each log-determination of the central charge and Dehn twist eigenvalues:

r̃λ = exp(2iπrλ), c̃ = exp(iπc/2), rλ, c ∈ C such that rλ = rλ† , (26) {logdet}

a 1-parameter family of CohFTs based on the Frobenius algebra A described in the previous paragraph.
The parameter here is denoted t ∈ C. We rely on the result of Theorem 2.7: we have defined for each
n-uple λ⃗ of labels, a complex vector bundle [Zλ⃗]g,n → Mg,n. Then, we simply take its total Chern
class:

Ωg,n = ∑
λ⃗∈Λn

Cht([Zλ⃗]g,n) eλ1 ⊗⋯⊗ eλn .

Theorem 3.2 For any t ∈ C and choice of log-determinations (26), Ωg,n is a semi-simple CohFT.

Proof. Our bundle has been defined over the boundary of the moduli space, and the axioms of a
CohFT for the total Chern class immediately follow from the factorization properties of the underlying
bundles. ◻

To describe explicitly this CohFT, we need to find the operator which transports it to a degree
0 CohFT. The strategy is the same as in [60] which was written in the example where Vg,n is the
Verlinde bundle. The task of identifying the R-matrix is facilitated by the following result, whose
proof relies on Teleman’s classification of semi-simple CohFTs [69].

Lemma 3.3 [60] In a semi-simple CohFT, the restriction of Ωg,n to the smooth locus Mg,n completely
determines the R-matrix.

For a modular functor satisfying the unitarity axiom MF-U, we already have computed in Propo-
sition 2.6 the Chern character of [Zλ⃗]g,n on the smooth locus Mg,n:

Ω∗
g,n(eλ1 ⊗⋯⊗ eλn) =Dλ⃗(Σg,n) exp{t( − c

2
Λ1 +

n

∑
i=1

rλiψi)}, Dλ⃗(Σg,n) ∶= dimVλ⃗(Σg,n).

Here, Λ1 is the first Chern class of the Hodge bundle, not to be confused with the label set Λ. Σg,n

is any marked surface of genus g with n points. Since the mapping class group acts transitively on
marked surfaces, Dλ⃗(Σg,n) only depends on g, n and λ⃗.

Proposition 3.4 Assume r1 = 0. We find a diagonal R-matrix in the e-basis, which can also be
written non-diagonally in the ε-basis:

R(u) = ∑
λ∈Λ

eut(rλ+c/24) ideλ (27) {Rmatri}

and the corresponding translation is T (u) = u(1 − exp(utc/24))e1.

Since u here is not a quantized parameter, the log-determination of rλ and c do matter in (27).

Remark 3.1 We observe that, up to the scalar eutc/24, the R-matrix can be identified with the action
of the flow at time ut/4iπ generated by an infinitesimal Dehn twist around a puncture, on the space:

Vtot(Σg,n) = ⊕
λ⃗∈Λn

Vλ⃗(Σg,n).

This awaits an interpretation in hyperbolic geometry.
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Proof. We first remark that:

Ω∗
g,n(eλ1 ⊗⋯⊗ eλn)∣t=0 ∶=Dλ⃗(Σg,n) [Mg,n] (28) {Dgt0}

are the correlators of the degree 0 part of the CohFT of the modular functor. Denote ι ∶ Mg,n →Mg,n.
With the formula ι∗(Λ1) = ι∗(κ1/12) [64], we obtain:

ι∗Ω∗
g,n(eλ1 ⊗⋯⊗ eλn) = ι∗Cht([Zλ⃗]g,n) = exp(−t c κ1/24) exp (

n

∑
i=1

t rλiψi). (29) {omea}

Comparing with Teleman classification theorem:

Ωg,n = T̂ R̂Ωg,n∣t=0,

we see by definition of the κ-classes that the first factor in (29) can only arise by the action of the
translation operator, and the second factor arises from the action of the R-matrix given in (27). The
expression of the translation follows from the fact that we have a CohFT and the general result (6):
since r1 = 0 and e1 is the unit, we find T (u) = u(1 − exp(utc/24))e1. ◻

3.5 Remark on log-determinations

When the modular functor comes from a category of representations of a vertex operator algebra A,
A is the character ring of A. Characters are functions in the upper-half plane {τ ∈ C, Im τ > 0},
and after multiplication by a suitable rational power of q = e2iπτ , the characters fit in a vector-valued
modular form. The S-matrix is implemented by the transformation τ ↦ −1/τ , and the Dehn twist is
implemented by τ ↦ τ + 1. The modularity of characters then provides canonical log-determinations
rλ and c, since multiplying by another power of q will destroy modularity.

4 Topological recursion

The main result of [25] is that the evaluation of the classes Ωg,n of a semi-simple CohFT against Mg,n

are computed by the topological recursion of [30]. We quickly review this theory, in the (minimal)
context of local spectral curve. We will comment on the setting of global spectral curves in Section 7.

4.1 Local spectral curve and residue formula

A local spectral curve is the data of:

● U = ⊔iUi which is a disjoint union of formal neighborhoods of complex dimension 1 of points
oi ∈ Ui ;

● a branched covering x ∶ U → V whose ramification divisor is O = ⊔i{oi}. V itself is also a
disjoint union of formal neighborhoods of a point in P1.

We assume that x has only simple ramifications. Then, we can choose a coordinate on Ui, denoted ζi
such that x(ζi) = ζ2

i /2 + x(oi). We make this choice once for all in each Ui. Ui carries a holomorphic
involution σi, which sends the point in Ui with coordinate ζi, to the point in Ui with coordinate −ζi.
In case we have several variables z` in some Ui` with various indices `, we shall denote ζi`(z`) their
respective coordinates.
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Let ∆ = {(z, z) ∈ U, z ∈ U} be the diagonal divisor, and KU be the canonical bundle, i.e. the
bundles whose sections are the holomorphic differentials on U . The initial data of the topological
recursion is:

ω0,1 ∈H0(U,KU), ω0,2 ∈H0(U2,K⊠2
U (2∆))S2

with the extra condition that ω0,1(z) − ω0,1(σi(z)) has at most double zeroes at oi. In coordinates
this means that we have:

∀z ∈ Ui , ω0,1(z) = ∑
d≥0

ω0,1 [ id ] ζ
d
i (z)dζi(z) (30)

∀(z1, z2) ∈ Ui1 ×Ui2 , ω0,2(z1, z2) =
δi1i2 ti1 dζi1(z1)dζi2(z2)

(ζi1(z1) − ζi2(z2))2

+ ∑
d1,d2≥0

ω0,2 [ i1 i2
d1 d2

] ζd1

i1
(z1)ζd2

i2
(z2)dζi1(z1)dζi2(z2)

with ω0,1 [ i0 ] ≠ 0 or ω0,1 [ i2 ] ≠ 0. We usually assume that the coefficients of the double poles are ti = 1

for all i.
The topological recursion provides a sequence of symmetric forms in n variables:

ωg,n ∈H0(Un, (KU(∗O))⊠n)Sn , for 2g − 2 + n > 0 (31) {admis}

which describe the unique normalized solution of the "abstract loop equations" with initial data
(ω0,1, ω0,2) [14, 15]. In (31), we take forms that are invariant under the symmetric group Sn acting
by permutation of the n factors of U . For this reason, we can use the notation ωg,n(I) when I is a
set of n variables in U . The definition of ωg,n proceeds by induction on 2g − 2 + n > 0. We introduce
the recursion kernel

Ki ∈H0(U ×Ui, [KU ⊠K−1
Ui (O)](∆ ⊔∆σ)), Ki(z0, z) =

1

2

∫
z
σi(z)

ω0,2(⋅, z0)
ω0,1(z) − ω0,1(σi(z))

. (32) {kluin}

where ∆σ = ⊔i{(z, σi(z)), z ∈ Ui}. Denote by I = {z2, . . . , zn} a set of (n−1)-variables. The topological
recursion formula defining the symmetric forms is:

ωg,n(z1, I) = ∑
oi∈O

Res
z→oi

Ki(z0, z){ωg−1,n+1(z, σi(z), I) + ∑
h+h′=g
J⊔J ′=I

(h,J)≠(0,∅),(g,I)

ωh,1+∣J ∣(z, J)⊗ωh′,1+∣J ′∣(σi(z), J ′)}.

(33) {toprec}

The induction reduces ωg,n to an expression involving 2g−2+n residues with Ki’s and g+n−1 factors
of ω0,2. If the induction is completely unfolded, ωg,n is a sum over certain trivalent graphs containing
a spanning tree, having 2g −2+n vertices and g +n−1 extra edges in the complement of the tree [30].

Remark 4.1 Sometimes, the data of the differential form ω0,1 is replaced by the data of a germ of
functions y holomorphic at all the oi such that ω0,1(z) = y(z)dx(z) for any z ∈ U .

4.2 Relation to cohomological field theories

For any local spectral curve, the ωg,n can be represented in terms of intersection numbers on Mg,n [28].
There is a partial converse: [25] establishes that the correlators of a semi-simple CohFT are computed
by the topological recursion for a local spectral curve prescribed by the corresponding R-matrix (we
stress that not all local spectral curves can arise from a CohFT). We now review this correspondence.
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4.2.1 CohFT data

Let (ε̃i)i be a canonical basis, and εi = ε̃i/∆
1/2
i the orthonormal basis. We write the formal series

expansions:

T (u) = u(1 −R(u) ⋅ 1) = ∑
i

∑
d≥2

T [ id ] u
d εi (34)

B(u1, u2) = b† −R(u1)⊗R(u2) ⋅ b†
u1 + u2

= ∑
i1,i2

d1,d2≥0

B [ i1 i2
d1 d2

] ud1

1 u
d2

2 εi1 ⊗ εi2 (35)

of the R-matrix and translation matrix defining uniquely a CohFT with canonical basis (ε̃i)i. We
denote by Ωg,n its correlators and Ωdeg 0

g,n the restriction to their degree 0 part which only depends on
the norms ∆i.

