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2.5. Doubling and halvillg. Note that aB ofthe above proofs are purely measure
theoretic. They lIse nothing about the geometry of cubes , the symmetry ofLebesgue
measure on Rn, or the uniformity of the Aoo or Ap bounds of a weight over aB cubes.
Of importance are only two facts: that Jensen's inequality applies and that the
collection of measurable sets is rich enough for a given set to be partitionable into
two (equimeasurable) halves, in each of which the values of the weight in quest ion
are only on one side of a median value. In order to extend the key estimates of the
previous sections to doubling measures , we isolate this partitioning property in the
form of adefinition.

A measure space is halving if each set of finite measure contains a subset of
exactly half its measure. Of course, by continuity this means that it is not only
possible to divide such a set into halves , but into two pieces the ratias ofwhose mea
sures is arbi trary.17 With this in mind, we can re-state the basic implication (2.7)
underlying Theorem I, for example , in a more general form.

Proposition 8. Let (X,P) be a halving probability measure space. IJ f is a mea
sumble function, 0 :5 € :5 I, and

(2.18)

then

(2.19) r If - mx,~(f)1 dp :5 cve.Jx
Here mx,p (I) is a median value oJ f over X with respeet to p, and c is a universal
constant.

Proof. As indieated, the crux of the matter is the question of how to partition X
into halves E and F on which the values of f are (respectively) no smaller and no
larger than the median. For onee this is done, we ean follow the proof of Theorem I,
simply replacing Q everywhere by X and dx/IQI by djj.

Let Y = {x EX: f(x) = mx,~(f)} and E' = {x EX: f(x) > mx,~(f)}. If Y
has zero measure, then the partition is evident: Take E = E' and F = X \ E.
Otherwise, jj(Y) > 0 and p(E' ) < 1/2, while fl(Y U E') > 1/2; the halving property
then allows us to add to E' a portion of Y of measure exactly 1/2 - p(E' ). D

Our main interest in tbis partitioning property sterns frorn the next observation.

LeluDla 9. Every doubling measure is halving.

ProoJ. Fix a doubling rneasure v and a set Y of finite rneasure. We can without
loss of generality assurne thal Y is contained within sorne large cube Q. Con
sider 9 (r) = v (Y n rQ) as a function of r l when 0 :5 r .:5 1. This is non-decreasing,
9 (0) = 0, and 9 (1) = Il (YL so th at it suffiees to see that 9 is eontinuous. Were
this not the case, tben 9 would have a jump diseontinuity at some Ta. But then
v(Y n 8(raQ)) would be positive, violating the fact that boundaries of cubes are
sets of zero measure (see Corollary 2 in §lA). D

17Let (X, 11) be a halving measure space and suppose that Y has finite, positive measure. Let
D = {j2- k : k E N, j = 0,1, ... ,2k } be the set of all dyadic rationals in [0,1). By iteration there
exist!l an increasing family {Y"}.ED of mea..5urable subaets of Y such that Ya = 0, Yl = Y, and
I1(Y,,) = "11(Y) for each" in D. When " ia not in D, set Y, = Ur<"rEDYr; then continuity insures
that I1(Y,) = "I1(Y). for all " in [0, I].
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(2.17)

Remark. One can obtain the correct asymptotic result for A 2 by at least two other
methods. The first relies upon a simple inequality from calculus:

2 + x 2 ~ e:t' + e-:t', for aB x E R.

Suppose that w E A 2 . With x =log(w/wq), this inequality yields

Hence

i Ilogw -log(wqll' :<::; 1+ wq(w-1)q - 2,

and so

i log w - log(wqll :<::; v'A,(w)-1.

As A2 (w) ---7 1, the radical is o( .jlogA2 (w)).
Alternatively, one can derive the asymptotic A 2 results in the manner of The

orem 1 and Corollary 3 by first analyzing the ratio of the arithmetic and har
monie means of two numbers, in plaee of their arithmetic and geometrie means.
The function in question (the ratio when the two numbers are 1 and t) is then
F(t) = (1 + t)(1 + t- 1 )/4; like the function in the second proofof Lemma 2, this F
satisfies the implication that F(t) = 1 + c entails t = 1 + O(~.16

The formal limit of the Ap condition as p -7 1 is the requirement that

J w<I<essinfwJQ - q

unifofmly over all cubes Q. This is equivalent to a weak-type bound for the Hardy
Littlewood maximal operator M on L1(w dx), i.e., the estimate

w({x E Rn : M J(x) > ).}) ~ C).-l f Jwdx.JRn
A weight that satisfies (2.17) is said Lo be in the class Al, and Al (w) likewise denotes
the smallest constaut K. For such weights the eorresponding sharp estimates are
slightly different.

Corollary7. AsA1(w)--+l, then

lllogwll. = O(logA1(w)) and logDb(w) = O(logA1(w)).

Proof. That the inequality (1+t)/(2min(1,t)) ~ (1+6) implies It-ll ~ CE is the
underlying numerical fact hefe. Applied in place of Lemma 2, this fact gives the
sharp result. 0

t&Thi5 was Sarason's technique for proving the doubling estimate; he used a different method
to obtain the (non-sharp) BMO estimate.
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Consequently, all the prior results of Section 2 are automatically valid, with the
same constants, when all averages are formed (and medians taken) with respeet to
a doubling measure v in plaee of Lebesgue measure, In partieular, when

A~(w) =s~pC(~JQ WdV) / C(~) exp llogWdV)
and the BMOv norm is given as in §L3, then

(2,20) !j bg wllov = 0 J log A:;., (w) ). as A:;"(w) ---t 1.

.,
,1

The results above likewise automatieally hold when all averages are formcd over
balls or over arbitrary intervals in Rn (the so-called "product setting"), rather than
over eubes,

2.6. Bq and BMO. The situation far Bq weights ("reverse Hölder weights") is
slightly more eomplicated. \Vhile the sharp, asymptotic contral of the doubling
eonstant follows by an argument analogous to that for A oo above, the corresponding
dominanee of the mean oscillation of log w is somewhat trickier.

Let HS begin with the doubling result .

Theorem 10. Fix any number q larger than 1. Then

(2.21) bg DUw) =0 Jlog Bq(w) ). as Bq(w) ---t 1.

To prove this, we onee again convert a statement about funetional averages to
an arithmetie one. In this ease, we compare the fl and ffJ meaIlS of two numbers.

LeInma 11. Suppose that a and b are positive, 0 ::; c ~ 11 and 1 < q < 00. If

(
aq +bq)l/q

a+b
-2- ~ (1 +c)-2-'

then
a

1 - cq../i ::; b ::; 1 + cq../i,

for some constant cq dependent only on q.

Proof. Simply examine the asymptotic behavior of F(t) = 21
-

1
/ q (1 + tq )l/q /(1 + t)

near t = I, as in the secolld prüof of Lemma 2. D

Proof of the theorem. Ta prave (2.21L split a eube Q (by measure) inta any two
halves, E and F, and set

Then

(
a
q+ b

q)l/
q (1 )1{q ,1 al + b'

2 = Je; w
q

::; Bq (w)]e; W = Bq(w)-2-'

Jensen'sinequalityünceagaingivestherelatiansa/ ::; aandb l ~ b. IfBq(w) = l+c,
then Lemma 11 yields al

/ bI =W (E) / w(F) = 1 + 0 (y€). Ta eornplete the prüof,
take E itself ta be a cube within Q aod iterate, as in the Aoo ease (Corollary 3). D
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(2.22)

So much for doubling. On the other hand, we cannot expect the dominance of
the SM0 norm of log w by log Bq (w) to be a purely measure-theoretic, llsingle
cube" estimate, as was the case for the corresponding A oo and A p results. For, on
any one cube, the Bq eondition restriets apriori only the distribution of the large
values of w, not simultaneously that of its small values. 1S Consider, for example,
the function w defined on the interval I = [0,1] by

{
1 [:5x:51;

w(x) = '
exp (_1/[2 ) 0:5 x < e.

Then J/ w2/(J/ w)2 = 1 + O(e), since Jl w ~ 1 - [ and J/ w2 :5 1. On the other
hand, J1 Ilog w - (log w) 1I= 0 (1/f). So no uniform bound of the desired type ean
follow from non-iterative calculations over a single eube.

With the help ofthe John-Nirenberg inequality, it is possible, however, to recover
the analogous asymptotic estimate. 19

Theorenl 12. Fix 0 number q laryer thon 1. Then

;logw i. =0 JOgR(wl). as Bq(w) --+ 1.

Proof. The argument has three eomponents. First, note that a weight w is in Bq
if and only if its power wq- 1 is in A~, with dv = w dx. Indeed, a calculation shows
that

A~(wq-l) = (Bq(w))q, for dll = wdx.

Seeond, suppose that Bq(w) = 1 + f. Sy Theorem 1, whieh holds for v in place
of Lebesgue measure, as we have noted in (2.20), then log wq- 1 E BMOv and

[i I g w' 1[ =0 J logt 1+ f)q ).

