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Introduction.

It is well known that in each homology class of a Riemannian manifold there
exists a cycle of the least volume (or simply speaking, a globally minimal
surface). These globally minimal cycles yield many information of geometry
and topology of their ambient manifold, however, to detect them the existence
(and almost regularity) theorems can not help us so much. Intuitively, one
knows that globally minimal surfaces would occupy a position of "maximal
curvature” in their ambient manifold. In A.T.Fomenko’s and author’s an-
nouncement [LF] we gave a mathematical formulation of this conjecture. The
aim of this note is to complete the proof of our announcement [LF]. In particu-
lar, we obtain an estimate for the volume growth of globally minimal surfaces
in Riemannian manifolds, new isoperimetric inequalities for these surfaces, an
explicit formula of the least volumes of closed surfaces in symmetric spaces.
As a result, we prove that every Helgason’s sphere in a compact irreducible
simply connected symmetric space is a globally minimal surface. In connec-
tion with the application of integral geometry to minimal surfaces [Le 2] we
note that the technique of Fomenko’s method of geodesic nullity employed in
this note is very close to the technique in [Le 2]. In some sense, the method
of integral geometry in the theory of minimal surfaces is a bridge between the
calibration method [HL] and the method of geodesic nullity [Fo 1].

§1. Geodesic nullity of Riemannian manifolds and the volume of
globally minimal submanifolds.

a}. Let B.(z) be the ball of radius r in a tangent space T, M. Recall that
the injective radius R(z) of a Riemannian manifold M at a point z is defined
as follows: R(z) = sup{r| Ezp : B,(z) — M is a diffeomorphism }. The
injective radius R(M) of M is defined as: R(A) = inf,err R(z). Now we fix
a point zo € M. We define k-dimensional deformation coefficient xi(z > zo)
as follows (cf.[Fo 2]). Suppose that I15-! is a (k — 1)-plane through z in the
tangent space T M. Denote D*~! the disk of radius ¢ in II¥-!, and by S, the
disk Ezp(D¥-'). We consider the cone C'S, formed by geodesics joining the
vertex zo and the base 5.. We put

L.CS
Az > za. TTF-1) = lim 22k~ Pe
x(z > 2o, T1;™) clwﬂ-volk_LS's,



_ k-1
X(z > zo) = max xi(z,II").

b)Let f(z) be the function which measures the distance between point z € M
and the fixed point zo. We set

r

q(zo,r) = exp([) (xg{l?iﬂ} xi(z > 7o)~ dt). (1.1)

We put
Qk(xo) = /\kQ(fBOs R(‘TO)):

Y = inf Qk(20),

where A is the volume of the ball of radius 1 in RF.

The defined value is called the k** geodesic nullity of Riemannian manifold M.
The following theorem was obtained by Fomenko in 1972 [Fo 2].

Theorem 1.1. Let X¥ C M™ be a globally minimal surface. Then the follow-
ing inequality holds
volk(Xk) > Q>0

Remark. Theorem 1.1 has a clear geometric interpretation. It is a consequence
of the fact that the derivative of logarithm of the volume function exhausting
a globally minimal surface X in M is greater than the function under integral
in (1.1). This derivative d/dt(InvolX;) equals the "isoperimetric” relation
vol X, /vol X; (see also Proof of Theorem 2.3). The injective radius of M is

involved, because X is a globally minimal surface in M.

§2. Lower bound for geodesic nullities of Riemannian manifolds.
New isoperimetric inequalities.

Suppose that the section curvature of manifold M in any 2-plane is not greater

then a? (a € Ror a € V-1Q® R).
Theorem 2.1 [LF]. Lower bound of geodesic nullity.
a) If a® > 0 and Ra < 7 then we have:

R
(M) > kA a* / (sin at)*~! dt.
0

b) If a* > 0 and Ra > 7 then we have:

Qu(M) > vol(S*(r = 1/a)).

c) If a =0 then we have Qi (M) > A\ Rk,



d) If a* < 0 then we have:
R
Qu(M) > k Mg |af~* / (sinh [a[t)* dt.
0

Theorem 2.2 [LF]. Upper bound of the deformation coefficient. Let r be the
distance between z and zq.

a) Ifa* > 0 and r < w/a then we have:

Jo (sin at)*~1dt
(sin ar)k-1

xk(z > 7o) <

b) If a = 0 then we have:

toxl e

xk(z > o) <

c¢) If a*> < 0 then we have

[ (sinh |a|)*-1 dt
(sinh |a|r)*-1

xk(z > zo) <

Theorem 2.3 [LF]. Isoperimetric inequality. Assume that X* is a globally
minimal surfaces through a point £ € M. Let By(r) be the geodesic ball of
radius r and with its center at x. Denote A¥~! the boundary of the intersection
X*NB:(r) = Xk,

a) If a* > 0 and r < min(R, 7/a) then we have:

vol(A*1) sin(ar)*!
vol(X¥) — [fi(sinat)*-1dt’

Consequently, the following inequality holds

vol(A¥~1) > k A\p a** sin~(ar).

b) Ifa =0 and r < R then we have:

vol(A¥=1) > k A r*~! = the volume of the standard k-dimensional sphere S*
of radius r.

Hence we imply the following inequalities:
vol( A¥=1) > (kr)~ ' wol(XT),
vol(X*) < (k)TF (M) 5% (voly_y A, ) 7T

¢) If a* < 0 then we have:



vol( AF-1) S (sinh |a|r)*1
vol(XF) ~ J5(sinh|alt)*~1dt’

Hence we get

vol(A¥1) > k Ap sh*(laft)/|a|* 1.

The estimates in Theorems 2.1 and 2.2 are sharp, that is, in many cases they
become equalities. Roughly speaking, these theorems tell us that globally
minimal surfaces tend to a position of "maximal curvature” in their ambient
manifold. Now we show some consequences of Theorem 2.1.

Corollary 2.4. If M is a compact simply-connected symmetric space of sec-
tional curvature not greater than a, then the volume of any non-trivial cycle
is not less than the volume of k-dimensional sphere of curvature a.

Corollary 2.5. The length of a homologically non-trivial loop in a manifold
M 1s not less then the double injective radius of M.

Corollary 2.6 Lower bound for the volume of a manifold.
a) If a > 0 then we get:

R
vol(M™) 2 n A, al'"] (sin at)™~1 dt.
0

b) If a =0, then we get: vol(M™) > n A, R".
¢) If a® < 0 then we get

-

R
vol(M™) > n A, la['™" f (sinh |a]t)1 dt.
0

Remark. The estimate in Corollary 2.6 coincides with that of Bishop’s theorem

(BC).

Now we infer from Theorems 2.2 and 2.3 the following consequence on the
volume growth of globally minimal surfaces.

Corollary 2.7. Let X* be a globally minimal surface in a complete non-
compact Riemannian manifold M of non-positive curvature. Then the function
V(r) = volg Bx(r) grows at least as a polynomial of v of degree k, where Bx(r)
is a geodesic ball of radius r in X*. If the curvature of M has an upper bound
strictly less than zero then the function V(r) grows at least as the exponent of
T

Remark. It is well known that there is a close relationship between the cur-
vature of a Riemannian manifold M and the growth of its volume [BC]. As a
consequence, we obtain the estimate for the growth of its fundamental group
(see [M]), and other topological and geometrical invariants of M such as the
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Betti numbers, the eigenvalues of the Laplace operator and the Gromov in-

variants [Br 1, Br 2, Gr 1, Gr 2, Gr 3].

Proof of Theorems and Corollaries. Let us write down an explicit formula for
the coefficient xx(z > zo,I1¥-1). Suppose A(t) is the shortest geodesic curve
joining the points zo = A(0) and = = A(r). So, for 0 < t < r, point A(t) is not
conjugated with zo. We now consider the case if £ = A(r) is not conjugated
with z¢ (otherwise, we should take the limit). Choose an orthonormal basis
of vectors Yi(r),..., Yi-1(r) in the plane ITI*' C T, M. (Let us recall that
by definition IT*=! must to be orthogonal to A(r)). We denote K, the (k-
1)-dimensional cube in II¥~! with the edges pY(r). Then the formula for
deformation coefficient xx(z > z¢) can be rewritten as follows:

WCK,
e > 2015 = Iy U2,
k-1

here we set K, = Exp. K, .
We denote A, the s-geodesic, joining points zo and Ezp,(sY;(r)). Put

d .
Y;(t) = ds |a=0)‘it'

Then Yj(t) is an Jacobian vector field with the data Y;(0) = 0, Y;(r) - the
chosen vector in IT¥~1, and besides, for every t we have Y;(t) L A(t). We note
that the tangent plane to the orthogonal section K, of the cone C K, at the
point A(t) possesses the basis of vectors Y;(2),.., Yi—1(¢). Hence,

voli-1(Ksp) = o (Yi(8) A oo A Ve (8)]) + 0(p*7).

