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2.5. Doubling and halving. Note that all of the above proofs are purely measure-
theoretic. They use nothing about the geometry of cubes, the symmetry of Lebesgue
measure on R™, or the uniformity of the A, or A, bounds of a weight over all cubes.
Of importance are only two facts: that Jensen’s inequality applies and that the
collection of measurable sets is rich enough for a given set to be partitionable into
two (equimeasurable) halves, in each of which the values of the weight in question
are only on one side of a median value. In order to extend the key estimates of the
previous sections to doubling measures, we isolate this partitioning property in the
form of a definition.

A measure space is halving if each set of finite measure contains a subset of
exactly half its measure. Of course, by continuity this means that it is not only
possible to divide such a set into halves, but into two pieces the ratios of whose mea-
sures is arbitrary.!” With this in mind, we can re-state the basic implication (2.7)
underlying Theorem 1, for example, in a more general form.

Proposition 8. Let (X, u) be a halving probability measure space. If f is a mea-
surable function, 0 < e <1, and

(2.18) | (/A expfdu)/(exp[\_fdp) =1+e¢,

then
(2.19) [ 1= mxai)ien < o
X

Here my ,(f) is a median value of [ over X with respect to p, and c is a universal
constant.

Proof. As indicated, the crux of the matter is the question of how to partition X
into halves £ and F on which the values of f are (respectively) no smaller and no
larger than the median. For once this is done, we can follow the proof of Theorem 1,
simply replacing @ everywhere by X and dz/|Q| by du.

Lt Y={eeX: :f(z)=mx,u(f)} and ' ={z € X : f(z) >mx,(f)}. UY
has zero measure, then the partition is evident: Take F = E' and F = X \ E.
Otherwise, u(Y) > 0 and p(E') < 1/2, while z(Y U E') > 1/2; the halving property
then allows us to add to £’ a portion of Y of measure exactly 1/2 — u(E"). a

Our main interest in this partitioning property stems from the next observation.
Lemma 9. Every doubling measure is halving.

Proof. Fix a doubling measure v and a set Y of finite measure. We can without
loss of generality assume that Y 18 contained within some large cube Q. Con-
sider g(r} = v(¥Y N rQ) as a function of r, when 0 < » < 1. This is non-decreasing,
g(0) =0, and g(1) = u(Y), so that it suffices to see that g is continuous. Were
this not the case, then ¢ would have a jump discontinuity at some rg. But then
v(Y N 6(reQ)) would be positive, violating the fact that boundaries of cubes are
sets of zero measure (see Corollary 2 in §1.4). O

7Let (X, u) be a halving measure space and suppose that Y has finite, positive measure. Let
D={j2"F:keN,j=0,1,... ,2"} be the set of all dyadic rationals in [0, 1]. By iteration there
exists an increasing family {Ys},ep of measurable subsets of ¥ such that Yo =8, Y1 =Y, and
#{Ys) = su(Y) for each 2 in D. When s is not in D, set Y, = U, ¢, repYr; then continuity insures
that u(Y,} = ap(Y'). for all s in [0, 1].
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Remark. One can obtain the correct asymptotic result for Ap by at least two other
methods. The first relies upon a simple inequality from calculus:

24 z2<e” e %, forallz€R.

Suppose that w € A;. With 2 = log(w/wg), this inequality yields

o),

fQ |log w — log(wg)[? < 1+ wq(w™")q - 2,

Hence

and so

fQ |logw — log(wgq)| < v/ As(w) — 1.
As Az(w) = 1, the radical is O(y/log Az(w})).

Alternatively, one can derive the asymptotic As results in the manner of The-
orem 1 and Corollary 3 by first analyzing the ratio of the arithmetic and har-
monic means of two numbers, in place of their arithmetic and geometric means.
The function in question (the ratio when the two numbers are 1 and t) is then
F(t) = (1 + )(1 + t7)/4; like the function in the second proof of Lemma 2, this F
satisfies the implication that F(f) = 1+ ¢ entails t = 1 + O(,/2).1®

The formal limit of the A, condition as p — 1 is the requirement that
(2.17) / w < Kessinfw
Q Q

uniformly over all cubes . This is equivalent to a weak-type bound for the Hardy-
Littlewood maximal operator M on L!(wdz), i.e., the estimate

w({z €R™ : M f(z) > A}) < CAx7! fwdz.
RD

A weight that satisfies (2.17) is said to be in the class Ay, and A;(w) likewise denotes
the smallest constant K. For such weights the corresponding sharp estimates are
slightly different.

Corollary 7. As A\(w) — 1, then
[[logw]|. = O(log A1 (w)) and log Db(w) = O(log A1(w)).
Proof. That the inequality (1+¢)/(2min(1,¢)} < (1+¢€) implies [t — 1| < cz is the

underlying numerical fact here. Applied in place of Lemma 2, this fact gives the
sharp result. O

18 This was Sarason's technique for proving the doubling estimate; he used a different method
to obtain the (non-sharp) BMO estimate.
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Consequently, all the prior results of Section 2 are automatically valid, with the
same constants, when all averages are formed (and medians taken) with respect to
a doubling measure v in place of Lebesgue measure. In particular, when

4, (w) =sgp(ﬁ /Q wdu) / (%Q)exp fq logwdu)

and the BMO, norm is given as in §1.3, then

(2.20) ||log wll, , = O(\/ log A%, (w) ), as A% (w) = L.

The results above likewise automatically hold when all averages are formed over
balls or over arbitrary intervals in R™ (the so-called “product setting”), rather than
over cubes.

2.6. Bg and BMO. The situation for B, weights (“reverse Holder weights”) is
slightly more complicated. While the sharp, asymptotic control of the doubling
constant follows by an argument analogous to that for A., above, the corresponding
dominance of the mean oscillation of log w is somewhat trickier.

Let us begin with the doubling result.

Theorem 10. Fiz any number q larger than 1. Then

(2.21) log Db(w) = O(\/ long(w)), as Bg{w) = 1.

To prove this, we once again convert a statement about functional averages to
an arithmetic one. In this case, we compare the £! and £7 means of two numbers.

Lemma 11. Suppose that a and b are positive, 0 < e <1, and 1 < g < o0. If

a¥ 4 b9 a a+b
< (1
(F2)  ca+ati

then a
1-cgVe < 7 < 1+cV,

for some constant c, dependent only on q.

Proof. Simply examine the asymptotic behavior of F(t) = 2!=1/9(1 + 9)1/9/(1 4 ¢)
near t = 1, as in the second proof of Lemma 2. O

Proof of the theorem. To prove (2.21), split a cube @ (by measure) into any two
halves, £ and F, and set

l/q 1/q
(L) = ()
E F
a :fw, b':fw.
E F

q g\ e 1/g t ’
(Z5) = (fw) < B w=BmE"
3 o 0 2

Jensen’s inequality once again gives the relations ¢’ < aand b’ < b. If Bg(w) = 1+¢,
then Lemma 11 yields a’/b’ = w(E)/w(F) = 1 + O(\/€). To complete the proof,
take E itself to be a cube within @ and iterate, as in the Ay case (Corollary 3). O

a

Then
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So much for doubling. On the other hand, we cannot expect the dominance of
the BMO norm of logw by log B;(w) to be a purely measure-theoretic, “single-
cube” estimate, as was the case for the corresponding A, and Ay results. For, on
any one cube, the By condition restricts a priori only the distribution of the large
values of w, not simultaneously that of its small values.!® Consider, for example,
the function w defined on the interval I = [0,1] by

w(z) = 1, e<z <1,
" lexp(—=1/e?) 0<=z<e.

Then f; w?/({, w)2 =14 0(g), since fw>1—¢ and f;w? < 1. On the other
hand, [, |logw — (logw);| = O(1/¢). So no uniform bound of the desired type can
follow from non-iterative calculations over a single cube,

With the help of the John-Nirenberg inequality, it is possible, however, to recover
the analogous asymptotic estimate.!®

Theorem 12. Fiz a number q larger than {. Then
(2.22) | logwl||, = 0( long(w)), as By(w) — L.

Proof. The argument has three components. First, note that a weight w is in B,
if and only if its power w9~ ! is in AY, with dv = wdz. Indeed, a calculation shows
that

As(wi™t) = (By(w))?, for dv = wda.

Second, suppose that Bg(w) = 1+¢. By Theorem 1, which holds for » in place
of Lebesgue measure, as we have noted in (2.20), then logw?~! € BMO, and

llog w9 .. = O (\/ log(1l + €)¢ )
This means that there is a constant ¢, depending only on ¢, such that

(2.23) Nog wluy < evE,

provided that ¢ is sufficiently small.