This means that there is a eonstant c, depending only on q, such that

(2.23) 1I log wll.,v :5 c.ji,

provided that e is sufficienily amall.
Third, recall that every Bq weight w is also in Ap, for some p depending only on

q and Bq(w); in particular (cf. [30, Chap. 5, §5.1]), it ia possible to choose constants
p and f{ larger than 1 such that Ap (w) :5 K whenever Bq (w) :5 2.20 Apply this in
the customary way (see [25] or [16]) to convert the weighted SMOv estimate (2.23)
to an unweighted BMO estimate (with respect to Lebesgue measure). That is,
fix a cube Q and let Cq denote the mean value of log w over Q with respect to
the measure v, i.e., Cq =(logw)Q,v. Express 1 as the product w 1/ p w- 1/ p , for

18 As Carleson [5, p. 13] observed, the Ap condition separately restricts the first power and some
negative power of w, and thus "the large and small values of w(x) do not interacL" The point
abo\'e is that the Bq condition is, by contrast, a restriction on two po&itive powers of a w~ight;

the fact that this restriction holds uniformly over all cubes leads-via the deep demonstration by
Coifman and Feffennan [7) that each Bq weight also is in A oo , and hence in some A p dass-to a
restriction on the smaH values of w.

19 An earlier statement of this result appears in Politis [27J.
2oThi!l ill the place in the proof that is not simply n measure-theoretic, single-cube estimate,

as it invokes the Calderon-Zygmund de<::omposition.
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the index p specified above, apply Hölder's inequalitYl and use the John-Nirenberg
inequality in the form (1.5). With l/p + I/pi = 1, then

_1_ r Ilog w _ cQl dx = _1_ r Ilogw - cQlwl/Pw-l/p dx
IQI JQ IQI JQ

< (_1 r Ilog w _ CQ IP dV) IIp (_1 (W-p'lp dX) IIp'
IQIJQ . IQIJQ

:5 CpDb(w)21110g wIL"vAp (w)I/p.

By assumption, Bq (w) = 1+c < 2; by Theorem 10, the doubling constant Db(w)
is then bounded by some constant 1<' = K'(q). Combine this with (2.23) and the
last estimate to obtain

I~I hIlogw - cQI dx ~ Cp(I<:')'c..;EK1{p.

Thus, 11 log w 11. = 0 (ft) when Bq (w) = 1 + c, whieh completes the proof. 0

Remark. Note that the estimates in this section also hold for Bq weights defined
with respect to an arbitrary doubling measure. Consideration of step functions
onee again shows that the square root is the sharp power.

2.7. Sharp embedding results far weights. Coifman and Fefferman [7] showed
that each Aco weight satisfies areverse Hölder inequality. A well-known eonse
quenee of this-related to the work of Gehring [12] on quasieonformal mappings-is
the "self-improving" property of Aco weights: If w is in the dass Ap , thcn w actu
ally belongs to Ap, for some j5 less than p. The results in tbe previous seetion allow
us to refine the statement of this property. For if Ap(w) is near its optimal value
1, then both the smaller index j5 and the bound Ap (w) ean be taken suitably elose
to 1. Likewise, an Ap weight with small bound must also have Bq bound near the
optimal value 1, for large q. For general Aco weights, tbe first explicit statement of
this result with the eorrect asymptotie behavior of the bounds and indices appears
in Politis [27]. The result is as folIo~s:

Theorenl 13. There erist positive constants cO and K, depending only on n , such
that if w E Aco and Aco (w) < 1+ co J then both

w E Ap, for p = 1+ K Vlog Aco(w),

and

w E Bq Jor q = (K JIogAoo(w)) -1

Furthermore, both A p (w) a Tl d Bq (w) are smaller than 1+ I< v' log Aco (w) .

Proof. Suppose that the bound Aco (w) is elose to 1. Apply Theorem 1; then
logw E BMO and 1I1ogwll. :5 kVlogAco(w), for some eonstant k. Now lIse the
John-Nirenberg inequality to eonclude that w belongs t.o a finite Ap c1ass. 21 For
with c and C the constants appearing in the estimate (1.4) and log w substituted
for f there, then

(2.24) i exp(rllog w - (log w)QI) ~ 1+ C, when r = c/(211 Iog w ll.)·

21This was first observed, implicitly, by Moser [22]. Sarason [29] invoked the same argument
to show that logA2{W):= OOl1ogwlI .. ), 8.'l 11Iogwll. -+ o.
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o

If r 2::: 1, then Hölder's inequality shows that

(i w) (i w-rtr < (i wrtr(i w-rtr
< (i er(IOgW-(IOgW)Q)) llr(i e-r(IOgW-(IOgW)Q)) l/r

< (l+C)I/r{1+C)I/r.

For p-l = (l/r), we thus have an estimate for Ap (w) in terms of 11 log wll .. , namely
that

Ap (w) ::; (1 + C)(4/c)lI log wll. , when p= 1 + (2/c) 11 log wll .. ::; 2.

We must now merely keep track of the various constants in order to convert this into
the statement of the theorem; for this the choice f{ = (2k/c) max(I, 4log(1 + C))
suffices.

The praof of the second embedding likewise follows from the John-Nirenberg
inequality. Simply remove the absolute values from (2.24) to conelude that

i exp (r log w) :5 (1 + C) exp (r{log w)Q).

Take the rth root of both sides and apply Jensen 's inequality. Then

B r (w) :5 (1 + C)(2/c)1I 1o
g

w ll. 1 when 1 ::; r = c/(211Iogwll .. ).

Similar manipulations with the constants give the desired estimate.

Since Ap (w) ::; A oo ( w), the theorem immediately extends to Ap weights wi th
nearly optimal bounds. We can also use Theorem 12 in place of Theorem 1 to show
the converse embedding: Each Bq weight with bound elose to the optimal value 1
is also in Ap, with both p and Ap(w) suitably elose to 1.

Corollary 14. Let q be any number larger than 1. There exist positive constants
co and f{J depending only on 11 and q, such that if tu E Bq and Bq(w) < 1+ co,
then both

W E Ap , Jor p = 1 + f{Jlog Bq (W),

and

W E Bq fon = ((

FurthermoreJ both Ap ( tu) and B<j(w) are smaller than 1 + K .; log Bq (w) .

The last result, on the higher integrability of reverse Bälder weights with small
bounds, is due to \Vik [34]. Sy considering power weights, Politis [27] has shown
that the asymptotic behavior of the embeddings described in the theorem and its
corollary is sharp, in the sense that the square raot cannot be replaced by a higher
power.

Several other variants are possible. For instance, when we consider Al weights
with nearly optimal bounds J then Corallary 7 shows that the corresponding higher
integrabili ty resul t has the first power of Al (w) in place of the square raot. Kin
nunen [20] found the exact version of this last result in the product setting: a
formula for the exact higher integrability index q for the finest elass Bq to which a
given Al weight can belang, aB weil aB a precise formula for the bound Bq (w), both
in terms of A 1(w).
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3. ASYMPTOTIC WEIGHT CONDITIONS

3.1. Convergence of the asymptotic cOllditiollS. Section 2 began with a list
of equivalent formulations of the A oo condition. 'Ne shall now show that these
various characterizations remain equivalent when the bounds in question approach
their optimal values over small scales. In particular, although the weight elasses
Ap and Bq are distinct for different p and q, these distinctions collapse when we
demand that the weight bounds behave optimally in the asymptotic limit. The
next theorem proves these assertions.22

Theorem 1. Let w be a weight and p, q numbers larger than 1. Then the following
conditions are equivalent:

(a) lim sUPlQI-to(fq w)/(exp fq log w) = 1.

(b) lim sUPjQI-+o(fq w)(fq w- 1/(p-l))p-l = 1.

(c) limsuPlql-+o(fq wq )l/q /(fQ w) = 1.
(cl) For each E > 0 there is a 0 > 0 such that wheneue1' E is a measurable subset

01 Q, with lEI = IQI/2 und IQI < 0, then w(E)/w(Q) ~ (1 + e)/2.
(e) For euch e > 0 there is a 0 > 0 such that wheneuer E is a measurable subset

01 Q and IQI < 0, then w(E)/w(Q) ~ (1 +e)(IEl/IQI)I-t:.
(f) limsuPjQI-+o fQ Ilogw - (log w)QI = O.

An A oo weight w that satisfies any of these eonditions is termed asymptotieally
absolutely continuous, and we write w E Aoo,al'

Proof The equivalenee of the first three eonditions with the last is a eonsequenee
of the Ioeal form 23 of the kcy results in the Seetion 2: the dominanee of 11 log wll",
by log Aoo (w) and log Bq (w) in Theorems 1 and 12, and the converse dominance
relations (using the John-Nirenberg inequality) in Theorem 13.

Condition (e) follows from the validity of (e) for all finite indices q. Indeed, if
ES;;; Q and w is a Bq weight, then Hölder's inequality shows that

(3.1) w(E)/w(Q) ~ Bq(w)(IEI/IQI)(q-l)/q.

When e is giyen and A oo (w) is suffieiently elose to 1, then Theorem 13 gu arantees
that w is in Bq, with the index q so large and the bou nd Bq (w) so elose to 1 that
both (q - 1)/q > 1 - e and Bq(w) < 1 + f. The local form of this shows that (c)
implies (e).

Now (e) implies (d), and the ehallenge is to show that (d) is actually equivalent
to one of the other conditions in the list. The proof of this implication in the non
asymptotic case, essentially the prüof that Aoo is the union of the A p elasses for
finite p, uses the Calderon-Zygmund decomposition; this decomposition, however ,
does not keep the bounds which enter elose to their optimal values. The key to the
proof is rather the interplay belween mean and median values and especially the
good behavior of the latter under composition with monotone functions (compare
Corollary 5 in §2.3).

