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Abstract

We consider here generalizations of Chern-Simons classes and related algebraic problems. We
describe a new class of algebras whose elements contain Chern and generalized Chern-Simons
classes. There is a Poisson bracket in these algebras similar to [Kon]. Using this bracket we
construct a graded Lie algebra containing differential forms representing Chern and Chern-Simons
classes. We develop an algebraic model for the action of the gauge group and describe how elements
of algebra corresponding to the secondary characteristic classes change under this action. At the
end we give new explicit formulas for cocycles on a gauge group and for corresponding cocycles
on the Lie algebra constructed using our explicit formulas for generalized Chern-Simons classes

given in the Appendix.

There are several approaches to combinatorial formulas for characteristic classes. These
approaches are due to Gelfand-Gabrielov-Losik, MacPherson, Patodi, Ranicki-Sullivan,
Cheeger, Brylinski, and others. One of the main problems in the field is the problem of

explicit description of secondary characteristic classes and difference cocycles (cf. Chern-
Simons [ChS], Cheeger, Bott-Shulman-Stasheff [BSS], Youssin [You], and others).

One of the other main problems related to combinatorial formulas for characteristic classes
is the problem of writing topological invariants using local data given as fields of geometric
objects. For Chern classes, curvature enables us to write these formulas using ordinary
Chern-Weil theory.

One of the approaches to the local formulas for topological invariants uses formal power
series of geometric objects and construction of the universal field and variational bicomplex
(see Gelfand-Kazhdan-Fuks {GKF]).

Let us illustrate the problem of writing topological invariants using local data. Suppose
we have an oriented graph consisting of points and arrows. To each vertex we associate a
complex vector space E;, and to each arrow we associate a linear mapping s;;, as in the
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picture below. We suppose that the graph is parametrized by a manifold X; this means
that E;(x) is a vector bundle and s;;(z) is a bundle map.

It is important to describe “Chern classes” and “secondary Chern classes” for such objects
using local differential geometry. For a graph consisting of one vertex, the Chern-Weil
theory gives ordinary Chern classes.

Consider first a graph with one vertex and a loop. The vertex corresponds to an n-
dimensional vector bundle over a manifold X and the loop corresponds to an automorphism
o of the bundle. In topological K-theory, this data (the bundle and its automorphism)
defines an element of I1(X). We can write in this case the usual Chern class for Iy (X).
For the trivial bundle, this class is given by

—1)" m - 1)! -1 2m—1
tr cdo}m T,
(2m — 1)! (o %)

chm(o) = (

This class can also be defined as a secondary Chern class associated to the two connections
V =dand V° = d + 0~ !do. Locally, o is a nondegenerate n x n matrix of functions of
z € X defining the automorphism o.

Let us now return to the problem of explicit calculation of Chern-Simons classes and
illustrate it by a simple example.

It 1s well known that the Chern-Simons class constructed from two connections wg and w;
has the form

2 2
chy(wo,wr) = =tr((wodwo + gwg) — (widwy + zwi) + d(wow)),

3

o =

where the w; are matrices of 1-forms which define the connections. For higher secondary
classes, the calculations give longer polynomials. For example,

Ché((.do,wl) = %tr[(%ag + %aobobg + %agbo)— (éa? + %alblbl -+ %'aillb])-l-
§d((ayao — apar)(bo + b1) — (ak + a? + Lapar)aow)),

where a; = w; and b; = dw;.

Thus, even in the simplest case for “normal” secondary characteristic classes (i.e. for a
graph consisting of one point and zero arrows), formulas are lengthy and we have to handle
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the combinatorics of long noncommutative expressions. We introduce here the algebraic
language that allows us to do this easily.

The constriuction of the algebra of Chern classes. We construct first a graded free
associative algebra A generated by elements a; of degree 1 and elements b; of degree 2
(1 =1,...,N), together with a differential d, such that da; = b;, db; = 0. Then we consider
the space V of cyclic words of A (i.e. a complex vector space with a basis consisting of
equivalence classes of monomials, where two monomials obtained by cyclic permutation
are considered to be the same up to a sign). Strictly speaking, V is the factor space of A by
the subspace {PQ — (—1)!”lIRIQ P} spanned by the graded commutators of all monomials
in A.