Third, recall that every B, weight w is also in Ap, for some p depending only on
q and Bg(w); in particular (cf. [30, Chap. 5, §5.1]), it is possible to choose constants
p and K larger than 1 such that Ap(w) < K whenever By(w) < 2.2° Apply this in
the customary way (see [25] or [16]} to convert the weighted BMO,, estimate (2.23)
to an unweighted BMO estimate (with respect to Lebesgue measure). That is,
fix a cube @ and let cg denote the mean value of logw over Q with respect to
the measure v, i.e., ¢g = (logw)g,,. Express 1 as the product wi/Pw= 1P for

18 As Carleson [5, p. 13] observed, the Ap condition separately restricts the first power and some
negative power of w, and thus “the large and small values of w(z) do not interact.” The point
above is that the B, condition is, by contrast, a restriction on two positive powers of a weight;
the fact that this restriction holds uniformly over all cubes leads—via the deep demonstration by
Coifman and Fefferman [7] that each B, weight also is in A, and hence in some A, class—to a
restriction on the small values of w.

9 An earlier statement of this result appears in Politis [27].

20This is the place in the proof that is not simply a measure-theoretic, single-cube estimate,
as it invokes the Calderén-Zygmund decomposition.
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the index p specified above, apply Hélder’s inequality, and use the John-Nirenberg
inequality in the form (1.5). With 1/p+ 1/p’ =1, then

1 1
— logw —colde = -———f log w — cq|w'/Pw=1/? dx
IQI/QI gw - cq] a1 [, llosw =cal

1 . 1/p 1 —o'p 1/p’
|Qj Q|lqgw—co| dv ]} Qw dz

< CpDb(w)?||log ]|, , Ap(w)'/?.

By assumption, Bq(w) = 1+¢€ < 2; by Theorem 10, the doubling constant Db(w)
is then bounded by some constant K’ = K’(g). Combine this with {2.23) and the
last estimate to obtain

ﬁf [logw — cq|dz < Cp(K')er/eKMP.
Q

Thus, || log w||, = O(\/€) when By(w) = 1 + ¢, which completes the proof. 0O

IA

Remark. Note that the estimates in this section also hold for By weights defined
with respect to an arbitrary doubling measure. Consideration of step functions
once again shows that the square root is the sharp power.

2.7. Sharp embedding results for weights. Coifman and Fefferman [7] showed
that each A., weight satisfies a reverse Holder inequality. A well-known conse-
quence of this—related to the work of Gehring [12] on quasiconformal mappings—is
the “self-improving” property of A, weights: If w is in the class Ay, then w actu-
ally belongs to Az, for some p less than p. The results in the previous section allow
us to refine the statement of this property. For if Ap(w) is near its optimal value
1, then both the smaller index § and the bound Az(w) can be taken suitably close
to 1. Likewise, an A, weight with small bound must also have By bound near the
optimal value 1, for large ¢. For general A, weights, the first explicit statement of
this result with the correct asymptotic behavior of the bounds and indices appears
in Politis [27]. The result is as follows:

Theorem 13. There ezist positive constants €9 and K, depending only on n, such
that if w € Aw and Ay (w) < 1+ £q, then both

w€ A, forp=1+ K/ logAx(w),

and
-1
we€ By, forq= (K\/ logAm(w)) .
Furthermore, both Ap(w) and By(w) are smaller than 1 + K1/ log Aco(w).

Proof. Suppose that the bound A, (w) 1s close to 1. Apply Theorem 1; then
logw € BMO and |[logw||, < k+/log A (w), for some constant k. Now use the
John-Nirenberg inequality to conclude that w belongs to a finite A, class.?! For
with ¢ and C the constants appearing in the estimate (1.4) and logw substituted
for f there, then

(2.24) f exp(r|logw — (logw)g|) <1+ C, when r =c¢/(2| logwl|],).
Q

21This was first observed, implicitly, by Moser [22]. Sarason [29] invoked the same argument
to show that log A2{w) = O(||logw|l, )}, as |jlogw||, = 0.
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If » > 1, then Holder’s inequality shows that

U < )" ()
< (,{3 er(logw—(losw)q)) (j;e*f(losw-(loswm)>
< (+C)ra+ o),

For $—1 = (1/r), we thus have an estimate for Az(w) in terms of || log ||, , namely
that

Ap(w) < (14 YN8l when =1+ (2/c)|| logwll, < 2.

We must now merely keep track of the various constants in order to convert this into
the statement of the theorem; for this the choice K = (2k/c) max(1,4log(1 + C))
suffices.

The proof of the second embedding likewise follows from the John-Nirenberg
inequality. Simply remove the absolute values from (2.24) to conclude that

fqexp (rlogw) < (14 C)yexp (r(logw)g).

Take the rth root of both sides and apply Jensen’s inequality. Then
B (w) < (14 C)#Mogul. - when 1 < r=c/(2] logw|l,).
Similar manipulations with the constants give the desired estimate. [

Since Ap(w) < Aco(w), the theorem immediately extends to A, weights with
nearly optimal bounds. We can also use Theorem 12 in place of Theorem 1 to show
the converse embedding: Each B, weight with bound close to the optimal value 1
is also in Ap, with both p and A,(w) suitably close to 1.

Corollary 14, Let g be any number larger than 1. There ezist positive constants
€0 and K, depending only on n and q, such that if w € By and By(w) < 1+ €,
then both

we€ Ap, forp=1+K,/logBg(w),

-1
wE By, fori= (Kﬁ log B,,(w)) .

Furthermore, both Ay(w) and By(w) are smaller than 1+ K1/ log By(w).

and

The last result, on the higher integrability of reverse Holder weights with small
bounds, is due to Wik [34]. By considering power weights, Politis [27] has shown
that the asymptotic behavior of the embeddings described in the theorem and its
corollary is sharp, in the sense that the square root cannot be replaced by a higher
power.

Several other variants are possible. For instance, when we consider A; weights
with nearly optimal bounds, then Corollary 7 shows that the corresponding higher
integrability result has the first power of A;(w) in place of the square root. Kin-
nunen [20] found the exact version of this last result in the product setting: a
formula for the exact higher integrability index ¢ for the finest class By to which a
given A; weight can belong, as well as a precise formula for the bound B,(w), both
in terms of A;(w).
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3. ASYMPTOTIC WEIGHT CONDITIONS

3.1. Convergence of the asymptotic conditions. Section 2 began with a list
of equivalent formulations of the A, condition. We shall now show that these
various characterizations remain equivalent when the bounds in question approach
their optimal values over small scales. In particular, although the weight classes
Ap and By are distinct for different p and g, these distinctions collapse when we
demand that the weight bounds behave optimally in the asymptotic limit. The
next theorem proves these assertions.??

Theorem 1. Let w be a weight and p, ¢ numbers larger than 1. Then the following
conditions are equivalent:

(a) limsupgio(fg w)/(exp fy logw) = 1.
(b) limsupgy,o(fq w)(fy w=He=Dyp=1 = 1,
(c) lim S“PIQI—FD(JCQ wq)”q/(fq w) = 1.
(d) For each € > 0 there ts a § > 0 such that whenever E is a measurable subset
of @, with |E| = |Q|/2 and |Q| < 4, then w(E)/w(@) < (1+¢)/2.
{e) For each € > 0 there is a § > 0 such that whenever E is a measurable subset
of @ and |Q| < 4, then w(E)/w(Q) < (1 +¢€)(|EI/IQN)'*.
() limsupg|o fo [logw — (logw)e| = 0.
An Ay weight w that satisfies any of these conditions is termed asymptotically
absolutely continuous, and we write w € A q,.

Proof. The equivalence of the first three conditions with the last is a consequence
of the local form?? of the key results in the Section 2: the dominance of || log w||,
by log As(w) and log Bg(w) in Theorems 1 and 12, and the converse dominance
relations (using the John-Nirenberg inequality) in Theorem 13.

Condition (e} follows from the validity of (c) for all finite indices ¢. Indeed, if
E C Q and wis a By weight, then Holder’s inequality shows that

(3.1) w(E)/w(Q) < By(w)(IEV/IQN V7.

When ¢ is given and Ao (w) is sufficiently close to 1, then Theorem 13 guarantees
that w is in By, with the index ¢ so large and the bound By(w) so close to 1 that
both (¢ —~1)/g > 1 — € and By(w) < 1+ ¢. The local form of this shows that (c)
implies (e).

Now (&) implies (d), and the challenge is to show that (d) is actually equivalent
to one of the other conditions in the list. The proof of this implication in the non-
asymptotic case, essentially the proof that Ay, is the union of the A, classes for
finite p, uses the Calderén-Zygmund decomposition; this decomposition, however,
does not keep the bounds which enter close to their optimal values. The key to the
proof is rather the interplay between mean and median values and especially the
good behavior of the latter under composition with monotone functions (compare
Corollary 5 in §2.3}).

