The cohomology ring of the symmetric space FyI
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Abstract

We determine the intersection numbers and the ring structure of
the rational cohomology of the symmetric space Fy/(Sp(3)Sp(1)) by
using index theory and its quaternion-Kéahler structure.

1 Introduction

Recall that an oriented connected irreducible Riemannian 4n-manifold M
is called a quaternion-Kdahler manifold, n > 2, if its linear holonomy is con-
tained in the group Sp(n)Sp(1l). Examples of such manifolds were given
in [7], where Wolf showed that each compact centerless Lie group G is the
isometry group of a quaternion-Kéahler symmetric space given as the conju-
gacy class of a copy of Sp(1) in G determined by a highest root of G. Thus,
the symmetric space

Fy
Sp(3)Sp(1)
is a 28-dimensional quaternion-Kéhler manifold.

Although the cohomology of homogeneous spaces has been extensively
studied, and the integral cohomology of F4I was determined in [3], here we
give a description of the rational cohomology ring H*(FyI,Q) in terms of
classes determined by the quaternion-Kéhler structure of this manifold. The
motivation for this work is the need to understand the topological structure
of general quaternion-Kéahler manifolds, whose rational cohomology we con-
jecture to be generated by a small number of cohomology classes. This is

FyI =
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indeed the case for the space FyI as its Poincaré polynomial shows

Prr(t) = (T+t2+65 12 1416 1420 (1 +¢5)
1+t + 265 + 2612 4 2416 4 2420 4 424 4 428

The note is organized as follows. In Section 2 we compute the intersection
pairings of the relevant characteristic classes arising from the quaternion-
Kahler structure of FyI (see Theorem 2.1). In Section 3 we determine the
ring structure of H*(F4I,Q) by using the intersection numbers (see The-
orem 3.1). In Section 4, as a corollary of our calculations, we compute
explicitly the Pontrjagin classes and numbers of FyI, which may be of use
in other geometrical contexts. In Section 5, we revisit Ishitoya and Toda’s
result [3] on the torsion free part of the integral cohomology of F4I in terms
of our characteristic classes.
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2 Intersection numbers

The holonomy group Sp(7)Sp(1) C SO(28) of a 28-dimensional quaternion-
Kahler manifold M determines the following factorization of the complexi-
fied tangent bundle [6]

TM.=FE®H, (1)

where the fibres of the (locally defined) bundles E' and H are isomorphic to
the standard representations C'* and C? of Sp(7) and Sp(1) respectively.
Furthermore, for FyI, the representation £ decomposes further under
Sp(3) € Sp(7)
E=NE (2)

where E 2 C% is the standard representation of Sp(3), and /\‘SE denotes
the irreducible representation of Sp(3) obtained as the primitive subspace of
AP E with respect to wedging by a symplectic form. Furthermore, the faith-
ful 26-dimensional representation of Fy also decomposes under Sp(3)Sp(1)

26 = N\oE + E® H, (3)

where the left hand side now denotes a rank 26 trivial bundle on FyI (cf.
[1]). Note that (2) implies that the characteristic classes of E are given in



terms of those of the rank 6 bundle F, and (3) implies relations between the
characteristic classes of E and H.

More premsely, by computing the first three components of the Chern
character of /\OE +F® H and equating them to zero we find that

c(E) = u,
(B) = clBE,
where u = —co(H). This provides us with two candidates for the generators

of H*(FyI): u in dimension 4 and ¢4(E) in dimension 8. From now on, we
shall denote ~
Cqp = C4(E).

Thus, our first task is to compute the pairings
u’', e, Aud, cu, (4)

where the notation really means the evaluation of representatives of such
28-dimensional cohomology classes on the fundamental cycle of FyI.

In order to compute such pairings, we will make use of a Hilbert poly-
nomial given by the index of certain twisted Dirac operators [6, 5. More
precisely, we will use the polynomial in ¢ given by

fa) = md(@ @ STH) = (A - ch(S'H), [F41]),

where A denotes the g—genus of the manifold, ch denotes the Chern character
and SYH denotes the ¢! symmetric power of H.
On the one hand, due to (1), (2) and (3), the coefficients of f(q) are
linear combinations of the intersection pairings in (4). Namely,
U7 q14 U7 q13 U/7q12

I = 35761565000+ + -
9 = 1307674368000 ' 87178291200 ' 37362124800 2874009600

n ud ey _ u’ n u’ ud ey 10
1105728000 522547200 ) 2612736000 ' 373248000 )

n 2297 n 59ud ey 94 1347 _ 13uS ey 3
10973491200 = 10973491200 q 406425600 406425600 q

_ 15147 _ 149ud ¢y 22143 ¢4? ”
3657830400 457228800 18289152000



n 113u% ¢y 22143 ¢y? 31u” 6
81648000 2612736000 522547200 1

_ 17ud ey 1037 u3cy? 10747 5
18711000 = 9580032000 = 1368576000 4

_ 1751 u3cy? 2603 u° ¢y _ 17517 4
5748019200 = 359251200 5748019200 q

739163 u°cy 402959ucy®  3201281ucs®  385673u’ 3
52306974720 = 7846046208000 784604620800 523069747200