That is,
V= A/{PQ - (-1)!"lI®lgP}.

We also refer to monomials in A as words and to their equivalence classes as cyclic words
(they form a basis of V).

The sign = distinguishes equality up to cyclic permutation (i.e. equality in V) from equality
m the algebra A, which is denoted by =.

Let us now define a Poisson bracket on V. The Poisson bracket gives V' the structure of
a graded Lie algebra. A partial derivative %P, or 0, P, where z = a; or b;, is defined on
monomials by the following rule: we take a monomial P and look at all appearances of z
in it. For each letter z which appears in P we cyclically permute the word P so that this
letter z becomes the first letter of the permuted word. We then delete this letter z. The
sum of the resulting monomials will be a partial derivative.

For example, suppose A is generated by two letters a and b. Then
Os(aaabab) = daabab + (1) " dababa + (—1)*Cgbabaa + (=1)3 gbacab
= aabab — ababa + babaa — baaab.

Os(aaabad) = (—1)* Pabaaa + (—1)% *Paaaba = aaaba — abaaa.
The partial derivative is well-defined in the space of cyclic words V.
Now we may define the Poisson bracket of P, @ € V to be

N
{P,Q} =) (8, P 3, Q+ (-1)FI99,,Q - 3, P).

i=1

In order to make sense of this formula. we take any of preimages of P and Q) in A, also
denoted by P and @, and apply the operators 0,; and O, to these preimages. We multiply
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Ja; P and 0y, P in A and only then do we take the corresponding cyclic element in V. This
is independent of our choices.

Theorem 0. The Poisson bracket 1s well defined on V' and is linear in its arguments. It
has the property

{P.{Q RY} + 1)IPIQHIENQ (R, P} + 1)@ IR, {P,Q}} £ 0.

( Z2-graded Jacobi identity ).

Let us now define algebraic analogs of Chern and Chern-Simons classes. We fix an index
7, so a; and b; are denoted by a and b. Choose a positive integer k. Consider the image in
V of a polynomial %(a2 +b)* € A. We call this image the k-th Chern character associated
to a (recall b = da), and denote it by chg(a):

chi(a) = & (a? + b)*.
This corresponds to the differential form
tr 57 (w? + dw)*.

Now we define algebraic analogs of the Chern-Simons classes ch;. These are the cyclic
images in V of the following polynomials in A:

pa(E4 + HhrBice + g Sauns 4t D)

where £, , is the sum of all possible noncommutative monomials in a* and b with p

appearances of ¢ and g appearances of b. For example, &) 2 = a?bb + ba®b + bba®. We
shall call the corresponding element of V' the k—th secondary Chern character (Chern—
Simons class) and denote it by ch;(a):

t . e
ch},(a) = —(k_ll)ga(%bk '+ k__:'__lgl,k-—Z + kL_l_gzlk-—S +...+ —2k1—1 a?(* 1)).

Example. The second Chern character in V is

che(a) = L(a? +b)? = 1(b% + 2a2D).

(a* = 0). This corresponds to the differential form

str{w? + dw)?.
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The Chern-Simons class in V is
chy(a) = L(ab+ 2a3).
This corresponds to the Chern-Simons differential 3-form
ttr(wdw + 20°).

Theorem 1.

1. Chern characters are closed elements of the cyclic space V:
d chy(a) L.

2. The differential in V of the Chern-Stmons class defined by the above formula 1s the
k-th Chern character:

dchl(a) = chi(a).

We develop a similar theory for the algebra with generators depending on a real parameter
t. Let A be a free associative algebra generated by elements a(t), a(t) of degree 1 and

elements b(t), b(t) of degree 2, where ¢ € [0,1]. This algebra has a differential d such that
da(t) = b(t), da(t) =b(t), db(t) =0, db(t)=0.

We shall multiply the elements of our algebra A by polynomials in ¢ and by a differential
1-form dt. We may treat dt formally as an element of degree 1 that commutes with b(t) and
b(t) and anticommutes with a(t) and a(t), also (dt)(dt) = 0. Polynomials in ¢ commutes
with elements of A. We define another differential § = d; that is formally not included
in the algebraic structure of A. It maps elements a(t) and b(t) of A into a product of a
formal element dt and a(t) and b(t) correspondingly.

dia(t) = dta(t) and db(t) = dtb(t).