4.2.2 Local spectral curve data

We now define a local spectral curve, in terms of the above CohFT data. Its ramification points are
indexed by a canonical basis (ε̃i)i of the underlying Frobenius manifold, and we set:

∀z ∈ Ui x(z) = x(oi) + ζ2
i (z)/2

∀z ∈ Ui ωodd
0,1 (z) = −∆

−1/2
i ζ2

i (z)dζi(z) +∑
d≥2

T [ id ]
(2d − 1)!! ζ

2d
i (z)dζi(z) (36)

∀(z1, z2) ∈ Ui1 ×Ui2 ωodd
0,2 (z1, z2) =

δi1i2 dζi1(z1)dζi2(z2)
(ζi1(z1) − ζi2(z2))2

+ ∑
d1,d2≥0

B [ i1 i2
d1 d2

]
(2d1 − 1)!!(2d2 − 1)!! ζ

2d1

i1
(z1) ζ2d2

i2
(z2)dζi1(z1)dζi2(z2).

By convention, (2d− 1)!! = 1 for d = 0. Then, let ω��odd
0,1 (z) be an arbitrary holomorphic 1-form which is

invariant under the local involution ζi(z)→ −ζi(z) in the patch z ∈ Ui, and an arbitrary bidifferential
of the form:

∀(z1, z2) ∈ Ui1 ×Ui2 , ω�
�odd

0,2 (z1, z2) = ∑
d1,d2≥0

d1 or d2 even

ω0,2 [ i1 i2
d1 d2

] ζd1

i1
(z1)ζd2

i2
(z2)dζi1(z1)dζi2(z2).

We then consider as initial data for the topological recursion:

ω0,1 = ωodd
0,1 + ω��odd

0,1 , ω0,2 = ωodd
0,2 + ω��odd

0,2 . (37) {initiw}

To sum up, in the decomposition:

ω0,2(z1, z2) =
δi1i2dζi1(z1)dζi2(z2)
(ζi1(z1) − ζi2(z2))2

+ ∑
d1,d2≥0

ω0,2 [ i1 i2
d1 d2

] ζd1

i1
(z1)ζd2

i2
(z2)dζi1(z1)dζi2(z2)

the R-matrix of the CohFT only fixes the coefficients:

ω0,2 [ i1 i2
2d1 2d2

] =
B [ i1 i2

d1 d2
]

(2d1 − 1)!!(2d2 − 1)!!

while all the other can be arbitrarily chosen. With this ω0,2 at hand, we build a family of meromorphic
1-forms Ξd,i(z0) indexed by ramification points and an integer d ≥ 0:

Ξi,d(z0) ∶= Res
z→oi

(2d + 1)!! dζi(z)
ζi(z)2d+2 ∫

z

oi
ω0,2(⋅, z0). (38) {Xidef1}
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The only singularity of this 1-form is a pole at z0 → oi, and we actually have for z0 ∈ Ui0 :

Ξi,d(z0) = δii0
(2d + 1)!! dζi0(z0)

ζ2d+2
i0

(z0)
+ (2d − 1)!! ∑

d0≥0

ω0,2 [ i i0
2d d0

] ζd0

i0
(z0)dζi0(z0). (39) {Xidef2}

We stress that the domain of definition of Ξi,d is the whole U – as for ω0,2 – and not only Ui.

Theorem 4.1 [25] Consider the n-forms ωg,n(z1, . . . , zn) defined by:

ωg,n(z1, . . . , zn) = ∑
i1,...,in

d1,...,dn≥0

∫
Mg,n

Ω∗
g,n(εi1 ⊗⋯⊗ εin)

n

∏
`=1

ψd``

n

∏
`=1

Ξi`,d`(z`). (40) {comparet}

Then, ωg,n is computed by the topological recursion (33) with initial data (37).

Note that, in the right-hand side, the only dependence in the choice of ω��odd
0,2 lies in the meromorphic

forms Ξd,i defined in (38) and on which the correlators are decomposed. Further, the ωg,n do not
depend on the constant x(oi) and the 1-form ωeven

0,1 . Allowing them to be non-zero can simplify
expressions, and does matter if one is interested in building a Landau-Ginzburg model for which (36)
is the local expansion near ramification divisors. This matter will be discussed in Section 7.

We observe that:

∫
R

e−ζ
2
/2u

2(2πu)1/2
ζ2d dζ = (2d − 1)!!ud. (41) {intL}

Therefore, the relation between the initial data (34) and the R-matrix of the CohFT is given by a
Laplace transform, as it is well-known:

1u + T (u) = ∑
i

(∫
γi

exp [ − x(z)−x(oi)
u

]
2(2πu)1/2

ω0,1(z)) εi

B(u1, u2) = ∑
i,j

(∫
γi×γj

exp [ − x(z1)−x(oi)
u1

− x(z2)−x(oj)

u2
]

4(2πu1)1/2(2πu2)1/2
{ω0,2(z1, z2) −

δij

(ζi(z1) − ζj(z2))2
}) εi ⊗ εj .

Here, γi is a steepest descent contour in the spectral curve passing through the ramification point oi
and going to ∞ in the direction Rex(z)/u → −∞. For the case of local spectral curves we consider
here, the meaning of the right-hand side must be precised: we expand the non-exponential part of the
integrand in power series when z → oi, then integrate term by term against e−x(z)/u using (41). Each
term yields a monomial in u, and thus the right-hand side is a well-defined formal power series in u.

In the next paragraphs, we apply Theorem 4.1 to the CohFT obtained from a modular functor.

4.3 Topological recursion and Verlinde formula

We shall not reproduce the general proof of Theorem 4.1, but it is easy and nevertheless instructive to
derive it directly for the degree 0 part of the theory, i.e. for the TQFT associated to a modular functor.
In this way, we exhibit the Verlinde formula computing the dimension Dλ⃗(Σg,n) = dimVλ⃗(Σg,n) of
the TQFT vector spaces as a special case of topological recursion.

4.3.1 Verlinde formula

Let us start with a brief review of the Verlinde formula. In terms of matrix elements in the (eλ)λ
basis, it takes the form:

Dλ⃗(Σg,n) = [C[β;λ1]⋯C[β;λn]Wg]
11

= b(e1, eλ1 ×⋯ × eλn ×Wg(e1))
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involving the curve operators introduced in § 3.3.4, and:

W = ∑
µ∈Λ

Tr(C[β;µ†])C[β;µ].

Equation (42) – and its equivalent form below (43) – have been first conjectured by Verlinde [76].
It was then proved by Moore and Seiberg [62] for modular functors coming from modular tensor
categories (though the notion had not been coined yet), but the proof actually holds for any modular
functor (see also [72]). The strategy consists (a) in degenerating Σg,n in an arbitrary way to a nodal
surface whose smooth components are all thrice-punctured spheres, and then use the factorization,
thus expressing D●(Σg,n) in terms of D●(Σ0,3) ; (b) to show that the S-matrix diagonalizes the
multiplication in the Frobenius algebra, which implies (43) for (g, n) = (0,3). For modular functors
without further assumptions, this is for instance proved in [68] and also in [5].

We can derive another expression by working in the ε̃-basis, taking advantage of the fact that it
diagonalizes simultaneously the curve operators and exploiting e1 = ∑τ∈Λ ε̃τ . The eigenvalues of the
curve operators are (14):

C[β;µ](ε̃τ) =
(S−1)µτ
(S−1)1τ

ε̃τ

so that the trace yields:

TrC[β;µ†] = ∑
ν∈Λ

(S−1)µ†ν

(S−1)1ν

= ∑
ν∈Λ

Sνµ

(S−1)1ν

(42)

and then the eigenvalues of W using (19):

W(ε̃τ) = ( ∑
µ,ν∈Λ

Sνµ

(S−1)1ν

(S−1)µτ
(S−1)1τ

) ε̃τ =
ε̃τ

[(S−1)1τ ]
2
.

Using that b(ε̃τ , ε̃τ ′) = [(S−1)1τ ]
2
, we obtain the equivalent – and maybe better known form – of (42):

Dλ⃗(Σg,n) = ∑
τ∈Λ

(S−1)λ1τ ⋯ (S−1)λnτ
[(S−1)1τ ]

2g−2+n
. (43) {Verlind2}

4.3.2 Topological recursion for the TQFT

We denote ωKdV
g,n the correlation functions returned by the topological recursion for the Airy curve:

U = C, x(ζ) = ζ2/2, y(z) = −z, ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
. (44) {AriY}

Although it is not needed in the proof of Proposition 4.2 below, we remind the well-known7:

ωKdV
g,n (ζ1, . . . , ζn) = ∑

d1,...,dn≥0
∫
Mg,n

n

∏
i=1

ψdii
(2di + 1)!! dζi

ζ2di+2
i

. (45) {kdvsa}

Proposition 4.2 Consider the local spectral curve defined by U = ⊔λ∈ΛUλ and, for z ∈ Uλ and
(z1, z2) ∈ Uλ1 ×Uλ2 in local coordinates:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(z) = x(oλ) + (ζλ(z))2/2
y(z) = −(S−1)1λ ζλ(z)

ω0,2(z1, z2) = δλ1λ2

dζλ1
(z1)dζλ2

(z2)

(ζλ1
(z1)−ζλ2

(z2))2

. (46) {thecurve}

7See [27] for a proof based on matrix model techniques. It can also be obtained directly from the Virasoro constraints
[79, 54] satisfied by the intersection numbers.
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Then, the correlation functions returned by the topological recursion for 2g−2+n > 0 are, for zi ∈ Uλi :

ωg,n(z1, . . . , zn) = ( ∑
µ⃗∈Λn

n

∏
i=1

SλiµiDµ⃗(Σg,n))ωKdV
g,n (ζλ(z1), . . . , ζλ(zn)). (47) {omgntf}

Remark that, since ω0,2 is purely diagonal in (46), the left-hand side in (47) vanishes unless all zi
belongs to the same open set Uλ1 . This is consistent with (43) which shows that the bracket in the
right-hand side vanishes unless λi = λ for all i, and explains the notation used in the KdV factor. If
we want to compare with Theorem 4.1, we use (45) and the basis of 1-forms:

z ∈ Uµ, Ξd,λ(z) = δλµ
(2d + 1)!!