This yields

;\k($>$0,nk 1)—1 M
p0 vol_1(I,)

Jovoli1 Kiydt 5 1Yi(t) A ... A Yioa(t)] dt

=i = = 2.1
P volnfry TA(T) A A Vi (r)] @1
Proof of Theorem 2.2. Put F(t) = |Yi(t)| - ... - |Yx=1(t)|. Since [Yi(t) A ... A

Ye-1(t)| £ F(t), and this inequality becomes an equality at ¢t = r, the for-
mula(2.1) yields

Xk(x > To, Hk_l) S

We need the following lemmas.



Lemma 2.8. Suppose F(t) be in(?.é). If for all t and Y; the section curvature
S(A(t),Y;(t)) < a?, where a > 0, then the function F(t)/G(t) increases on the
interval [0,7]. Here G(t) = (sin at)*~!/(sin ar)*-1.

Lemma 2.9. Suppose the function F(t) and G(t) be in the Lemma 2.8. Then
the following inequality holds

[ F(t)ydt _ f3 G(t)at
F(ry = G(r)

Proof of Lemma 2.8. The Rauch’s comparison Theorem [BC] states that the
function f;(t) = |Y;(t)|/ sin at increases on the interval [0,7]. Hence, the func-
tion F(t)/G(t) = I f; is such a function.

Proof of Lemma 2.9. Since the function F(t)/G(t) increases on the interval
[0, 7], we get F(z;)G(r) < G(z;)F(r) for every 0 < z; < r. Hence we obtain

n

Z Fkr/n)G(r) < ZG(kr/n)F( ).

k=0

Letting n — oo we easily infer Lemma 2.10 from the above inequality.
Let us continue the proof of Theorem 2.2.
Taking into account (2.2) and lemmas 2.8, 2.9 we get

1 _ JTF(®)dt _ [5(sinat)F1dt
xk(z, ) < F(r) = (sinar)k-1

The proof of the first part in Theorem 2.2 is completed. In the same way we
can prove the rest parts (b) and (c).

Proof of Theorem 2.1. Let us recall the definition

Qi(zo,7) = A& exp/ ér{l?xt} xi(z > z0)) " dt.

Theorem 2.1 (a) yields

sin at)*~1 dt

sinar)k~1dr’

Q (IO: ) 2 Ak eYPf X

Put
sm at) k=14t

= A
2ulr) = A exp/ J5(sin a‘r)k Ldr’

Clearly , we can infer Theorem 2.1(a) from the following identity

Ou(r) = kAgal™* /T(sin at)*=1 dt. (2.3)

0
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Proof of Formula (2.8). Put ®;(r) equal the right hand side in(2.3). We ob-
serve that the functions ®(r) and ®;(r) satisfy the same differential equation:

u(r)  Bi(r)  [o(sinat)"'dt (2.4)
(3/0r)®(r) — (8/0r)®3(r)  (sinar)k-1 )
Let us consider the limit
lim ®r(r)  lm Ax exp f7 (5 (sin a'r)r"‘.1 dr)~!(sin at)*~? dt. (2.5)
r=0 3(r) r—0 k Aga'=* [f(sinat)k=1dt
Taking into account the increaseness of the function (a7/sinar)*"! on the
interval [0,¢], where 0 <t < 7/a, and using Lemma 2.10 we obtain
(sin at)*~! gkt E (2.6)

< =
fg(sin at)k-ldr f(: Th=ldr ¢

Combining (2.5) and (2.6) yields the following inequality

lim Qr(r) < lim Ax exp fy kt~1dt
r—0 ®3(r) = r=0 k Apal~* [J(sinat)*-1dt

Fix e > 0. Since lim,_o(sinat/ at) = 1 > 1 —¢ we get the following inequality.

Qr(r < lim exp [y (k/t)dt _
Qi(r) —r=0k [7(1 —e)f-1(at)k-1al-*dt

p—

lim

rk

-1 e _ 1~k
e 11.1_1.13 rk(l — s)k—l = (1 6) . (2.7)

Since the inequality (2.7) holds for all € > 0 we have

. Dy(r) . 1-k
< - =1. .
iy < i1 -9 = 29

On the other hand, applying the inequality sin at < at to (2.5) we get

Tl k=1 1—k 1., ~k
lim P (r) > lim A exp( [ (sin ayr) a~Fky dy.
r—=0 Q% (r) ~ r—0 ke fo th-1dt

Fixed ¢ as above we have

. Bu(r) . r(1—e)(ay)tdy, _,
1 > lime: / =
r]—I.% (I)]':(r) - }_l_l"lg e‘{p( 0 ak-1. yk k-t )7'




)k 1kdy

= lim ™ exp( / ) = pk((=e)*=2 1), (2.9)
Letting € — 0 we infer from (2.9)
lim 228 > llggr*((l-’)""*) = 1. (2.10)
Now we obtain from (2.8) and (2.10)
lim z"g; ~ 1. (2.11)

The differential equation (2.4) for ®,(r) and ®;(r) has the same initial data
(2.11). So we get the identity ®; = &, that completes the proof of Theorem
2.2 (a). .
The rest parts (c), (d) can be proved in the same way. The part (b) follows
from that fact if B > 7/a then we have Qu(M) > Qk(z0o, m/a) > vol(S*,1/a).
This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. Let r be as in Theorem 2.3. We denote C A*~! the
geodesic cone of base A’c 1 and with its vertex at the point z. Since X" is a

globally minimal surface, and the cone C'A*~! is homological to X¥, we have
vol(X¥) < vol(C A*~1). Hence we conclude

vol(A*-1) S vol( A*-1)
vol(XF) — wvol(CA5-1) —

(sinar)*-1
- f (sinat)s=1dt

2 (maxx(y > 2))” - (2.12)

(The second inequality in (2.12) is inferred from the following formula
vol(CA;™!) = L':-* xx(y >z, 1;7") dy,

where II¥~! denotes the tangent space to A’;‘l at y. The third inequality in
(2.12) is a consequence of Theorem 2.2(a).)

We infer from (2.12) the following inequality

-1 )k—l

(sin ar)* (sinar

>0 :
fo(sinat)s-1dt — #(r) fo (sinat)*-1dt

vol(CA¥1) > vol( XF) (2.13)

Combining (2.13) and Theorem 1.1(a) yields

vol A¥=' > k Ay a*~* (sinar)*~1.
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This completes the proof of Theorem 2.3(a). The rest part of Theorem 2.3
can be proved in the same way.

Proof of Corollary 2.4. 1t is well known that a compact simply-connected
symmetric space satisfies the relation: Ka = 7. So we get Corollary 2.4 from
Theorem 2.1.

Proof of Corollary 2.5.. Clearly, Ay = 2. So we obtain (M) > 2 [R1dt =
2R.

Proof of Corollary 2.6.a. Let dim(M) = m. Then vol(M) > Q,.{M). With
the help of (2.3) we obtain Q,,(M) > &,,(R) = k Aa~F [J(sinat)*~! d¢. This
completes the proof Corollary 2.6.a. The rest assertions can be proved in the
same way.

§3. Explicit formula for geodesic nullities of symmetric spaces.
Global minimality of Helgason’s spheres.

Suppose M is a compact symmetric space. Let us compute the deformation
coefficient associated with fixed point e € M. Without loss of generality
we compute this coefficient at point Ezptr € M, where z is a vector in a
Cartan space Hjys of the tangent space IM to M at e. We shall redenote
xx(Ezprz) = xi,(Ezprz > e).

Theorem 3.1. Let {a;} be the roots systems of symmetric space M with
respect to Hipn. Suppose x is a vector of unit length in Hypy . Without loss of
generality we assume that ay(z) 2 ... 2 ap(z) =0 = apn(z) = ..

a) If k < p then the following equality holds

fo sin(a;(z)t) - ... - sin{ag(z)t) dt
sinay(z)r - ... sinag(z)r

xx(Erprz) =
b) If k > p then the following inequality holds

" s . . g1 k—p
Xk(E&:prm):fO sin(an(z)t) - ... - sin(ap— (2)t)t*77 dt

sin(aq(z)r) - ... - sin(ap—y (z)7r)r*=>

Lemma 3.2. Let {vy,...,ux} € M be an orthonormal frame which consist-
ing of the eigenvectors of eigenvalues o?(z), ..., a?(z),,,,0,...0 of the operator
ad?. Denote Vi(t) the parallel vector field along the geodesics Exptx such that
Vi(0) = v;, and denote Wi(t) the Jacobian vector field along Ezptz such that
W:(0) = v;. Then we have the following relation

- if i < p then Wi(t) = a;(x)~! sin(ai(z)t)V(2),
- if i 2 p then Wi(t) = tVi(2).



Proof of Lemma 3.2. In the tangent space M the vector field tv; is a Jacobian
field along the ray ¢z. It is well known that the vector field dEzpy(tv;) is also
a Jacobian vector field along the geodesic Ezptz C M [He]. Let us write an
explicit formula for the differential of the exponential mapping at the point
tr ( [He]). We will identify M with the quotient G/U, moreover, the tangent
space [M with the orthogonal complement to the algebra (U in the algebra
[G. We denote exp the exponential mapping from the algebra to the group.
Then exptz is an element in G acting on M and we denote dr(exptz) the
differential of this action. We have

(o] 2 .
dExpy,(tv) = dr(exptz) Lad;(tv) _

n=0 (2n+ 1)' B
0 QQQ 2\ (-1)"
= dt (exp tz) ZO (t (12(n)-|)— 1()' D (tv;) =
= dr(exp tm)ET—;!fg—))t— v; = %;f_)ﬂ(d’r(exp tz)v;) (3.1)

Now we observe that the parallel vector field V; is obtained from the vector v;
by the shift dr(ezp) along the geodesic Ezptz, that is, Vi(t) = dr(exptz)v;.
Hence we get Lemma 3.2 from (3.1).