·:;ZThe asymptotic conditions in the theorem are labeled to correspond to their non.asymptotic
counterparts in §2.1. Note that the cquivalence of (b) and (f) above was first shown by Sarason [29]
for p = 2; Jerison and Kenig [16J ndapted Sarason's argument to the reverse Hölder condition (c),
for q = 2. The case of arbitrary, finite indices p and q readily follow8. The equivalence of these
thr~ conditions with the other three is new.

:;Z3By thi" i!l meant that aH references to sUPQ and all seminorms such as IIJII", or quantities

such as A= (w) are understood to apply to all cubes Q within a fixed cube Qo.
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In fact, we shall now show that if WfuHills (cl), then v = ..;w satisfies the reverse
Hölder condition (c), for the index q =2. To see this l suppose that IQI < 5 and
partition Q into two halves E and F that straddle a median value mQ(w) (with
the larger values of w in E, as above). By assumptioll l w(F)/w(Q) ~ (1 - e)/2 1

so that wQ :$ (1 - e)-lwF. Substitute v2 for wand use the fact that v :$ mQ(v)
pointwise on F to pult out one power of v. Then

(V2)q :$ (1- e)-1(v2)F :$ (1- e)-lvFmq(v).

But mQ(v) = jmQ(w), by (2.15), and mQ(w)/wQ ::; WE/WF :::; (1 + e)/(l - eL
by (cl). Hence

(V2)Q = (1 + O(C))VFVWQ = (1 + O(e))vQv(v2)Q'

That iS l (v2)Q = (1 + O(e))(vQ)2. So v satisfles (c) for q = 21 as claimed. Thus v
also satisfies (f), and so does w. This completes the proof of the theorem. 0

Remark. Reducing the mul tiplicative conditions (a)-(e) to the additive cond ition (f)
has several advantages. For one l it is now clear that we could have used balls rather
than cubes (without altering the class of weights in question). For another 1 concli
tion (f) ties Aoo,a" to the space VMO of functions with vanishing mean oscillation ,
which was introduced by Sarason in [29]. Recall that VMO comprises aH the func
tions f in BMO for which limsup\QI-tofQ l! - fQI = O. Any bounded , uniformly
continuous function on Rn is in VM 0 1 and VM 0 is actually the closure of the
set of aU such functions under the BMO seminorm 11·11•. The equivalence of (a)
and (f) in the prior theorem means timt the logarithm of a weight is in VMO
just in case some small positive power.:2 4 of it is in Aoo ,aJ' One consequenee of
this is that while asymptotieally absolutely eontinuous weights eannot have jump
discontinuities, they ean be unbounded; the weight W given by

W(x) = exp Jlog+(l/lxl)

is an example l for log+ lxi = max(log lxi, 0).25

3.2. An equivalence relation. Coifman and Fefferman [7] showed that the Aoo
eondition ean be viewed as an equivalenee relation on doubling measures. In fact,
the same is true for Aoo,a", as we shall now show.

Toward this end, note first that condition (e) in the last theorem implies the
eorresponding condition with the opposite bound , namely:

(e') For each e > 0 there is a 5 > 0 such that whenever E is a measurable subset

of Q and IQI < 51 then IEI/IQI ::5 (1 + e)(w(E)/w(Q))l-t.

24The restrietion to small powers anses only from global considerations. For the asymptotic
condition (a) alone ßSSures, for some finite p, that A p ( w) is uniformly bounded when meßSured over

aU sufficiently small cubesj the same i!l thus true for the ApJ bound of the conjugate weight w-pl
/ p ,

when 1/p + I/p' = 1. But then the dou bling bounds of wand W-
p11p are uniformly controlIed

over small cubes, by Corol!ary 3 of §2.3, and these bounds can be combined to give a uniform Ap

bound for w over alt cubes within an arbitrary, given cube Qo. In the local case, therefore, we
can correctly write the equality VMO =log Aoo,oJ'

2.SSee the calculations in {26] für the cürresponding facts about YMO.
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Indeed, as (e) implies (b) for a11 p larger than 1, then (e') follows from the loeal
form of the inequality

(3.2)

This is the Ap estimate analogous to the Bq estimate (3.1).
We ean use eondition (d) in the prior theorem as the basis for formulating the

desired equivalenee relation. Suppose that J-l and v are doubling measures. For any
eube Q, let 1lv {Q) denote the collection of alt "halves" of Q with respeet to v, i.e.,
all subsets E of Q for which v(E) =v(Q)/2. We say that J-l j v if

. J-l(E)
(3.3) hm sup sup (Q) = 1/2.

IQI-+O EE1l,,(Q) J-l

Now (3.3) insures that dJ-l = w dv, for same weight w for which the Ioeal
A~ bounds depend only on the size of the cube under consideration. Since the
embedding results of §2.7 that underlie the proof of the prior theorem apply to
weight classes defined with respect to doubling measures in place of Lebesgue mea
sure, then we can repeat the steps in the proof of the theorem, with dJl and dv
replacing w dx and dx, respectively, to obtain a strengthened form of (3.3) Oll the
model of (e) and (e'). In particular, J-l j v implies that for each f > 0,

(3 .4) (1 - f) (v(E) / v(Q) ) 1+t ::; Jl (E) / J-l (Q) ::; (1 + f) (v (E) / v(Q) )1- t ,

provided that Eis a measurable subset of Q and that the diameter of Q is sufficiently
small. From (3.4) it is dear that j is an equivalenee relation.

3.3. SUIllInary. The material here sheds new light on the nature of the difference
between the A oo and dou bling conditions (cf. [9]). To illustrate this difference, let
us consider all of the possible ways to divide a cube Q into two (equimeasurable)
halves, E and F. As noted in ,§2.3, a weight w is in A oo just in case the mass of w
over the two halves is always comparable; that is, if and only if the ratio w(E)/w{F)
is uniformly bounded over all cubes and all such partitions. The doubling condition,
on the other hand} requires that this be true only for those special partitions in
whieh at least one of the two halves is itself a eube.

Proposi tion 4 in §1.5 and Theorem I in §3.1 extend this observation to the
asymptotic case. In fact, the asymptotic forms of Aoo and doubling arise precisely
when we further demand that the ratio w(E)/w(F)-considered in eaeh case over
the appropriate dass of "halving" partitions-uniformly approach 1 as IQI --+ 0.26

3.4. Means and uledians are not alone enough. Seetion 2.3 contained yet
another criterion for Aoo , the uniform eomparability of mean and median values over
aB cubes. We condude by nating that, unlike the ather formulations that appear
in Theorem 1 above, this one daes not lead to the dass Aoo,a$ when the constant
of eomparability approaches 1 over ever-smaller seales. While (2.14) insures that
means and medians do eonverge for Aoo,a~ weights, the example below shows how
the reverse can fail.

26In fact, it is not neceggary to analyze w over a.Il such halving partitions. For asymptotic
doubling, it actually suffices by Proposition ,I in §1.5 to cOllsider on each cube Q only thc 2"
partitions in which E is a cube that has half the measure and a vertex in common with Q. .An<!
for AoXI,<l~' one need only consider within each cube q a single partition straddling a median value,
since any 5uch partition makes the ratio w(E)/w(F) extremal.
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Example. CaU a closed interval within (0) 1] triadic if it can be written in the
form (j3- k, (j + 1)3-k}, for k = 0, 1) 2) ... and j = 01 I, 2) ... I 3k - 1; denote the
collection of all triadic intervals by T. On each I in T define the "extended lJ Haar
function H I by the rule

{

+1 on the left third of I;

HI = 0 on the middle third of I;

-Ion the right third of I.

Note that-in contrast to the case for the standard, dyadic Rademacher functions
the orthogonal set {l} U {Hf: lET} does not form a complete basis for L2 ([O, 1]).

Next) let f be the subcollection of those triadic intervals that are not the middle
thirds of other intervals in T. Then T consists of the intervals

[0 1 1], [O,~], [~, 1]' [0) iL [t, ~], [~, ~L [~, 1]' ....

Construct a sequence {Wk} of weights 1 as follows: With t the collection of all
intervals in T of length at least 31- k , set Wo = 1 and

(3.5) Wk = II (1 + H1 /2),
IETJ<

k EN.

Each weight Wk has integral lover [0,1]. The sequence {Wk} converges pointwise
a.e. to the function W =f1 IET (1 + HJ/2); note that the infinite product has only
finitely many factors (different than 1) at a.e. point in the unit interval. Further
more l the convergence to W is actually in LI) as {Wk} is a Cauchy sequence in LI.
lndeed,

J (1 3)k(1.)k+l 1(2)k
IWk+l - whl = 2 + 2 '3 = '3 '3 '

so that if I > k) then J IWj - Wk I~ (2/3)k.
The limit function W is piecewise constant on the complement of the Cantor set

in (0) 1]. Moreover, W has the special property that on each triadic interval I its
mean and median values agree. By the self-similarity27 of w, it suffices to verify
this on the fuH uni t interval alone. Since the mean value of W over [0, 1] is 1) we
mllst show that 1 is also a median value there. To see this, we need only consider
the values of W over intervals removed in the formation of the Cantor set. Then W

assumes the value 1 on 1/3 of [0 1 lL the value 3/2 on 1/9 of (0) 1], and) in general l

the value (3/2)h on (1/3)k+l of [0) 1]. Summillg up) we find that W is no smaller
than 1 on a set of measure at least 1/3 + 1/9 +... = 1/2. When we consider the
values (1/2)k, we likewise find that W is no larger than 1 on at least half of the unit
interval. Thus) 1 is both the mean value of W on [0, 1] and a median value there. 28

271n particular, the vallIes of w, and hence its mean and median values, change by a fador
of 3/2 when we pass from one genemtion's Jeft-most interval to the next. Explicitly, w(r3- k ) =
(3/2)w(T3 1 - k) when k E N and 0 < T < 1. A similar statement holds when we pass to the rightj
the fador 1/2 then replaces 3/2.