[ζλ(z)]2d+2
.

Proof. In (46), we recognize several copies of the Airy curve, except for a rescaling of y(z) →
(S−1)1λ y(z) in the patch z ∈ Uλ. By the previous remark, we can assume that for any i ∈ J1, nK, we
have zi ∈ Uτ for the same τ ∈ Λ. Since ωg,n is obtained from the initial data by a sequence of 2g−2+n
residues at the ramification point oτ ∈ Uτ involving the kernel (32), we have:

ωg,n(z1, . . . , zn) =
ωKdV
g,n (z1, . . . , zn)
[(S−1)1τ ]

2g−2+n
.

To conclude, we recognize with (43):

1

[(S−1)1τ ]
2g−2+n

= ∑
τ∈Λ

n

∏
i=1

SτµiDµ⃗(Σg,n)

◻

The expression of the topological recursion in terms of intersection numbers is naturally written in
terms of local coordinates around the ramification points, which are associated to the canonical basis
(ε)λ. To retrieve the expression in the (eλ)λ-basis, one has to make a linear combination which cancels
the S in (47). So, the property that (ωg,n)g,n appearing in (40) satisfy the topological recursion is
equivalent to the Verlinde formula (43) for D●(Σg,n).

We can reformulate the proof by saying that, in the sum over trivalent graphs that computes the
ωg,n of the topological recursion, the dependence in the indices λi ∈ Λ of the weight of a graph is the
same for all graphs8.

4.3.3 Change of basis

Denote zλ ∈ Uλ the point such that ζλ(zλ(ζ)) = ζ, and define:

ω[λ⃗]
g,n(ζ1, . . . , ζn) ∶= ωg,n(zλ1(ζ1), . . . , zλn(ζn)).

Proposition 4.2 can be alternatively written:

∑
λ⃗∈Λn

n

∏
i=1

(S−1)µiλiω[λ⃗]
g,n(ζ1, . . . , ζn) =Dµ⃗(Σg,n)ωKdV

g,n (ζ1, . . . , ζn). (48) {prov}

Anticipating on Section 7, if there exists a global spectral curve, it corresponds to expressing the
correlation functions in a different basis of coordinates. In the Landau-Ginzburg picture, this amounts
to taking a different linear combination of vanishing cycles, while in the GW theory picture, it means
taking a different basis of the cohomology of the target space pulled back to the moduli space by the
evaluation map.

8While finishing this project, we heard that Dumitrescu and Mulase arrived independently in [24] to Proposition 4.2.
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4.4 Local spectral curves for modular functors

For the CohFT’s built from a unitary modular functor, we computed the R-matrix in (27). Working in
the orthonormal basis (ελ)λ introduced in (25), we deduce an expression for the local spectral curve,
but we exploit the freedom to add non-odd parts to the initial data to simplify the result. Define the
function B(ζ):

B(ζ) = cosh(ζ)
ζ2

− sinh(ζ)
ζ

(49) {renD}

and the renormalized Dehn twist:
hλ = 2t(rλ + c/24). (50)

From Lemma 2.4, we deduce that h1 = ct/12 and hλ = hλ† .

Theorem 4.3 The topological recursion applied to the initial data (ω0,1 = ydx , ω0,2) with:

∀z ∈ Uλ
⎧⎪⎪⎨⎪⎪⎩

x(z) = x(oλ) + [ζλ(z)]2 /2
y(z) = −(S−1)1λ

exp[(ct/12)1/2ζλ(z)]
(ct/12)1/2

(51)

∀(z1, z2) ∈ Uλ1
×Uλ2 ω0,2(z1, z2) = ∑

τ∈Λ

Sλ2τ
(S−1)τλ1

hτ B[h1/2
τ (ζλ1(z1) − ζλ2(z2))]dζλ1(z1)dζλ2(z2)

computes the intersection indices of Chern classes of the bundles [Zλ⃗]g,n, in the sense of Theorem 4.1
when decomposed on the basis of 1-forms:

∀z ∈ Uµ, Ξd,λ(z) = ∑
τ∈Λ

Sλτ(S−1)τµ
Γ[2d + 2 ; h

1/2
τ ζµ(z)]

2d d! [ζµ(z)]2d+2
dζµ(z0)

where Γ[a ; x] ∶= ∫
∞

x dv va−1e−v is the incomplete Gamma function9.

With the notational remark of Section 4.3.3, we therefore obtain a generalization of (48), which is
our second main result:

∑
λ⃗∈Λn

n

∏
i=1

(S−1)µiλi ω[λ⃗]
g,n(ζ1, . . . , ζn) = ∑

d1,...,dn≥0

n

∏
i=1

Γ[2di + 2 ; h
1/2
µi ζi]

ζ2di+2
i

∫
Mg,n

Cht(Zµ⃗(Σg,n))ψd1

1 ⋯ψdnn .

(52) {CMUGN}

Proof. This is pure algebra. The inverse norm of ελ is introduced in (25), and gives ∆
−1/2
λ = (S−1)

1λ
.

Inserting r1 = 0 in (27), we obtain T (u) = u(1 − eutc/24)1. Then, for z ∈ Uλ, we compute with (36):

ωodd
0,1 (z) = (S−1)1λ( − [ζλ(z)]2 −∑

d≥1

(ct/24)d [ζλ(z)]2d+2

d! (2d + 1)!! )dζλ(z)

= −(S−1)1λ(ζλ(z) +∑
d≥1

(ct/12)d [ζλ(z)]2d+1

(2d + 1)! )ζλ(z)dζλ(z)

= −(S−1)1λ
sinh[(ct/12)1/2 ζλ(z)]

(ct/12)1/2
dx(z). (53)

By adding a suitable even part, we can choose:

ω0,1(z) = −(S−1)1λ
exp[(ct/12)1/2ζλ(z)]

(ct/12)1/2
dζλ(z).

9Since Γ[a ; x] = Γ(a) +O(xa−1) when x→ 0, we see that Ξd,λ(z) = δλµ (2d + 1)!! [ζµ(z)]−(2d+2) dζµ(z0) +O(1) as it
should be.
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We now proceed to the 2-point function. We have b† = ∑λ∈Λ eλ ⊗ eλ† . Thus, we obtain from the
definition (35):

B(u1, u2) = ∑
λ1,λ2∈Λ

(∑
τ∈Λ

1 − exp [(u1hτ + u2hτ†)/2]
u1 + u2

(S−1)τλ1 (S−1)τ†λ2
) ελ1

⊗ ελ2
.

There is some simplification because hτ = hτ† , and (S−1)τ†λ2
= Sλ2τ

according to (20):

B(u1, u2) = ∑
λ1,λ2∈Λ

(∑
τ∈Λ

1 − exp [(u1 + u2)hτ /2]
u1 + u2

Sλ2τ
S−1
τλ1

) ελ1
⊗ ελ2

. (54) {bu2bu}

Let z1 ∈ Uλ1 and z2 ∈ Uλ2 . We decompose in power series of (u1, u2) and compute with (36) for the
odd part:

ωodd
0,2 (z1, z2) −

δλ1λ2

(ζλ1(z1) − ζλ2(z2))
2

= −∑
τ∈Λ

Sλ2τ
(S−1)τλ1 ∑

k≥0

(hτ /2)k+1

(k + 1)! ( ∑
d1,d2≥0
d1+d2=k

k!

d1!d2!

[ζλ1(z1)]2d1 [ζλ2(z2)]2d2

(2d1 − 1)!!(2d2 − 1)!! )dζλ1(z1)dζλ2(z2)

= −∑
τ∈Λ

Sλ2τ
(S−1)τλ1 ∑

k≥0

hk+1
τ

4(k + 1) ⋅ (2k)!{(ζλ1(z1) + ζλ2(z2))2k + (ζλ1(z1) − ζλ2(z2))2k}dζλ1(z1)dζλ2(z2)

= −1

2
∑
τ∈Λ

Sλ2τ
(S−1)τλ1 hτ{B̃[h1/2

τ (ζλ1(z1) + ζλ2(z2))] + B̃[h1/2
τ (ζλ1(z1) − ζλ2(z2))]}dζλ1(z1)dζλ2(z2)

in terms of the renormalized Dehn twist introduced in (49) and the series:

B̃(ζ) = ∑
k≥0

ζ2k

2(k + 1) ⋅ (2k)! =
1 − cosh(ζ)

ζ2
+ sinh(ζ)

ζ
= 1

ζ2
−B(ζ).