Furthermore, there is a derivative in ¢ for the expressions in a and b given by the formal
rule Edt-a = a and j‘%b = b. We are not going to apply d; to expressions involving @ and b
(otherwise we would have to introduce letters with more dots, but we do not want to deal
with this). We do not want to make our algebra very complicated at this point. It is just
an abstraction of the algebra of matrices of 1 and 2 forms on a manifold X, when these
forms depend on a real parameter ¢.

From this algebra 4 we construct as before the factor space
V = A/{CB - (-1)I¢lI8lg¢},
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where {CB — (—1)I€IBIBC} is the subspace of A generated by commutators. We call V
the space of cyclic words and we denote the equality in V by =.

Consider a path a(t), 0 <t < 1, connecting ag and a; and consider

L (a(t)) % / ((de + d)a(t) + a(t)?]".

We can now write an explicit formula for chy{a(t)).

In addition, to £, ; as defined above, we also need to consider the expression X, ,  which
denotes the sum of all possible noncommutative monomials in @, a? and b, where @ appears
n times, a® appears p times and b appears q times.

Theorem 2. The secondary characteristic class defined by a path a(t) is given by

0

chi(a(t)) £ ety (a(34 ! + 2 St ke + g Do kst ot gy a?)
1
1

+ (k= 1)1/dtd 1 ,0,k—2 + k+1 E1 ,1,k—3 +. 2k1—12i1k—?.0))'
0

The gauge group action on the algebra of Chern classes. Consider now the action
of the gauge group on connections (or on elements a; of the algebra A corresponding to
connections).

The gauge transformation acts in a natural way:

g:a— g_ldg +g_lag.

Let us denote by ¢ the expression dg - g~!.

Theorem 3. Under the gauge transformation on the space of cyclic words in the letters
g, 97, dg, dg™', a;, and b;, the Chern-Simons class chi(a) transforms in the following
way:

(k+8 -1

G o SO (@) )

ch]( ) = ch,L = (kll),(a-l—c) Z (-1)7
a+f+y=k-1

where u = ca+ ac + c* and T[(b)?, (a?)?, (u)"] is the sum of all possible words in which b,

a?, and u appear o times, 3 times, and v times respectively.

Cocycles on the gauge group. Let M be a smooth real m-dimensional manifold. Let
G be a connected Lie group, g its Lic algebra. Let E — M be a principal G bundle with
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a base manifold M and let G(E) be its gauge group. If we trivialize the bundle E over an
open set U C M then the trivialization gives us an isomorphism between the gauge group
and the group of G valued functions on U.

We use ideas of Faddeev, Reiman and Semyonov-Tian-Shanskii [FRS] in the construction
of cocycles on the gauge group of the bundle E. We construct new cocycles on the group
and its Lie algebra.

Let us fix a connection B(z), ¢ € M on a bundle E. Locally we can look at B as a g
valued 1-form on M. Let us take n 4 1 connections wo, ..., w, which are gauge equivalent
to B under the action of elements go,...,g, of the gauge group.

wo(z) = g5 'dgo +9'0_1B907

wn(z) = g;ldgn + g;lBgn.

Here d 1s a differential with respect to £ € M. Consider a product space M x A, where
A, 1s a standard n-dimensional simplex:

Ap = {(thtla- o )tn)ItO +4H+... .+, = 1,t0,t1,. oy ln > 0}
On M x A, define a a connection
w(z,t) = towo(z) + -+ + thwn(z). (0)

Let d be a differential with respect to € M and ¢ be a differential with respect to t € A,,.
Then (d + ¢) is the total differential on M x A,. The curvature of w(z,t) is

Ry = (d + §)w + w?

We shall use here a standard definition of coboundary operator in group cohomology. Let
G be a group and V be a left G.module. Let AP(G,V) be the space of functions on
G x ... x G taking values in V. For a(hq,...,hn) € AP(G, V) define the action of g € G as
————

p+1 times

(9@)(ho, ...hn) = g(a(g™ " ho, ..., g7 Rn)).