Proof of Theorem 3.1. Now we compute the coefficient yx(Ezprz, [1F-1). We
observe that the tangent space II¥~(¢) to the normal section of the cone
CDF-! at the point Ezptz can be represented as the sum Y a;I1¥7(¢), where
a; are constant, and Hf‘l(t) is the basis in the space Ag—1(TEspez M) such that
I1571(¢) is generated by the orthonormal frame of vectors W;(t) € Tgepe M.
Using formula (2.1) we get

IV Od T e (2)] dt
vi(Ezpre, IIF1) = 22 = = -
xi(Eap )= ) @ [Ty ()

Hence we obtain

Jo 1ML, (1] di
I _(7) ’

Combining Lemma 3.2 , Lemma 2.8 and Lemma 2.9 we get

xx(Ezprz) = max

I |H'f'1(t)|dt _ Jo sin(ay(z)t) - ... - sin{ax(z)t) dt
' ITL:_ (7)] sin(ay(z)r) - ... - sin(ak(z)r)

if £ < p. In the same way we can prove the theorem in the case k¥ > p. The
proof of Theorem 3.1 is complete.
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Corollary 3.3. If M is a symmetric space of rank = 1 ,that is, dim Hyy = 1,
then the deformation coefficient xi(Ezprz) depends only on r.

a) For M = S™ (or RP™) we have xi(r) = [5(sint)*~1dt/(sinr)*1,
b) For M = CP™ we have

J5 (sin v/2t)(sin t) %2 dt
sin \/§r(sin r)2k-2

xk(r) =

c) For M = HP™ we have

_ [ (sin v2t)%(sint) %~ dt
= (Sin \/ﬁr)a(sin T‘)4k—4

We immediately obtain the following consequence.

Corollary 3.4. [Fo 1]. For any k < n the standardly embedded space RP™
(and CP", HP" resp.) has the volume = Qi (RP™) (and Q2x(C P™), Qui(H P™)
resp.), therefore it is a globally minimal submanifold.

Let us now compute geodesic nullities Qx(RP"), gk C P™, Qi (HP"). Clearly,
Qk(RP™) = 3v0l(5*(1)) can be computed from the following formulas. First,
we take integration over parallel sections of the unit ball

Xx(r)

/2
'\k = 2Ak—l / COSkCt da.
0
Taking into account (2.3) we get
k mf2
vol §¥(1) = (k + 1) Apss = 2)\kk/ sintla da.
0

Hence we obtain the following identity

2k [T sin*la da

k+1= . 3.2
2X ST cos**+1a da (3:2)
We infer from (3.2) the following equation
/2 k1 k /2
: da = ] k=1 . )
/0 sinUada = | sin ado (3.3)
Using (3.3) we easely get
m* wrok+
Aop = — Aopr] = ———————,
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Let us compute Q:(CP™) = vol(C P¥). Using Corollary 3.3 and taking into
account R(CP") = w/ sqrt2 we get

n m/sqri2 dt
U(OPT) = ha exp/o (sin v/2t)(sin t)26-1

=/sqri2

= 2kA2kjg (sin v2t//2)(sint)?*~2 dt =

1
= 259k Mg / 221 dg = xR,
0
In the same way we compute Q4x(HP™) = vol(HP*). We have

Qu(HP") = A /”/ﬁ dt
= e =
‘“‘ WP Jo (sinv/2t)%(sin t) k4

n/V2
= dkM sk /0 (sin v/3t/v/2)3(sin 1)~ df =

1
= 22k4k/\4kf y4k_4(]_ - yQ) dy =
0
= 7% 2% [(2k 4 1)L,

Remark. Operator ad? coincides with the Ricci transformation R, : y — Ry
in the tangent space IM. Therefore, the deformation coefficient xx(Fzprz) get
the maximal value, if and only if the plane IT¥~! is an eigenspace with the maxi-
mal eigenvalue of the induced Ricci transformation in the space Ag—1Tgzpr- M.
Roughly speaking, the curvature at point Ezprz in direction (rz,I1*"!) get
the maximal value.

It is well known that in a simply connected irreducible compact symmetric
space M there are totally geodesic spheres of curvature a?, where a® is the
upper bound of section curvature on M. Further, any such sphere lies in some
totally geodesic Helgason’s sphere of maximal dimension 7z(M). All Helga-
son’s spheres are equivalent under the action of the isometry group Iso(M).
Moreover, they are of the same curvature a?. Now we immediately get from
Corollary 2.8 the following Proposition.

Proposition 3.5. If a Helgason sphere S(M) realizes a non-trivial cycle in a
homology group of space M, then it is a globally minimal submanifold in M.

First, we write the list of Helgason’s spheres realizing a non-trivial cycles in
real homologies of compact irreducible simply-connected symmetric spaces.

1) If M is a simple compact group, then (M) = 3, and S(M) is a subgroup

associated to a highest root of the group M.
Y M = SUpam/S(U x Uy), (M)=2, S(A)=S8U;/S(U; x Uh).

12
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) M = 80142/S0; x SO,, i(M)=2, S(M)=503/50,.
)M = 8Uz,/Spn, i(M)=35, S(M)=S5U,/Spa.

) M = Spmin/Spm X Spa, (M) =4; ,S(M)=HP"

Y M = S502,/U,, i(M)=2, S(M)=S50,/U,.

) ﬁl:Spn/Um i(M)=2, S(M):SPI/UI-

) M = Fy/Sping, i(M)=8, S(M)= Sping/Spins.

) M = Ad Es/T! Spinyg, i(M)=2, S(M)=SU,/T".
10) M = AdE;/T Es, i(M)=2, S(M)=SU,/T.

].].) M= Es/F.;, l(M) = 9, S(M) = Spinlo/Sping.

Remark. In all listed cases, if the dimension of Helgason’s spheres i(M) =2,
the corresponding symmetric space are Kalerian manifolds, so their Helga-
son’s spheres are diffeomorphic to C P!.The global minimality of the Helgason
sphere in 1) was first proved by A.T.Fomenko [Fo 1], and then by Dao Chong
Thi [Da 1], H.Tasaki [Ts] the author [Le 1] by the calibration method. The
global minimality of the Helgason sphere in 8) was proved by A.T.Fomenko
[Fo 1] by the method of geodesic nullity and by M.Berger [Be} by the calibra-
tion method. It would be interesting to find calibrations which calibrate the
Helgason spheres in 4) and 11). It is well known that all characteristic classes
on spaces M in 4) and 11) are trivial[Ta 2]. We think a suitable calibration
may be chosen among induced invariant differential forms from the isometry
group I(M) to M (see also the proof below). We also conjecture that all
Helgason’s spheres are M*-minimal submanifolds (see [Le 2]).

Proof of our classification. By looking at the table of real homologies of
irreducible globally symmetric spaces [Ta 1, Ta 2], and the table of Helgason’s
spheres in these spaces [O], comparing dimensions, we conclude that all other
Helgason’s spheres not in the above list are trivial cycles in real homologies
of their ambient spaces. By the above remark, to complete the classification,
it suffices to show that the Helgason’s spheres in 4) and 11) are non-trivial
cycles. First, we consider the case 4) S(M) = SU,/Sp; — SUa2,/Sp,. We
have the following commutative diagram

SU4/SP2 — SU2n/Spn

{ l
SU4 4 SUgn.

Here the embedding SUs,/Spr — SUsik, k=2 or n, is the Cartan embedding
of symmetric spaces. We note that S5 = SU,/Sp, realizes a non-trivial cycle
in SUy, since so does the corresponding subgroup Sp,. Therefore, the sphere
S? also realizes a non-trivial cycle in SUs,, because the subgroup SUy is totally
non-homologous to zero in SU,,. Hence we conclude that the Helgason sphere
S° realizes a non-trivial cycle of real homologies of SUs,/Sp,.
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The fact, that the Helgason’s sphere S° realizes a non-trivial cycle of real
homologies of Eg/F4 was proved in Dao Trong Thi’s paper [D 2]|. To see it we
consider the following sequence of mappings

Sg — Ee/F.; 4 Ee — SU27.

It is easy to see that the resulting map p : $° — SUs7 is a composition of two
maps p; and pz, where p;(S®°) C Spinyo is a primitive cycle, and p; is a spinor
representation of Spin;e which sends the primitive cycle 5° to a non-trivial
cycle in SUy; [Dy], [Da 2]. Therefore, we conclude that the Helgason sphere
5® realizes a non-trivial cycle of real homologies of Fg/Fj;.