_13528111ules’ | 12378130 cy 372147 402959 ucy® \
1307674368000 ' 261534873600 ' 20922789888 ' 2615348736000

2713u7  3383123ulcs® | 535039ucs’  769633u’cy
1828336128 980755776000 7846046208000 140107968000 ¢

12899u” +294779u3042_ 12899 u cy® _ 294779 u’ ¢y
373621248000 93405312000 373621248000 93405312000

On the other hand, these indices can be seen as holomorphic FEuler char-
acteristics of the twistor space

Fy

Z=200) = g

of FyI by twistor transform [6, 5]. Namely,

ind(@ @ S1H) = x(Z,0(L@2))
15
= S (1) dim H'(Z,0(L@ /),
=0

where L is a positive line bundle over Z which restricted to the CP!-fibers is
O(2). These holomorphic Euler characteristics can be computed by means
of the Bott-Borel-Weil theorem and the Weyl dimension formula as follows
[4].

Let R(sp(3) @ u(1)) be the set of roots of Sp(3)U(1) C Fy4, RT be the
set of positive roots of F; with R(sp(3) @ u(l)) generated by simple roots,



§ = 2> cp+ @ Let V(X)) be an irreducible representation for Sp(3)U(1)
with highest weight A € R(sp(3) @ u(1)) and V(A) the corresponding ho-
mogeneous vector bundle on FyI. By the Bott-Borel-Weil theorem and the
Weyl dimension formula [4]

zov) = -1 J[ S
a€ERT ’
where

s=t#{a e RT|[(A+6,a) < 0}.

More precisely, let $ be the Cartan subalgebra of (f4). spanned by the
following basic roots

{ay = (1,-1,0,0), a2 = (0,1,—1,0) a3 = (0,0,2,0), oy = (—1,—1,—1,1)}.

The coordinates have been chosen so that sp(3) has the Cartan subal-
gebra spanned by {a1,as, s} which is orthogonal to the maximal root
p=1(0,0,0,2). In this case 6 = (3,2,1,8). The roots coming from Sp(3) are
thus embedded canonically in the first three coordinates and the one coming
from U(1) corresponds to the last coordinate.

The bundle L4~7/2 corresponds to q;27(0, 0,0,2). When adding § we
get (3,2,1,q + 1). Therefore

1 1
f(@) = X(Z(Fad), OL7)) = sss3T0s672000 T 57oamr B0
+;q13 _ Lq12 _ qul
245248819200 945243819200 204374016000

1 o 253 . 13 . 1111 :
11476736007 T 780337152007 T 28901376007 111476736000
541 ] 23 : 8567 .y 4751 ;
~ 222953472007 " 90832896007 T 2452488192007 T 357654528000 7
29 , 1

"~ 19074908167~ 1135411207

Equating the coefficients of the two expressions of the polynomial f(q)
we get the intersection pairings, which show a remarkable symmetry.

Theorem 2.1 Let u = —cy(H) and ¢y = c4(E) where H and E are the
locally defined bundles by the isotropy factors of F4l. The intersection num-
bers are the following
39 3 3 39
u =, qu’=—, Aud=-", cdu=-——.
256 256 256 256



3 Cohomology ring

Armed with the intersection numbers of Theorem 2.1 and the Poincaré poly-
nomial of FyI, we can now compute the generators of H*(F,I) and their
relations.

e In dimension 4: u is non-degenerate, so it is non-zero in H*(FyI).

e In dimension 8: We have two classes u? and c4. Suppose

au® + bey = 0.
Then
au’ +begu® = 0,
acqu® +bciu® = 0,
aciud +bciu = 0,

which has no non-trivial solutions for ¢ and b when we substitute the
intersection numbers. Therefore, u? and ¢4 generate H8(FyI).

e In dimension 12: We have two classes u? and csju. Suppose
au® + begu = 0.

Then we get the same system of equations as above

auw” 4+ begu® = 0,
acqu® + bl = 0,
aciu® + bciu = 0,

which has no non-trivial solutions for @ and b. Therefore, u3 and cqu
generate H'2(FyI).

e In dimension 16: We have three classes u*, cyu? and c2. Since H'6(F,I)
is 2-dimensional, we must find the relation between these classes. Sup-
pose

aut + begu? + ¢ = 0.

Then we get

au” + begu® + c?lu3 = 0,
acqu® +bciud +ciu = 0

9



which have a unique solution

so that

ct = —u' + ldegu?®.

Moreover, u* and c,u? are linearly independent since
aut + begu® =0
implies
au’ +begu® = 0,
acqu® +bciu® = 0,
whose only solution is the trivial one. Therefore, u* and cqu? generate
H'S(FyI).

In dimension 20: We have three classes u°

, cqu? and c3u. Suppose
au® + bequ® + Ciu =0.