Writing δλ1λ2 = ∑τ∈Λ Sλ2τ
(S−1)τλ1 , the double pole can also be incorporated in the sum in the right-

hand side. By adding a suitable non-odd part, we can choose a bidifferential with a rather simple
expression:

ω0,2(z1, z2) ∶= ∑
τ∈Λ

Sλ2τ
(S−1)τλ1 hτ B[h1/2

τ (ζλ1(z1) − ζλ2(z2))]dζλ1(z1)dζλ2(z2). (55) {bas}

This is the result announced in (51). Eventually, we compute from (38) the basis of 1-form induced
by this choice of ω0,2. Taking advantage of:

B(ζ) = −f
′(ζ) + f ′(−ζ)

2
, f(ζ) = exp(ζ)

ζ
,

we find, for z0 ∈ Uµ:

Ξd,λ(z0)
dζµ(z0)

= Res
z→oλ

(2d + 1)!!
ζ2d+2
λ (z) ∫

z

oλ

ω0,2(⋅, z0)
dζµ(z0)

= −∑
τ∈Λ

Sµτ(S−1)τλ Res
ζ→0

exp[h1/2
τ (ζ − ζµ(z0))]
ζ − ζµ(z0)

(2d + 1)!! dζ

ζ2d+2

= ∑
τ∈Λ

Sµτ(S−1)τλ(
(2d + 1)!!

[ζµ(z0)]2d+2
− ∑
m≥0

(2d + 1)!!
(2d + 1)!

(−1)mhd+1+m/2
τ [ζµ(z0)]m

(2d + 2 +m) ⋅m!
)

= ∑
τ∈Λ

Sµτ(S−1)τλ(
(2d + 1)!!

[ζµ(z0)]2d+2
− hd+1

τ

2d d!
∫

1

0
dv v2d+1 exp[−h1/2

τ ζµ(z0)v])

= ∑
τ∈Λ

Sµτ(S−1)τλ
Γ[2d + 2 ; h

1/2
τ ζµ(z0)]

2d d! [ζµ(z0)]2d+2
.
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◻
In the remaining of the text, we comment on the local spectral curves obtained for two important

families of modular functors, which are both related to quantum Chern-Simons theory in 3 dimensions,
with a gauge group G which is either finite (Section 5) or simply-connected compact (Section 6).
Without entering into the details of the construction, we present the main facts necessary to apply
effectively the results of previous sections. We also discuss in Section 7 the problem of constructing
global spectral curves in which local expansion at the ramification gives (51).

5 Example: modular functors associated to finite groups

The simplest example of modular functor is provided by quantum Chern-Simons theory with a finite
gauge group G in (2+1)- dimensions. This TQFT was studied by Witten and Dijkgraaf as a particular
case of quantization of Chern-Simons theory with arbitrary compact (maybe non simply connected)
gauge group, and its construction depends on a cocycle [α] ∈ H3(BG,U(1)) [22], where BG is a
classifying space for G. When G is a finite group, the path integral producing the TQFT correlation
functions over a manifold X is reduced to a finite sum over isomorphism classes of certain G-principal
bundles on X. The theory is therefore an attractive playground to have a grasp on TQFTs. The
construction of the modular functor was presented shortly after [34]. The central extension of the
mapping class group plays no role here, i.e. c̃ = 1 and the central charge is always 0. This model is
also known as the "holomorphic orbifold model", and fits in the framework of VOA.

We summarize below the untwisted theory [α] = 0. The modular functor in this case can also be
obtained from the modular tensor category of representations of D(G), the quantum double of the
finite group G [8]. A = Rep(D(G)) is also equipped with the structure of a Frobenius manifold. Then,
the Dehn twist eigenvalues are also trivial: d̃λ = 1 for all λ ∈ Λ. Therefore, the CohFT we produce
is rather trivial, like in Section 4.3, and does not remember more than the dimensions of the TQFT
vector spaces.

The twisted theory deals with projective representations of G, with cocycle determined by the
class [α]. We refer to [21, 22, 34] for a full presentation. But, we will point out in Section 5.2 that it
gives Dehn twist eigenvalues depending in a non-trivial way on the class [α], and therefore leads to
CohFT’s which does not sit only in degree 0.

5.1 The untwisted theory
5.1.1 Frobenius algebra

If g ∈ G, Cg denotes the conjugacy class of g, and Zg the centralizer of g in G, i.e. the set of all
elements commuting with g. We obviously have:

#Cg =
#G

#Zg
.

The label set Λ consists of couples (i, %) where Ci is a conjugacy class of G, and % = %i,gi an
(isomorphism class of) irreducible representation of Zgi for some gi ∈ Ci. Remark that, for any two
representatives gi, g′i ∈ Ci, Zgi and Zg′i (hence their representations) are canonically isomorphic, by
the formula:

%i,kgk−1(h) = %i,g(k−1hk). (56)

We denote i† the index of the conjugacy class containing g−1
i , and %† the dual representation. Then,

(i, %) ↦ (i†, %†) endows Λ with an involution. The vector space A =⊕(i,%)C.e(i,%) is equipped with a
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product reflecting the operation of tensor product of representations. If %i and %j are representations
of Zgi and Zgj , one has to consider %i ⊗ %j as defining a representation in Zgk for each gk that can
appear as the product of two elements in Ci and Cj .

A contains two remarkable subspaces Aconj and Arep, which are naturally algebras, and encode
respectively the product induced by the group algebra of G on its center, and the representation
theory of G. The full algebra A combines these two structures.

Arep is a subalgebra of A, spanned by the vectors e(1,%), where i = 1 is reserved for the conjugacy
class of the identity in G, and % is an irreducible representation of G = Z1. Aconj is the subspace
spanned by the vectors e(i,1), which indexes conjugacy classes Ci of G, and the centralizer is equipped
with the trivial representation, so that %i,1(g) is constant equal to 1. It is isomorphic to the center
of the group algebra of G, and as such it has a natural structure of commutative associative algebra,
which is however not a subalgebra of A. The structure constants in the product:

e(i,1) ×
conj

e(j,1) =∑
k

Nijk† e(k,1) (57) {stru}

compute the number of factorizations of the identity in G by elements in fixed conjugacy classes,
modulo the action of G by simultaneous conjugation. It can be expressed in several ways:

Ni1i2i3 = #{(g1, g2, g3) ∈ Ci1 ×Ci2 ×Ci3 , g1g2g3 = 1}/G

=
#{p ∈ Hom(π1(Σ0,3),G) ∶ p(lj) = Cij j = 1,2,3}

#G
.

Here, lj is a loop around the j-th puncture of Σ0,3. It also counts the number of (possibly disconnected)
branched coverings with structure group G, ramified over 3 (ordered) points on S2, in which the local
monodromy around the j-th point is required to sit in the conjugacy class Cij .

5.1.2 Scalars and S-matrix

This modular functor has c̃ = 1 and r̃(i,%) = 1, but its VOA origin provides canonical log-determinations
(see Section 3.5):

c = 0, rλ = 0.

For each i labeling a conjugacy class, gi ∈ Ci, and a representation % ∶= %i,gi of Zgi , we denote
by χi,gi(h) = Tr%i,gi(h) its character. We take as convention χi,%i(h) = 0 whenever h ∉ Zgi . Let Zi
be the centralizer of some (arbitrary) representative of Ci, and Vi,% be a Zi module on which the
representation % acts. The dimension of this module is dimVi,% = %i,gi(1). We reserve the label i = 1

for the conjugacy class of the identity in G, and then in (1, %), % must be a representation of G. Its
character will be denoted χ%, and a defining module V1,% ∶= V%.

The S-matrix is computed in [21, 34]. Keeping the notations of Section 3.3:

S(i1,%1)(i2,%2)
= 1

#G
∑

gj∈Cij
[g1,g2]=1

χi1,g1(g−1
2 )χi2,g2(g−1

1 ). (58) {SMFG}
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We list for bookkeeping some special entries of the S-matrix:

S(1,1)(1,1) = 1

#G

S(i,1)(1,1) = #Ci
#G

S(1,%)(1,1) = dimV%

#G

S(i,1)(1,%) = #Ci χ%(Ci)
#G

(59)

S(i,%)(1,1) = #Ci
#G

dimVi,% =
dimVi,%

#Zi
(60)

S(i,1)(j,1) = #Commutant(Ci,Cj)
#G

S(1,%)(1,τ) = dimVτ dimV%

#G

S(i,%)(1,τ) = dimVi,%

#G
#Ci ⋅ χτ(Ci†)

S can be thought as an extension of the character table of G which appears in (59), so that both
indices i and % are treated on the same footing. This matrix is clearly symmetric, and it can be
checked by direct computation that S2 = C is the operator sending eλ to eλ† .

5.1.3 Local spectral curve

Since c = 0 and r(i,%) = 0, the CohFT just consists of several (suitably rescaled) copies of the trivial
CohFT, and the local spectral curve consists in several copies of the Airy curve (44). The only
information left from the modular functor is the dimension of the representations, appearing as the
rescaling:

x(z) = [ζi,%(z)]2/2, y(z) = −dimVi,%

#G
ζi,%(z), z ∈ Ui,%

and as we have seen in Section 4.3, this is just enough to compute the dimensions of the TQFT vector
spaces.

5.2 The twisted theory

Let us choose a 3-cocycle α representing the class [α], and introduce for any g ∈ G, the 2-cocycle for
Zg:

ch(g1, g2) =
α(h, g1, g2)α(g1, g2, h)

α(g1, h, g2)
. (61) {chga}

Choosing another representative α′, we would obtain a 2-cocycle c′h differing from ch only by a
coboundary. A projective representation of Zh with cocycle ch is a map %h ∶ Zh → GL(V ) for a
finite dimensional vector space, such that %h(1) = 1 is a scalar and:

∀(g1, g2) ∈ G2, %h(g1)%h(g2) = ch(g1, g2)%h(g1g2).