%2The asymptotic conditions in the theorem are labeled to correspond to their non-asymptotic
counterpartsin §2.1. Note that the equivalence of (b) and (f) above was first shown by Sarason [29]
for p = 2; Jerison and Kenig [16] adapted Sarason’'s argument to the reverse Hilder condition (c),
for ¢ = 2. The case of arbitrary, finite indices p and g readily follows. The equivalence of these
three conditions with the other three is new.

23By this is meant that all references to supg and all seminorms such as || ||, or quantities
such as Ag (w) are understood to apply to all cubes @ within a fixed cube Qg.
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In fact, we shall now show that if w fulfills (d), then v = \/w satisfies the reverse
Holder condition (c), for the index ¢ = 2. To see this, suppose that |Q| < é and
partition @ into two halves E and F that straddle a median value mgq(w) (with
the larger values of w in F, as above). By assumption, w(F)/w(@) > (1 —¢&)/2,
so that wg < (1 — &)~'wp. Substituie v? for w and use the fact that v < mg(v)
pointwise on F to pull out one power of v. Then

(vz)Q <(1=-¢g) ' (W) r £ (1~ &) tupmg(v).

But mg(v) = /mg(w), by (2.15), and mg(w)/wg < wg/wr < (1+¢€}/(1 —¢),
by (d). Hence

(v*)g = (1+ O(e))vr/g = (1 + O(e))vgy/ (v?)g.

That is, (v?)g = (1 + O(e))(vg)?. So v satisfies (c) for ¢ = 2, as claimed. Thus v
also satisfies (f), and so does w. This completes the proof of the theorem. O

Remark. Reducing the multiplicative conditions (a)-(e) to the additive condition (f)
has several advantages. For one, it is now clear that we could have used balls rather
than cubes (without altering the class of weights in question). For another, condi-
tion (f) ties Ao as to the space VMO of functions with vanishing mean oscillation,
which was introduced by Sarason in [29]. Recall that VMO comprises all the func-
tions f in BMO for which lim S“pIQI-'UfQ |f — fol = 0. Any bounded, uniformly
continuous function on R”® is in VMO, and VMO is actually the closure of the
set of all such functions under the BMO seminorm || -1|,. The equivalence of (a)
and (f) in the prior theorem means that the logarithm of a weight is in VMO
Just in case some small positive power** of it is in Ay s One consequence of
this is that while asymptotically absolutely continuous weights cannot have jump
discontinuities, they can be unbounded; the weight w given by

w(z) = exp 1/ log* (1/]z|)
is an example, for logt |z| = max(log |z|, 0).2

3.2. An equivalence relation. Coifman and Feflerman [7] showed that the A
condition can be viewed as an equivalence relation on doubling measures. In fact,
the same is true for Ay q,, as we shall now show.

Toward this end, note first that condition (e) in the last theorem implies the
corresponding condition with the opposite bound, namely:

(e’) For each € > 0 there is a § > 0 such that whenever E is a measurable subset

of Q and |Q| < 8, then |E[/|Q| < (1 + e)(w(E)/w(Q))' ™.

24The restriction to small powers arises only from global considerations. For the asymptotic
condition (a) alone assures, for some finite p, that Ap(w) is uniformly bounded when measured over
all sufficiently small cubes; the same is thus true for the A, bound of the conjugate weight w_”’h’,
when 1/p+ 1/p’ = 1. But then the doubling bounds of w and w=P'IP are uniformly controlled
over small cubes, by Corollary 3 of §2.3, and these bounds can be combined to give a uniform A,
bound for w over all cubes within an arbitrary, given cube Qp. In the local case, therefore, we
can correctly write the equality VMO = log Aco,as-

285ee the calculations in [26] for the corresponding facts about VMO.
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Indeed, as (e) implies (b) for all p larger than 1, then (¢’) follows from the local
form of the inequality

(3.2 |B1/1Q1 < (45 (w))"” (w(B)/w(@)"".
This is the A, estimate analogous to the B, estimate (3.1).

We can use condition (d) in the prior theorem as the basis for formulating the
desired equivalence relation. Suppose that y and v are doubling measures. For any
cube @, let #,(Q) denote the collection of all “halves” of @ with respect to v, i.e.,
all subsets E of @ for which v(E) = v(Q)/2. We say that y4 < v if

(3.3) limsup sup M=1/2.

191=0 Een, (@) #(Q)

Now (3.3) insures that dp = wdv, for some weight w for which the local
A%, bounds depend only on the size of the cube under consideration. Since the
embedding results of §2.7 that underlie the proof of the prior theorem apply to
weight classes defined with respect to doubling measures in place of Lebesgue mea-
sure, then we can repeat the steps in the proof of the theorem, with dyu and dv
replacing w dz and dz, respectively, to obtain a strengthened form of (3.3) on the
model of (¢) and (€’). In particular, u < v implies that for each € > 0,

(3.4) (1-) (B /v@)™ < WE)/rQ) < (1+ ) (v(E)/v(@)' ",

provided that E is a measurable subset of @ and that the diameter of Q is sufficiently
small. From (3.4) it is clear that < is an equivalence relation.

3.3. Summary. The material here sheds new light on the nature of the difference
between the Ao, and doubling conditions (cf. [9]). To illustrate this difference, let
us consider all of the possible ways to divide a cube @ into two {equimeasurable)
halves, F and F. As noted in §2.3, a weight w is in A, just in case the mass of w
over the two halves is always comparable; that is, if and only if the ratio w(E)/w(F)
is uniformly bounded over all cubes and all such partitions. The doubling condition,
on the other hand, requires that this be true only for those special partitions in
which at least one of the two halves is itself a cube.

Proposition 4 in §1.5 and Theorem 1 in §3.1 extend this observation to the
asymptotic case. In fact, the asymptotic forms of A, and doubling arise precisely
when we further demand that the ratio w(E)/w(F)—considered in each case over
the appropriate class of “halving” partitions—uniformly approach 1 as |Q| — 0.28

3.4. Means and medians are not alone enough. Section 2.3 contained yet
another criterion for A.,, the uniform comparability of mean and median values over
all cubes. We conclude by noting that, unlike the other formulations that appear
in Theorem 1 above, this one does not lead to the class A, q, when the constant
of comparability approaches 1 over ever-smaller scales. While (2.14) insures that
means and medians do converge for A, o, weights, the example below shows how
the reverse can fail.

281q fact, it is not necessary to analyze w over all such halving partitions. For asymptotic
doubling, it actually suffices by Proposition 4 in §1.5 to consider on each cube @ only the 2"
partitions in which E ie a cube that has half the measure and a vertex in common with Q. And
for Aeo,as, one need only consider within each cube Q a single partition straddling a median value,
since any such partition makes the ratio w(E)/w(F) extremal.
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Example. Call a closed interval within [0,1] triadic if it can be written in the
form 3%, (5 + 1)37%],for k=10,1,2, ... andj=0,1, 2, ..., 3* — 1; denote the
collection of all triadic intervals by 7. On each I in 7 define the “extended” Haar
function Hj by the rule

+1 on the left third of /;
Hy = 0 on the middle third of I;
—1 on the right third of /.

Note that—in contrast to the case for the standard, dyadic Rademacher functions—
the orthogonal set {1} U {H; : I € T} does not form a complete basis for L2([0, 1]).

Next, let T be the subcollection of those triadic intervals that are not the middle
thirds of other intervals in 7. Then 7 consists of the intervals

[01 1]: [OJ%L [52’ 1], [OJ é]: [%’ %]r [%’ g]: [g’ l]v et

Construct a sequence {wg} of weights, as follows: With Tr the collection of all
intervals in T of length at least 3'~*, set wg = 1 and

(3.5) we= [J(1+H1/2), keN.
IeTe

Each weight wy has integral 1 over [0,1]. The sequence {wg} converges pointwise
a.e. to the function w = [],.7(1 + H;/2); note that the infinite product has only
finitely many factors (different than 1) at a.e. point in the unit interval. Further-
more, the convergence to w is actually in L', as {wy} is a Cauchy sequence in L'.

Indeed,
13\ A 12Vt
/'wk+1"wk|= (54'5) (5) =§(§) ,

so that if I > k, then [ |w — wy| < (2/3)*.

The limit function w is piecewise constant on the complement of the Cantor set
in [0,1]. Moreover, w has the special property that on each triadic interval I its
mean and median values agree. By the self-similarity®’ of w, it suffices to verify
this on the full unit interval alone. Since the mean value of w over [0,1] is 1, we
must show that 1 is also a median value there. To see this, we need only consider
the values of w over intervals removed in the formation of the Cantor set. Then w
assumes the value 1 on 1/3 of [0, 1], the value 3/2 on 1/9 of {0, 1], and, in general,
the value (3/2)* on (1/3)¥*! of [0,1]. Summing up, we find that w is no smaller
than 1 on a set of measure at least 1/3+1/9+-.. = 1/2. When we consider the
values (1/2)*, we likewise find that w is no larger than 1 on at least half of the unit
interval. Thus, 1 is both the mean value of w on [0, 1] and a median value there.?®

2TIn particular, the values of w, and hence its mean and median values, change by a factor
of 3/2 when we pass from one generation's left-most interval to the next. Explicitly, w(r3—%) =
(3/2)w(r3!~*) when k € N and 0 < 7 < 1. A similar statement holds when we pass to the right;
the factor 1/2 then replaces 3/2.