281n fact, 1 is the uniqlle median value. Uniqueness requires the additional argument that the
values of w, namely products of powers of 1/2 and 3/2, inelude rationals arbitrarily e10se to 1.

This is due to a basic number-theoretic fact on the approximability of irrational numbers (such
as e= log23) by rationals: For each positive integer N there are integers m and n such that
0< n ~ N and le - (m/n)l < l/(Nn); see, e.g., [6, Chap. 3].
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On the other hand, the ratio of the ari thmetic and geometrie means of W does not
approach lover ever-smaller (triadie) intervals, as wouId be the case for a weight
in A co I a,,· For I in T, the logari thm of this ratio (cf. [10] in the dyadic case) is

log(wJ) - (logw)J -I~I ~ j log(l+ ~J)
J T J
J~J1 (1 3 1 1 1)

= -m~ 3"log2"+3"logl+3"log2 IJI
JET
Jc;J .

HIOgnC~I ~ 111).
JET
J~J

The last factor (the sum divided by 111) is 0 for each middle-third interval I in

T\ T, but is 1 + (2/3) + (2/3)2 + ... =3 for each I in T. Thus, WJ /mJ(w) = 1 for
aB triadic I, although the ratio defining the A co bound of W does not approach 1
as 111 --+ 0,

Remark. The weight w has another property worthy of note. Recall from the John
Nirenberg inequality that a function f is in BMO if and only if

supf 11 - fQI P < 00
Q JQ

when p ?: 1. By refinements of this due to John [17] and Strömberg (31], the same
is true for any positive p.

\Vhat happens as p approaches O? The weight w constructed above has the
property that it satisfies the limiting condition

(3.6) s~pexp C~I J>g Iw -wQI) < 00

(over aB triadic intervals Q = I in [0, 1]) while not itself being in BMO. Indeed,
w assumes its mean value over any triadic interval identicaBy on the entire middle
third of that interval-this is because the produets in (3.5) were formed over the
special intervals in Trather than over aH of T -so that the left-hand side in (3.6)
vanishes when the supremum runs over all triadic I. On the other hand, examining
the scaling of W over the intervals {[O, 3- knshows that w is not in (triadic) BMO.

lt should be noted, however, that a slight modification of (3.6) does lead to a
correct characterization of BMO. In fact, one can use the methods of [31] to show
that

1 E BMO if and only if s~pexp C~Ihlog+ 1I - IQI) < 00.

For details, see [21, Chap. 3].
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IDEAL WEIGHTS:
DOUBLING AND ABSOLUTE CONTINUITY

WITH ASYMPTOTICALLY OPTIMAL BOUNDS

MICHAEL BRIAN KOREY

ABSTRACT. Sharp relations between weight bounds (from the doubling, Ap ,

and reverse Hölder eonditions) and the BMO norm are obtained, when the
former are near their optimal valuetl. In particular, the BMO norm of the log
arithm of a weight is seen to be controlled by the square root of the logarithm
of its A co bound. Coifman and Fefferman's formulation [7] of the A co condi
tion as an equivalence relation on doubling measures is extended to the setting
in which all bounds become optimalover !ImaU sealell.

Oh.' the little more, and how much it is!
And the little less, and what worlds away!l

INTRODUCTION

This work focnses on two conditions for non-negative measures: doubling and
the scale-invariant form of absolute continuity known as the Aoo condition. Both
conditions restriet the rate of growth of a measure over a nested sequence of sets,
but the latter does so far more stringently. In the simplest context of intervals on
the real line, a measure is doubling when the measures of the left and right half
of each interval agree up to some fixed factor. The Aoo condition requires more:
Such uniform comparability must still hold whenever an interval is divided into two
sets of equallength, not just into its left and right half. 2 This additional require
ment actually guarantees that the measllre in question and Lebesgue measure are
mutually absolutely continuolls, as Coifman and Fefferman [7] observed.

Both conditions arise often in varied contexts of mathematical analysis. In the
setting of complex analysis, for example, Bellrling and Ahlfors [1] gave a eriterion
for when an inereasing homeomorphism x t-1 F(x) of the real line can be extended
to a quasiconformal mapping on the llpper half-plane; the criterion is exactly that
dF be a doubling measure.

Harmonie analysis in non-smooth domains presents another setting. Consider
an elliptie operator in divergenee-form,

1991 M athematics Subject Clauification. Primary <12B25 26D 15; Seeondary 26B35.
J(ey words and phrases. Doubling measure, boundcd mean oscillation, A co condition, reverse

Hölder inequality, Muckenhoupt A p condition, arithmetic-geometrie inequality.
Supported by the Max-Planck·Geseliachaft. Thia work is a revised form of part of the author's

dissertation, which was written under Professor Carlos E. Kenig at the University of Chicago.
1 Robert Browning, cited in [13, p. ii].
2Length means here Lebesgue measurej for this simple formulation of A co see §2.3.
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5 uppose that the eoeffieient funetions {aij} form a real, symmetrie) and strietly
positive-definite matrix) but are otherwise only bounded, measurable funetions;
the pullbaek of the Laplaeian from a starlike, Lipschitz domain about the origin to
the uni t ball B yields an operator of this type. Solu tions U of the dassieal Diriehlet
problem with eontinuous boundary data)

{
Lu = 0 in B

ulaB = f E C(aB},

give rise to the so-ealled "harmonie measure" WL for L , defined by the representing
formula

u (0) = f f dw /•.JaB
Harmonie measure is always doubling (over surface balls on aB) for all such el
liptie operators, but it satisfies the stranger Aoo eondition with respeet to surface
measure U only when the Diriehlet problem ean be meaningfully solved for all
boundary data in some LP(8B, du) space, not merely for eontinuous funetions f
(see [3J and [8]). Mueh recent work has been devoted to finding reasonable condi
tions on the eoefficients of the operator that guarantee that this is the ease (see [19]
for an overview).

The situation of interest in the present work oceurs when the doubling or Aoo be
havior of a measure becomes optimal in the asymptotie limit C'over small seales").
On the line) a measure is said to have asymptotie doubling, for example) when the
ratio of the measures of the Ieft and right half of each interval is not only bounded,
but approaches 1 as we examine ever-smaller intervals. Optimal asymptotic behav
ior of this type was cOllBidered by Carleson [4]' in the context of quasiconformal
mappings that approach conformality at the boundary; by Saraaon [29], for the
space of funetions of vanishing mean oseillation; and by Jerison and Kenig [16], via
the sharp regularity for the Poisson kernel in a Cl domain. Each of these settings
motivates a portion of the present work.

Tbe strueture of this paper is as folIows. The first seetion introduces several for
muIations of the doubling condi tion; in partieul ar, doubling is seen to be equivalent
to a multiplieative version of the eontinuity property for measures. The dass of
asymptotieally doubling measures is also studied.

Section 2 focuses on the theory of Aoo weights) as developed by Muekenhoupt,
Coifman) and Fefferman) and extends this theory to the asymptotic ease of weights
with bOUllds that approach the optima.l value lover ever-smaller scales. A key
result is the sharp relation between the Aoo bound of a weight and the norm of
its logarithm in the spaee of funetions of bounded mean oseillation (BMO), when
both quantities are near their smallest possible values; the proof is a purely meaaure
theoretie argument. This is used) in conjunetion with the fundamental inequality of
John and Nirenberg (18), to obtain embedding results between the Ap and reverse
Hölder weight dasses that keep all constants of inequality elose to their optimal
values.3

Mueh attention is paid throughout to the precise relations between different types
of functional averages, espeeially between arithmetie means, geometrie means, and
median values. The variety of sharp estimates developed bears fruit in allowing us

3The thesis of Politis [27] focuse6 on these embedding results and contains the first proof of
the sharp BMO-Aoo result alluded to above.
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ta show in the final sectian that the various classical formulations of Aoo remain
equivalent when we demand optimal bounds in their respeetive asymptotie limits.
We use this to extend the formulation of Aoo in [7] as an equivalence relation on
doubling measures to the asymptotie setting.

1. AN OVERTURE ON DOUBLING

1.1. Notation. For referenee, we record here the notation that is used throughout
this work. The symbol lEI denotes the Lebesgue measure of the set E in Rn. The
Lebesgue integral of the function J over E is written JE f or JE Jdx; if the region
of integration is not shown, it is understood to be all of Rn. When 0 < lEI< 00,

the symbol JE and the "barred" integral JE J both represent the mean value of f
over E; that is, JE = fE J = (JE J)/IEI. If v is a Borel measure on Rn, then VB
likewise denotes the corresponding mean value, i.e., VB = v(E)/IEI.