Theorem 3.6. Every Helgason’s sphere in a compact irreducible simply con-
nected symmetric space is a globally minimal surface in its Z; homology class.

Remark. As a simple corollary of our theorem we obtain that all Helgason
spheres in irreducible simply connected symmetric spaces are stable minimal.
This corollary was obtained by Ohnita [O] with the help of analyzing the
spectrum of the Jacobi operator on these spheres.

Proof. In view of our classification it suffices to show that the Helgason’s
spheres not in the above list realize non-trivial cycles of Z; homologies in their
ambient symmetric spaces. All of them are of dimension 2 ([He], [0]). Since
their ambient spaces M are simply connected and besides, in the considered
cases we have mo( M) = Z2 [Ta 1], it suffices to show that these spheres realize
non-trivial elements of the second homotopy group mo(M). Let M = G/U,
where G is a simply connected group. Our proof is based on the exact sequence
[Ta 1]
O = m(G) — m(G/U) — m(U) — = (G) = 0.

Thus, the map j : m(g/U) — m1(U) is an isomorphism. Therefore, the
Helgason sphere realizes a non-trivial element in 7(G/U), if and only if its
image via j is a non-trivial circle S C U in the fundamental group = (U).
Let us recall a geometrical realization of the map j. Assume S? is a sphere in
G/U. Fix a point z € S%. Let us realize the sphere S? as a suspension over
S? such that one of its vertices is the fixed point x, and the other one is some
point y € S§?. This means that we are given a homotopy F : [0,1] x §! — &2
such that F(0 x §') = z, and F(1 x S') = y € S%. Let § be a point in
G whose projection p(y) = y. According to the covering homotopy theorem
there exists a homotopy F :0,1] x S' —» G such that F(1 x S!) = §, and
p- F = F. Clearly, F realizes a relative sphere whose boundary S! lies in the
fiber p~!(z). Hence, this circle is the image of sphere S? via the map j. With
the above geometric realization jr of the map j we will show that the image
7r(S?) of the Helgason sphere S? € G/U may be chosen as a geodesic circle
S' C U. To do this we consider the following orthogonal decomposition of
the Lie algebra (G = U @ V, where V is identified with the tangent space of
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the symmetric space G/U. We note that the totally geodesic subspace exp V
coincides with the Cartan embedding C(G/U) of symmetric space G/U into
G. Consider a highest root « of the algebra IG. It is known that its restricted
root & is a highest root of the symmetric space G/U. Fix a Cartan algebra
Hy C V. Let hs € Hy be the dual vector to &, and vz € V the corresponding
eigenvector. This implies that

ha = V—=1(1/2)(Hy — Hys), Rvs = VN C(X, — 0X,), (3.4),

where H, denotes the vector in the Cartan algebra Hcys corresponding to the
root a, X, € CIG is the corresponding eigenvector, and § is the involutive
authomorphism defining the symmetric space G/U [He]. Recall that in our
case Hegalson’s sphere is of dimension 2. Therefore, the multiplicity of & equals
1 and v; is defined uniquely, moreover, the plane span(hz,vs) is a Lie triple.
Indeed, this plane is the tangent plane to the Helgason sphere S* C G/U, it
is also the tangent space to the Cartan embedding C(S?) of this sphere into
G. Now we put w, = [ha,vs]. Since the multiplicity of & equals 1 we have
wy € IUNC(Xa+0X,) (see [He, p.336]). Taking into account (3.4) we see that
the vectors hs,vs, wq form a basis of the Lie subalgebra in {G corresponding
to the root a. Denote SU;(a) the corresponding subgroup in G. We note that
the subgroup SU;(a) contains the sphere C(S?). Further, we observe that
the intersection between groups SUz(a) and U is an one-dimensional compact
subgroup S'(«) generated by the vector w,.

Lemma 3.7. There ezists a geometrical realization F; such that F; sends the
Helgason sphere S? to the geodesic circle S'(a). )

Proof. Let € denotes the antipodal point of e in the sphere C(S?). Let S'(€) be
the equator on C(S?), consisting of those points g € S& C G such that ¢° = &.
We claim that the natural projection ¢ : G — G/U sends this equator to a
point. In fact, this claim is a consequence of the following assertion

Proposition 3.8 [Fo 2, p.124]. Let gU be an arbitrary coset relative to U in
G, and besides, g € C(G/U). Then gU N C(G/U) = {/g%} N C(G/U).

This assertion can be obtained from the following explicit expression for the
Cartan embedding C : G/U — G; gU — go(g~'), where o denotes the
corresponding involutive automorphism of the group G.

From Proposition 3.8 and the above claim we immediately get that the semi-
sphere S+ C C(S5?) with boundary S'(€) and containing point e is a relative
sphere of the fibration U — G — G/U, moreover, its projection into G/U
coincides with the Helgason sphere S* C G/U. Now, it is easy to see that
there exists a geometric realization F; which sends the Helgason sphere S? to
the equator S!(&). Suppose z is a point of S'(€). Then the shift L;' sends
the equator S(€) to a geodesic circle T'(a). By definition T'(«a) is also a
geometric realization of the image j(S?). To complete the proof of Lemma
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3.7 it suffices to show that T'(a) = S'(«). In fact, the shift L;! sends the
fiber containing S'(€) to the subgroup U and on the other hand, the sub-
group SU,(a) is invariant under the action L. Hence, T'(«) belongs to the
intersection between SU;(a) and U. This implies that T(a) = S(«).

Corollary 3.9. S'(a) is a shortest closed geodesic on group G, and therefore,
on group U.

Proof. By construction SUz(«) is the subgroup corresponding to the highest
root  of G. Since G is simply connected the circle S*(«) is of minimal length
(He].

Let U = SO,. It is known that a shortest closed geodesic on SO, is conjugate
under the action of the group Iso(S0,) with the standardly embedded sub-
group SO, which generates a non-trivial element in the fundamental group
m1(S0y). Hence, from Corollary 3.9 we immediately get the following conse-
quence.

Corollary 3.10. Helgason’s spheres in symmetric spaces SU, /SO, ; Eg/SOss,
Go/S0Oy realize non-trivial elements in Z;-homologies of their ambient spaces.

In other cases we have to look more carefully. Our aim is to show that the
geodesic circle S'(a) realizes a non-trivial element in the fundamental group
7(U). Let w, belong to a Cartan algebra H;y which is contained in a Cartan
algebra Hi. Let h, € Rw, be the vector corresponding to the root a. It is
known that the vector h(a) = 47 h,/|c|? belongs to the unit lattice I'(G, Hig)
of the group G. Let U denote the universal covering of the group U. The
fact that the geodesic circle S'(a) realizes a non-trivial element in m(U) is
equivalent to that h(a) does not belong to the unit lattice T'(U, Hy) of the

group U. It is known that the unit lattice I' of the simply connected group
U is spanz{h(B;)}, where {8;} is a fundamental systems of roots of {U/, and
h(B;) = 4rhg,/|B;|* (see [He], [Ta 1}).

Let us now consider a symmetric space M = G /U, where [U is a direct sum
of 2 simple Lie algebras {U; and [{U,;. In our case M is one of the following
spaces: SOm+n/(SOn XSOm), Es/(SUQSUe), E7/(SU2'5pin12), Es/(SUg'E'{),
F,/SU, - Sps. (Except the case of real grassmannians, other products listed
above, U = U, - U,, are not direct. Namely, the intersection of U; and U,
consists of 2 points [Ta 1]). We note that the vector h(a) does not lie in any
algebra IU;, ¢ = 1,2, otherwise, the subgroup SU;(«) lies in the group U; C U
entirely. This contradicts to our observation that SU,(a) meets U at only a
circle S'(a). Hence, in case (U = so, @ s0,,, the root a can be written as
z; + zj, where z; € H;, and z; € H;, . Thus, h(c) does not belong to the
unit lattice of Spin, x Spin,,. In the same way we verify that for all listed
above M the Helgason sphere S? realizes a non-trivial element in wo(M) =
Hy(M,Z) = Hy(M,Z3) = Z3. To complete the proof of Theorem 3.6 we
need to consider the cases M = Eg/PSpy and M = E7/SUg. Straightforward
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calculation shows that if a closed geodesic of minimal length in group U/{+1},
U = Spa, SUs, then it is conjugate under Io(U) with either the circle S*(8)
generated by highest root 8 or the closed geodesic S} whose pull back into the
covering group U is the shortest geodesic joining two element (+1) = (¢) and
(—1). Since the group SU;(a) does not lie in U, we get that « is not a highest
root of {U; @ IU,. Hence, we easily obtain that the circle S*(a) is conjugate
with S!. Thus, S*(«) realizes a non-trivial element in ;(U). This completes
the proof.

In conclusion we show a consequence of Theorem 2.1 for non-compact sym-
metric spaces. It is well known that the upper bound of section curvature of
these spaces is zero [He].

Proposition 3.11. Let X be a flat totally geodesic submanifold in a non-
compact symmetric space M. Then X is a globally minimal submanifold.

Acknowledgement. I would like to thank the Max-Planck Institut fiir Math-
ematik for hospitality and financial support.
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CURVATURE ESTIMATE FOR THE VOLUME GROWTH OF
GLOBALLY MINIMAL SURFACES

LE Hong Van

Introduction.

