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Abstract

We determine the intersection numbers and the ring structure of
the rational cohomology of the symmetric space F4/(Sp(3)Sp(1)) by
using index theory and its quaternion-Kähler structure.

1 Introduction

Recall that an oriented connected irreducible Riemannian 4n-manifold M
is called a quaternion-Kähler manifold, n ≥ 2, if its linear holonomy is con-
tained in the group Sp(n)Sp(1). Examples of such manifolds were given
in [7], where Wolf showed that each compact centerless Lie group G is the
isometry group of a quaternion-Kähler symmetric space given as the conju-
gacy class of a copy of Sp(1) in G determined by a highest root of G. Thus,
the symmetric space

F4I =
F4

Sp(3)Sp(1)

is a 28-dimensional quaternion-Kähler manifold.
Although the cohomology of homogeneous spaces has been extensively

studied, and the integral cohomology of F4I was determined in [3], here we
give a description of the rational cohomology ring H ∗(F4I, Q) in terms of
classes determined by the quaternion-Kähler structure of this manifold. The
motivation for this work is the need to understand the topological structure
of general quaternion-Kähler manifolds, whose rational cohomology we con-
jecture to be generated by a small number of cohomology classes. This is
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indeed the case for the space F4I as its Poincaré polynomial shows

PF4I(t) = (1 + t4 + t8 + t12 + t16 + t20)(1 + t8)

= 1 + t4 + 2t8 + 2t12 + 2t16 + 2t20 + t24 + t28

The note is organized as follows. In Section 2 we compute the intersection
pairings of the relevant characteristic classes arising from the quaternion-
Kähler structure of F4I (see Theorem 2.1). In Section 3 we determine the
ring structure of H∗(F4I, Q) by using the intersection numbers (see The-
orem 3.1). In Section 4, as a corollary of our calculations, we compute
explicitly the Pontrjagin classes and numbers of F4I, which may be of use
in other geometrical contexts. In Section 5, we revisit Ishitoya and Toda’s
result [3] on the torsion free part of the integral cohomology of F4I in terms
of our characteristic classes.

Acknowledgements. The first author wishes to thank Kyushu University and
the Max Planck Institute of Mathematics (Bonn) for their hospitality and
support during the preparation of this work.

2 Intersection numbers

The holonomy group Sp(7)Sp(1) ⊂ SO(28) of a 28-dimensional quaternion-
Kähler manifold M determines the following factorization of the complexi-
fied tangent bundle [6]

TMc = E ⊗ H, (1)

where the fibres of the (locally defined) bundles E and H are isomorphic to
the standard representations C14 and C2 of Sp(7) and Sp(1) respectively.

Furthermore, for F4I, the representation E decomposes further under
Sp(3) ⊂ Sp(7)

E =
∧3

0Ẽ (2)

where Ẽ ∼= C6 is the standard representation of Sp(3), and
∧p

0Ẽ denotes
the irreducible representation of Sp(3) obtained as the primitive subspace of∧p

Ẽ with respect to wedging by a symplectic form. Furthermore, the faith-
ful 26-dimensional representation of F4 also decomposes under Sp(3)Sp(1)

26 =
∧2

0Ẽ + Ẽ ⊗ H, (3)

where the left hand side now denotes a rank 26 trivial bundle on F4I (cf.
[1]). Note that (2) implies that the characteristic classes of E are given in
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terms of those of the rank 6 bundle Ẽ, and (3) implies relations between the
characteristic classes of Ẽ and H.

More precisely, by computing the first three components of the Chern
character of

∧2
0Ẽ + Ẽ ⊗ H and equating them to zero we find that

c2(Ẽ) = u,

c6(Ẽ) = c4(Ẽ)u,

where u = −c2(H). This provides us with two candidates for the generators
of H∗(F4I): u in dimension 4 and c4(Ẽ) in dimension 8. From now on, we
shall denote

c4 = c4(Ẽ).

Thus, our first task is to compute the pairings

u7, c4u5, c2
4u3, c3

4u, (4)

where the notation really means the evaluation of representatives of such
28-dimensional cohomology classes on the fundamental cycle of F4I.