An interval in R is always assumed to be closed and of finite, positive length. An
interval in Rn is a Cartesian produet of n such intervals in R; cubes are intervals all
of whose sides have the same length. The dyadic intervals in the line are all those
of the form [k2/, (k + 1)21], for arbitrary integers k and l. Produds of n dyadie
intervals of the same length eonstitute the eollection D of all dyadie euhes in Rn.
Similarly, the dyadic subeubes of an arbitrary cube in Rn are aU those obtained by
dividing it into 2n congruent cubes of half its length, dividing each of these into 2n

eongruent eubes, and so on.
The side-Iength of the cube Q is written l(Q). The symbol mQ denotes the

m-fold dilation of Q, that is, the euhe with the same center as and m times the
side-Iength of Q; the notation mß likewise indieates the ball eoneentric with the
ball ß and having m times its radius. The diameter, interior, and c10sure of a set E
are abbreviated diam(E), int(E), and E, respeetively. Finally, two sets are said to
be non-overlapping if the interseetion of their interiors is empty.

1.2. The basies of doublillg. A non-negative, locally-finite Borel measure v
on Rn is doubling if the mean values of v over each cube and over the coneen
tric double of the cube are uniformly eomparable; that is, if there is a eonstant C
such that for all cubes Q in Rn,

(1.1) C-1vQ :5 V2Q :5 CVQ.

Since 12QI/tQI = 2" and V ~ 0, the first equality is automatieaUy true. What
the doubling eondition asserts is rather the second inequality, which is usually
expressed by the requirement that the ratio v(2Q)/v(Q) be uniformly bounded
over aH cubes. We choose the formulation (1.1), in terms of averages, beeause we
shall be partieularly interested in the ease when the behavior of the measure V

closely resembles that of Lebesgue measure, for which the eonstant C ean be taken
to be exactly 1. The smallest C in (1.1) is termed the doubling constant Db(v) of v.

Note that there is nothing sacred about the ehoiee of cubes in this context.
Since the inseribed and eireumseribed balls of a cube have comparable volume,
the definition could as weil have been stated in terms of balls, for example. More
generally, let UB say that the two sets E and F in Rn form an r-rcgulO1' pair, for
some fixecl number r larger than 1, if each contains a eube whose r-fold dilation
engulfs the union E U F, Repeated applieation of the dou bli ng property shows
that the averages of a doubling measure over all pairs E, F of r-regular sets are
uniformly comparable. So, for instance, the averages of a doubling measure over
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all pairs of eongruent , adjaeent eubes (those with a face in eommon) are uniformly
comparable. The same is also true for the averages over consecutive pairs within a
sequence of similar annuli,

(2B\B), (4B\2B), ... , (2 k B\2k
-

1B), ...

where B is an arbitrary ball.

1.3. BMO in the context of doubling. As has often been observed , many das
sical results in harmonie analysis that were first noted for function spaces defined in
terms of Lebesgue measure continue to hold when these spaces are defined in terms
of doubling measures. Such is the case for the space BMO, and , for reference, we
state here several such results that williater be of use.

Let v be a non-negative Borel measure on Rn. A locally v-integrable, real-valued
function f on Rn has bounded mean oscillalion with respect to v if the quantity

is finite; the supremum here runs over all cubes Q, and fQ,v denotes the aver
age (JQ f dv) / v(Q). Thc set of all such functions is written BMOv . (If v is Lebesgue

measure, then we write si m ply BM0 and 11 . 11•. ) Note that the dass of funetions is
not ehanged if we minimize the mean oseillation about aB real constants, not just
about tbe mean value , for the triangle inequality shows that

(1.2) v(~) 10 If - fQ,vl dv:::; 21~~ v(~) 10 If - cl dv

on each cube Q.
All bounded funetions are in BMO. Tbe even logarithm x ~ log lxi is an example

of an unbounded BMO function; in fact, functions with singularities no worse than
logarithmie are paradigmatic for BMO , as the following noted result implies.

John-Nirenberg Inequality ([18]). Let v be a doubling measure and f a function
in BMOv . Then JOT evertJ ,,\ > 0 and every cube Q I

(1.3) v({x E Q • If(x) - fQ,v I> ,\}) < C exp (Db(V)2CI~fll.Jv(Q).

Here C and c are consta nts depending only on the dimension n J not on f I Q, V I

01' >..4

An iterative use of the Calder6n-Zygmund decomposition gives a direet proof
of (1.3) with respect to Lebesgue measure; for the modifications of this neeessary
for the general case of dou bli ng measures I see [25] or [28, Chap. 2],

The estimate (1.3) has Cl number of important consequences. First, each BMOv
function, when raised to a suffieiently small power, is (locally) exponentially inte
grable. In fact, if f E BMO v , then

(1.4) v(~) 10 exp(rlf - fq,v)1) dv :::; 1 + C, when r = c/(2Db(v)'llfll.)·

-4The exponent 2 of Db(v) is inessential; it arises because Db(v) was defined in terms of a cube
and its concentric double, not in terms of the dyadic double that enters in the proof.
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Second, although the mean oscillation of a funetion was defined above in terms
of the LI norm, the LI and LP mean oscillations of BMO funetians are aetually
equivalent, for a11 finite p larger than 1. In other words, when 1 < P < 00, then

(1.5) 11111.," :::; s~p C(~) h11 - IQ,"IP dvfP :::; Cn,pDb(v)'IIIII.,",

for aB f in BMOv ·

1.4. A continuity criterion. The defini tion of doubling in §1.2 seems in one sense
rather coarse. Suppose, for instance, that we wish to eompare the mean values of
a doubling measure over two cubes of identieal size that largely overlap; it appears
that we ean only predict that the means lie within a factor of 2° Db(v) of one
another, sinee the eoncentric double of eaeh cube eontains the other. But as we
sha11 presently show, the eonstant of eomparabili ty aetua11y approaches 1 as the
degree of overlap beeomes total, and this property characterizes doubling.

Reealling a continuity property for general measures helps to clarify this for
mulation of the doubling condition. Indeed, for any (closed) cube Q and any
(loeally-finite) measure v, eontinuity insures that v(rQ) eonverges to v(Q) as r
decreases to 1. If v is doubling, however, then this convergence of differences ean
be strengthened to a eonvergenee of ratios. 5

Proposition 1. A measure v is doubling if and only if v (rQ) Jv(Q) ---7 1 as r ---7 1,
uniformly over all cubes Q. An analogous statement holds for balls.

Pmof By translation and dilation invariance, it suffices to take Q to be [-1, 1]°.
For k = 1, 2, 3, ... , let Ek be the ou termost annular band of width 2- k wi thin
this cube, i.e., Ek = Q \ (rkQ), when rk = 1 - 2-k. Our aim is to show that
V(Ek)JV(Q) ---7 0 as k ---7 00, with a rate that depends only on the doubliug constant
of v.

An elementary geometrie argument suffiees. Let Ok be the "inner half' of the
annular region Ek, i.e., nk =(rk+lQ) \ (rkQ). This set is actually a finite union of
non-overlapping eubes of side-length 2- k - 1 , the 3-fold dilations of which together
cover Ek . Taking the eentral half of each of these cubes leads to a pairwise disjoint
collectiou, fully within the interior of Ok, whose 6-fold dilations cover Ek . Benee,
v(int Ok) > Ov{EkL for some constant B less than 1 that depends only on Db(v).
Then V{Ek+l) < (1- O)v(EkL and so v(Ek) < (1 - B)k-lV(Q), by iteration. Since
(1 - B)k-l vanishes as k ---7 00, we obtain the desired result.

The suffieieney of the critcrion is straightforward, and the argument for balls ia
similar. 0

Frorn this we recover the familiar fact that doubling measures vanish over the
faces of a eube (see [11, §4.2]).

Corollary 2. Boundaries of balls and ctJbes are null sets for all doubling measures.

Forrnulated in the language of convolutions, the dou bling eondition (1.1) becomes
the requirement that

(1.6) C- 1v*Xt:5 V*X2t:5 CV*Xt,

uniformly for alt positive t. Here X is the characteristie function of the unit
eube [-1,1]° or of the unit ball, Xt is the mass-preserving dilation of X to seale t

5This is implicit in Buckley [2].
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(i.e" Xt(X) = t-nX(x/t)), and the funetional inequality (1.6) is understood to hold
uniformly over all of the underlying domain R n .6 The previous proposition then
implies that small dilations anel translations of the averaging kernel X have a negli
gible effect on the averages of a doubling measure. With TA denoting the operator
of translation by .A, we cau express this fact. as folIows:

Corollary 3. Suppose v is doubling. Then for each c > 0, there are constants
Po = po(Db(vLc) > 1 and .Ao = .Ao (Db(v), c) > 0 such that the estimates

(1.7) (1 + 6)-l v * Xt :::; v * Xpt ::; (1 + 6)V *Xt

and

(1.8)

hold uniformly fOT positive t, whenever Po -1 ::; P ::; Po and"\ E Rn satisfies 1,.\ I ::; "\0.

Conversely, if lhere exists a single p i- land a single positive f such that (1.7) holds
uniformly for positive t, then the measure v is doubling. 7

1.5. Asymptotic doubling. The various characterizations of doubling in the
prior seetion are scale-invariant. What happens, however, if we demand of a mea
sure that its doubling behavior improves over finer scales? The optimal improve
ment in this regard would be for the doubling constant to approach lover smaller
and smaIler scales, and this is exactly the condition we now examine.