It is well known that in each homology class of a Riemannian manifold there
exists a cycle of the least volume (or simply speaking, a globally minimal
surface). These globally minimal cycles yield many information of geometry
and topology of their ambient manifold, however, to detect them the existence
(and almost regularity) theorems can not help us so much. Intuitively, one
knows that globally minimal surfaces would occupy a position of "maximal
curvature” in their ambient manifold. In A.T.Fomenko’s and author’s an-
nouncement [LF] we gave a mathematical formulation of this conjecture. The
aim of this note is to complete the proof of our announcement [LF]. In particu-
lar, we obtain an estimate for the volume growth of globally minimal surfaces
in Riemannian manifolds, new isoperimetric inequalities for these surfaces, an
explicit formula of the least volumes of closed surfaces in symmetric spaces.
As a result, we prove that every Helgason's sphere in a compact irreducible
simply connected symmetric space is a globally minimal surface. In connec-
tion with the application of integral geometry to minimal surfaces [Le 2] we
note that the technique of Fomenko’s method of geodesic nullity employed in
this note is very close to the technique in [Le 2]. In some sense, the method
of integral geometry in the theory of minimal surfaces is a bridge between the
calibration method [HL] and the method of geodesic nullity [Fo 1].

§1. Geodesic nullity of Riemannian manifolds and the volume of
globally minimal submanifolds.

a} Let B,(z) be the ball of radius r in a tangent space T, M. Recall that
the injective radius R(z) of a Riemannian manifold M at a point « is defined
as follows: R(z) = sup{r| Ezp : B,(z) — M is a diffeomorphism }. The
injective radius R(M) of M is defined as: R(M) = inf,ep R(x). Now we fix
a point zo € M. We define k-dimensional deformation coefficient yx(z > zo)
as follows (cf.[Fo 2]}). Suppose that II¥~! is a (k — 1)-plane through z in the
tangent space T, M. Denote D*~! the disk of radius ¢ in I1¥~?, and by S, the
disk Ezp(D51). We consider the cone CS, formed by geodesics joining the
vertex zg and the base S,. We put

/ =1y _ 1 ‘UOIkCSa
A(.’B > -77011—[:: ) - 15% m,



’ — k—1
X(z>za) = max xi(z,II""7).

b)Let f(z) be the function which measures the distance between point z € M
and the fixed point zy. We set

q(zo,7) = exp(/(;r(xg{l?:t} xk(z > z0)) 7" dt). (1.1)

We put
Qk(z0) = Arg(zo, R(z0)),

U = inf Qu(zo),

where )y is the volume of the ball of radius 1 in R*.

The defined value is called the k** geodesic nullity of Riemannian manifold M.
The following theorem was obtained by Fomenko in 1972 [Fo 2].

Theorem 1.1. Let X¥ C M™ be a globally minimal surface. Then the follow-
ing inequality holds
vole(X*) > Qe > 0.

Remark. Theorem 1.1 has a clear geometric interpretation. It is a consequence
of the fact that the derivative of logarithm of the volume function exhausting
a globally minimal surface X in M is greater than the function under integral
in (1.1). This derivative d/dt(involX,) equals the "isoperimetric” relation
vol X, /vol X; (see also Proof of Theorem 2.3). The injective radius of M is
involved, because X is a globally minimal surface in M.

§2. Lower bound for geodesic nullities of Riemannian manifolds.
New isoperimetric inequalities.

Suppose that the section curvature of manifold M in any 2-plane is not greater
then a® (a € Ror a € vV—1Q@ R).

Theorem 2.1 [LF]. Lower bound of geodesic nullity.
a) If a® > 0 and Ra < 7 then we have:

R
(M) > kdpal™* / (sin at)*~1 dt.
0

b) If a®* > 0 and Ra > © then we have:

Qu(M) > vol(S*(r = 1/a)).

c) If a =0 then we have Qi (M) > A, Rk



d) If a* < 0 then we have:
R
Qu(M) > kX laf'™* [ (sinh |alt):? dt.
0

Theorem 2.2 [LF). Upper bound of the deformation coefficient. Let r be the
distance between z and z,.

a) If a? > 0 and r < 7/a then we have:

fo (sin at)¥—1dt
(sin ar)k—?

xk(z > zo) <

b) If a =0 then we have:
xx(z > z0) <

ol

¢) If a* <0 then we have

J5 (sinh |a|)*1 dt
(sinh [ajr)s-1 °

xx(z > 20) <

Theorem 2.3 [LF]. Isoperimetric inequality. Assume that X* is a globally
minimal surfaces through a point x € M. Let B.(r) be the geodesic ball of
radius v and with its center at . Denote AF~! the boundary of the intersection

X*N B.(r) = Xk,
a) If a® > 0 and r < min(R, 7 /a) then we have:

vol( AF1) sin(ar)*!
vol(X¥) ~ [y(sinat)*-1dt’

Consequently, the following inequality holds

vol( AF=1) > k Ay o'~ sin*~(ar).

b) If a =0 and r < R then we have:

vol(A¥=1) > k M\ r¥-! = the volume of the standard k-dimensional sphere S*
of radius r.

Hence we imply the following inequalities:
vol(AF1) > (kr) ™ wol(XK),

TET ( 1 k

vol(XF) < (k)T=F (M) ™% (volp_, A, )F1.

¢) If a®> < 0 then we have:



vol( AF-1)
vol(X})

(sinh |a|r)*-?
f5 (sinh |at)-1dt

2

Hence we get
vol(A¥=1) > k Ay sh*"2(lalt)/|al* 2.

The estimates in Theorems 2.1 and 2.2 are sharp, that is, in many cases they
become equalities. Roughly speaking, these theorems tell us that globally
minimal surfaces tend to a position of "maximal curvature” in their ambient
manifold. Now we show some consequences of Theorem 2.1.

Corollary 2.4. If M is a compact simply-connected symmetric space of sec-
tional curvature not greater than a, then the volume of any non-trivial cycle
is not less than the volume of k-dimensional sphere of curvature a.

Corollary 2.5. The length of a homologically non-trivial loop in a manifold
M is not less then the double injective radius of M.

Corollary 2.6 Lower bound for the volume of a manifold.
a) If a® > 0 then we get:

R
vol(M™) > n A, al““/ (sin at)™! dt.
0

b) If a =0, then we get: vol(M™) 2 n )\, R".
¢c) If a® < 0 then we get

R
vol(M™) > n Anlal'™" / (sinh [a|t)"" dt.
0

Remark. The estimate in Corollary 2.6 coincides with that of Bishop’s theorem
[BC].

Now we infer from Theorems 2.2 and 2.3 the following consequence on the
volume growth of globally minimal surfaces.

Corollary 2.7. Let X* be a globally minimal surface in a complete non-
compact Riemannian manifold M of non-positive curvature. Then the function
V(r) = volyBx(r) grows at least as a polynomial of v of degree k, where Bx(r)
is a geodesic ball of radius r in X*. If the curvature of M has an upper bound
strictly less than zero then the function V(r) grows at least as the ezponent of
T

Remark. 1t is well known that there is a close relationship between the cur-
vature of a Riemannian manifold M and the growth of its volume [BC}. As a
consequence, we obtain the estimate for the growth of its fundamental group
(see [M]), and other topological and geometrical invariants of M such as the
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Betti numbers, the eigenvalues of the Laplace operator and the Gromov in-
variants [Br 1, Br 2, Gr 1, Gr 2, Gr 3]. ’

Proof of Theorems and Corollaries. Let us write down an explicit formula for
the coefficient xx(z > o, TI*~1). Suppose A(t) is the shortest geodesic curve
joining the points zo = A(0) and z = A(r). So, for 0 < t < r, point A(¢) is not
conjugated with zo. We now consider the case if £ = A(r) is not conjugated
with zo (otherwise, we should take the limit). Choose an orthonormal basis
of vectors Y;(7),..., Ya—1(r) in the plane ¥~ c T, M. (Let us recall that
by definition TT*~! must to be orthogonal to A(r)). We denote K, the (k-
1)-dimensional cube in II¥~! with the edges pY(r). Then the formula for
deformation coefficient xx(z > zo) can be rewritten as follows:

I(CK,)
> 7o, ITF1) = lim 2252200
xu(e > 20, T77) = limg = = K,

here we set f(p = Erp K, .
We denote A/, the s-geodesic, joining points zo and Ezp,(sY;(r)). Put

d

J(t) - Eia:O

J
at-

Then Y;(t) is an Jacobian vector field with the data ¥;(0) = 0, Y;(r) - the
chosen vector in I1¥~!, and besides, for every ¢ we have Y;(¢) L /\( ). We note
that the tangent pla.ne to the orthogonal section K, of the cone C K, at the
point A(t) possesses the basis of vectors Yi(t),.., Yi—1(¢). Hence,

volk-1(K1p) = P (IYa(1) A o A Yica (B)]) + o(p*7).