In order to compute such pairings, we will make use of a Hilbert poly-
nomial given by the index of certain twisted Dirac operators [6, 5]. More
precisely, we will use the polynomial in q given by

f(q) = ind(/∂ ⊗ SqH) = 〈Â · ch(SqH), [F4I]〉,

where Â denotes the Â-genus of the manifold, ch denotes the Chern character
and SqH denotes the qth symmetric power of H.

On the one hand, due to (1), (2) and (3), the coefficients of f(q) are
linear combinations of the intersection pairings in (4). Namely,

f(q) =
u7 q15

1307674368000
+

u7 q14

87178291200
+

u7 q13

37362124800
−

u7 q12

2874009600

+

(
u5 c4

4105728000
−

u7

522547200

)
q11 +

(
u7

2612736000
+

u5 c4

373248000

)
q10

+

(
229u7

10973491200
+

59u5 c4

10973491200

)
q9 +

(
13u7

406425600
−

13u5 c4

406425600

)
q8

+

(
−

151u7

3657830400
−

149u5 c4

457228800
+

221u3 c4
2

18289152000

)
q7
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+

(
−

113u5 c4

81648000
+

221u3c4
2

2612736000
−

31u7

522547200

)
q6

+

(
−

17u5 c4

18711000
+

1037u3c4
2

9580032000
+

107u7

1368576000

)
q5

+

(
−

1751u3c4
2

5748019200
+

2603u5 c4

359251200
−

1751u7

5748019200

)
q4

+

(
739163u5c4

52306974720
+

402959uc4
3

7846046208000
−

3201281u3c4
2

784604620800
−

385673u7

523069747200

)
q3

+

(
−

13528111u3c4
2

1307674368000
+

1237813u5c4

261534873600
+

3721u7

20922789888
+

402959uc4
3

2615348736000

)
q2

+

(
2713u7

4828336128
−

3383123u3c4
2

980755776000
+

535039uc4
3

7846046208000
−

769633u5c4

140107968000

)
q

+

(
12899u7

373621248000
+

294779u3c4
2

93405312000
−

12899uc4
3

373621248000
−

294779u5c4

93405312000

)
.

On the other hand, these indices can be seen as holomorphic Euler char-
acteristics of the twistor space

Z = Z(F4I) =
F4

Sp(3)U(1)

of F4I by twistor transform [6, 5]. Namely,

ind(/∂ ⊗ SqH) = χ(Z,O(L(q−7)/2))

=

15∑

i=0

(−1)i dimH i(Z,O(L(q−7)/2)),

where L is a positive line bundle over Z which restricted to the CP1-fibers is
O(2). These holomorphic Euler characteristics can be computed by means
of the Bott-Borel-Weil theorem and the Weyl dimension formula as follows
[4].

Let R(sp(3) ⊕ u(1)) be the set of roots of Sp(3)U(1) ⊂ F4, R+ be the
set of positive roots of F4 with R(sp(3) ⊕ u(1)) generated by simple roots,
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δ = 1
2

∑
α∈R+ α. Let V (λ) be an irreducible representation for Sp(3)U(1)

with highest weight λ ∈ R(sp(3) ⊕ u(1)) and V(λ) the corresponding ho-
mogeneous vector bundle on F4I. By the Bott-Borel-Weil theorem and the
Weyl dimension formula [4]

χ(Z,O(V(λ))) = (−1)s
∏

α∈R+

〈α, δ + λ〉

〈α, δ〉
,

where
s = ]{α ∈ R+ | 〈λ + δ, α〉 < 0}.

More precisely, let H be the Cartan subalgebra of (f4)c spanned by the
following basic roots

{α1 = (1,−1, 0, 0), α2 = (0, 1,−1, 0) α3 = (0, 0, 2, 0), α4 = (−1,−1,−1, 1)}.

The coordinates have been chosen so that sp(3) has the Cartan subal-
gebra spanned by {α1, α2, α3} which is orthogonal to the maximal root
ρ = (0, 0, 0, 2). In this case δ = (3, 2, 1, 8). The roots coming from Sp(3) are
thus embedded canonically in the first three coordinates and the one coming
from U(1) corresponds to the last coordinate.