Define a differential as

(00)(ho,-.-hn) = Y (=1)'a(ho, .., hiy ooy ).



Definition. Let P(Ri,...,Rn) be an invariant symmetric N form. We define cochains
an(go,...,gn) on the group G as

an(QO;---,gn):/f:\ P(Rw:"-:Rw)

Cochains a,(go, ..., gn) are differential (2N — n)-forms on M depending on go,. .., gn.

The important property of these cochains with values in differential forms is that
(Oan—1)(go,---,9n) = —dan(go,---,9n)

Proposition 1. If V is a closed submanifold of M of dimension (2N — n) then

def
ay (9o, .-y gn) = /Van(go,---,gn)

is a cocycle on the group G(E) (in the sense of cohomology of groups). If V is homologous
to V' then cocycles a¥ and oY’ are homologous.

Cocycles on the Lie algebra of the gauge group.

Proposition 1. The following cochains on the Lie algebra correspond to cochains

an(1l,91,,9n)

on the gauge group (here N =degree of P ).
t_ln(X], ...,Xn) =

N—n times
AT! n—1 - . e e,
=————(N_n)!(—1) = P((X,B),...(X, B),Rp,...Rp).

T

N times

Here vector fields Xy, ..., X, are the elements of the Lie algebra of the gauge group, (X - B)
i3 the Lie derivative of the connection B along the vector field X and R = dB + B? s
the curvature of connection B.

Remark. We are working here with matrix groups. The Lie derivative of B is (X - B) =
dX + XB — BX. X is an element of the Lie algebra of the Gauge group, so it is a matrix
of O-forms, B is a connection, so it is a matrix of 1-forms. And BX and X B are just
products of the matrices of 0 and 1-forms. So (X - B) = dX + X B — BX*) is a matrix of
1-forms.

*) We assume that the connection B is transformed by the infinitesimal gauge transfor-
mations eV as e~ N de® N L e X BN |



Example 1. Elements of the group are 1, ¢y, g2. Take P = 51—!trR2. The cocycle on the
Lie algebra is

Const - tr((X; - BY(X2 - B)).
Take P = %trR3. Take P = %trRa. The cocycle on the Lie algebra is

Const - tr((Xl - B)(X2 - B)(dB + Bz)).

Definition. Let us consider & connections Ay, ..., Ax on the bundle over M and let us
fix a connection B. We construct n 4 1 connections that are gauge equivalent to B using
transformations g, . .., gn in the gauge group G. Altogether we have k +n + 1 connections
Ay, ooy Ax, g5 dgo + g5 ' Bgo, - .-, 97'dg + g7 ' Bgn. We construct on the group G a
cochain ¢p(Ay, ..., Aklgo,...,9n). As before, we consider a connection w on M X Apqn,
where

Aggn = {m1+ .+ ek to + .o+ ta = 1mist, > 0}

1s a standard k£ + n dimensional simplex. This connection w linearly approximates our
k + n + 1 connections that are placed in the vertices of the simplex. We consider an
invariant N form P and and define

def

cn(Al,...,Ak[go,...,gn):/ P(R,,...,R.)
Dtk

Cochains cn(A1,..., Aklgo, ..., 9s) are (2N — n — k)-forms on M depending on gg,...,gn
and on k connections A, ..., A; that are “external fields”.

Theorem 4. The cochain ¢,(Aq,..., Ax|X1,...,X,) on the Lie algebra that corresponds
to a cochain

Cn(Aly'--JAkllsg]:'-'agn)

on the Lie group G can be written as

1
/ f ;ITOHP(dT](Al _B)a'“adi(Ak_B),dtl(Xl B)1
{ro+...7e=1} {to+...+t, <1}

ooy At (X -B),R,,...,Rr),



where
R, = 10dB 4 1ydA; + ..Tkd A + (0B + 1 Ay + ... + 1 Ar)?,

(X; - B) 1s the Lie deriwative of the connection B along the vector field X; and 7y =
11— — ... — 7.