This yields _
xi(@ > 1o, 1) = lim vol(CK,) _
p—»O volk_ (Kp)
_ fo volp_1 Ky, dt _f [Yi(t) A .. A Yy (2)] dt (2.1)
p"‘o voly_ 1]{,, |Y1('J") AL A Yk—l("")' ) )
Proof of Theorem 2.2. Put F(t) = |Yi(t)| - ... - [Yi=1(2)|. Since |[Yi({) A ... A

Yi-1(t)| £ F(t), and this inequality becomes an equality at ¢ = r, the for-
mula(2.1) yields
JIY) < fo—(t)dt, (2.2)

Xx(z > o o

We need the following lemmas.



Lemma 2.8. Suppose F(t) be in(2.2). If for allt and Y; the section curvature
S(A(t),Y;(t)) < a?, where a > 0, then the function F(t)/G(t) increases on the
interval [0,7]. Here G(t) = (sinat)*!/(sinar)*".

Lemma 2.9. Suppose the function F(t) and G(t) be in the Lemma 2.8. Then
the following inequality holds

Jo F(t)dt < o G(t)dt
F(r) = G(r) ~
Proof of Lemma 2.8. The Rauch’s comparison Theorem [BC] states that the

function f;(t) = |Y;(t)|/ sin at increases on the interval [0, r]. Hence, the func-
tion F(t)}/G(t) =TI f; is such a function.

Proof of Lemma 2.9. Since the function F(t)/G(t) increases on the interval
[0,7], we get F(z;)G(r) < G(z;)F(r) for every 0 < z; < r. Hence we obtain

Xn: F(kr/n)G(r) < i G(kr/n)F(r).

k=0 k=0
Letting n — oo we easily infer Lemma 2.10 from the above inequality.
Let us continue the proof of Theorem 2.2.
Taking into account (2.2) and lemmas 2.8, 2.9 we get

5 F(t) dt < Jo (sin at)*-1 dt.

k=1 <
xi{z, 1) < F(r) — (sinar)*!

The proof of the first part in Theorem 2.2 is completed. In the same way we
can prove the rest parts (b) and (c).

Proof of Theorem £2.1. Let us recall the definition

(20, 7) = Ak exp /0 (,max xi(z > 20))7" dt.

Theorem 2.1 (a) yields

sin at)*~1 dt
(sinat)k=1dr’

Qi(zo,7) 2 Ak exp[) I
0

Put
(sinat) ' dt

By(r) = Mt " :
¥(r) k exp/(; fo(sinat)k-1dr

Clearly , we can infer Theorem 2.1(a) from the following identity
Br(r) =k Apa'™* /r(sin at)*1dt. (2.3)
0
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Proof of Formula (2.8). Put ®;(r) equal the right hand side in(2.3). We ob-
serve that the functions ®,(r) and ®;(r) satisfy the same differential equation:

®.(r) _ ®;(r)  [y(sinat)*'di (2.4)
(8/8r)®x(r) ~ (0/0r)®L(r) ~  (sinar)t-1 '
Let us consider the limit
. ®(r) . A exp fg(fo(sinar) 1 dr) 7! (sinat)* dt
11-1—5% ®1(r) 11_1_% k Aga'=* [ (sinat)k-1dt ' (2.5)
Taking into account the increaseness of the function (ar/sinar)*~! on the
interval [0, ¢], where 0 < t < 7/a, and using Lemma 2.10 we obtain
(sin at)*~1 =1k (2.6)
fi(sinar)k-tdr =~ firk-ldr ¢ '

Combining (2.5) and (2.6) yields the following inequality

. Du(r) . M exp fg k7l dt
< .
lim o5(r) ~ oy kg al=F [5(sinat) =1 dt

Fix € > 0. Since lim,_o(sinat/at) =1 > 1 —¢ we get the following inequality.

lim Di(r) < lim exp fy (k/t) dt _
Di(r) = -0k f5(1—e)k-1(at)k-Tal -k dt
i = (1) @7

r=—0 rk(l —_ E)k—l

Since the inequality (2.7) holds for all € > 0 we have

O(r)
yﬁw ()<1_13&(1—e) k=1, (2.8)

On the other hand, applying the inequality sin at < at to (2.5) we get

(el k=1 j1-k ., —k
lim 2#(r) Or(r) > lim Ak exp( [y (sin ayr) a'~*ky dy.
r—0 @1 (r) o kA [y te1dt

Fixed ¢ as above we have

O (r)
lim >1
rl—>0 (I)k( ) rl—I}El)exp(

/' (- e)ay)Hdyy

ak-l . yk k-l



r (1 _ gYk-1 _
= ligr ™ exp( | IR < pre-oro, (29)

Letting ¢ — 0 we infer from (2.9)

. D(r) . k((i_e)*-l-l) _
lz_rpo 310r) > lﬁr =1. (2.10)

Now we obtain from (2.8) and (2.10)

lim 2223 =1. (2.11)

The differential equation (2.4) for ®4(r) and ®;(r) has the same initial data
(2.11). So we get the identity &} = @4, that completes the proof of Theorem
2.2 (a).

The rest parts (c), (d) can be proved in the same way. The part (b) follows
from that fact if R > 7/a then we have Qi (M) > Qi(z0,7/a) = vol(S*,1/a).
This completes the proof of Theorem 2.2.

Proof of Theorem 2.8. Let r be as in Theorem 2.3. We denote C A*~! the
geodesic cone of base A¥~! and with its vertex at the point z. Since X* is a

globally minimal surface, and the cone C A*~! is homological to X*, we have
vol(X¥) < vol(C A¥~1). Hence we conclude

vol(A¥-1) _ wol(AFY)
vol(XF) ~ vol(CAF-1) —

. k-1
S ) s (sinar) '
- (%i)flk(y o))" 2 Jo (sinat)k-1 dt

(2.12)

(The second inequality in (2.12) is inferred from the following formula
vol(CAF™) = /A,_l xk(y >z, I} dy,

where H';‘l denotes the tangent space to A';‘l at y. The third inequality in
(2.12) is a consequence of Theorem 2.2(a).)

We infer from (2.12) the following inequality

k-1 k-1

(sin ar) (sin ar)

k=1 > rk > .
vol(CA;™) 2 vol(X,) Jo(sinat)s1dt = () T (sinat)FL dt

(2.13)

Combining (2.13) and Theorem 1.1(a) yields

vol Af_l > kA al™* (sin ar)k”l.
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This completes the proof of Theorem 2.3(a). The rest part of Theorem 2.3
can be proved in the same way.

Proof of Corollary 2.4. It is well known that a compact simply-connected
symmetric space satisfies the relation: Ra = w. So we get Corollary 2.4 from
Theorem 2.1.

Proof of Corollary 2.5.. Clearly, Ay = 2. So we obtain Q;(M) > 2f0Rl dt =
2R.

Proof of Corollary 2.6.a. Let dim(M) = m. Then vol(M) > Q,.(M). With
the help of (2.3) we obtain ,,(M) > ®,.(R) = k Aea~* [7(sin at)*~' dt. This
completes the proof Corollary 2.6.a. The rest assertions can be proved in the
same way.

§3. Explicit formula for geodesic nullities of symmetric spaces.
Global minimality of Helgason’s spheres.

Suppose M is a compact symmetric space. Let us compute the deformation
coefficient associated with fixed point e € M. Without loss of generality
we compute this coeflicient at point Exzptr € M, where z is a vector in a
Cartan space Hp of the tangent space IM to M at e. We shall redenote
Xk(Fzprz) = xx(Exprz > e).

Theorem 3.1. Let {a;} be the roots systems of symmetric space M with
respect to Hijp. Suppose z is a vector of unit length in Hypy . Without loss of
generality we assume that ai(z) > ... 2 op(z) =0 = appi(z) = ... .

a) If k < p then the following equality holds

Jo sin(aa(z)t) - ... - sin(ax(z)t) dt
sinay(z)r-...-sineg(z)r

xx(Ezprz) =
b) If k > p then the following inequality holds

_ Josin(ay(z)t) - ... - sin(ap—y (z)t)tF-P dt
xx(Ezprz) = sin(oy (2)7) - ... sin(ap_y (z)r)rk-»

Lemma 3.2. Let {vy,...,ux} € M be an orthonormal frame which consist-
ing of the eigenvectors of eigenvalues of(z),...,0%(z),,,,0,...0 of the operator
ad?. Denote Vi(t) the parallel vector field along the geodesics Exptz such that
Vi(0) = v;, and denote Wi(t) the Jacobian vector field along Fxzptz such that
Wi(0) = v;. Then we have the following relation

- if ¢ < p then Wi(t) = ai(z) ™! sin(ai(z))V (1),
- if 1.2 p then Wi(t) = tVi(2).