The bundle L(q−7)/2 corresponds to q−7
2 (0, 0, 0, 2). When adding δ we

get (3, 2, 1, q + 1). Therefore

f(q) = χ(Z(F4I),O(L(q−7)/2)) =
1

8583708672000
q15 +

1

572247244800
q14

+
1

245248819200
q13 −

13

245248819200
q12 −

59

204374016000
q11

+
1

11147673600
q10 +

253

78033715200
q9 +

13

2890137600
q8 −

1111

111476736000
q7

−
541

22295347200
q6 +

23

9083289600
q5 +

8567

245248819200
q4 +

4751

357654528000
q3

−
29

1907490816
q2 −

1

113541120
q

Equating the coefficients of the two expressions of the polynomial f(q)
we get the intersection pairings, which show a remarkable symmetry.

Theorem 2.1 Let u = −c2(H) and c4 = c4(Ẽ) where H and Ẽ are the

locally defined bundles by the isotropy factors of F4I. The intersection num-

bers are the following

u7 =
39

256
, c4u5 =

3

256
, c2

4u3 =
3

256
, c3

4u =
39

256
.

2
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3 Cohomology ring

Armed with the intersection numbers of Theorem 2.1 and the Poincaré poly-
nomial of F4I, we can now compute the generators of H∗(F4I) and their
relations.

• In dimension 4: u is non-degenerate, so it is non-zero in H 4(F4I).

• In dimension 8: We have two classes u2 and c4. Suppose

au2 + bc4 = 0.

Then

au7 + bc4u
5 = 0,

ac4u
5 + bc2

4u
3 = 0,

ac2
4u

3 + bc3
4u = 0,

which has no non-trivial solutions for a and b when we substitute the
intersection numbers. Therefore, u2 and c4 generate H8(F4I).

• In dimension 12: We have two classes u3 and c4u. Suppose

au3 + bc4u = 0.

Then we get the same system of equations as above

au7 + bc4u
5 = 0,

ac4u
5 + bc2

4u
3 = 0,

ac2
4u

3 + bc3
4u = 0,

which has no non-trivial solutions for a and b. Therefore, u3 and c4u
generate H12(F4I).

• In dimension 16: We have three classes u4, c4u
2 and c2

4. Since H16(F4I)
is 2-dimensional, we must find the relation between these classes. Sup-
pose

au4 + bc4u
2 + c2

4 = 0.

Then we get

au7 + bc4u
5 + c2

4u
3 = 0,

ac4u
5 + bc2

4u
3 + c3

4u = 0,
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which have a unique solution

a = 1, b = −14,

so that
c2
4 = −u4 + 14c4u

2.

Moreover, u4 and c4u
2 are linearly independent since

au4 + bc4u
2 = 0

implies

au7 + bc4u
5 = 0,

ac4u
5 + bc2

4u
3 = 0,

whose only solution is the trivial one. Therefore, u4 and c4u
2 generate

H16(F4I).

• In dimension 20: We have three classes u5, c4u
3 and c2

4u. Suppose

au5 + bc4u
3 + c2

4u = 0.

Then

au7 + bc4u
5 + c2

4u
3 = 0,

ac4u
5 + bc2

4u
3 + c3

4u = 0,

which have a unique solution

a = 1, b = −14.

Thus,
c2
4u = −u5 + 14c4u

3,

which comes from the relation found in dimension 16. Moreover, u5

and c4u
3 are linearly independent since

au5 + bc4u
3 = 0

implies

au7 + bc4u
5 = 0

ac4u
5 + bc2

4u
3 = 0

whose only solution is the trivial one. Therefore, u5 and c4u
3 generate

H20(F4I).
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• In dimension 24: We have four classes u6, c4u
4, c2

4u
2 and c3

4. In this
case, H24(F4I) is 1-dimensional and we see that if

au6 + c4u
4 = 0,

then

a = −
1

13
,

and the other classes can all be put in terms of u6

13c4u
4 = u6

13c2
4u

2 = u6

c3
4 = u6.

Hence, we have proved the following.

Theorem 3.1 Let u = c2(H) and c4 = c4(Ẽ) where H and Ẽ are the locally

defined bundles by the isotropy factors of F4I. The rational comohomology

ring of F4I is

H∗(F4I, Q) = R[u, c4]/
(
c2
4 + u4 − 14c4u

2, u6 − 13c4u
4
)

2

4 Pontrjagin classes and numbers

As a corollary of the intersection numbers and relations we obtain the Pon-
trjagin numbers of F4I.