Example 2. Let

P(Ry,Ry,Rs,Ra) = Y tr(Ro(1)Ro(2), Ro3), Ros))

0634
Then
t1=1
(A],AQ,B X )— / / dTl Al - )dTg(AQ - B)dtl(Xl B)
tl—O B2
(TodB + T dA; + ngAz(ToB +7A + TQAQ)Z) .

In fact let

=4 — B,

y2 = A2 — B,

y3 = X - B =dX, + BX, + X, B,
Ya = Ry = 55dB + gzd Ay + &dA; + =B +
180A2 + 120(AJB + BAI)

1A2

180

]20(A2B +BA2) + 360(A2A1 -+ AlAZ)

Then cocycle on the Lie algebra is

ci(A1,A2,B,X;) =

=4 tr(y1ysyaye + V1ysYeya + Y1YaYsY2 — Y1Y2Y3Ya — Y1YaY2Ys — Y1YaYays)

We used here



Example 3.

&i(A,B,X1) =3 tr(vay2ys + iyaya),

where
n=A-5B,
y=X-B=dX + XB - BX,

To(10dB + 1 dA + ¢ B* 4+ 11 A® + o1 (AB + BA)) =

Y3
{7‘0+T1=1}

= 3dB + jdA+ ;B + A - {;(AB + BA).
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Appendix 1. Explicit formulas for secondary classes ch’

Let G be a Lie group with finitely many components and let g be its Lie algebra (we
shall take G = GL(n,C), or GL(n,R) so g consists of all n x n matrices). Let X be
a C* oriented manifold and let Eg be a principal G bundle over X provided with N
connections Vi, ..., Vn, (N # n). Let us associate to E¢g an n-dimensional vector bundle
7 : E — X and connections wo(z), wi(z), ..., wn(z) on this bundle given by their matrices
of 1-forms wo(z), w1(z), ..., wn(z) € ' (X) @ g. Let A; be a k-dimensional simplex with
vertices 1g,...,1 C {0,1,...,. N}, Ay = {to+t1+...+txr =1, to,...,tx > 0}. Consider a
connection w(t), t € A; such that w(t) = tow;, + ... + trw;,. Then we define a secondary
characteristic class

chy (wip .- wi,) = tr ] [d(towio + ... + tiwi, ) + (fowio + - - + trwi, )*]™,
A

where d is the total differential (with respect to z and t on Ay x X [GGL]) and in the
expression under the integral we take only summands with & dt’s and forget about the
other summands.

The following relation holds:

k
deh® (wiy .. wi,) = Z(—l)”chfn—l(w;o C @iy Wiy )

p=1

We are interested in the explicit expressions for ch¥, and the relations between them.

Let A be a 2-simplex to+1t1 +t2 = 1, to,t1,%2 > 0. Consider 3 connections ag, a;, ag on the
bundle E = M. Consider the connection a(t), ¢t € A such that a(t) = tpao + t1ay + t2as.
Then

1 :
Chi = Ftl‘/ [d(toap + tiar + t2az) + (toao + ti1a1 + tzﬂz)z]k =
: A
1 -
= }Jtr/ [(dtoao + dt]cn + dtz(tz) + (tobo +t1b1 +t2b2) -+ (toao + tlal =+ tgag)z]k
' A

1 k
= EtI/A(P+ Q)"
where

P= dtoao -+ dt1a1 + dtzaz,
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@ = (tobo + t1by + t2b2) + (toao + t1an + t202)2

and both P and @ are of degree 2. We are interested only in summands with 2 letters
P and (k — 2) letters @ because only they will give a 2-form in dt which can be can be
integrated over the 2-simplex A. Let us take tg = 1 —t; — {5, then dig = —(dt1 + dt;).
When integrating over A we in fact integrate over the triangle 0 < ¢; <1, 0< ¢ < 1—1,.

1-iy
/ ) & / dtydiq(. / dt, / dta(.