Proof of Lemma 8.2. In the tangent space IM the vector field tv; is a Jacobian
field along the ray tz. It is well known that the vector field dEzpp,(tv;) is also
a Jacobian vector field along the geodesic Ezptz C M [He]. Let us write an
explicit formula for the differential of the exponential mapping at the point
tz ( [He]). We will identify M with the quotient G/U, moreover, the tangent
space {M with the orthogonal complement to the algebra {U in the algebra
IG. We denote exp the exponential mapping from the algebra to the group.
Then exptz is an element in G acting on M and we denote dr(exptz) the
differential of this action. We have

&, t2adi(tv;)
dEzp,(tv) = d t E —
TPz (tv) 7(exp tz) 24 G+ 1]

= dr (exp ta:)g L a(?z(:)-+)_“1()—!1)“

(tv;) =

sin(o;(z)t)
ai(T)
Now we observe that the parallel vector field V; is obtained from the vector v;

by the shift dr(exp) along the geodesic Fxpiz, that is, V;(t) = dr(expiz)v;.
Hence we get Lemma 3.2 from (3.1).

sin a;(z)t
t ai(z)

= dr(exptz) ty; = (dr(exptz)v;) (3.1)

Proof of Theorem 3.1. Now we compute the coefficient xz(Ezprz,T5-1). We
observe that the tangent space IT*~!(¢) to the normal section of the cone
CD¥1! at the point Ezptz can be represented as the sum 3 a;I1¥~1(t), where
a; are constant, and I1¥7(¢) is the basis in the space Ag—1(TEzpizM) such that
I157'(t) is generated by the orthonormal frame of vectors W;(t) € Tgzpia M.
Using formula (2.1) we get

T TTk=1 r )
E rw,nk—l _ Jo [I*=1(2)] dt — i fo ai Ich—l(t)ldt.
Xl B, ) = e = e, )]

Hence we obtain -
HLNOIE]
k-1(7)

Combining Lemma 3.2 ; Lemma 2.8 and Lemma 2.9 we get

xx(Ezprz) = max

JT ()| de _ Jo sin{an()t) - ... - sin(ox(x)t) dt

i |5 _, ()] sin(ar(z)r) - ... - sin(a(z)r)

if £ < p. In the same way we can prove the theorem in the case k > p. The
proof of Theorem 3.1 is complete.
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Corollary 3.3. If M is a symmetric space of rank = 1 ,that is, dim Hpy = 1,
then the deformation coefficient xi(Ezprz) depends only on r.

a) For M = S™ (or RP™) we have xi(r) = f5(sint)*=1 dt/(sinr)*!,
b) For M = CP"™ we have

_ o (sin V2t)(sin t)%-2 dt

Xe(r) sin v/2r(sin r)24-2

c) For M = HP™ we have

) Jo(sinv20)*(sin )~ dt
X = (sin v/2r)3(sinr)tk-1

We immediately obtain the following consequence.

Corollary 3.4. [Fo 1]). For any k < n the standardly embedded space RP™
(and CP™, HP™ resp.) has the volume = Qi (RP") (and Qox(CP™), Qu(H P™)
resp.), therefore it is a globally minimal submanifold.

Let us now compute geodesic nullities Qx(RP™), Qo C P™, Q(HP™). Clearly,
Qi (RP™) = 1vol(5*%(1)) can be computed from the following formulas. First,
we take integration over parallel sections of the unit ball

w/2
Ar = 2Xp_1 / cos*a de.
0
Taking into account (2.3) we get
x/2
vol §¥(1) = (k + 1)Apy1 = 2,\kk/ sin*la da.
0

Hence we obtain the following identity

2k [T7? sinf-la do

E+1= . 3.2
20k J1? coskH o da (3.2)
We infer from (3.2) the following equation
w2 k41 k w2 b
doo=— [ lada. .
/0 sinada == | sin ada (3.3)
Using (3.3) we easely get
r* rhok+
Ao = — Aopy1 = ————.
2k k! ) 2541 (2k T 1)‘!

11



Let us compute Qg (CP") = vol(C P*). Using Corollary 3.3 and taking into
account R(CP") = n/ 3qri2 we get

. x/agri2 dt
Q(CP™) = A eXP/O (sin v/2t)(sin )21

w/sqri2

= 2k / (sin v21/v/2)(sin )22 dt =
0
1
= 22k Ags f 2% dg = % k).
0
In the same way we compute Q4 (HP") = vol(HP*). We have

Que(HP™) = A /W/ﬁ dt _
4* = MR (sin v/2t)3(sin t)4k~4

sin V2t /v/2)3(sin t)*~* dt =

w2
= 4k/\4kj (
0
1
= 22k4k)\4k/ y ¥ 11— yHdy =
0
= 73 2% /(2% + 1),

Remark. Operator ad? coincides with the Ricci transformation Ry : y — Ry
in the tangent space {M. Therefore, the deformation coefficient xx(Ezprz) get
the maximal value, if and only if the plane II*~! is an eigenspace with the maxi-
mal eigenvalue of the induced Ricci transformation in the space Ax_1T5zpz M.
Roughly speaking, the curvature at point Ezprz in direction (rz,I1¥~!) get
the maximal value.

It is well known that in a simply connected irreducible compact symmetric
space M there are totally geodesic spheres of curvature a?, where a? is the
upper bound of section curvature on M. Further, any such sphere lies in some
totally geodesic Helgason’s sphere of maximal dimension i(M). All Helga-
son’s spheres are equivalent under the action of the isometry group Iso(M).
Moreover, they are of the same curvature a?. Now we immediately get from
Corollary 2.8 the following Proposition.

Proposition 3.5. If a Helgason sphere S(M) realizes a non-trivial cycle in a
homology group of space M, then it is a globally minimal submanifold tn M.

First, we write the list of Helgason's spheres realizing a non-trivial cycles in
real homologies of compact irreducible simply-connected symmetric spaces.
1) If M is a simple compact group, then i(AM) = 3, and S(M) is a subgroup
associated to a highest root of the group M.

)M = SUun/S(Ui x Uy), i(M)=2, S(M)=SUy/S(U1 xUy).
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3) M = 50142/501 x SO2, i(M)=2, S(M)=S0;3/S0;.
4) M = SUy/Spn, i(M)=5, S(M)=SUs/Sps.
5)M=Spm+n/3pmxspnv Z(M)=4: :S(M)=HP1

6) M = SOzﬂ/Un, !(M) = 2, S(M) = SO4/U2
NM=S8p.,/Un, i(M)=2 S(M)=Sp/ U

8) M = Fy/Sping, i(M)=8, S(M)= Sping/Spins.

9) M = Ad Eg/T? Spinye, (M) =2, S(M)=SU;/T".
10) M = AdE; /T  Eg, i(M)=2, S(M)=SU,/T".

11) M =Eg/Fy, i{(M)=9, S(M)= Spini/Spine.

Remark. In all listed cases, if the dimension of Helgason’s spheres i(M) =2,
the corresponding symmetric space are Kalerian manifolds, so their Helga-
son’s spheres are diffeomorphic to C P'.The global minimality of the Helgason
sphere in 1) was first proved by A.T.Fomenko [Fo 1}, and then by Dao Chong
Thi [Da 1}, H.Tasaki [Ts] the author [Le 1] by the calibration method. The
global minimality of the Helgason sphere in 8) was proved by A.T.Fomenko
[Fo 1] by the method of geodesic nullity and by M.Berger [Be] by the calibra-
tion method. It would be interesting to find calibrations which calibrate the
Helgason spheres in 4) and 11). It is well known that all characteristic classes
on spaces M in 4) and 11) are trivial[Ta 2]. We think a suitable calibration
may be chosen among induced invariant differential forms from the isometry
group I(M) to M (see also the proof below). We also conjecture that all
Helgason’s spheres are M*-minimal submanifolds (see [Le 2]).

Proof of our classification. By looking at the table of real homologies of
irreducible globally symmetric spaces [Ta 1, Ta 2], and the table of Helgason’s
spheres in these spaces (0], comparing dimensions, we conclude that all other
Helgason’s spheres not in the above list are trivial cycles in real homologies
of their ambient spaces. By the above remark, to complete the classification,
it suffices to show that the Helgason’s spheres in 4) and 11) are non-trivial
cycles. First, we consider the case 4) S(M) = SUs/Sp; — SUz./Sp,. We
have the following commutative diagram

SU4/SP2 — SUZn/SPu

! i
SU4 — SUgn.

Here the embedding SUsx/Spr — SUak, k=2 or n, is the Cartan embedding
of symmetric spaces. We note that S® = SU,/Sp, realizes a non-trivial cycle
in SUy, since so does the corresponding subgroup Sp,. Therefore, the sphere
S5 also realizes a non-trivial cycle in SUz,, because the subgroup SUy is totally
non-homologous to zero in SU,,. Hence we conclude that the Helgason sphere
S® realizes a non-trivial cycle of real homologies of SUs,/Sp,.

13



The fact, that the Helgason’s sphere S® realizes a non-trivial cycle of real
homologies of Eg/Fy was proved in Dao Trong Thi’s paper [D 2]. To see it we
consider the following sequence of mappings

Sg — Eg/F4 4 E6 e SUQ‘r.

It is easy to see that the resulting map p : $° — SU,7 is a composition of two
maps p; and p,, where p;(5°) C Spinyo is a primitive cycle, and p; is a spinor
representation of Spinjo which sends the primitive cycle S° to a non-trivial
cycle in SUpz [Dy], [Da 2]. Therefore, we conclude that the Helgason sphere
S9 realizes a non-trivial cycle of real homologies of Eg/ Fy.