In the construction of the modular functor for the twisted theory, %i,g are now the projective repre-
sentations of Zgi with cocycle cgi [34]. The S-matrix takes the form:

S(i1,%1)(i2,%2)
= 1

#G
∑

gj∈Cij
[g1,g2]=1

χi1,g1(g−1
2 )χi2,g2(g−1

1 )σ(g1∣g2)
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and the Dehn twist eigenvalues are:
r̃(i,%) = σ(gi∣gi)−1/2

for some arbitrary gi ∈ Ci. The function σ(g1∣g2) depends in a non-trivial way on [α], but must satisfy
σ(g1∣g2) = σ(g2∣g1) and another condition of cohomological nature [21]. The relation between σ and
α is explained in full generality in [33]. In the simpler case where all 2-cocycles ch defined in (61) are
coboundaries, let us take a 1-cocycle βh such that:

ch(g1, g2) =
βh(g1)βh(g2)
βh(g1g2)

.

The consistency conditions impose βh−1(g) = βg−1(h) = [βg(h)]−1, and the expression for σ is then
[21]:

σ(g1∣g2) = βg1(g2)βg2(g1).

As we see, the Dehn twist eigenvalue r̃(i,%) now depends on i, but still not on the representation %
of Zi. In the computation of ω0,2 from (51), one encounters the terms, for a fixed i:

∑
%

S(i2,%2)(i,%)
(S−1)(i,%)(i1,%1)

= ∑
%

S
(i†1,%

†
1)(i,%)

S(i2,%2)(i,%)

= 1

(#G)2 ∑
g1∈Ci1 , g2∈Ci2
h1,h2∈Ci
[gj ,hj]=0

σ(g−1
1 ∣h1)σ(g2∣h2)χi1,g1(g)χi2,g2(h−1

2 )(∑
χ

χi,h2(g−1
2 )χi,h1(g1)) (62)

We focus on the quantity in the brackets, which is a sum over all projective representations of Zi.
Since there exists k ∈ G such that h1 = kh2k

−1, we have χi,h2(g−1
2 ) = χi,h1(kg−1

2 k−1). The characters
of projective representations of Zi form an orthonormal basis of ch1 -class functions – the proof, as for
representations, only relies on Schur’s lemma. Therefore, the sum over χ in (62) vanishes when g1

and kg−1
2 k−1 do not belong to the same conjugacy class in Zi. A fortiori, to have a non-zero result in

(62), we need g1 and g2 to be in the same conjugacy class in G, i.e. i1 = i2. Therefore, ω0,2(z1, z2) for
zj ∈ U(ij ,%j) is proportional to δi1i2 , and it follows from the residue formula (33) that:

Lemma 5.1 For zj ∈ U(ij ,%j), ωg,n(z1, . . . , zn) vanishes unless all ij are equal for j ∈ J1, nK.

We find that the CohFT does not couple the representation theory of different centralizers, or in the
words of [22], it does not couple different interaction channels. However, ω0,2 in a given channel will
mix various %’s, and thus the CohFT is non-trivial, unlike the untwisted case.

6 Example: WZW model for compact Lie groups

6.1 Short presentation

We briefly review the definition of the Verlinde bundle that arises from Wess-Zumino-Witten model,
and the corresponding modular functor. It is based on the representation theory of a VOA, namely an
algebra that incorporates the Virasoro algebra – describing infinitesimal coordinate reparametrizations
in a disk neighborhood of a puncture on a Riemann surface – together with a central extension and
extra symmetries coming from a simple complex Lie algebra g. Since the seminal work of Tsuchiya,
Ueno and Yamada [71], there is a vast literature on the Verlinde bundles, that readers with different
backgrounds will appreciate differently ; we can suggest the nice article of Beauville [9] giving a proof
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of the Verlinde formula for the non-exceptional g, the book of Ueno [74], and the review of Looijenga
[57]. A complet proof that these theories gives modular functors was given by Andersen and Ueno in
[3, 4].

6.1.1 Affine Kač-Moody algebras

We refer to [52] for the detailed theory. Let h be the Cartan subalgebra, ∆+ the set of positive roots,
θ the highest root – which is the highest weight for the adjoint representation – and % = 1

2 ∑α>0 α

the Weyl vector. We normalize the Killing form ⟨⋅, ⋅⟩ such that ⟨θ, θ⟩ = 2. It induces an isomorphism
between h and h∗, which we use systematically to identify h and h∗. In particular, we use the notation
% for the Weyl vector in h or the corresponding element in h∗. Let (ei)dimh

i=1 be an orthonormal basis
of h for the Killing form. The quadratic Casimir is the element of the universal enveloping algebra of
g defined by Q = 1

2 ∑
dimh
i=1 ei⊗ ei. It acts as a scalar on the highest weight g-module Vλ, more precisely

Q∣Vλ =
1

2
⟨λ,λ + 2%̃⟩ idVλ .

This scalar on the adjoint is denoted h∨(g), and called the dual Coxeter number of g, namely h∨(g) =
1 + ⟨θ, %⟩. Let gR be the compact real form of g, and hR its Cartan subalgebra. The weight lattice in
h∗ is denoted LW , it consists of all λ ∈ h∗R such that:

∀α ∈ ∆+, 2
λ(α)
⟨α,α⟩ ∈ Z.

For a fixed ` ≥ 1, we introduce the set of highest weights at level `:

P` = {λ ∈ LW , 0 ≤ λ(θ) ≤ `}. (63) {Pell}

Consider the untwisted affine Lie algebra:

ĝ = C.c⊕ g⊗C((ξ)).

It is a central extension of g⊗C((ξ)), with Lie bracket:

∀X1,X2 ∈ g, ∀f1, f2 ∈ C((ξ)), [X1 ⊗ f1,X2 ⊗ f2] = ⟨X,Y ⟩ (Res
ξ→0

f1df2) ⋅ c + [X1,X2]⊗ f1f2.

We decompose:
ĝ = p+ ⊕ p−, p+ = g+ ⊕ g⊕C.c, g+ = ξ ⋅ g[[ξ]].

If λ ∈ P`, we promote the g-module Vλ to a p+ module, by declaring that g+ annihilates Vλ, and the
central element c acts as ` ⋅ idVλ . Then, one introduces the Verma module:

Mλ = U(g)⊗p+ Vλ.

It is a left ĝ-module, which is not irreducible. However, it contains a maximal proper submodule:

Jλ = U(p̂−) ⋅ (θ ⊗ ξ−1)`−⟨θ,λ⟩+1.

Then, Hλ =Mλ/Jλ becomes irreducible, and it is actually an integrable highest weight module for ĝ.
If P is a finite set, define the multi-variable analogue of ĝ:

ĝP = C.c⊕⊕
p∈P

g⊗C((ξp)).

Now, if X = (Σ, p1, . . . , pn; ξ) is a Riemann surface Σ equipped with a finite marked set of points P
and ξ = (ξp)p∈P a set of local coordinates at the points of P , the Lie algebra:

ĝ(X) = g⊗CH
0(Σ,OΣ(∗P ))

is naturally embedded as a subalgebra of ĝP .

35



6.1.2 From the space of vacua to the modular functor

For any X as above, and λ⃗ ∶ P → P` a set of labels, we define the space of vacua:

Vλ⃗(X) =Hλ⃗/ĝ(X)Hλ⃗.

Then, one can show [71, 70, 57] that, if X and X′ differ by a change of coordinates ξ → ξ′, there is a
canonical isomorphism between Vλ⃗(X) and Vλ⃗(X′). This allows us to define Vλ⃗(X) as a bundle over
Teichmüller space TΣ,P .

By the work of Tsuchiya, Ueno and Yamada [71], this bundle carries a projectively flat, unitary
connection, and enjoys nice factorization properties over families where the surface is pinched. Ex-
ploiting this connection, Andersen and Ueno proved [3, 4], that one can make a definition independent
of the complex structure: they assign unambiguously a vector space Vλ⃗(Σ) to any marked surface Σ,
and prove that this assignment defines a modular functor in the sense of Section 2. Moreover, in [5, 6]
Andersen and Ueno established that, for g = slN , this modular functor is isomorphic to the modular
functor obtained from the modular tensor category of representations of the quantum group U−q1/2(g)
with:

q = exp[2iπ/(` + h∨(g))]. (64) {qvlu}

6.1.3 More notations

Let W be the Weyl group of g. We denote w0 ∈ W its longest element ; its length is ∣∆+∣, and it
is the unique element that sends positive roots to negative roots. By definition of the Weyl vector,
w0(%) = −%.

We consider as label set Λ ∶= P`, the set of representations of gR at level `. It is equipped with the
involution:

λ† = −w0(λ).

λ† is actually the highest weight of V ∗
λ .

If β ∈ h, qβ stands for the function h→ C defined by x↦ q⟨β,x⟩ on h. The character of Vλ is denoted
chλ ∶ h→ C, and is given by the Weyl character formula:

chλ(qβ) =
∑w∈W sgn(w) q⟨λ+%,w(β)⟩

∑w∈W sgn(w) q⟨%,w(β)⟩
.

The q-dimension is defined as dimq Vλ = chλ(1), and using the Weyl denominator formula, it reads:

dimq λ ∶= ∏
α>0

[⟨α,λ + %⟩]q
[⟨α, %⟩]q

, [x]q = qx/2 − q−x/2.