Theorem 4.1 The Pontrjagin numbers of F4I are given as follows:

p7 = 348,

p7
1 = 2496,

p3
2p1 = 8424,

p2p3p
2
1 = 4932,

p2
2p3 = 5904,

p2
3p1 = 3972,

p2
2p

3
1 = 6192,

p4p2p1 = 4842,
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p3p
4
1 = 3048,

p2p
5
1 = 3888,

p6p1 = 2091,

p4p3 = 2832,

p5p2 = 2718,

p4p
3
1 = 4188,

p5p
2
1 = 3246,

where pi denotes the ith Pontrjagin class of F4I.

Proof. This follows from the relations described in the previous section
and

p1 = 4u

p2 = 26u2 − 14c4

p3 = 84u3 − 76c4u

p4 = 281u4 + 1866c4u
2 + 65c2

4

= 216u4 + 2776c4u
2

p5 = 720u5 + 7376c4u
3 + 576c2

4u

= 144u5 + 15440c4u
3

p6 = 1620u6 + 11864c4u
4 + 12724c2

4u
2 − 80c3

4

= 44608c4u
4

p7 = 3200u7 + 10624c2
4u

3 + 5760c4u
5 − 2176c3

4u.

= 348

2

5 Torsion-free part of the integral cohomology of

F4I

We can go a little further by revisiting the following result of Ishitoya and
Toda [3] about the torsion-free part of the integral cohomology of F4I.

Theorem 5.1 [3] The torsion-free part of the integral cohomology of F4I
can be described as follows

H∗(F4I, Z)tf =
Z[f4, f8, f12]

(f3
4 − 12f4f8 + 8f12, f4f12 − 3f2

8 , f3
8 − f2

12)
,
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where deg(fi) = i, i = 4, 8, 12.

First, let us observe that 4u = p1(F4I) is integral and indivisible. If
4u = mξ with ξ ∈ H4(F4I, Z) an indivisible class and m an non-zero integer,
then (

4u

m

)7

=
4339

m7

should be an integer, which can only happen if m = ±1. Thus, let us set

f4 = 4u.

Taking the relations in Theorem 5.1 we are able to deduce

f12 = −
1

8
f3
4 +

3

2
f4f8,

f2
8 = −

1

24
f4
4 +

1

2
f2
4f8,

f6
4 =

104

11
f4
4 f8,

so that

u5f8 =
33

128
,

u3f2
8 =

7

16
,

uf3
8 =

3

4
.

By setting f8 = au2 + bc4 we get three equations

a2u7 + 2abc4u
5 + b2c2

4u
3 =

7

16
,

au7 + bc4u
5 =

33

128
,

a3u7 + 3a2bc4u
5 + 3ab2c2

4u
3 + b3c3

4u =
3

4
,

i.e.

39

256
a +

3

256
b =

33

128
,

39

256
a2 +

3

128
ab +

3

256
b2 =

7

16
,

39

256
a3 +

9

256
a2b +

9

256
ab2 +

39

256
b3 =

3

4
.
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with unique solution

a =
5

3
, b =

1

3
,

i.e.

f8 =
5

3
u2 +

1

3
c4.

It is interesting to notice that

6f8 = 10u2 + 2c4 = c4(Ẽ ⊗ H),

so that this class has a geometrical interpretation.
Furthermore, the relations in Theorem 5.1 become

0 = 0,

−
1

3
u4 +

14

3
c4u

2 −
1

3
c2
4 = 0,

96u6 − 1248u4c4 = 0,

which are in fact just a multiple of the two relations we already had in
rational cohomology.

Thus we can rewrite the Theorem 5.1 as follows.

Theorem 5.2 The torsion-free part of the integral cohomology of F4I can

be described as follows

H∗(F4I, Z)tf =
Z[4u, f8]

(3f2
8 + 32u4 − 24u2f8,−26624u4f8 + 45056u6)

,

where f8 = 5/3u2 + 1/3c4 is an integral class, and f12 = −8u3 + 6uf8 =
2u3 + 2c4u.

This result can be used to reinterpret the integral cohomology ring of
the twistor space Z(F4I), which is torsion free. In [2], they calculated such a
cohomology ring using a Schubert calculus approach. It may be interesting
to investigate the geometry arising from that description in combination
with the geometry encoded in the Chern classes u and c4.
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