281n fact, 1 is the unique median value. Uniqueness requires the additional argument that the
values of w, namely producte of powers of 1/2 and 3/2, include rationals arbitrarily close to 1.
This is due to a basic number-theoretic fact on the approximability of trrational numbers (such
as { = log, 3} by rationals: For each positive integer N there are integers m and n such that
0<n <N and |§£ — (m/n)] < 1/(Nn); see, e.g., [6, Chap. 3].
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On the other hand, the ratio of the arithmetic and geometric means of w does not
approach 1 over ever-smaller (triadic) intervals, as would be the case for a weight
in A qs. For I'in T, the logarithm of this ratio (cf. [10] in the dyadic case) is

fogtur) — (ogu =~ 3 [1og(1+ %)
&

1 13 1 1
= 25 (Liog 2 4 Diog1 4 Liog 2
|1|JZ:T(3 g5 T3loBlt3 °g2>|‘]|

- 35
&

The last factor (the sum divided by |I|) is 0 for each middle-third interval I in
TA\T, butis 1+ (2/3) + (2/3)2 + - -- = 3 for each [ in 7. Thus, wy/m;(w) = 1 for
all triadic /, although the ratio defining the A, bound of w does not approach 1
as [I| = 0.

Remark. The weight w has another property worthy of note. Recall from the John-
Nirenberg inequality that a function f is in BMO if and only if

o 11— P <o
QR JQ

when p > 1. By refinements of this due to John [17] and Strémberg (31], the same
is true for any positive p.

What happens as p approaches 07 The weight w constructed above has the
property that it satisfies the limiting condition

1
(3.6) sgp exp (@ /Q log |w — wq|) < 0o

(over all triadic intervals @ = [ in [0, 1]) while not itself being in BMO. Indeed,
w assumes 1ts mean value over any triadic interval identically on the entire middle
third of that interval—this is because the products in (3.5) were formed over the
special intervals in 7T rather than over all of T—so that the left-hand side in (3.6)
vanishes when the supremum runs over all triadic /. On the other hand, examining
the scaling of w over the intervals {[0,37*]} shows that w is not in (triadic) BMO.

1t should be noted, however, that a slight modification of (3.6) does lead to a
correct characterization of BMQ. In fact, one can use the methods of [31] to show
that

f€BMO ifand onlyif supexp (L/ log* |f — fq|) < 00.
Q QI Jg

For details, see {21, Chap. 3].
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IDEAL WEIGHTS:
DOUBLING AND ABSOLUTE CONTINUITY
WITH ASYMPTOTICALLY OPTIMAL BOUNDS

MICHAEL BRIAN KOREY

ABSTRACT. Sharp relations between weight bounds (from the doubling, 4,,
and reverse Hélder conditions) and the BMO norm are obtained, when the
former are near their optimal values. In particular, the BMO norm of the log-
arithm of a weight is seen to be controlled by the square root of the logarithm
of its Aes bound. Coifman and Fefferman’s formulation [7] of the A condi-
tion as an equivalence relation on doubling measures is extended to the setting
in which all bounds become optimal over small scales.

Oh! the little more, and how much it is!
And the little less, and what worlds away/!

INTRODUCTION

This work focuses on two conditions for non-negative measures: doubling and
the scale-invariant form of absolute continuity known as the A, condition. Both
conditions restrict the rate of growth of a measure over a nested sequence of sets,
but the latter does so far more stringently. In the simplest context of intervals on
the real line, a measure is doubling when the measures of the left and right half
of each interval agree up to some fixed factor. The A, condition requires more:
Such uniform comparability must still hold whenever an interval is divided into two
sets of equal length, not just into its left and right half.> This additional require-
ment actually guarantees that the measure in question and Lebesgue measure are
mutually absolutely continuous, as Coifman and Fefferman [7] observed.

Both conditions arise often in varied contexts of mathematical analysis. In the
setting of complex analysis, for example, Beurling and Ahlfors [1] gave a criterion
for when an increasing homeomorphism ¢ — F(z) of the real line can be extended
to a quasiconformal mapping on the upper half-plane; the criterion is exactly that
dF be a doubling measure.

Harmonic analysis in non-smooth domains presents another setting. Consider
an elliptic operator in divergence-form,

Lu(z) = i: %(a;j(:)%).

f,j=1 :

1991 Mathematics Subject Classification. Primary 42B25 26D15; Secondary 26B35.

Key words and phrases. Doubling measure, bounded mean oscillation, 4o condition, reverse
Halder inequality, Muckenhoupt Ay condition, arithmetic-geometric inequality.
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!Robert Browning, cited in {13, p. ii].

2Length means here Lebesgue measure; for this simple formulation of Ao see §2.3.
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Suppose that the coefficient functions {a;;} form a real, symmetric, and strictly
positive-definite matrix, but are otherwise only bounded, measurable functions;
the pullback of the Laplacian from a starlike, Lipschitz domain about the origin to
the unit ball B yields an operator of this type. Solutions u of the classical Dirichlet
problem with continuous boundary data,

Lu=0 inAH
ulop = f € C(8B),

give rise to the so-called “harmonic measure” wy, for L, defined by the representing
formula
u{0) = fdwy,.
8B

Harmonic measure is always doubling (over surface balls on 8B) for all such el-
liptic operators, but it satisfies the stronger A, condition with respect to surface
measure o only when the Dirichlet problem can be meaningfully solved for all
boundary data in some L?(3B,do) space, not merely for continuous functions f
{see [3] and [8]). Much recent work has been devoted to finding reasonable condi-
tions on the coefficients of the operator that guarantee that this is the case (see [19]
for an overview).

The situation of interest in the present work occurs when the doubling or A, be-
havior of a measure becomes optimal in the asymptotic limit (“over small scales”}.
On the line, a measure is said to have asymptotic doubling, for example, when the
ratio of the measures of the left and right half of each interval is not only bounded,
but approaches 1 as we examine ever-smaller intervals. Optimal asymptotic behav-
ior of this type was considered by Carleson [4], in the context of quasiconformal
mappings that approach conformality at the boundary; by Sarason [29], for the
space of functions of vanishing mean oscillation; and by Jerison and Kenig [16], via
the sharp regularity for the Poisson kernel in a C'! domain. Each of these settings
motivates a portion of the present work.

The structure of this paper is as follows. The first section introduces several for-
mulations of the doubling condition; in particular, doubling is seen to be equivalent
to a multiplicative version of the continuity property for measures. The class of
asymptotically doubling measures is also studied.

Section 2 focuses on the theory of Ay weights, as developed by Muckenhoupt,
Coifman, and Fefferman, and extends this theory to the asymptotic case of weights
with bounds that approach the optimal value 1 over ever-smaller scales. A key
result is the sharp relation between the A., bound of a weight and the norm of
its logarithm in the space of functions of bounded mean oscillation (BMQ), when
both quantities are near their smallest possible values; the proof is a purely measure-
theoretic argument. This is used, in conjunction with the fundamental inequality of
John and Nirenberg [18], to obtain embedding results between the A, and reverse
Holder weight classes that keep all constants of inequality close to their optimal
values.?

Much attention is paid throughout to the precise relations between different types
of functional averages, especially between arithmetic means, geometric means, and
median values. The variety of sharp estimates developed bears fruit in allowing us

3The thesis of Politis {27] focuses on these embedding results and contains the first proof of
the sharp BMO-Aq result alluded to above.
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to show in the final section that the various classical formulations of 4., remain
equivalent when we demand optimal bounds in their respective asymptotic limits.
We use this to extend the formulation of 4., in [7] as an equivalence relation on
doubling measures to the asymptotic setting.

1. AN OVERTURE ON DOUBLING

1.1. Notation. For reference, we record here the notation that is used throughout
this work. The symbol |E| denotes the Lebesgue measure of the set E in R™. The
Lebesgue integral of the function f over E is written [, f or [ fdz; if the region
of integration is not shown, it is understood to be all of R*. When 0 < |E| < oo,
the symbol fg and the “barred” integral f f both represent the mean value of f
over E; that is, fg =5 f = (fz f)/|E|. 1 v is a Borel measure on R", then vg
likewise denotes the corresponding mean value, i.e., vg = v(E)/|E|.