The weight lattice LW has a sublattice Lθ spanned by the elements ⟨w(θ), ⋅⟩ with w ∈W. The integer:

D` ∶= # (LW /(` + h∨)Lθ)

appears as a normalization constant in:

∑
λ∈Λ

∣chλ(qβ)∣
2 =D−1

` ⋅ ∣∏
α>0

[⟨α,β⟩]q∣
2

.

Consider the matrix:

Sλµ =D−1/2
` ∑

w∈W

sgn(w) q⟨λ+%,w(µ+%)⟩ =D−1/2
` ⋅∏

α>0

[⟨α, %⟩]q ⋅ dimq Vλ ⋅ chµ(qλ+%) (65) {SLM}
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with the value of q = exp[2iπ/(` + h∨)]. On the first equality we see that S is symmetric, and since
the scalar product is W-invariant and sgn(w0) = (−1)∣∆+∣, we have:

C S = (−1)∣∆+∣ S∗

where we recall that C is the matrix of the involution †. It is less obvious but also true using
orthogonality of characters that S is unitary:

SS∗ = 1.

6.1.4 Scalars and S-matrix

The modularity of characters of the underlying VOA gives canonical log-determinations for the eigen-
values of the central element and the Dehn twist. These are the conformal weights and the central
charge [49, 71]:

rλ =
⟨λ,λ + 2%⟩
2(` + h∨) , c = ` dimg

` + h∨(g) .

The formula manifestly satisfy r1 = 0 and rλ = r†λ. With Freudenthal strange formula, we can also
write:

c

24
= `

h∨
⟨%, %⟩

2(` + h∨(g)) .

The S-matrix appearing in Section 3.3 is given by Kač-Peterson formula [49, Proposition 4.6(d)]:

Sλµ = i∣∆+∣ S∗λµ or equivalently S−1
λµ = (−i)∣∆+∣ Sλµ. (66) {Fomrual}

Since the diversity of notations in the literature can be confusing, let us make two checks ensuring
that (66) in our notations is correct. Firstly, with the properties of S just pointed out, we can write:

S⊺S = (−1)∣∆+∣ S∗S∗ = C SS∗ = C

as it should according to (20). Secondly, the Verlinde formula (21)-(43) in our notations does agree,
if we insert (66), with the Verlinde formula [9, Corollary 9.8].

6.1.5 The case g = slN

Let CN be equipped with its canonical orthonormal basis (ei)Ni=1, and e∗i be the dual basis. The
Cartan algebra of slN can be identified with the hyperplane in CN orthogonal to ∑Ni=1 ei, and the
Killing form is induced from the scalar product on CN . The positive roots are ei −ej for 1 ≤ i < j ≤ N ,
the highest root is θ = e1 − eN , and the Weyl vector:

% = 1

2

N

∑
i=1

(N + 1 − 2i) ei.

h∗ (resp. the weight lattice LW ) is the C-span (resp. Z-span) of (e∗i )Ni=1 modulo the relation∑Ni=1 e
∗
i = 0.

If λ ∈ h∗, let us denote ∣λ∣ = ∑Ni=1 λi. The Killing form induced on h∗ is [36]:

⟨
N

∑
i=1

λi e
∗
i ,

N

∑
j=1

µj e
∗
j ⟩ =

N

∑
i=1

λiµi −
∣λ∣∣µ∣
N

.

The element representing the Weyl vector in h∗ is:

% = 1

2

N

∑
i=1

(N + 1 − 2i) e∗i =
N−1

∑
i=1

(N − i)e∗i mod (
N

∑
i=1

e∗i ).
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λ

`

N − 1

N

λ†

Figure 2: The involution λ† = −w0(λ) in terms of Young tableaux.

The fundamental weights are:

1 ≤ i ≤ N − 1, wi =
i

∑
j=1

e∗j

and the corresponding highest weight slN -module is ⋀iCN . Irreducible highest weight representations
of slN are encoded in an (N − 1)-uple λ = (λ1, . . . , λN−1) such that λ1 ≥ ⋯ ≥ λN−1 ≥ 0, which
parametrizes the highest weight:

λ =
N

∑
j=1

λj e
∗
j =

N−1

∑
j=1

(λj − λj+1)wj

with the convention λN = 0. The representations at level ` are those with λ1 ≤ `. The Weyl group
permutes the (ei)Ni=1, and its longest element is the permutation ei ↦ eN+1−i for all i ∈ J1,NK. Since
e∗N = −∑N−1

i=1 e∗i on the hyperplane h, we see that the involution takes λ to its "complement" as in
Figure 2, i.e. λ†

i = λ1 − λN−i+1. The characters chλ are the Schur polynomials, and the central charge
and Dehn twist eigenvalues are:

h∨(slN) = N, c = `(N
2 − 1)

` +N , rλ =
1

2(` +N)(
N−1

∑
i=1

λi(λi − 2i + 1) +N ∣λ∣ − ∣λ∣2
N

).

Since the Weyl group acts transitively on the set of roots, Lθ is just the root lattice:

Lθ = {
N

∑
i=1

aie
∗
i ,

N

∑
j=1

aj = 0}/{
N

∑
i=1

e∗i = 0}

and it has index N in the weight lattice. Therefore, the normalization integer reads:

D` = N (` +N)N−1.

In the case N = 2 for level ` ≥ 0, Λ is the set of integers from 0 to `, the involution is identity, and
D` = 2(` + 2). The scalars and S-matrix read:

∀λ,µ ∈ J0, `K c = 3`

` + 2
, rλ =

λ(λ + 2)
4(` + 2) , S−1

λµ =
√

2

` + 2
sin [π(λ + 1)(µ + 1)

` + 2
].

6.2 CohFT and double Hurwitz numbers

The Chern character of the Verlinde bundle has already been studied in [70, 59], and [60] showed that
it defines a CohFT – this was in fact the example motivating our work. In this particular case, our
work only completes [60] by remarking that the CohFT correlation functions are computed by the
topological recursion with the local spectral curve of Theorem 4.3. It would be interesting to know
the meaning of this CohFT for enumerative geometry. For g = slN , we show that ω0,2 given in (51) is
related in some way to double Hurwitz numbers.
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6.2.1 Hurwitz numbers

Let us first review the definition of Hurwitz numbers. For any finite group G, we consider the number
of G-principal bundles over a surface of genus g and n punctures, whose monodromy around the j-th
punctures belongs to the conjugacy class Cij of G. It is computed by the Frobenius formula [81]:

#{R ∈ Hom(π1(Σg,n),G), R(lj) ∈ Cj}
#G

=∑
ν

[χν(1)
#G

]
2−2g n

∏
j=1

fν(Cj) (67) {fchar}

where the sum ranges over irreducible representations of G, and:

fν(C) ∶= #C χν(C)
χν(1)

.

When G = Sd, this is the number of (possibly disconnected) branched coverings of degree d over
a surface of genus g. Conjugacy classes of Sd are labeled by partitions µ of d: the parts of µ are
the lengths of the cycles of a representative of Cµ. For a collection of partitions µ1, . . . , µn ⊢ d, the
numbers:

Hd
g (µ⃗) =

#{R ∈ Hom(π1(Σg,n),Sd), R(lj) ∈ Cµj}
d!

are called "Hurwitz numbers" of genus g. Though it is a good starting point, the formula (67) involving
the character table of Sd is not the end of the story.

Let C(2) be the conjugacy class of a transposition. One often would like to count branched coverings
with arbitrary number b of simple ramification points:

Hg(µ⃗ ∣T ) ∶=∑
b≥0

T b

b!
Hd
g (µ⃗,C(2), . . . ,C(2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b times

).

If we keep n points with arbitrary ramifications µ⃗, this is the generating series of n-ple Hurwitz
numbers in genus10 g. For instance, the generating series of double Hurwitz numbers in genus 0 and
degree d is, according to (67):

Hd
0 (µ1, µ2 ∣T ) = 1

d!2
∑
ν⊢d

#Cµ1#Cµ2 χν(Cµ1)χν(Cµ2) eT fν(C(2)). (68) {H2d2}

The generating series of genus 0 simple [40, 41, 17, 13, 29] and double [65, 18, 48, 45, 44] numbers
in genus 0 have been intensively studied from the point of view of combinatorics, mirror symmetry,
and integrable systems. The generating series of Hurwitz numbers in genus 1 is somewhat simpler
because the coupling in (67) disappears, and there is a nice theory relating them to quasimodular
forms [20, 50]. The realm of genus g ≥ 2 seems uncharted.

6.2.2 Rewriting of the 2-point function

We recall two elementary facts on symmetric functions [58]. By Schur-Weyl duality, for a partition
with ∣λ∣ = d boxes, the Schur polynomials decompose on the power sums:

chλ(x) =
1

d!
∑
µ⊢d

#Cµ χλ(Cµ)pµ(x).

10For connected coverings, the g here should not be confused with the genus g̃ of the total space, which is given by
the Riemann-Hurwitz formula:

d(2 − 2g) = 2 − 2g̃ − b −
n

∑
i=1

{∣µi∣ − `(µi)}
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Further, fλ(C(2)) = 1
2 ∑

N
i=1 λi(λi − 2i + 1) is related to the quadratic Casimir, hence to the Dehn twist

eigenvalues:

rλ =
1

` +N [fλ(C(2)) +
N ∣λ∣

2
− ∣λ∣2

2N
].

Putting together the expression (65)-(66) of the S-matrix and these two observations, we can compute
with (54) the 2-point function:

B(u1, u2) = ∑
λ1,λ2

δλ1λ2 −Bλ1λ2(u1 + u2)
u1 + u2

ελ1
⊗ ελ2

.