P? L (dfoao + dtiay + dt2a2)2 =dt1dt2[a],ao] + dtldtz[,az] + dt, dtz[az,all =

We have

= dtldtg([al ) a()] + [ao, ag] + [az, (11]).
For future calculations we shall use the following integral:

a!l B!
(e + B +7+2)

] 10t04Y dtydty =
A

Calculation of ch?(ag,a;,as).
Case k = 2,

trl

ch2(a0, ay,az) = 51

1
/ PP u (a1a0 + agage + (12(11) u 5(—/—11/-12 + AgAl),
A
where Ay = a; — ap, A2 = a3 — ag.
Case k = 3,

w1

chg(ao, ay,az) = 3

[ PP+ PaP+QPP) £ 5 3 | PPa

r 1
E; -3—3(((11(10 - aoaj) -+ (aoag - agao) + (agal el (Llaz))-

(§(bo + by + b2) + 15 ((ad + a? + a3)+

1
+§((aoa1 + ayao) + (a1az + azay) + (aoaz + azao)))
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Really

r 1
j (tabo + t1by + t2bo)(toao + t1ay + taaz)? = g(bo + by + b2)+
A
/ (toao + t%a% + tzaz) + / (totlz[(lo,a]] + tltgﬁ{al,ag] + toth[ao, ag]) t,=r
a N

r 1 1 1
t= E(bo + bl + b2) + — ag -+ af + ag) + 2_4(2[00,(1,1] + E[O’.],ag] + E[ao,az]),

12(

because

ft_l'_l /tz__z_!_l /‘t.t._ll_l
A 316 Jat P2t T4t 2e

where 1,7 = 1,2,3 and 7 # j.
Casek =3 and a; =0

r 1 r
ch?(ao, a1,0) = 5/()3 =

L 3,3(alao - aoal)(]—]i—,(ag +a?)+ 2,1—4(00511 + arag) + %(bo + b1)) u

Lr

1
3!

o

(a1ao — apar)((bo + b1) + 3(ad + a? + 3(avar + arap)))

This coincides with the exact term obtained in the example of section 5:
1

chy(a(t)) = fi(ab® + a’b+ 3a°)
if we take a(t) = tag + (1 — t)a;.
Case k =

1
+d%/0 dt(%—(aab—aab)ﬁ— 2a a)

0

1

chz 2

f (PPQQ + PQPQ + PQQP + QPPQ + QPQP + QQPP) =

1

= o [ (4PPQQ +2PQPQ),
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Let us take P = dtgag + dtra; + dtzaz, @ = B + A?, where A = (tgap + ta; + tya3) and
B = (tobg + t1b1 + t2b2).

4/ P2Q2=4/ PZ(B+A2)2=4/ P}(B* 4+ BA* + A’B+ AY) =
A a Ta

1
(6% + b7 + b3) ‘f‘ﬂ(z[bmbl] + Z[b1, b2] 4+ Zbo, be])+

ol -

= 4([a; ao] + [aoas] + [‘12‘11])(

Z/;tgtjikz[b;,(ajak)]-i-Z/A t,-tjtkth[a,-,aj,ak,alo
— 2 2y
z/APQPQ_zAP(B+A )P(B + A?) =

=2/ PA?PA2+2/ PBPB-|—2/ 2PBPA? =
A A A

=42/‘At,-t_,-tktgal(a,-aj)ag(aka;)-{—

+4Z/ t,-tjtk[alb,-ag(ajak)—azb,-al(ajak)]—}-élz.[ titja1biasb;
A A
Case k=4, ap =0:

171 1
chi(O,al,ag) = g (ﬁ(agal - alﬂ.g)(lﬁ + b%) + E(aga] — (L]ﬂg)(bl bz -+ bzb] )+

1 1 1 1
+—arbiayhy + —ajbeashy + —a1biazbs + —ajbrazh +

12 12 24 24
1. 2
+%(ala2a| —_— alaza])b1+
1 2 2 2 2 2 2
+€6(a2a1a2a1 — ayazaiag + aja; — asay — aza;as + azaias )by +

15



1

+20(a201(1§ azajaz)by+
1 2 2 2 2 2
+60(a2a1 aza) — ajasaiag + a? 145 —aza] — a1dqay + ajagay )bg-l-
15 5 5 1 3
+%(a2a1 + azay) + g0 22019201 — 5010201 as+
1 2 2 2 2
+ﬁ(a2al a1axaja; + azajaza; — ayazd1zayaz) ). |

Proof.