A doubling measure v is asymptotically doubling if the averages of v over every
pair Q, Q' of sufficiently smalI, 3-regular cubes agree up to a factor arbitrarily elose
to 1. That is, for every 6 > 0, there is a 8 > 0 such that

(1.9) (1 + 6)-l vQ < VQI < (1 + 6)VQ,

W henever the three condi t ions Q ~ 3Q', Q' ~ 3Q, anel max(/ (Q), 1(Q')) ::; 8 jointly
hold.

Though this definition requires that v closely resemble Lebesgue measure over
small scales, such a v ean still be purely singular with respeet to Lebesgue measure,
as Carleson showed in (4] by means of modified Riesz products. The Aoo eondition,
a eriterion that guarantees absolute continuity and is tlms stronger than doubling,
will be the foclls of attention beginning in the next section.

The ehoice of the number 3 in the above definition was, of course, arbitrary; by
iteration, we eould just as weil have considered pairs of r-regular cubes, for any
other fixed r targer than 1. Thus, in terms of eonvolution with the characteristic
function of the unit eube, a doubling measure v is asymptotically doubling if, for
each given 1 fixed range of dilation ami translation factors, say 1/2::; P ::; 2 and
1,.\1 ::; 1, the estimates (1.7) and (1.8) together hold uniformly for all sufficiently
smaIl, positive t. 8 For a generic doubling measure, by contrast, Corollary 3 asserts
that these estimates hold only over some range Po -1 :::; P ::s; po and 1,,\1 ::; "\0, where
Po and "\0 depend on the dOllbling eonstant of v.

6This will be a standing assurnption for such convolution inequalities in the sequel.
7Likewise, if for HOrne positive e", the condition (1.8) holds uniformly over all positive t und

aU ,\ in a neighborhood of the origin, then LI is doubling. How to formulatc a similarly strong
converse in tenns of only finitely many discrete translations is not immediately apparent, al though
Proposition 4 below gives a partial an8wer.

8 For definiteness, the convolution kernel X is in this case taken to be the charncterlstic function
of the unit cube.
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II. Doubling over dyadic neighbors. By assumption, the averages of V over two
dyadic cubes of the same size that share a common face agree up to the factor 1 + c.
It is easy to see that a similar result holds for same-sized dyadic cubes that have
(at least) a vertex in common. Indeed, any two such dyadic cubes Q and Q'
are connectable by a chain Q, Q1, ... ,Qml Q' of at most n + 1 congruent l dyadic
cubes, each of which is adjacent to its immediate neighbors in the chain. Hence,
VQ/VQI ~ (1 + E)" = 1 + O(E), for all such pairs Q, QJ.

III. Special enveloping cubes. Returning to the problem at hand, let Qo be a fixed
(arbitrary) eube and let Qo denote any eube with following properties:

. (i) Qo C Qa
(ii) 41(Qo) ::; 1(00) < 8/(Qo)

(iii) Qo is the union of 4" dyadic eubes of side length I(Qo)/4.

Such a eube QOl while not necessarily dyadic, contains Qo and can be deeomposed
into a finite union of dyacHc pieces, each of whieh is approximately the size of Qo.
Any such cube 00 is termed a special enveloping cube of Qo. Since each 3-regular
pair of cubes has such a special enveloping cube in com mon, to prove the proposi tion
it suffices to show tImt the mean values of v over Qo and any such enveloping
cube Qo agree to within a factor of 1 + O(E).

By (1.12) and (ii), each dyadic cube Q in 'Dh (Qo) satisfies the size condition

As both I(Q) and 1(00) are powers of 2, the latter length is either 2h +2 or 2h+3

times the former. Hence Q is one of the eubes obtained from dividing 00 ioto
2(k+2)n or 2(k+3)n dyadic pieces. Paragraph 11 thus shows that

( )
k+3

vQ = 1 +O(E) vQol for each Q E 'Dk(Qo).

We now lise the eonvergence of the approximations shown in Paragraph I to sum
up this last estimate over aH the maximal dyadic cubes Q within Qo. In fact l

Then

V(Qo)
00

L L v(Q)
h;::O QEVIr.(Qo)
00

= L E vQIQI
k;::O QEVIr.(Qo)

co

= L E (1 + O(e))k+3v<joIQI
};=o QEVIr.(Qo)

00

E(l + O(E))k+3Iflk(Qo)lvQo '
h=O

VQo =
v·Qo
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1,

The choice of the number r = 3 is nevertheless convenient J because it is just
large enough for the composite condition

Q;; rQ' and Q';; rQ

to include the case when Q and Q' are adjacent cubes of the same size. It turns
out that we need only compare the averages of a measure over such special pairs
of cubes in order to analyze its asymptotic doubling behavior. This fact follow8
directly from the next result.

Proposition 4. Assume that °< € < 4-". Suppose that

(1.10) (1 + €)-l vQ' :S vQ :S (1 + €)VQI

for all pairs Q I Q' 0/ adjacent, dyadic cubes of the same size. Then

(1.11) (1 + C€)-lvQ' :S vQ :S (1 + C€)VQI

for all (not necessarily dyadic) pairs Q, Q' of 3-regular cubes. Here C is a pur'eiy
dimensional constan!.

Proof A one-dimensional proof is given in [4]. Thc prüof that follows is a variant
of this, using a substitute construction to get around thc difficulty that functions in
higher dimensions do not havc primitives. As madified, t.he praof has three parts.

/. Dyadic approximation. Each cube in Rn is a union of non-overlapping dyadic
cubes. Ordering the dyadic cubes by size gives us a means of approximating any
cube in Rn by finite unions of dyadic cubes. More precisely, let V denote the
collection of dyadic cubes in Rn; let Q denote the '(dyadic double" of a cube Q
in V, that is, the unique cube in V containing Q and with twice its side-length.
Fix an arbitrary (not necessarily dyadic) cube Qo and let V(Qo) consist of all the
maximal dyadic cubes within QOl i.e.,

V(Qo) = {Q E V : Q ;; QoJ:J Cf:. Qo}.

Group the cubes in V(Qo) according to size: For each k = 0, 1,2, ... , set

(1.12) Vk(QO) ={Q E V(Qo) : 2-k- 1l(Qo) < I(Q):S 2- k l(Qo)}.

Finally, let

Ük(QO) = U Q and Rk(QO) = UOj(Qo).
QEV,,{Qo) j$.k

Note that each Rk(Qo) is an n-dimensional interval within Qo.
Now, not only do the intervals {RJc(Qo)} approximate Qo, but the convergence

occurs at a fixed, exponential rate; that is, the difference in measure between Qo
and Rk (Qo) decays exponentially in k. To see this, note first that each of the side
lengths of the interval RdQo) does not exceed I(Qo). On the other hand, when
k 2: 2, each of these lengths must be Iarger than (1 - 2-k+1) I (Qo). For otherwisc,,,,
at least one of the sides of Qo wou ld be langer than the corresponding side of Rk (Qo)
by at least 2- k +1l(Qo). Since Rk(Qo) is an interval, this would mean that same
dyadic cube of side-Iength at least 2-kl(Qo) lay within Qo but not within Rk(QO),
an impossibility. Thus,

!Rk(Qo)l2: ((1 - 21
-

k)I(Qo))" = (1- 21
-

k )"IQol,
so that

(1.13)
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Proof. The first elaim follows immediately from the loeal form of the preeeding
eorollary. It does not seem possible to give a direet, geometrie proof of the eonverse
on the model of Proposition 4, and we tlms give a different argument.

Let X and X be eonstant multiples of the eharacteristie function of the unit
ball and unit eube [-1,1]'\ normalized so that JX =JX= 1. Suppose that the
measure v has asymptotie doubling with respect to balls. Given a small c, use
Corollary 3 to ehoose a number p just smaller than 1 so that

(1.15) v * Xt < (1 + c)v * Xpt
for aH (positive) seales t. Suppose that p is also so elose to 1 that there is a small ,
positive r such that

(1.16) XP < (1 + c)X *Xr;

this is possible by a direct ealculation. Convert (1.16) to seale t and eombine it
wi th the previous estimate (1.15). Then

v *Xt < (1 +c) v *Xpt < (1 +c) 2
V * (X *Xr ) t .

This last term may be written at x aB

(1 + c)2 v *Xt *Xrt(X) =(1 + c)2 f (v *Xrt(Y))Xt(X - y) dy,
JBj(z)

for Bt(x) = {y E Rn : Iy - xl::; t}. Note that this has the form of an average of an
average. 10

To this point, the argument has been seale-invariant. At small scales t, however,
the first factor in the last integrand is nearly eonstant over the (bounded) region
of integration. Indeed, sinee v is assllmed to have asymptotie doubling over balls,
then

(1.17)

uniformly for all y in the ball B t (x), when t is sllffieiently sm all. 11 Sinee Jx t = 1,
inserting (1.17) into the integrand leads to the eonelusion that

IJ * xdx) < (1 + e)3 f IJ *' xdx)xdx - y) dy = (1 + e)31J * xdx),
JB1(x)

when t is small.
The reverse estimate controlling IJ *' Xt by v *' Xt follows similarly. Thus, the

averages of IJ over small balls approximate its averages over small eubes,

v * Xt .--'- --+ 1 aB t --+ 0,
IJ * Xt '

whieh is the desired result. o
Remark. The argument we have just given ean be adapted to eharacterize asymp
totie doubling in terms of eonvolution with eertain non-eompactly supported ker
nels, such as the Gaussian (see [21, Chap. 4]).

leThe idea for this method sterns from Jerison and Kenig [16]. There, truneations of the
Poisson kernel (and other kerneis with polynomial deeay) are eompared to their averagetl formed
over small scales.