We recall that Bλ1λ2(u1 + u2) is essentially the Laplace transform of ω0,2 in Uλ1 ×Uλ2 :

Lemma 6.1 With T = ut/(` +N), we have:

Bλ1λ2(u) = D−1
` ∣∏

α>0

[⟨α, %⟩]q∣
2

dimq Vλ1 (dimq Vλ2)∗

⋅{∑
d≥0

e(Nd/2−d
2
/2N−c/24)T ∑

µ1,µ2⊢d

pµ1(qλ1+%)pµ2(q−(λ2+%))Hd,[`,N]

0 (µ1, µ2 ∣T )}

with:
H
d,[`,N]

0 (µ1, µ2 ∣Q) = 1

d!2
∑
ν ⊢d

`(ν)≤N−1
ν1≤`

#Cµ1#Cµ2 χν(Cµ1)χν(Cµ2) eT fν(C(2)).

The generating series Hd,[`,N]

0 (µ1, µ2 ∣Q) only differs from the generating series of double Hurwitz
numbers in genus 0 (68) by the fact that, instead of using Frobenius formula (67), we only sum over
partitions ν ⊢ d which belong to Λ, i.e. included in the rectangle of size `×(N−1). For d ≤ min(`,N−1),
this is not a restriction, namely Hd,[`,N]

0 =Hd
0 exactly encodes double Hurwitz numbers.

It would be interesting to devise a combinatorial meaning forHd,[`,N]

0 , maybe by counting coverings
with extra geometric constraints, or counting paths between Cµ1 and Cµ2 inSd with certain properties
[40, 44], or to relate it to tau functions [44]. It is natural to ask if such a combinatorial interpretation
could be extended to higher genus g of the base. Since we already know that we have a CohFT –
or equivalently since we have the topological recursion formula – all correlation functions ωg,n are
determined by these [`,N]-restricted double Hurwitz numbers. As there is already a good knowledge
of the Chern class of the Verlinde bundle – including its expression on the boundary for n = 0 [59] –
this would provide an ELSV-like formula [26] for a combinatorial problem yet to be found.

6.2.3 Remark

In [51], Karev considered a generating series for the numbers (67), and by combinatorial means, he
expressed it in terms of an Airy-like integral over the center of the group algebra of G, which can be
reexpressed as a product of 1d Airy integrals after a suitable change of basis. We shall explain how
his results square from the CohFT perspective.

The product on C[G] and the trace ∑k∈G ck k ↦ c1 induces the structure of a semi-simple Frobenius
algebra on the center Z(C[G]) – which is the Aconj of Section 5.1.1. The conjugacy classes define a
basis:

eλ =
1√

#Cλ
∑
k∈Cλ

k

while the characters define another basis:

ελ = ∑
k∈G

χλ(k)√
#G

k
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and by these notations we mean that the properties of Section 3.1.1 are satisfied, with ∆−1
λ = (dimλ)2.

The matrix of the change of basis is:

eλ =∑
µ

S−1
λµ εµ, S−1

λµ =
√

#Cλ
#G

χµ(Cλ)

and up to rescaling, this is a (unitary) submatrix of the S-matrix of the modular functor described in
Section 3.1.1. Then, we consider the trivial CohFT on Z(C[G]), and apply a rescaling to define:

Ω∗
g,n(ελ1

, . . . , ελn) = ( #G

dimλ
)

2g−2+n

[Mg,n].

If we change basis, we obtain according to Frobenius formula (67):

Ω∗
g,n( ∑

k1∈Cλ1

k1

#G
⊗⋯⊗ ∑

kn∈Cλn

kn
#G

) =
#{R ∈ Hom(π1(Σg,n),G), R(li) ∈ Cλi}

#G
⋅ [Mg,n].

These numbers are encoded in the CohFT partition function:

ZCohFT ∶= exp(∑
n≥1

∑
g≥0

h̵g−1

n!
∑

d1,...,dn≥0
λ1,...,λn≥0

{∫
Mg,n

Ω∗
g,n(

n

⊗
j=1

ελj)
n

∏
j=1

ψ
dj
j }

n

∏
j=1

tdj ,λj). (69) {CohfZ}

Since we have several copies of the rescaled trivial CohFT, ZCohFT is a product of suitably rescaled
matrix Airy function [54]. Karev’s partition function is (69) after specialization of the times to
td,λ = ξdpλ for a set of formal variables pλ.

7 Discussion about global spectral curves

A global spectral curve is by definition a Riemann surface Σ equipped with a branched cover x ∶
Σ → P1. One retrieves a local spectral curve by considering the disconnected neighborhoods of the
ramification points of x. The only difference in the axiomatics is that, in the global case, we require11:

ω0,2 ∈H0(Σ2,K⊠2
Σ (−2∆))S2

and therefore (38) defines meromorphic 1-forms on Σ, i.e. Ξd,i ∈H0(Σ,KΣ((2d + 2){oi})).
Although the topological recursion is well-defined for local spectral curves as presented in Sec-

tion 4.1, it was originally defined on global spectral curves and this allows further properties and
manipulations [30, 16]. It is thus desirable, whenever we have a local spectral curve, to realize it em-
bed in a global spectral curve. This is not always possible, but given the geometric origin of modular
functors and general ideas from mirror symmetry, we may still hope it admits a global description.

7.1 Landau-Ginzburg models and Frobenius manifolds

Among the different realizations of a Frobenius manifold, let us focus on a particular one which gives
rise in a natural way to global spectral curves – or more generally, varieties.

In singularity theory, one is interested in the study of Landau-Ginzburg (LG) models. They are
defined by a family of germ of functions, called "potential":

xa ∶ Cd Ð→ C
11Although not strictly necessary, one often adds the assumption that ω0,1 ∈ H0(Σ′,KΣ′) for a dense open subset

Σ′ ⊆ Σ.
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and parameterized by a point a living in a k-dimensional manifold A obtained as a miniversal defor-
mations of a function x0 with an isolated singularity at z = 0 with Milnor number k. The tangent
spaces Aa ∶= TaA are naturally identified with the Jacobi ring:

Jac(xa) ∶=
C[z1, . . . , zd]

⟨∂z1xa, . . . , ∂znxa⟩
.

The multiplication in this polynomial ring is denoted ×, and the unit is 1. For any holomorphic volume
form Ω, one can define the residue pairing:

∀(ϕ,ψ) ∈ Jac(xa), b(ϕ,ψ) ∶= 1

(2iπ)d ∮∣∂xa/∂z1∣=ε1
⋯ ∮

∣∂xa/∂zd∣=εd

ϕ(z)ψ(z)Ω(z)
∏d
i=1 ∂xa/∂zi

(70) {metri}

for small enough εi’s. According to Saito [67], there exists a volume form – called primitive – such
that (70) is a flat metric. It thus provides Jac(xa) with a Frobenius structure, promoting (Aa)a
to a Frobenius manifold A. If for a generic a ∈ A, xa has only isolated Morse singularities, the
associated CohFT is semi-simple. We denote (ti)ki=1 flat coordinates on an open set A′ ⊆ A, (ϕi)ki=1

the corresponding frame in the tangent bundle, ∇ the Levi-Civita connection, and:

ϕi × ϕj =
k

∑
`=1

N `
ij(t)ϕ`

the multiplication in the Jacobi ring. We also denote (ai)ki=1 canonical coordinates (that we can also
assume to be defined on A′), i.e. such that (∂ai)ki=1 form a canonical basis of the tangent bundle. To
connect with the notations of Section 3.1.1, ∂ai = ε̃i and ∆i = 1/b(∂ai , ∂ai), and let Ψ ∈ End(T ∗A′)
the change of basis from flat to canonical coordinates:

Ψ(dti) = ∆
−1/2
i dai.

In this example of Frobenius manifold, the R-matrix can be written in terms of oscillating integrals.
Indeed, given a Frobenius manifold A, the axioms of a CohFT ensure that: ∇(u)

i ∶= ∇i +u−1ϕi× forms
a flat pencil of connections on A parametrized by u ∈ C∗. This ensures the compatibility of the PDEs
for a section J(u) = ∑ki=1 Ji(u)dti of T ∗A′:

∀i, j ∈ J1, kK, u∂tiJj(u; t) =
k

∑
`=1

N l
ij(t)Jl(u; t).

If A′ is semi-simple and conformal12, there is a unique basis of solution [23, 39] such that, in matrix
form:

J(u; t) = ΨR(u; t) exp(a(t)/u) (71) {JR}

where a ∈ End(T ∗A′) is defined such that a(dai) = ai dai, and R(u; t) ∈ End(T ∗A′)[[u]] is an operator
satisfying a unitarity and homogeneity condition. This R-matrix is the one appearing in Section 3.1.4.

For the Frobenius manifold attached to a Landau-Ginzburg model with potential xt, one can find
a simple integral representation of this solution of the form (in flat coordinates):

Jij(u; t) = 1

(2iπu)d/2 ∫Γj
exp[xt(z)/u]ϕi(z)Ω(z) (72)

where (Γj)kj=1 are cycles in Cd which can be constructed through the Morse theory of the function
Re[xt/u]. By the Fubini theorem, this integral can be rewritten as an integral along the path Xj =

12Conformal here means there exists a vector field E on A′ such that the Lie derivative LE acts by multiplication by
a scalar on the metric tensor, on the product tensor, and on the unit vector field.
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xt(Γj) ⊂ C, whose integrand itself is an integral over some vanishing cycle γj(X) ⊆ x−1
t {X} over a

point X ∈ Xj :
Jij(u; t) = 1

(2iπu)d/2 ∫Xj

eX/u ∫
γj(X)

ϕiΩ.