/p2Q2=f[az,a]]((tfb§+t§b§)+t1tz§3[bl,bz]+
A A

+tit1t B[by, ad] + tot1t1 Tlbe, ad] + t119taB[by, @] + totat, S(by, al]+
+tit1t2 Dby, (arag)] + titrta Eby, (agay )] + tat1ta{bs, (a1a2)]+
+iot1t2Bfbe, (azar)] + tatatit Elar, a1, aa, aa] + totatat Zlay, ag, az, az)+

ottt Blag, a1, a1, a1) + tial + %“g)

1
= ((Lgal - (11(12)(12(b2 +b2) ﬁ‘(blbz + bgb])‘l‘

1
+%E[bl) ] + E[b2aa1] + 55 [b2)a2] + E[b17a2]+

O

1

4=, (@ )] + g5l (wan))+

2[52’(0102)]‘* E[bza(azal)H
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1 1
+

1 1 1
——Yl[a1,a1,02,a2) + —=X[ay, a2,a2,a2] + ——=X[ag, a1, a1, a1] + gﬁa}i 30

180 120 120
= (agay — ayaz){ —- (82 +B2) + —(bibs + baby) ) +
= laq2a; 142 19 i 2 24 102 201

1 1
+(azad — ajaza® + a*azay — ai”ag)(g—bl + @bz)—i-

0
3 2 2 3 1 1
+(—aya; + azaya; — ajayay + a2a1)(ﬁ62 + @bl)-i—

1 1
+6ﬁ(2a2a1a2a1b1 —2a1a9a1a2b) + @(202&1&2&11)2 — 2aiazay azby )+

1
3.3 2 2 2 2
+—(2a5a] + 2azaiasay + 2a2a,a2a1a2a; + 2aza1a3a] )+

!
120
o =0

3 22
—(4aza aza;] + 2azaiazay)
————

—dajaqa1dd — 2a; adajad)+

1
+3—0(2a3a1 + 2a2a‘;’)

, 41 L, 220 1 . 31
ti:_z—a tit':_=_: titj:_:—u
e T3 LY T e T 61 — 120

i,j=1,2,3 and i # ;.

where

2/ PQPQt:r-4(2/‘;t,-tjtktgal(a,-aj)ag(aka;)+
A

+Z/ tftjtk[al(ajak)agbi—ag(ajak)alb;]+2/ t,'tja]b;'agbj>.
A A

17
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But

Z/ tit;tetiar (aiaj)ag(acar) =
A

1
30

5 5 2 3 3
(a3a1 + aza}]) + ——ajaza ap + ——=ajaza a5+

120 120

1
3.3 2.2 2.2
+_180 (ata; + aragaia; — agarazal + araza; agalag),

Z/ titjtr[ar(ajar)azb; — az(ajar)arb;) =
A

1

3 3 2.2 22 3 _ 3

= é—d(alag — agay )by + E(—agalazal + @yagaiag + aja; — azai + aya; — aya; )by +
1 3 _ 3 1 22 22, 3 3yp

+'2—6(a102 — ayay )by + %(—02010201 + ajazara; + aja; — ajay + ajas — azay )by,

1 1 1 1
Z A t,‘i‘ja]b,‘azbj = —ﬁalb]azbl + Ealbgagbz + -ézalblagbg + ﬁalbgarzb}.[]

Appendix 2. Formulas for the secondary class chy(ag,a,)

Now let us write several convenient formulas for a secondary class

of 11
chl(ag,a1) & 77 [ ((dfoao + dtyar) + (fobo + 1ab1) + (toao + trar)?).
- Jo
Theorem.
1 1
1 1. g A —E m,a,r
cu(ao, (1,1) (k . 1)| m+3_+_zr=k_1 2m+.s+ 1 (m,8,r)

where A = a1 — ap, R = bo + a%, S = (b] - bo) + (aoA+ Aao), M= A2 and E(m,s',.)
is the sum of all possible words with m letters M, s letters S and r letters R.