Theorem 3.6. Every Helgason’s sphere in a compact irreducible simply con-
nected symmetric space is a globally minimal surface in its Z3 homology class.

Remark. As a simple corollary of our theorem we obtain that all Helgason
spheres in irreducible simply connected symmetric spaces are stable minimal.
This corollary was obtained by Ohnita [O] with the help of analyzing the
spectrum of the Jacobi operator on these spheres.

Proof. In view of our classification it suffices to show that the Helgason’s
spheres not in the above list realize non-trivial cycles of Z; homologies in their
ambient symmetric spaces. All of them are of dimension 2 ([He], [O]). Since
their ambient spaces M are simply connected and besides, in the considered
cases we have mo(M) = Zq [Ta 1], it suffices to show that these spheres realize
non-trivial elements of the second homotopy group w2(M). Let M = G/U,
where ( is a simply connected group. Our proof is based on the exact sequence
[Ta 1]
0= Wg(G) e WQ(G/U) b W](U) —_— 71'1(G) =0.

Thus, the map j : m2(¢/U) — m(U) is an isomorphism. Therefore, the
Helgason sphere realizes a non-trivial element in 73(G/U), if and only if its
image via j is a non-trivial circle S* C U in the fundamental group =;(U).
Let us recall a geometrical realization of the map j. Assume S? is a sphere in
G/U. Fix a point z € §%. Let us realize the sphere S% as a suspension over
S such that one of its vertices is the fixed point z, and the other one is some
point y € $%. This means that we are given a homotopy F' : [0,1] x S — §?
such that F(0 x §') = z, and F(1 x §') = y € S% Let § be a point in
G whose projection p(y) = y. According to the covering homotopy theorem
there exists a homotopy F : [0,1] x 8 — G such that F(1 x $§) = #, and
p- F = F. Clearly, F realizes a relative sphere whose boundary S? lies in the
fiber p~'(z). Hence, this circle is the image of sphere S? via the map j. With
the above geometric realization jr of the map j we will show that the image
jr(S?) of the Helgason sphere S? € G/U may be chosen as a geodesic circle
S' € U. To do this we consider the following orthogonal decomposition of
the Lie algebra IG = IU @ V, where V is identified with the tangent space of
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the symmetric space G/U. We note that the totally geodesic subspace exp V
coincides with the Cartan embedding C(G/U) of symmetric space G/U into
G. Consider a highest root a of the algebra {G. It is known that its restricted
root & is a highest root of the symmetric space G/U. Fix a Cartan algebra
Hy C V. Let hg € Hy be the dual vector to &, and vz € V the corresponding
eigenvector. This implies that

hy = V/—1(1/2)(Hy — Hye), Rvg = V N C(X, — 0X,), (3.4),

where H, denotes the vector in the Cartan algebra Hgg corresponding to the
root o, Xy € CIG is the corresponding eigenvector, and @ is the involutive
authomorphism defining the symmetric space G/U [He]. Recall that in our
case Hegalson’s sphere is of dimension 2. Therefore, the multiplicity of & equals
1 and v5 is defined uniquely, moreover, the plane span(hs,vs) is a Lie triple.
Indeed, this plane is the tangent plane to the Helgason sphere §* C G/U, it
is also the tangent space to the Cartan embedding C(S?) of this sphere into
G. Now we put w, = [hs,vs]. Since the multiplicity of @ equals 1 we have
wa € IUNC(X,+60X,) (see [He, p.336]). Taking into account (3.4) we see that
the vectors hs,vs, w, form a basis of the Lie subalgebra in {G corresponding
to the root a. Denote SU;(«a) the corresponding subgroup in G. We note that
the subgroup SU;(a) contains the sphere C(S?). Further, we observe that
the intersection between groups SUz(«) and U is an one-dimensional compact
subgroup S'(a) generated by the vector wy.

Lemma 3.7. There exists a geometrical realization F; such that F; sends the
Helgason sphere S? to the geodesic circle S(a).

Proof. Let € denotes the antipodal point of e in the sphere C(S?). Let §'(&) be
the equator on C(S?), consisting of those points g € S3 C G such that ¢? = &.
We claim that the natural projection ¢ : G — G/U sends this equator to a
point. In fact, this claim is a consequence of the following assertion

Proposition 3.8 [Fo 2, p.124]. Let gU be an arbitrary coset relative to U in
G, and besides, g € C(G/U). Then gU NC(G/U) = {/g%} N C(G/U).

This assertion can be obtained from the following explicit expression for the
Cartan embedding C : G/U — G; gU — go(g™'), where o denotes the
corresponding involutive automorphism of the group G.

From Proposition 3.8 and the above claim we immediately get that the semi-
sphere S** C C(5?) with boundary S'(€) and containing point e is a relative
sphere of the fibration U — G — G/U, moreover, its projection into G/U
coincides with the Helgason sphere S? C G/U. Now, it is easy to see that
there exists a geometric realization F; which sends the Helgason sphere 52 to
the equator S*(€). Suppose z is a point of S'(€). Then the shift L' sends
the equator S'(€) to a geodesic circle T'(a). By definition T() is also a
geometric realization of the image j(S?). To complete the proof of Lemma
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3.7 it suffices to show that T?(a) = §'(«). In fact, the shift L;! sends the
fiber containing S'(€) to the subgroup U and on the other hand, the sub-
group SU;(e) is invariant under the action L;'. Hence, T?(c) belongs to the
intersection between SU;(«) and U. This implies that T (a) = S'(a).

Corollary 3.9. S*'(«a) is a shortest closed geodesic on group G, and therefore,
on group U.

Proof. By construction SU;(a) is the subgroup corresponding to the highest
root  of G. Since G is simply connected the circle S*(«) is of minimal length

[He].

Let U = SO,,. It is known that a shortest closed geodesic on SO, is conjugate
under the action of the group Iso(SO,) with the standardly embedded sub-
group SO, which generates a non-trivial element in the fundamental group
71(S0,). Hence, from Corollary 3.9 we immediately get the following conse-
quence.

Corollary 3.10. Helgason’s spheres in symmetric spaces SU, [SO,,; Eg]/SOss,
G2 /SOy realize non-trivial elements in Z;-homologies of their ambient spaces.

In other cases we have to look more carefully. Our aim is to show that the
geodesic circle S'(a) realizes a non-trivial element in the fundamental group
m1(U). Let w, belong to a Cartan algebra Hyy which is contained in a Cartan
algebra Hic. Let h, € Rw, be the vector corresponding to the root a. It is
known that the vector h(a) = 47 h,/|c|? belongs to the unit lattice I'(G, Hig)
of the group G. Let U denote the universal covering of the group U. The
fact that the geodesic circle S'(«a) realizes a non-trivial element in m(U) is
equivalent to that h(a) does not belong to the unit lattice F((?,H;U) of the
group U. It is known that the unit lattice T of the simply connected group
U is spang{h(B;)}, where {8;} is a fundamental systems of roots of {U/, and
h(B;) = 4mhp;[1B;|* (see [He], [Ta 1]).

Let us now consider a symmetric space M = G /U, where {U is a direct sum
of 2 simple Lie algebras {U; and [U;. In our case M is one of the following
spaces: SOumyn/(SOnxSO0n), Es/(SU;-SUs), E7/(SU,-Spinyg), Es/(SUs-E7),
Fy/SU, - Sps. (Except the case of real grassmannians, other products listed
above, U = U, - U, are not direct. Namely, the intersection of U; and U,
consists of 2 points [Ta 1]). We note that the vector h(«) does not lie in any
algebra lU;, © = 1,2, otherwise, the subgroup SUz(«) lies in the group U; C U
entirely. This contradicts to our observation that SU;(«) meets U at only a
circle Sl(a). Hence, in case U = s0, @ so,,, the root « can be written as
z; £ x;, where z; € H,, and z; € H;, . Thus, k() does not belong to the
unit lattice of Spin, X Spin,,. In the same way we verify that for all listed
above M the Helgason sphere S? realizes a non-trivial element in 7,(M) =
Hy(M,Z) = Hy(M,Z2) = Z3. To complete the proof of Theorem 3.6 we
need to consider the cases M = Fg/PSpy and M = E;/SU;. Straightforward
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calculation shows that if a closed geodesic of minimal length in group U/ {1},
U = Spa, SUs, then it is conjugate under Io(U) with either the circle $(8)
generated by highest root 8 or the closed geodesic S} whose pull back into the
covering group U is the shortest geodesic joining two element (+1) = (e) and
(—1). Since the group SU;(«) does not lie in U, we get that « is not a highest
root of {U; & IU,. Hence, we easily obtain that the circle S*(a) is conjugate
with S!. Thus, 5'(«a) realizes a non-trivial element in (/). This completes
the proof. .

In conclusion we show a consequence of Theorem 2.1 for non-compact sym-
metric spaces. It is well known that the upper bound of section curvature of
these spaces is zero [He].

Proposition 3.11. Let X be a flat lotally geodesic submanifold in a non-
compact symmetric space M. Then X is a globally minimal submanifold.
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