An interval in R is always assumed to be closed and of finite, positive length. An
interval in R is a Cartesian product of n such intervals in Rt cubes are intervals all
of whose sides have the same length. The dyadic intervals in the line are all those
of the form [k2', (k + 1)2'], for arbitrary integers k¥ and !. Products of n dyadic
intervals of the same length constitute the collection D of all dyadic cubes in R,
Similarly, the dyadic subcubes of an arbitrary cube in R" are all those obtained by
dividing it into 2" congruent cubes of half its length, dividing each of these into 2"
congruent cubes, and so on.

The side-length of the cube @ is written I(@). The symbol m@) denotes the
m-fold dilation of @, that is, the cube with the same center as and m times the
side-length of @; the notation mB likewise indicates the ball concentric with the
ball B and having m times its radius. The diameter, interior, and closure of a set £
are abbreviated diam(E), int(E), and E, respectively. Finally, two sets are said to
be non-overlapping if the intersection of their interiors is empty.

1.2. The basics of doubling. A non-negative, locally-finite Borel measure v
on R"™ is doubling if the mean values of v over each cube and over the concen-
tric double of the cube are uniformly comparable; that is, if there is a constant C
such that for all cubes @ in R?,

1.1 C~ g < vyg < Crg.
Q = V2@ > Q

Since |2Q|/|@l= 2" and v > 0, the first equality is automatically true. What
the doubling condition asserts is rather the second inequality, which is usually
expressed by the requirement that the ratio »(2Q)/v(Q) be uniformly bounded
over all cubes. We choose the formulation (1.1}, in terms of averages, because we
shall be particularly interested in the case when the behavior of the measure v
closely resembles that of Lebesgue measure, for which the constant C can be taken
to be exactly 1. The smallest C in (1.1) is termed the doubling constant Db(v) of v.

Note that there is nothing sacred about the choice of cubes in this context.
Since the inscribed and circumscribed balls of a cube have comparable volume,
the definition could as well have been stated in terms of balls, for example. More
generally, let us say that the two sets E and F in R™ form an r-regular pair, for
some fixed number r larger than 1, if each contains a cube whose r-fold dilation
engulfs the union E U F. Repeated application of the doubling property shows
that the averages of a doubling measure over all pairs E, F' of r-regular sets are
uniformly comparable. So, for instance, the averages of a doubling measure over
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all pairs of congruent, adjacent cubes {(those with a face in common) are uniformly
comparable. The same is also true for the averages over consecutive pairs within a
sequence of similar annuli,

(2B\B), (4B\2B),...,(2*B\2*7'B), ...

where B is an arbitrary ball.

1.3. BMO in the context of doubling. As has often been observed, many clas-
sical results in harmonic analysis that were first noted for function spaces defined in
terms of Lebesgue measure continue to hold when these spaces are defined in terms
of doubling measures. Such is the case for the space BMO, and, for reference, we
state here several such results that will later be of use.

Let v be a non-negative Borel measure on R™. A locally v-integrable, real-valued
function f on R™ has bounded mean oscillation with respect to v if the quantity

1
e =310 s /Q \f = fouldv

is finite; the supremum here runs over all cubes @, and fg, denotes the aver-
age (fq Fdv)/v(Q). The set of all such functions is written BMO,,. (If v is Lebesgue
measure, then we write simply BMO and || - ||,.) Note that the class of functions is
not changed if we minimize the mean oscillation about all real constants, not just
about the mean value, for the triangle inequality shows that

1 . 1
(L.2) m/qIf—fQ.uIdVSQCIg]g;@—)LII—CIdv

on each cube Q.

All bounded functions are in BMO. The even logarithm z — log |z| is an example
of an unbounded BMO function; in fact, functions with singularities no worse than
logarithmic are paradigmatic for BMO, as the following noted result implies.

John-Nirenberg Inequality ([18]). Let v be a doubling measure and f a function
in BMO,. Then for every A > 0 and every cube @,

» ) — ox __TeA v
13)  v({zeQ:|f(e) - foul > A}) <C P(Db(uzufu.,,,) (@)

Here C' and ¢ are constants depending only on the dimension n, not on f, Q, v,
or A4

An iterative use of the Calderén-Zygmund decomposition gives a direct proof
of (1.3) with respect to Lebesgue measure; for the modifications of this necessary
for the general case of doubling measures, see [25] or [28, Chap. 2].

The estimate (1.3) has a number of important consequences. First, each BMO,
function, when raised to a sufficiently small power, is (locally) exponentially inte-

grable. In fact, if f € BMO,,, then

(1.4) [Q exp(rlf = Jou))dv < 1+C, when r = o/(2Db@)*IIl, ).

L
v(@)

4The exponent 2 of Db{v) is inessential; it arises because Db(v) was defined in terms of a cube
and its concentric double, not in terms of the dyadic double that enters in the proof.
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Second, although the mean oscillation of a function was defined above in terms
of the L! norm, the L' and L? mean oscillations of BMO functions are actually
equivalent, for all finite p larger than 1. In other words, when 1 < p < oo, then

_llp
@s) il < up( 55 ] !f—fq,ul”dV) < Cop DO/,
for all f in BMO,.

1.4. A continuity criterion. The definition of doubling in §1.2 seems in one sense
rather coarse. Suppose, for instance, that we wish to compare the mean values of
a doubling measure over two cubes of identical size that largely overlap; it appears
that we can only predict that the means lie within a factor of 2” Db(v) of one
another, since the concentric double of each cube contains the other. But as we
shall presently show, the constant of comparability actually approaches 1 as the
degree of overlap becomes total, and this property characterizes doubling.

Recalling a continuity property for general measures helps to clarify this for-
mulation of the doubling condition. Indeed, for any (closed) cube § and any
(locally-finite) measure v, continuity insures that v(rQ) converges to v(Q) as r
decreases to 1. If v is doubling, however, then this convergence of differences can
be strengthened to a convergence of ratios.®

Proposition 1. A measure v is doubling if and only if v(rQ)/v(Q) > L asr > 1,
untformly over all cubes Q). An analogous statement holds for balls.

Proof. By translation and dilation invariance, it suffices to take @ to be [—1,1]".
For k = 1,2,3,..., let Ex be the outermost annular band of width 2=* within
this cube, i.e., Ex = Q\ (rx@), when rp =1~2"%_ Our aim is to show that
v(Ex)/v(Q) = 0as k — oo, with a rate that depends only on the doubling constant
of v.

An elementary geometric argument suffices. Let (2 be the “inner half” of the
annular region Ey, e, Q = (rg+1Q) \ (r Q). This set is actually a finite union of
non-overlapping cubes of side-length 2=%~1, the 3-fold dilations of which together
cover Fy. Taking the central half of each of these cubes leads to a pairwise disjoint
collection, fully within the interior of £2;, whose 6-fold dilations cover Ej. Hence,
v(int Qx) > Ov(Ek), for some constant  less than 1 that depends only on Db(v).
Then v(Ex41) < (1 —8)v(Ey), and so v(Ey) < (1 — 0)*~1u(Q), by iteration. Since
(1 - 8)*~1 vanishes as k — co, we obtain the desired result.

The sufficiency of the criterion is straightforward, and the argument for balls is
similar. a

From this we recover the familiar fact that doubling measures vanish over the
faces of a cube (see [11, §4.2]).

Corollary 2. Boundaries of balls and cubes are null sets for all doubling measures.

Formulated in the language of convolutions, the doubling condition (1.1) becomes
the requirement that

(1.6) Clvsxy Svaxa < Crxyxy,

uniformly for all positive . Here y is the characteristic function of the unit
cube [—1,1]" or of the unit ball, y; is the mass-preserving dilation of x to scale ¢

5This is implicit in Buckley [2].
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(i.e., x:(x) =t "x(z/t)), and the functional inequality (1.6) is understood to hold
uniformly over all of the underlying domain R™.® The previous proposition then
implies that small dilations and translations of the averaging kernel x have a negli-
gible effect on the averages of a doubling measure. With 7% denoting the operator
of translation by A, we can express this fact as follows:

Corollary 3. Suppose v is doubling. Then for each € > 0, there are constants
po = po(Db{(v),e) > 1 and Ao = Ao(Db(v),€) > 0 such that the estimates

(1.7) (I+e)y  wrxe<vrxu <(1+ev*x:
and
(1.8) (1+€)_1u*xtSV*(TAx)tS(l—ke)u*xt

hold uniformly for positive t, whenever pg~! < p < pg and A € R satisfies |A| < Aq.
Conversely, if there exists a single p # 1 and a single positive £ such that (1.7) holds
uniformly for positive t, then the measure v is doubling.”