11 In the terminology of §1.2, this follows from the geometrie observation that tImt the unit
ball Bdo) and the ball Br(z), for an arbitrary z in Bt{O), are an m·regular pair, for some fixed
m ;; m(r).
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Since IQol = L::;;;O IOk(Qo)L then the mean-value theorem9 and (1.13) yield the
estimate

I:~: -11 IIQol-1~(l + 0(0))k+3,nk(Qoll-ll
00

= IQol-l L IOk(Qo) 11 (1 + O(f))k+3 - 11
k;;;O

0(0)~O(Tk)(k + 3) G) k+2

The series converges and hence the ratio vQo/vQo is 1 +O(f). This completes the
proof. 0

The argument of the proposition is loeal: It still holds if both the assumption
and the eonc1usion refer only to eubes within a fixed cube, not to all cubes in Rn.
Consequently, to determine whether a measure ia asymptotically doubling, we must
only compare its average over each dyadic cube Q with that over the other 2n
"nearby" dyadic eubes of the same aize.

The definition of asymptotic doubling used above was with reference to cubes,
and-as in the case of simple doubling-we might suppose that we could equiva
lently have used balls. This supposition is correct , but its justification ia not as
straightforward as in thc earlier case, because all constants of comparability must
DOW be kept arbitrarily elose to 1. To see that asymptotic doubling (over cubes) in
fact implies a corresponding doubling condition over balls, we ean modify the last
proposition in the following manner:

Corollary 5. Under the assumptions of Proposition 4, the estimate

(1.14)

holds for all pairs B,B' of 3-regular balls.

Proof. Tbe argument is similar to that just given. Let Rk(B) be the kth dyadic
approximation of a ball B , that is, the union of all maximal dyadic cubes within B
with sides no larger than 2- k diam(B). While it is no longer true that each Rk(B)
is an n-dimensional interval, it is still true that the approximation oeeurs exponen
tially fast:

Indeed I there is a dimensional eonstant C such that

(1- C2- k )B ~ Rk(B), for alllarge k.

As each ball B is contained within a cube Qcomprising 4" dyadic subcubes, each of
which is comparable in size to B, then the rest of the proof follows analogously. 0

Corollary 6. Every measure that is asymptotically doubling with respect to cubes
also has this property over balls, and vice versa.

9The appl'Opriate estimate is (1 + t)k+ 3 - 1 :$ (k +3)(3/2)/;:+2, when 0:$ t:$ 1/2.
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\Vhen this holds, we wri te w E Bq and use the notation Bq (w) for the smallest
constant f{. Note that Bp S; Bq when p 2: q, again by Hölder's inequality.

Now 1 not on Iy is Aexll so defined, the formal Iim it of Ap 1 it is also the actual un ion
of the various Ap classes. This is indeed but one of several standard formulations
of the Aoo condition.

Characterization of A oo ' The following statements are equivolent:

(a) The weight w is in Aoo •

(b) The weight w is in Ap for some p 100yer thon 1.
(c) The weight w is in Bq for some q targe1' thon 1.
(d) There exist constants 0' and ß, both less than 1, such that

whenever E C Q and IEI/IQI :s 0', then w(E)/w(Q) ::; ß·
Here Q is an arbitrary cube, E 0 meastJrable subset, and w(E) = JE w.

(e) There exist constants C and esuch that, with the same notation os in the last
item,

w(E)/w(Q) :s C(IEI/IQI)8.
See (11 , Chap. 4] or [30, Chap. 5] for the proof of these assertions. 12 Yet another

characterization of Aco appears in §2.3 below.

Note that t he bounds Ap (W), Bq (w), and Aoo (w) are never smaller than 1, by
Hölder's (or Jensen's) inequality. When any one of these ia equal to 1, then aB are,
and the weight w must be a.e. constant. Our focus in the remainder of Section 2
is on the properties of weights w with "nearly optimal" bounds, those for which
Ap(w), Bq(w), or Aoo(w) is elose to the value 1.

2.2. Thc key estimate. The first result is fundamental in this regard. It shows
that each. Aoo weight w with small bound can oscillate only mildly, for not only
must log w have bounded mean oscillation, but the EMO norm of log w must also
be elose to the optimal value O.

Theoreln 1. lf w is an A co weight, then

1I10gwll* ::; Iog(2Aoo (w)).

Moreover,13

(2.3) q loguq, =0 ( jlgAwiwJ ), as Aoo(u) -; 1.

12The equivalence of the last four conditions is due to Coifman and Fefferman [7]; the equiv
alence of (b) and (d) WW'l found simultaneously by Muckenhoupt [24]. The characterization (a),
which we have taken W'l the definition of Aoo and used to define the quantitative bound Aoo (w),
is due to Reimann and Rychener [28, p. 52); this criterion was later found independently by
HruScev [14] and Garda-Cuerva and Rubio de Frnncia [11] and is usually attributed to these
laUer authors. The characterization in (e) is a quantitative statement of absolute continuity,
uniform at all scales, and is particlllarly useflll in PDE problems in which the dass of operators
under consideration is scale-invariant (see [19]).

13The asymptotic estimate (2.3) was conjectured by the author in an early draft of his thesis.
A proof was subsequently found by Politis [27] using the dyadic martingale characterization of A oo
in [10); shortly thereafter, the direct, measure-theoretic proof given here was found independent.ly
by the author. As noted in §2.5 below, the latter proof is valid in the general setting of probability
meW'lures.
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2. WEIGHTS WITH NEARLY OPTIMAL BOUNDS

We begin this section by recalling the fundamental aspects of the theory of
weights , as developed by Muckenhoupt , Coifman! and Fefferman. Thereafter we
focus on the situation in which the weight bounds in question approach their optimal
values.

2.1. The basic theory of weights. It is well-known that the Hardy-Littlewood
maximal operator M is bounded on the Lebesgue 8paces LV (dxL when p > 1. Here
M is defined by the rule

Mf(x)= sup 1Q11 r IJI, forjELtoc(dx).
Q: rEQ JQ

The fundamental, ((mixed-measure" question of determining for which measures dv
the operator M is bounded on LP(dv) was resolved by Muekenhoupt [23], who gave
the following characterization (see also [15] and (7]):

Weighted Maximal Theorem. Let M be the Hardy-Littlewood maximal opera
tor, v a non-negative Borel measure, and panumber larger than 1. Then M is
bounded on LP (dv) if a nd onty ij (ja intly) v is absotutely contin uous with respect to
Lebesgue measure, dv = 11) dx, and the function w satisfies the inequality

(2.1) (i w) (i w- 1/(P-1 JY-1 :5 f{, for oll cabcs Q in Rn.

Since the theorem picks out absolutely continuous measures, we choose in the
sequel largely to foeus on functions rather than measures. In general, we use the
term weight for any non-negative) locally-integrable function that is non-zero on at
least some set of positive measure. A weight w is said to be doubling or asymptotic
doubling if the assoeiated measure dv =w dx is; in this case we shall write Db(w)
for the doubling constant Db(v) and w(E) for v(E) = JE w dx.

The cri terion (2.1) is referred to as the A p condition ,and A p denotes the collee
tion of weights that satisfy it. For example l apower weight w, with w(x) = IxJo I is
in Ap if and only if -n < 0' < n(p-1); this happens exaetly when the two functions
in the integrand of (2.1) are locally integrable on Rn. We let Ap(w) denote the
smallest constant K for which (2.1) holds and refer to this as the A p bound of w.

HölderJs inequality shows that Ap ~ Aq when p:::; q, and so it seems reasonable
to consider the formal limit of the Ap condition as p -+ 00. The inner expo
nent -1/ (p - 1) in (2.1) then tends to 0 from below land thus the seeond factor
there converges (see [13 , §6.8]) to expfQ log(l/w). The formal limit of (2.1) JS

therefore the condition

(2.2) i w :5 f{ exp(i lüg w), für all cubes Q in Rn,

which is preeisely the requirement that the arithmetic and geometrie means of a
weight be uniformly cornparable at all scales. This is known as the Ace condition,
with Aco the corresponding dass and Ace(w) denoting the smallest constant K.

Relatedly, we say that a weight w satisfies areverse Hölder inequality 01 index q,
for some mlmber q larger than 1, if

(i wq) 1/q :5 Ki w, für all cubes Q in Rn.
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Jensen's inequality implies that a' :S a and bl :S b, SO that condition (2.4) of the
lemma holds for the pairs (a, b) and (al, bI) of (2.8) and (2.9) . Applied to the latter
pair, the conclusion of the lemma is then

:: =exp(il-t /)~ l+cve;

hence

i l-tl ~ cVi.
But since f 2: 0 on E and f ~ 0 on F, with lEI = IPI = IQI/2, then

2i III =i I - t I ~ cve,

as claimed in (2.7). Ta obtain the asymptotic part of the theorem, simply set
f = log W , for W an Aoo weight with small bound.