18



Sketch of the proof.

e 1 [ .
Ch]k(amal) = E/ ((dtpag + dtyar) + (tobo + t1b1) + (toao + t]al)z) =
- Jo

1
fdtl (a1~ 1o) + (bo + ad) +
J \W_/ T

?:IH

+1t1 I(bl — bo) + (ao(a1 _— ao) -+ (a1 - ao)aoﬂ-f—tfga] — 60)2)k

S M

T l']- r
= 1/(th+R+t5+t2M“ fkthR-{-tS—}-tM)" 1

tr 1 1
= ok Y = Smen I

n
m+st+r=k—1 & s+l

We can write it also as

Z (20+ﬁ+5)!(27+ﬁ+€)!E(a,ﬁ,~y,5,e),

chi(ap, a1) = A -
’ (k—1)! '
k—1=a+’3+7+5+£2& + 216 + 2'7 +e+ 6)

where ©(a, 8,7, §,€) is the sum of all possible words with « letters a3, 3 letters apas +ayaq,
v letters a2, & letters by, and ¢ letters b;.

Appendix 3. Formulas for secondary classes ch(aq,...,a,) and
n
chy  (ao,...,an).
Let us write now formulas for some other secondary characteristic classes.

Theorem.

(_l)n(n—-l)/Q sign
- 0 Z (_1) g (U)Aa'(l) .. 'Aa(n) =
ocES,

chi(ag,...,a,) = '
n!

(=pn(n—b/2 i
= Y (-1 Waygaua) - aum

n!
#esn+l

19



(=yrr2 om0
T Z (=1) (#)a#(o)an(l)'--“u(n) '

PESn-l-l

chl i (ao,...,an) = (

n!

1 2 z = 4 a;a;
.((?1+1)!(bo+...+bn)+m(ag-i-...-l-a")-l-(n+2)!§;(a, i+ ,)).

where A; = a; — ag. Summations are over all permutations o in the symmetric group Sy
on {1,...,n}, or over all permutations i in the symmetric group Sp4+1 on {0,1,...,n}.

Example.

Chg(QOaalyaZaaﬂ) =
1
= G(—AiAeds + A1 As Ay — Ao Aa A+ Ap i As — AsAr Ay + Ag Ay Ay) =

1
= g(—ﬂlaﬂls + ayaszay — agazay + asa1az — aza as + agdaa g —

-“+apagz s — Qpazag + agazag — azapdz -+ a3dgdy — azaqap+
+ayagas — ayazag + apasz@y — doa1ag + aza;ao — azaody+

+arazap — a1apaz + aa0a1 — a2¢10 + Ap1ay — Apazdy ).

Chg(a0>a]aa2,a3) =

1
T (—A1A2As + A1 Az Ay — Az As Ay + Ag A1 Ay — A3 AL Ag + Az Az Ar )X

1 2 1
X (E(bo b by + )+ (ag ol +af +ad) + 5 ) (aiaj + ajaf))-
! : Rt

Proof.

1
chy(ag,...,a,) LA oy} / (dtoap + ... + dtpan)" =
cJA

20



taking to =1—¢ —tg —... —t,

1 1
Z/ —1(dt1((11 — (lo) +...+ dtn(an —GO))n = _/ (dt1A1 + ... +dann)n =
AT a

Y
1
= —-'/ dt, ...dtn(—1)1+2+”'+("_])A1 AR+
n. A

1

nl

= N (1) Ay Ag(ny =
ocES,

= > (-1)""Ma, a0 aum)-

#ESh 11

chy i q(ao,...,an) u

L Gﬁlr‘f')" /g(dtoag + .ot dtnan) + (tobo + ... +taby) + (todo + ... + taan)?)
= ((;Tﬂ%j[ﬁ(dtoao + o dinan) ((tobo + - ..+ tuby) + (foao + ... +tnan)?)

1
= — [ (dtjA1 4+ ...+ dtaAn)" (tobo + ... + tpba) + (foao + ... + than)?)

n.! A

(__1)71(71—1)/2 atgn ~
= (—— Yo FU)Wagaua) - aum) )

n!

i‘esn-l—l

1

1 2 2
( .(bo—l-...-}—bn)-l— _(ag+...+an)+(71+2)!Z(aiaj+aja.’)

i#)

+— dta(l) ces dta(n)(—1)1+2+"'+(n—1)A6(1) e Aa’(n) +...=
A

n +1_

)



We use

S0 / t;
Aﬂ

[
ATn

(n+ 1)

22
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