1.5. Asymptotic doubling. The various characterizations of doubling in the
prior section are scale-invariant. What happens, however, if we demand of a mea-
sure that its doubling behavior improves over finer scales? The optimal improve-
ment in this regard would be for the doubling constant to approach 1 over smaller
and smaller scales, and this is exactly the condition we now examine,

A doubling measure v is asymptotically doubling if the averages of v over every
pair @, @' of sufficiently small, 3-regular cubes agree up to a factor arbitrarily close
to 1. That is, for every € > 0, there is a § > 0 such that

(1.9) (L+e)tvg <vg < (1+¢€)vg,

whenever the three conditions @ C 3@, Q' C 3@}, and max(1(@),1(Q’')) < § jointly
hold.

Though this definition requires that v closely resemble Lebesgue measure over
small scales, such a v can still be purely singular with respect to Lebesgue measure,
as Carleson showed in [4] by means of modified Riesz products. The Ay, condition,
a criterion that guarantees absolute continuity and is thus stronger than doubling,
will be the focus of attention beginning in the next section.

The choice of the number 3 in the above definition was, of course, arbitrary; by
iteration, we could just as well have considered pairs of r-regular cubes, for any
other fixed r larger than 1. Thus, in terms of convolution with the characteristic
function of the unit cube, a doubling measure v is asymptotically doubling if, for
each given, fired range of dilation and translation factors, say 1/2 < p <2 and
JA] €1, the estimates (1.7) and (1.8) together hold uniformly for all sufficiently
small, positive .8 For a generic doubling measure, by contrast, Corollary 3 asserts
that these estimates hold only over some range py~! < p < po and [A| € Ag, where
po and Ag depend on the doubling constant of v.

8This will be a standing assumption for such convolution inequalities in the sequel.

"Likewise, if for some positive ¢, the condition (1.8) holds uniformly over all positive ¢ and
all A in a neighborhood of the origin, then v is doubling. How to formulate a similarly strong
converse in terms of only finitely many discrete translationsis not immediately apparent, although
Proposition 4 below gives a partial answer,

8For definiteness, the convolution kernel x is in this cage taken to be the characteristic function
of the unit cube,
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II. Doubling over dyadic neighbors. By assumption, the averages of v over two
dyadic cubes of the same size that share a common face agree up to the factor 1 + €.
It is easy to see that a similar result holds for same-sized dyadic cubes that have
(at least) a vertex in common. Indeed, any two such dyadic cubes @ and '
are connectable by a chain @,Q1,...,Qm, Q' of at most n 4 1 congruent, dyadic
cubes, each of which is adjacent to its immediate neighbors in the chain. Hence,
uq/qu (1+&)" =14 0Of(e), for all such pairs Q, Q'.

I11. Spectal enveloping cubes. Returning to the problem at hand, let Qg be a fixed
(arbitrary) cube and let Q)p denote any cube with following properties:

(i) Qo C Qo
(1) 4(Qa) < (Qo) < 81(Qu)
(iii) Qo is the union of 4" dyadic cubes of side length 1{Qo)/4.

Such a cube Qo, while not necessarily dyadic, contains (g and can be decomposed
into a finite union of dyadic pieces, each of which is approximately the size of Q.
Any such cube Qq is termed a special enveloping cube of Qo. Since each 3-regular
pair of cubes has such a special enveloping cube in common, to prove the proposition
it suffices to show that the mean values of v over (Jp and any such enveloping
cube Qq agree to within a factor of 1+ O(e).

By (1.12) and (ii), each dyadic cube @ in D, (Qo) satisfies the size condition

2+2(Q) < 1(Qo) < 2TU(Q)

As both I{Q) and I(Q¢) are powers of 2, the latter length is either 2¥¥2 or 2k+3
times the former. Hence @ is one of the cubes obtained from dividing Qg into
2(k+2)n op 2(k+3)n dyadic pieces. Paragraph Il thus shows that

v = (1+ 0(5))k+3u¢°, for each Q € Dy (Qo).

We now use the convergence of the approximations shown in Paragraph I to sum
up this last estimate over all the maximal dyadic cubes @ within Q. In fact,

f} POEEZ()

k=0 QeDx(Qo)
oo

= Z Y. velQl

0 QeDx(Qo)

- i S (1406) g, 1@l
2,0+

v(Qo)

QEDL(Qo)

€)) 1% (Qo) v,

Then

YQo _ v(Qo) _ 1 b k43
v = TQolvg, ol (14 0() 100l
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The choice of the number r = 3 is nevertheless convenient, because it is just
large enough for the composite condition

QcrQ and Q' CrQ
to include the case when @ and @’ are adjacent cubes of the same size. It turns
out that we need only compare the averages of a measure over such special pairs

of cubes in order to analyze its asymptotic doubling behavior. This fact follows
directly from the next resuls.

Proposition 4. Assume that 0 < € < 47", Suppose that

(1.10) (1+€) lvg <vg < (L +¢€)vgr
for all pairs Q, Q' of adjacent, dyadic cubes of the same size. Then
(1.11) (1+C€)—1VQf <vg < (14 Ce)vg

for all (not necessarily dyadic) pairs @, Q' of 3-reqular cubes. Here C is a purely
dimensional constant.

Proof. A one-dimensional proof is given in [4]. The proof that follows is a variant
of this, using a substitute construction to get around the difficulty that functions in
higher dimensions do not have primitives. As modified, the proof has three parts.

I. Dyadic approzimation. Each cube in R™ is a union of non-overlapping dyadic
cubes. Ordering the dyadic cubes by size gives us a means of approximating any
cube in R" by finite unions of dyadic cubes. More precisely, let D denote the
collection of dyadic cubes in R"; let @@ denote the “dyadic double” of a cube @
in D, that is, the unique cube in D containing @ and with twice its side-length.
Fix an arbitrary (not necessarily dyadic) cube (g and let P{()q) consist of all the
maximal dyadic cubes within Gy, i.e.,

D(Q)={Q€EDP:QCQQZ Q).
Group the cubes in DP(Qy) according to size: For each £ =0, 1,2, ..., set

(112)  Dk(Qo) = {Q € D(Qo) : 27" 1(Qo) < U(Q) < 27¥1(Q0)}.
Finally, let
QU(Qo)= |J @ and Ri(Qo)= | 2(Qo).
QEDL{Qo) sk
Note that each Rg(Qo) is an n-dimensional interval within Qo.

Now, not only do the intervals {Rx(Qo)} approximate Qg, but the convergence
occurs at a fixed, exponential rate; that is, the difference in measure between Qg
and Ri(Qq) decays exponentially in k. To see this, note first that each of the side-
lengths of the interval Rg(Qo) does not exceed {(Qg). On the other hand, when
k > 2, each of these lengths must be larger than (1 — 27¥+1)1(Q,). For otherwise,,,,
at least one of the sides of Jy would be longer than the corresponding side of R (o)
by at least 2-%+11(Qo). Since Rx(Qo) is an interval, this would mean that some
dyadic cube of side-length at least 27%{(Qq) lay within Qp but not within Rx(Qo),
an impossibility. Thus,

[Re(Qa)l > (1= 2'7%)(Q0))" = (1 - 2'7%)"1Qol,
so that
(1.13) 1Qo \ Re(Qo)! = O(27%)|Qol, as k = co.
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Proof. The first claim follows immediately from the local form of the preceding
corollary. It does not seem possible to give a direct, geometric proof of the converse
on the model of Proposition 4, and we thus give a different argument.

Let x and y be constant multiples of the characteristic function of the unit
ball and unit cube [-1,1]?, normalized so that [x = [X = 1. Suppose that the
measure ¥ has asymptotic doubling with respect to balls. Given a small g, use
Corollary 3 to choose a number p just smaller than 1 so that

(1.15) vy < (l4+e)v*Xp

for all {positive) scales t. Suppose that p is also so close to 1 that there is a small,
positive r such that

(1.16) Xo < (L4 €)X * Xr;

this is possible by a direct calculation. Convert (1.16) to scale ¢t and combine it
with the previous estimate (1.15). Then

v < (L+e)vXp < (1+)%v* (X *xr),-

This last term may be written at ¢ as

(14 2Pt xnle) = (14+8)? |

(v * xr:(y)) Xz — y) dy,
By(z)

for Bi(z) = {y € R* : |y — 2| < t}. Note that this has the form of an average of an
average.1?

To this point, the argument has been scale-invariant. At small scales ¢, however,
the first factor in the last integrand is nearly constant over the {bounded) region
of integration. Indeed, since v is assumed to have asymptotic doubling over balls,
then

(1.17) v xre(y) < (1+€)v* x:(2)

uniformly for all y in the ball B;(z), when ¢ is sufficiently small.!! Since [¥, = 1,
inserting (1.17) into the integrand leads to the conclusion that

i@ <U+ef [ vaxerie -y dy= 0+ o)
B;(J:)
when t is small.
The reverse estimate controlling v * x; by v x ¥ follows similarly. Thus, the
averages of © over small balls approximate its averages over small cubes,
Y * Xi

vx X
which 1s the desired result. O

—>1,' ast — 0,

Remark. The argument we have just given can be adapted to characterize asymp-
totic doubling in terms of convolution with certain non-compactly supported ker-
nels, such as the Gaussian (see [21, Chap. 4]).