The same technique also proves the general estimate valid for a11 Aoo weights.
Indeed, replacing e by Aoo(w) - 1 in (2.6) leads to the inequality

" lieg wII. ~ tlog ( L,,(w/ - 1+ L lw - 1) ,

The right-hand side is smaller than log (2Aoo (w)), as cIaimed. This completes the
proof of the theorem. 0

Note that the square root in the theorem is the sharp power. For if w is a
funCtioll that assurnes each of the two values 1 + e and 1 - f on exactly half of the
cube Q, then

logi w- i lagw=IOg~,Je; JQ 1- f

while

i 1 1 +eIlog wl = -2 log --.e; I-t;

As e --+ 0, the first expression is O(e 2 ), while the second is O(e). A moment's
reftection shows that this calculation simply recapitulates the numerical estimate
of the lemma.

2.3. Extensions. The method of the theorem yields a number of other sharp es
timates. The next resuIt, for instance, is a quantitative version of the well-known
fact that every Aoo weight is doubling.

Corollary 3. /f w is an Aoo weight, then

Db(w) ~ 2"(Aoo (w))2n.

A1oreover,

(2.11) log DOlw) = 0 jlogAooew), as Aoo{w) -+ 1.

Proof. The argument is as in the theorem. Here, however, we can take E and F
to be any two complementary halves of Q (by measure), irrespective of a median
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The key to the proof of the theoremis the simple observation that if the ratio of
the arithmetic and geometrie means of two numbers is elose to 1, then so must be
the ratio of the two numbers.

Lemma 2. Suppose a and b are positive number's and 0 ~ c ~ 1. //

a+b r-;
(2.4) -2- ::; (1 + 6)V ab,

then

(2.5) 1 - c-/i ::; ~ ~ 1+c-/i,
for some absolute constant c.

Proof. The proof of the lemma is straightforward: If (2.4) holds for some positive
a, b, and 6 l then the quadratie formula yields

(2.6) I~ - (1 + 46 + 262 )1 ~ )(1 + 46 + 262 )2 - 1.

The radical is 0 (y'6) for small 6. 0

An alternative argument will be useful in later situations in whieh the quadratie
formula does not apply. Consider the function F implicit in (2.4), namely

F(t) = (1 + t)J(2Vt);

this is the ratio of the arithmetic and geometrie means of the numbers 1 and t.
Note that F is inereasing over 1 ~ t < 00 and is symmetrie about 1, in the sense
that F(t) = F(IJt). A calculation shows that F(1 +y'6) = 1 + 0(6) for small 6;
hence, P(t) ~ 1 + € implies that It - 11 ~ cV€. With t = aJb, this is exactly the
content of the lemma.

Proof of the theorem. To prove the asymptotic estimate (2.3) we shall show the
following implieation:

(2.7) (k eXP/) / (expk I) =1+ 0 = k 1I - mQ(f)1 '5c c,fi.

Here mQ (J) is a median value of 1 over the cube Q 1 that is, any real number A
such that the Lebesgue measure of each of the two sets {x E Q : f(x) > A} and
{x E Q : 1(x) < A} does not exceed half of the measure of the eube Q. Our
technique is to use median values to reduee the functional averages of the theorem
to the numerical averages of the lemma.

Ta prove (2.7), assume that mQ (I) = 0, adding a scalar ta 1, if necessary.
Divide Q into two halves, in each of whieh the values of 1 are on only one side of
the median; that is, ehoose two subsets E and F of Q, each with measure IQI/2,
such that E ~ {x E Q : f(x) 2: O} and F ~ {z E Q : f(x) ~ O}. Let

(2.8) a= Je exp f, b =i exp f,

(2.9) a' = expL f, b' = expt f.

Then

(2.10) (k eXP/) / (expk f) =2~ '5c 1 +0.
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value mQ(w). If f = log wand Aoo(w) = 1 + c, then for the pair (a, b) we obtain
from (2.10) and Lemma 2 that

(2.12) ~ = (!e w) / (i w) = 1 + O{V6);

for a generie Aoo weight, we likewise obtain

(2.13)

Ir Eis itself a cube within Q of half the latter's measure, then the last two estimates
imply that WQ/WE = 1 + O(Jf) or WQ/WE ~ 2Aoo (w)2, respectively. Iterating
n times (to eompare the mean of W over the eube Q with that over any eube
within Q of half its side-Iength) completes the proof. 0

Remark. Note that the last argument also gives a new proof of how (d) follows
from (a) among the characteri zations of Aoo in §2.1. For the argument in the
preceding paragraph shows exactly that if (fQ w)/(expf

Q
logw) = A, with E C Q

and IEI/IQI ~ 1/2, then w(E)/w(Q) ~ (4A 2
- 1)/(4A2

). The eharacterization (d)
of Aoo ean thus be simplified to include only subsets of a eube of half the eube's
measure (see also §2.5 below).

Consideration of median val lies aetually leads to another eriterion for Aoo .14

Theorem 4. A weight W is in Aoo if and only if its mean and median values are
unifoTinly comparable over all cubes. In addition,

2 pl S? ihg wy) 1= 0 jlogAoo{w)), as Aoo{w) --t l.

Proof We have effeetively already proven (2.14) in demOlIstrating the last result.
For suppose that the ratio of the arithmetie and geometrie means of w over Q
is 1+ E. Split Q again into two haIves E and F that straddle a median value mQ (w).
Then

WE + WF 1 + c.;i + 1
wQ = 2 ~ 2 WF ::; (1 + cJf}mQ(w);

the first inequality is from (2.12) and the second holds because w :5 mQ (w) point
wise on F. Similarly,

1- cVf + 1
wq 2:: 2 WE ~ (1- cJf)mq(w).

Together these two estimates give the asymptotic statement (2.14).
For a generic Aoo weight w the same argument, with (2.13) in place of (2.12),

yields the estimate wQ / mQ (tu) ::; 2Aoo (w) 2. Since alone the non-negativity of w
shows that the mean always dominates the median,

w 2:: 0 ==> mQ(w) :5 2WQl

then these two kinds of averages are always comparable for an Aoo weight.
Conversely, suppose that there is a constant C for which wQ ::; CmQ(w) for aH

cubes Q. Then

I{x E Q : w(x) < C- 1WQ}! :5 I{x E Q : w(x) < mQ(w)}1 ::; IQI/2.

14The characterization is not new; it appears in [32]. which cites the earlier announcement [33].
This previous work was unknown to the ßuthor when he found the (new) asymptotic esti
mate (2.14).
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If E is a measurable subset of a cube Q, then

lEI I{x E E : w(x) < C- 1wQ}1 + I{x E E: w(x) ~ C-1wQ}1
< IQI/2 + Cw(E)/wQ

(
1 w(E))

< 2" + c w(Q) lQI·

So whenever w(E)/w(Q) < 1/(4C), then IEI/IQl < 3/4; thus W is in Aoo .15 D

Since many of the standard characterizations of Aoo depend upon comparisons
of two types of integral averages, it is perhaps not surprising that we can define Aoo

by a comparison of median and mean valucs , as in the last theorem. One virtue
of the criterioD for Aoo just given, however, is that medians, unlike means, are
well-behaved under composition. In particular, if 1> is a monotone function, then

(2.15)

This observation permits a simple proof of the next result.

Corollary 5. Suppose that 1>: [0, 00) ~ [0,00) is a convex, continuous, strictly
increasing function tha t vanishes at 0. 11<Jl 0 w E A oo , theu w E A oo '

Proof By the preceding theorem, we know that there is a eonstant C such that

(2.16) (~o w)Q :S CmQ (<Il 0 w)

uniformly over alI eubes Q. SO

<Il(wQ) S; (<Ilow)Q S; CmQ(~ow) = C<Jl(mQ(w)),

by Jensen 's inequality, the assumption (2.16), and the observation (2.15), respec
tively. Now, since <Il- 1 ia concave, (fl-l(O) = 0, and (without loss of generality)
C 2: 1, then <Jl-1(Ct):::; C<I>-l(t) far all t 2: O. Hence

wQ =<Jl- 1
o <I>(wQ) :::; <I>-l(C<I>(mQ(w)) S; C<I>-l (<I>(mQ (w)) = CmQ(w).

As the converse inequali ty mQ (w) :::; 2wQ holds automatically, another application
of Theorem 4 shows that W E A oo . D

2.4. A p and BMO. By Jensen's inequality, Aco(w) :::; Ap(w). The bounds on
the mean 05cillation Illogwll", and the doubling constant Db(w) in Theorem 1 and
Corollary 3 are thus immediately valid for Ap weights.

Corollary 6. If w is an Ap weight and 1 < P < 00, then

Illogwll .. S; log(2Ap (w)) and Db(w):5 2"(Ap (w))2n.

Moreover, as Ap(w) -+ 1, then

pogdi, = o(VI Ap w)) und log Db(w) = o(VlogAp(w) )

That the latter asymptotic estimatea are sharp folIows, onee again, from con
sidering a step function with the values 1 + fand 1 - f. For p =2, Sarason [29)
obtained the weaker BM0 estimate Hlog w f1 .. = 0 ( Vlog Ap (w)) along with the
sharp estimate for the doubling constant.

I.5This ia becauae w aatiafies condition (d) in §2.1, with 0' =1/4 and ß = (4C - 1)/(4C). The
proof of the converse above i!l analogous to the (A::O) condition in {7].