Then

au’ +begu® +cud = 0,

acqu’ +bciud + ciu = 0,

which have a unique solution

Thus,

Au = —u® + ldcqu?,

which comes from the relation found in dimension 16. Moreover, u°

and cqu? are linearly independent since
au® + begu® =0
implies
auv” +begu® = 0
acqu® +bciu® = 0

whose only solution is the trivial one. Therefore, u® and cqu® generate
H2(FyI).



e In dimension 24: We have four classes u®, cyu?, ciu? and ¢i. In this

case, H**(FI) is 1-dimensional and we see that if
aub + cqut =0,

then

1_37

and the other classes can all be put in terms of u°

1304u4 = b
130?1u2 = ot
ci = ub.

Hence, we have proved the following.

Theorem 3.1 Let u = cy(H) and ¢y = c4(E) where H and E are the locally
defined bundles by the isotropy factors of Ful. The rational comohomology
ring of Fyl is

H*(Fy1,Q) = Ru, cq]/ (ci + ut — ldequ?, ub — 1304u4)

4 Pontrjagin classes and numbers

As a corollary of the intersection numbers and relations we obtain the Pon-
trjagin numbers of Fy1.

Theorem 4.1 The Pontrjagin numbers of F4l are given as follows:

pr = 348,

pl = 2496,
pip1 = 8424,
popspi = 4932,
pips = 5904,
pipy = 3972,
p3pi = 6192,
pap2p1 = 4842,



pspl = 3048,

pop; = 3888,
pep1 = 2091,
paps = 2832,
psp2 = 2718,
papi = 4188,
pspi = 3246,

where p; denotes the it Pontrjagin class of Ful.

Proof. This follows from the relations described in the previous section
and

p1 = 4u

Py = 26u® — 1dey

p3 = 84u® — T6csu

pa = 281u* + 1866c4u® + 65¢2

216u + 2776¢4u>
720u + 7376¢4u’ + 5762 u

ps =
= 144u° + 15440c4u®

ps = 1620u® + 11864cyu® + 12724c%3u® — 80c3
= 44608cqu’

pr = 3200u” + 10624c3u® + 5760c4u® — 21763 u.
= 348

5 Torsion-free part of the integral cohomology of
FyI

We can go a little further by revisiting the following result of Ishitoya and
Toda [3] about the torsion-free part of the integral cohomology of FyI.

Theorem 5.1 [3] The torsion-free part of the integral cohomology of Fy4I
can be described as follows

. B Z[f47f87f12]
H(FyI, Z)yy = (f2 = 12fafs + 8f12, fafra = 313, /3 — [B)’

9



where deg(f;) =1, i = 4,8,12.

First, let us observe that 4u = p;(Fy[) is integral and indivisible. If
4u = mé with ¢ € H*(F4I,7) an indivisible class and m an non-zero integer,

then
du\T 4339
m)  m7
should be an integer, which can only happen if m = £1. Thus, let us set
f4 = 4u.

Taking the relations in Theorem 5.1 we are able to deduce

1 3
fi2 = —gfff + §f4f87

1 1
[ = =gyl +51ifs,

104
f6 - f4 f87
so that 33
Spo— 22
u’fg = 128’
7
3p2_ 0
U f8 - 167
3
3_09
Ufs 4
By setting fs = au® + bcy we get three equations
7
a?u” + 2abequ® + V?ciud = 16’
33
7 5 _ 99
au' + begu® = 128’
3
Su” 4 3a%begu® + 3ab*cAud + bPciu = 7
ie.
B .03, B
256" 256 o128
39 3 9 7
36 * 15 D+ 55 = 35
39 o3 9 o2 2. 39 4 3
—a“b+ —ab® + —b° = -.
256" + 256" + 256 256 4
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with unique solution

5 1
= — b = —
“=3 3’
i.e. 5 1
f8 = guz + 564

It is interesting to notice that
6fs = 10u® 4 2¢c4 = c4(E ® H),

so that this class has a geometrical interpretation.
Furthermore, the relations in Theorem 5.1 become

0 = 0,
1 14 1
——ut =g — 2 = 0,

3 3 3
96u® — 1248u*c, = 0,

which are in fact just a multiple of the two relations we already had in
rational cohomology.
Thus we can rewrite the Theorem 5.1 as follows.

Theorem 5.2 The torsion-free part of the integral cohomology of F4l can
be described as follows

Z[4u, fs]
H*(Fy1, 7)) = -
(FyI, )tf (3f82 + 32ut — 24u2 fg, —26624u fs + 45056u6)’

where fy = 5/3u® 4+ 1/3cy is an integral class, and fio = —8u3 + 6ufs =
2u3 4 2cqu.

This result can be used to reinterpret the integral cohomology ring of
the twistor space Z(FyI), which is torsion free. In [2], they calculated such a
cohomology ring using a Schubert calculus approach. It may be interesting
to investigate the geometry arising from that description in combination
with the geometry encoded in the Chern classes u and c4.
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