10The idea for this method stems from Jerison and Kenig [16]. There, truncations of the
Poisson kernel (and other kernels with polynomial decay) are compared to their averages formed
over small scales,

Ny the terminoclogy of §1.2, this follows from the geometric observation that that the unit
ball B1({0) and the ball B, (z), for an arbitrary z in By(0), are an m-regular pair, for some fixed
m = m(r).
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Since |Qo| = Yoo 9% (Qo)|, then the mean-value theorem® and (1.13) yield the
estimate

‘521_4 B ’lQoI'IZ(l+0(€))k+3!9k(Q0)l—1‘
0 k=0
= 1ol Y 1%(Qo)] |1+ 0(e))*** ~ 1]
k=0
00 k+2
= oY oMK+ () .
930w hie+)(3)

The series converges and hence the ratio vg, /vy is 1+ O(e). This completes the
proof. 0

The argument of the proposition is local: It still holds if both the assumption
and the conclusion refer only to cubes within a fixed cube, not to all cubes in R"”.
Consequently, to determine whether a measure is asymptotically doubling, we must
only compare its average over each dyadic cube @ with that over the other 2n
“nearby” dyadic cubes of the same size.

The definition of asymptotic doubling used above was with reference to cubes,
and—as in the case of simple doubling—we might suppose that we could equiva-
lently have used balls. This supposition is correct, but its justification is not as
straightforward as in the earlier case, because all constants of comparability must
now be kept arbitrarily close to 1. To see that asymptotic doubling (over cubes) in
fact immplies a corresponding doubling condition over balls, we can modify the last
proposition in the following manner:

Corollary 5. Under the assumptions of Proposttion 4, the estimate
(1.14) (14+Ce)~'vp <vpg < (1+Ce)vp:
holds for all pairs B, B’ of 3-regular balls.

Proof. The argument is similar to that just given. Let Rix(B) be the kth dyadic
approximation of a ball B, that is, the union of all maximal dyadic cubes within B
with sides no larger than 2~* diam(B). While it is no longer true that each Ry (B)
is an n-dimensional interval, it is still true that the approximation occurs exponen-
tially fast:

B\ Rx(B)| = 0(27%)|B|, ask — co.
Indeed, there is a dimensional constant C such that

1—-C2°%)B C Ry(B), for all large k.
3

As each ball B is contained within a cube @ comprising 4" dyadic subcubes, each of
which is comparable in size to B, then the rest of the proof follows analogously. O

Corollary 6. Every measure that 13 asymptotically doubling with respect to cubes
also has this property over balls, and vice versa.

9The appropriate estimate is (1 + ¢)¥+3 — 1 < (k 4 3}(3/2)**?, when 0 < t < 1/2.
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When this holds, we write w € By and use the notation Bg{w) for the smallest
constant . Note that B, C B, when p > ¢, again by Holder’s inequality.

Now, not only is Ay, so defined, the formal limit of Ay, it is also the actual union
of the various Ay classes. This is indeed but one of several standard formulations
of the Ay condition.

Characterization of Ae,. The following statements are equivalent:
(a) The weight w is in Ae.
(b) The weight w is in Ap for some p larger than 1.
(c) The weight w is in By for some ¢ larger than 1.
(d) There exist constants a and 3, both less than 1, such that

whenever £ C Q and |E|/|Q| < a, then w(E)/w(Q) < 8.

Here Q is an arbitrary cube, E a measurable subset, and w(E) = [p w.
(e) There exist constants C and 8 such that, with the same notation as in the last
item,

w(E)/w(Q) < C(EVIQ)’.

See [11, Chap. 4] or [30, Chap. 5} for the proof of these assertions.? Yet another
characterization of A., appears in §2.3 below,

Note that the bounds Ap(w), By(w), and A (w) are never smaller than 1, by
Hélder’s {(or Jensen’s) inequality. When any one of these is equal to 1, then all are,
and the weight w must be a.e. constant. Our focus in the remainder of Section 2
is on the properties of weights w with “nearly optimal” bounds, those for which
Ap(w), Bg(w), or Aeo(w) is close to the value 1.

2.2. The key estimate. The first result is fundamental in this regard. It shows
that each Ao weight w with small bound can oscillate only mildly, for not only
must log w have bounded mean oscillation, but the BMO norm of log w must also
be close to the optimal value 0.

Theorem 1. If w is an Ay weight, then

(| tog w]|, < log(24c0(w)).

Moreover, '3

(2.3) || logw||, = O( longo(w)>, as Ago (w) = 1.

12The equivalence of the last four conditions is due to Goifman and Fefferman [7]; the equiv-
alence of (b) and (d) was found simultaneously by Muckenhoupt [24]. The characterization (a}),
which we have taken as the definition of As and used to define the quantitative bound Ao (W),
is due to Reimann and Rychener [28, p. 52]; this criterion was later found independently by
Hrus¢ev [14) and Garcia-Cuerva and Rubio de Francia [11] and is usually attributed to these
latter authors. The characterization in (e) is a quantitative statement of absolute continuity,
uniform at all scales, and is particularly useful in PDE problems in which the class of operators
under consideration is scale-invariant (see [19]).

13The asymptotic estimate (2.3) was conjectured by the author in an early draft of his thesis.
A proof was subsequently found by Politis [27] using the dyadic martingale characterization of Ao
in [10); shortly thereafter, the direct, measure-theoretic proof given here was found independently
by the author. As noted in §2.5 below, the latter proof is valid in the general setting of probability
measures.
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2. WEIGHTS WITH NEARLY OPTIMAL BOUNDS

We begin this section by recalling the fundamental aspects of the theory of
weights, as developed by Muckenhoupt, Coifman, and Fefferman. Thereafter we
focus on the situation in which the weight bounds in question approach their optimal
values.

2.1. The basic theory of weights. It is well-known that the Hardy-Littlewood
maximal operator M is bounded on the Lebesgue spaces LP(dz), when p > 1. Here
M 1is defined by the rule

1

M@ = sup o [ 111, for f € Li(do)
Q:zeQ lQl Q

The fundamental, “mixed-measure” question of determining for which measures dv

the operator M is bounded on L?(dr) was resolved by Muckenhoupt [23], who gave

the following characterization (see also [15] and [7]):

Weighted Maximal Theorem. Let M be the Hardy-Littlewood mazimal opera-
tor, v a non-negative Borel measure, and p a number larger than 1. Then M is
bounded on LP(dv) if and only if (jointly) v is absolutely continuous with respect to
Lebesgue measure, dv = wdz, and the function w satisfies the inequality

p=1
(2.1) (f w) (][ w'lf(p‘1)> < K, forall cubes Q@ in R".
q Q

Since the theorem picks out absolutely continuous measures, we choose in the
sequel largely to focus on functions rather than measures. In general, we use the
term tweight for any non-negative, locally-integrable function that is non-zero on at
least some set of positive measure. A weight w is said to be doubling or asymptotic
doubling if the associated measure dv = wdz is; in this case we shall write Db(w)
for the doubling constant Db(v) and w(E) for v(E) = [ wdz.

The criterion (2.1) is referred to as the A, condition, and A, denotes the collec-
tion of weights that satisfy it. For example, a power weight w, with w(z) = [z|*, is
in Ap if and only if —n < o < n(p—1); this happens exactly when the two functions
in the integrand of (2.1) are locally integrable on R™. We let Ay(w) denote the
smallest constant K for which (2.1) holds and refer to this as the A, bound of w.

Holder’s inequality shows that A, C A; when p < g, and so it seems reasonable
to consider the formal limit of the A, condition as p = oo. The inner expo-
nent —1/(p— 1) in (2.1) then tends to 0 from below, and thus the second factor
there converges (see [13, §6.8]) to expr log(l/w). The formal limit of (2.1} is
therefore the condition

(2.2) f w < Kexp (] log w), for all cubes @ in R,
qQ Q

which is precisely the requirement that the arithmetic and geometric means of a
weight be uniformly comparable at all scales. This is known as the A, condition,
with Ay the corresponding class and Ay, (w) denoting the smallest constant X,

Relatedly, we say that a weight w satisfies a reverse Hélder inequality of inder g,
for some number ¢ larger than 1, if

1/q
(f w‘?) < Kj w, for all cubes @ in R"™.
Q Q
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Jensen’s inequality implies that ¢’ < @ and &' < b, so that condition (2.4) of the
lemma holds for the pairs {a, b) and (a’, ') of (2.8) and (2.9) . Applied to the latter
pair, the conclusion of the lemma is then

%:exp(-/;f—f}:‘f)sl+ﬂ\/g;
fr-{r<e

But since f > 0on E and f <0 on F, with |E| = |F| = |@|/2, then

2fq|f|=fEf—fFfSc~/E,

as claimed in (2.7). To obtain the asymptotic part of the theorem, simply set
f =logw, for w an A, weight with small bound.