Comparing with (71), this provides us with an integral representation of the R-matrix:

Rij(u; t) = ∆
1/2
i

(2iπu)d/2 ∫Xj

e(X−aj(t))/u ∫
γj(X)

ϕiΩ

and the condition that R(u = 0) = id implies that the paths Xj start from aj(t), and extends to −∞.

7.2 1d Landau-Ginzburg models

The realization of a given Frobenius manifold via a LG model, when it exists, has no reason to
be unique, and several realizations may have different dimensions. It is particularly interesting, for
tractability, if a 1-dimensional LG model can be found. This means having a family of Riemann
surfaces Σ together with a family of potentials xt ∶ Σ → C such that the local algebra of xt at the
ramification points is isomorphic to the tangent space TtA of our Frobenius manifold A. In this case,
the vanishing cycle γj(X) is just a (ordered) pair of points {z(X), σj(z(X))} ⊆ Σ above X ∈ C, related
to each other by the (analytic continuation of the) local involution σj permuting the two sheets that
meet at the ramification point above aj . In flat coordinates, the R-matrix then reads:

Rij(u; t) = ∆
1/2
i

(2iπu)1/2 ∮Xj

e(X−aj(t))/u [ϕi ω]odd
σj (73) {RRRR}

for some 1-form ω on Σ, and thimbles (Xj)kj=1. Here we have used the notation [f]odd
σ ∶= f − σ∗f for

the discontinuity of a 1-form f .

7.3 Fusion potentials for modular functors

In this paragraph, we give an easy argument to obtain a 1d LG model for the Frobenius algebra A of
any modular functor (see Section 3.3), i.e. a function x0 – called the "fusion potential" – whose Jacobi
ring is isomorphic to A. Then the Frobenius manifold will be (at least locally) defined by considering
miniversal deformations (xa)a of the potential. For the Wess-Zumino-Witten models (Section 6), this
has been posed as a conjecture by Gepner [37], which was later answered by Di Francesco and Zuber
[19] and further studied by Aharony [1]. We borrow the idea of [19] to propose a family of fusion
potential for the Frobenius algebra of any modular functor, which hinges on the commutativity of the
curve operators (C[β;λ])λ∈Λ.

For any vector f ∈ C[Λ], let us define:

Cf [β] ∶= ∑
λ∈Λ

fλ C[β;λ].

Its characteristic polynomial reads:

Pf(η) ∶= det(η − Cf [β]) = ∏
µ∈Λ

(η − cµ,f), cµ,f = ∑
λ∈Λ

fλ cµ[λ]

with the eigenvalues cµ[λ] of the curve operators given in (22). Let Qf(η) be any polynomial such
that Q′

f(η) = Pf(η).
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Lemma 7.1 For generic f ∈ C[Λ], the Jacobi ring of x0 ∶ C→ C defined by x0 = Qf(η) is isomorphic
to the Frobenius algebra A of the modular functor.

Proof. The Jacobi ring is Jac(x0) = C[η]/⟨Pf(η)⟩. For generic f , the roots (cµ,f [µ])µ∈Λ are pairwise
distinct. Therefore, we can construct by Lagrange interpolation a unique set of polynomials (ϕλ,f)λ∈Λ
such that:

∀µ ∈ Λ, ϕλ,f(cµ,f) = cµ[λ].

This is actually a basis of the Jacobi ring. Indeed, if there is a relation ∑λ∈Λ kλ Pλ(η) = 0, by evaluation
at cµ,f and using the expression (22) we would have:

∀µ ∈ Λ, ∑
λ∈Λ

kλ (S−1)λµ = 0

which implies kλ = 0 for any λ ∈ Λ since (S−1)⊺ is invertible. Then, by definition and evaluation at
the eigenvalues, their multiplication modulo the annihilating polynomial Pf reads:

ϕλ(η)ϕµ(η) = ∑
ν∈Λ

Nλµν† ϕν(η) mod Pf(η).

Thus, we have build a basis of the Jacobi ring in which we identify the Frobenius algebra of Section 3.3.
◻

Notice that, knowing (cµ,f)µ, the position of the ramification points to appear in (73) is:

aµ ∶= x(oµ) = Qf(cµ,f).

Alternatively, one can decide to impose the values (aµ)µ∈Λ, and ask for the determination of roots
(ηµ)µ∈Λ and a polynomial Q of degree ∣Λ∣ + 1 such that:

∀µ ∈ Λ, Q(ηµ) = aµ and Q′(ηµ) = 0. (74) {rerp}

Remark that Q(η), (ηµ)µ is a solution iff Q(η) ← Q(γη + γ′) and ηµ ← γ−1(ηµ − γ′) is a solution.
Hence, (74) represents 2∣Λ∣ constraints for the same number of independent unknowns, and can be
solved for generic a’s, and we can find the corresponding f ’s by the formula:

fλ = ∑
µ∈Λ

Sµλ ηµ (S−1)1µ.

7.4 Open question: global spectral curve for modular functors

This defines, at least locally around an (arbitrary, generic) origin a0, a 1d LG model (xa)a that we
can try to use to describe as a "global curve" Σa for the modular functor. However, the explicit
construction of a primitive form and a good set of integration cycles is a serious issue in general which
we could not address so far. To restate (a part of) the problem in an elementary way, it is not easy to
find a 1-form ω0,1 on Σa whose expansion at the ramification point is equal to (51) modulo the even
part – at least when a ∶= a(t) is coupled in some way to the single parameter t on which our local
curve depend.

In a handful of examples, one can rely on an indirect derivation of a (higher-dimensional) Landau-
Ginzburg model through mirror symmetry. For instance, for the slN , level `WZW models recapped in
Section 6, Witten [80] proved that the Frobenius algebra A is isomorphic to the quantum cohomology
of a Grassmannian. On the other hand, the Landau-Ginzburg model mirror dual to Grassmannians
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has been built in [61] ; but, in most cases, the issue of finding a primitive form and a good basis of
cycles has not been solved yet, except in some very simple examples such as P2 [42]. The complete
construction of a global spectral curve thus remains an open problem, even in simple examples. It
must be addressed if, for instance, one wishes to take advantage of the topological recursion to study
the level `→∞ limit in WZW models.

A Extra properties of the S-matrix

In this section we derive the symmetries of S-matrix in the case the modular functor in question has
duality or is unitary.

MF-U

Let us first assume that the modular functor V is unitary. We remind from Section 3.2 that Σ1 is
a closed oriented surface of genus one and α,β two oriented simple closed curves on Σ1, such that
they intersect in exactly one point with intersection number one. Then we have two marked surfaces
Σ

(α)
1 = (Σ1,{α}) and Σ(β) = (Σ1,{β}). Both V(Σ(α)

1 ) and V(Σ(β)
1 ) are equipped with hermitian inner

products which are compatible with the factorization isomorphisms (Section 3.3.1):

V(Σ(α)
1 ) ≅ ⊕

µ∈Λ

V(Σ0,2, µ, µ
†) ,

and
V(Σ(β)

1 ) ≅ ⊕
µ∈Λ

V(Σ0,2, µ, µ
†).

The basis ζ[µ] ∈ V(Σ0,2, µ, µ
†) induces via these isomorphisms the basis eµ of V(Σ(α)

1 ) and εµ of
V(Σ(β)

1 ). The unique orientation preserving diffeomorphism S that sends (α,β) to (β,−α) sends the
e-basis to the ε-basis:

εµ = ∑
λ∈Λ

Sµλ eλ .

Now we simply compute

δλµ = (ζ[λ], ζ[µ])
= (eλ, eµ)
= (V(S)(eλ),V(S)(eµ))
= ∑

%,%̃∈Λ

S∗λ%Sµ%̃ (ε%, ε%̃)

= ∑
%∈Λ

S∗λ%Sµ% .

where ∗ denotes here the complex conjugation. Hence we get that the S-matrix is unitary

(S∗)⊺S = 1

when the modular functor is unitary.

MF-D

Let us now instead assume that the modular functor V satisfies the orientation reversal axiom. Let
now Cα be the orientation reversing self-diffeomorphism of Σ1 which maps (α,β) to (α,−β). Let
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Cβ the same as Cα, except that the roles of α and β are exchanged. Then, we have the following
commutative diagram, where ⋆ denotes the dual operation:

V(Σ(α)
1 ) V(S)ÐÐÐÐ→ V(Σ(β)

1 )

V(Cα)
×××Ö

×××Ö
V(Cβ)

V(−Σ
(α)
1 ) V(S)ÐÐÐÐ→ V(−Σ

(β)
1 )

≅
×××Ö

×××Ö
≅

V(Σ(α)
1 )⋆ V(S−1

)
⋆

ÐÐÐÐ→ V(Σ(β)
1 )⋆.

Let us denote the dual basis of (eλ)λ by (e⋆λ)λ. We see, by compatibility between the glueing
isomorphism and the orientation reversal isomorphism, that eλ, under the composition of the two
maps in the first column in the above diagram, is taken to (e⋆λ†)λ and likewise for β in the last
column. But since we have the following easy computation

V(S−1)⋆(e⋆λ†)(εµ) = e⋆λ†(V(S−1)(εµ))

= e⋆λ†

⎛
⎝∑%∈Λ

S−1
µ%e%

⎞
⎠

= S−1
µλ† ,

we see that the orientation reversal axiom implies that

Sλµ = S−1
µλ† .
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