The same technique also proves the general estimate valid for all A, weights.
Indeed, replacing € by Aeo{w) — 1 in (2.6) leads to the inequality

hence

(| log w]l. < %log(2Aw(w)2 1+ 240 ()1 Aco (w)? — 1) .

The right-hand side is smaller than log(2Ac(w)), as claimed. This completes the
proof of the theorem. O

Note that the square root in the theorem is the sharp power. For if w is a
function that assumes each of the two values 1+ ¢ and 1 — £ on exactly half of the
cube @, then

1
log:/ w—f logw = log ,
Q Q V1-g?

f |log w| = log 1

As ¢ = 0, the first expression is O(e?), while the second is O(¢). A moment’s
reflection shows that this calculation simply recapitulates the numerical estimate
of the lemma.

while

2.3. Extensions. The method of the theorem yields a number of other sharp es-
timates. The next result, for instance, is a quantitative version of the well-known
fact that every Ao, weight is doubling.

Corollary 3. If w i3 an A. weight, then
Db(w) < 2" (Aco (w))™".

Moreover,

(2.11) log Db(w) = O( longo(w)), as Aeo(w) = 1.

Proof. The argument is as in the theorem. Here, however, we can take £ and F
to be any two complementary halves of @ (by measure), irrespective of a median
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The key to the proof of the theoremis the simple observation that if the ratio of
the arithmetic and geometric means of two numbers is close to 1, then so must be
the ratio of the two numbers.

Lemma 2. Suppose a and b are positive numbers and 0 < ¢ < 1. If
a+b

(2.4) o S (1+ €)Vab,
then
(2.5) 1—cﬁ§%§l+c\/§,

for some absolute constant c.

Proof. The proof of the lemma is straightforward: If (2.4) holds for some positive
a, b, and ¢, then the quadratic formula yields

(2.6) |%-(1+46+2€2)|5\/(1+4e+252)2—1.
The radical is O(+/€) for small ¢. O

An alternative argument will be useful in later situations in which the quadratic
formula does not apply. Consider the function F implicit in {2.4), namely

F(t) = (1+)/(2V1);
this is the ratio of the arithmetic and geometric means of the numbers 1 and .
Note that F is increasing over 1 <t < oo and is symmetric about 1, in the sense
that F(t) = F(1/t). A calculation shows that F(1++/€) = 1 + O(g) for small ¢;
hence, F(t) <1+ ¢ implies that [t — 1] < ¢/E. With t = a/b, this is exactly the
content of the lemma.

Proof of the theorem. To prove the asymptotic estimate (2.3) we shall show the
following implication:

(2.7 (f()pf)/(p]gf) =1+6=>]Qlf—mo(f)lsc\/3-

Here mq(f) is a median value of f over the cube @, that is, any real number A
such that the Lebesgue measure of each of the two sets {z € @ : f(z) > A} and
{z € @ : f(z) < A} does not exceed half of the measure of the cube Q. OQur
technique is to use median values to reduce the functional averages of the theorem
to the numerical averages of the lemma.

To prove (2.7), assume that mg(f) = 0, adding a scalar to f, if necessary.
Divide @ into two halves, in each of which the values of f are on only one side of
the median; that is, choose two subsets £ and F of Q, each with measure |Q|/2,
such that EC {z € Q: f(z) >0} and FC{z € Q: f(z) < 0}. Let

(2.8) a =] exp f, b :jl;exp f,

E
(2.9) a = exp]( f, b = expf f.
E F
Then

(2.10) (j; expf)/(expj;2 f) = ;/-:,_;, <l+e.
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value mqg(w). If f =logw and A (w) =1+ ¢, then for the pair (a, ) we obtain
from (2.10) and Lemma 2 that

() ()

for a generic A, weight, we likewise obtain

(2.13) (A (w)? =1)"1 < (fg w)/(fF w) < 4A(w)? - 1.

If F is itself a cube within @ of half the latter’s measure, then the last two estimates
imply that wg/wg = 1+ O(VE) or wg/wg < 24, (w)?, tespectively. lterating
n times (to compare the mean of w over the cube @ with that over any cube
within @ of half its side-length) completes the proof. O

Remark. Note that the last argument also gives a new proof of how (d) follows
from (a) among the characterizations of Ae in §2.1. For the argument in the
preceding paragraph shows exactly that if (f, w)/(expfy logw) = 4, with £ C Q
and |E|/|Q| < 1/2, then w(E)/w(Q) < (4A% — 1)/(4A?). The characterization (d)
of As can thus be simplified to include only subsets of a cube of half the cube’s
measure (see also §2.5 below).

Consideration of median values actually leads to another criterion for A.,.1*
Theorem 4. A weight w is in Ay, if and only if its mean and median values are
uniformly comparable over all cubes. In addition,

(2.14) sup
Q

logﬂz—(w—)‘ = O( logAm(w)), as Aeo(w) — 1.
Q

Proof. We have effectively already proven (2.14) in demonstrating the last result.
For suppose that the ratio of the arithmetic and geometric means of w over @
is 1 + €. Split Q again into two halves F and F that straddle a median value mq (w).
Then

wq = wg +wr 1+c\2/E+1

5 < wr < (1 +eve)mg(w);

the first inequality is from (2.12) and the second holds because w < mg(w) point-

wise on F'. Similarly,

1—cye+1
2

wg > wg > (1 - cv/e)mg(w).

Together these two estimates give the asymptotic statement (2.14).

For a generic Ao, weight w the same argument, with (2.13) in place of (2.12),
yields the estimate wg/mq(w) < 2As(w)?. Since alone the non-negativity of w
shows that the mean always dominates the median, '

w 2 0= mq(w) < 2wq,

then these two kinds of averages are always comparable for an A, weight.
Conversely, suppose that there is a constant C for which wg < Cmg(w) for all
cubes . Then

{z € @ w(z) < CTlwol < {z € Q : w(z) < mq(w)} < |QI/2.

14The characterization is not new; it appears in [32], which cites the earlier announcement [33].
This previous work was unknown to the author when he found the (new) asymptotic esti-
mate (2.14).
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If £ is a measurable subset of a cube @, then

|E] = Hz€FE:w(x)<Cluwg}+{z € E:uw(z)>C  wg}
< 1Ql/2+ Cuw(E)/wq

5+ckig)a

@)
1/(4C), then |E|/|Q} < 3/4; thus w is in Ay.!° O

IA

So whenever w(E)/w(Q) <

Since many of the standard characterizations of A., depend upon comparisons
of two types of integral averages, it is perhaps not surprising that we can define A
by a comparison of median and mean values, as in the last theorem. One virtue
of the criterion for Ae just given, however, is that medians, unlike means, are
well-behaved under composition. In particular, if ® is a monotone function, then

{2.15) mg(®ew) = d(mg(w)).
This observation permits a simple proof of the next result.

Corollary 5. Suppose that &: [0,00) — [0,00) is a convez, continuous, strictly
increasing function that vanishes at 0. If ®ew € Ay, then w € Ay,.

Proof. By the preceding theorem, we know that there is a constant C such that
(2.16) (Pow)g < Cmg(Pow)
uniformly over all cubes Q. So

®(we) < (Pow)q < Cmo(®ew) = CB(mg(w)),

by Jensen’s inequality, the assumption (2.16), and the observation (2.15), respec-
tively. Now, since ®~! is concave, ®~1(0) = 0, and (without loss of generality)
C > 1, then @1(Ct) < CP~1(¢) for all t > 0. Hence

wg =& e B(wg) < 7 (CB(mg(w)) < CO~(®(meo(w)) = Cmg(w).

As the converse inequality mq(w) < 2wq holds automatically, another application
of Theorem 4 shows that w € As,. O

2.4. A, and BMO. By Jensen’s inequality, Aw(w) < Ap(w). The bounds on
the mean oscillation || logw||, and the doubling constant Db(w) in Theorem 1 and
Corollary 3 are thus immediately valid for A, weights.

Corollary 6. If w is an A, weight and 1 < p < oo, then
llogwll, < log(24,(w)) and Db(w) < 2" (4,(w))™".

Moreover, as Ap(w) — 1, then

ogull = 0(\/log An(w) ) and tog Db(w) = 0(/log Ay(w) ).

That the latter asymptotic estimates are sharp follows, once again, from con-
sidering a step function with the values 1+ £ and 1 —¢. For p = 2, Sarason [29]
obtained the weaker BMO estimate ||logw||, = O({/log Ap(w)) along with the
sharp estimate for the doubling constant.

15This is because w satisfies condition (d) in §2.1, with o = 1/4 and 8 = (4C — 1)/(4C). The
proof of the converse above is analogous to the (AL,) condition in {7].



