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REIDEMEISTER CLASSES IN SOME WEAKLY BRANCH GROUPS

EVGENIJ TROITSKY

Abstract. We prove that a saturated weakly branch group G has the property R∞ (any
automorphism ϕ : G → G has infinite Reidemeister number) in each of the following cases:

1) any element of Out(G) has finite order;
2) for any ϕ the number of orbits on levels of the tree automorphism t inducing ϕ is

uniformly bounded and G is weakly stabilizer transitive;
3) G is finitely generated, prime-branching, and weakly stabilizer transitive with some

non-abelian stabilizers (with no restrictions on automorphisms).
Some related facts and generalizations are proved.

Introduction

Consider an automorphism ϕ : G → G of a (countable discrete) group. The Reidemeister
number R(ϕ) is the number of its Reidemeister or twisted conjugacy classes, i.e. the classes
of the following equivalence relation: g ∼ hgϕ(h−1), h, g ∈ G. The Reidemeister class of an
element g we denote by {g}ϕ.

A group has the R∞ property if R(ϕ) = ∞ for any automorphism ϕ : G → G. The
problem of determining of groups having the R∞ property was raised by A.Fel’shtyn and
co-authors in relation with an older conjecture by A.Fel’shtyn and R.Hill [5]: R(ϕ) is equal

to the number of fixed points of the associated homeomorphism ϕ̂ of the unitary dual Ĝ, if
one of these numbers is finite. This conjecture is called TBFT (twisted Burnside-Frobenius
theorem), because it generalizes to infinite groups and to the twisted case the classical
Burnside-Frobenius theorem: the number of conjugacy classes of a finite group is equal to
the number of equivalence classes of its irreducible representations. The question about
TBFT formally has a positive answer for R∞ groups. So, the R∞ problem is in some sense
complementary to the TBFT.

The TBFT conjecture was proved for finite, abelian and abelian-by-finite groups [5]. The
further development, examples, counterexamples and modifications can be found in [11, 9,
10, 25, 26, 27].

The property R∞ was proved and disproved for many groups and the number of papers on
the subject and related questions is too large to list all of them and we restrict ourselves to
giving reference to several papers and bibliography overview therein: [24, 1, 19, 20, 12, 13,
21, 17, 2, 8]. Dynamical aspects of Reidemeister numbers are discussed in [4]. Some direct
topological consequences of the property R∞ for Jiang-type spaces are discussed in [13].

In [6] the R∞ property was proved for a wide class of saturated weakly branch groups.
In the present paper we develop these results and prove in Theorem 2.2 that if any auto-

morphism of a saturated weakly branch group G is a composition of an inner automorphism
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and of a finite order automorphism, then G has the property R∞. In particular, this theorem
holds for the Grigorchuk group and for the Gupta-Sidki group. In some specific cases the
result can be obtained from [17].

We introduce the property WST (Definition 1.7) and prove that if for any automorphism
ϕ of a saturated weakly branch WST group G, induced by an automorphism t of the tree,
i.e. ϕ(g) = tgt−1, restrictions of t on levels have a uniformly bounded number of orbits, then
G has the property R∞ (Theorem 3.3).

In Theorem 4.2 we prove the R∞ property without any restrictions on the structure of
the automorphism group of a finitely generated saturated weakly branch WST group G, but
with the restriction on branching numbers to be prime and with an additional restriction on
stabilizers.

We prove that a saturated weakly branch group on a spherically symmetric tree, such that
any level stabilizer contains an odd permutation at some level, is an R∞ group (Theorem
5.2).

Acknowledgement: The author is indebted to A. Fel’shtyn and the MPIM for help-
ful discussions in the Max-Planck Institute for Mathematics (Bonn) in February, 2017, to
V. Manuilov for useful suggestions, and to A. Jaikin-Zapirain for a bibliography reference.
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1. Preliminaries

First, we recall some necessary facts about Reidemeister classes.

Lemma 1.1. Any Reidemeister class of ϕ is formed by some ϕ-orbits.

Proof. Indeed, ϕ(g) = g−1gϕ(g). �

Definition 1.2. Denote by τg the inner automorphism: τg(x) = gxg−1.

From the equality

xyφ(x−1)g = x(yg)g−1φ(x−1)g = x(yg)(τg−1 ◦ φ)(x−1)

we immediately obtain the following statement.

Lemma 1.3. A right shift by g ∈ G maps Reidemeister classes of ϕ onto Reidemeister
classes of τg−1 ◦ φ, In particular, R(τg ◦ ϕ) = R(ϕ).

Lemma 1.4 ([7, Prop. 3.4]). Suppose, ϕ is an automorphism of a finitely generated residually
finite group. Let R(ϕ) = r < ∞. Then the number of fixed elements of ϕ is bounded by a
function depending only on r.

Now we pass to groups acting on trees and give some known and new definitions and facts.
Let T be a spherically symmetric rooted tree. This means that all vertexes of the same

level have the same number of immediate descendants (branching index ).
Denote by D(v) the set of immediate descendants of a vertex v ∈ T .
A group G acting faithfully on a rooted tree is a weakly branch group, if for any vertex v

of T , there exists an element of G which acts nontrivially on the subtree Tv with the root
vertex v and trivially outside this subtree. In other words, the rigid stabilizer Ristv of any
vertex v is non-trivial.

Evidently a faithful tree group is residually finite.
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We will denote by St(v) the stabilizer of a vertex v ∈ T ; and by Stj the stabilizer of level
Lj, i.e. Stj = ∩v∈Lj

St(v).
A group G is saturated if, for every positive integer n, there exists a characteristic subgroup

Hn ⊂ G acting trivially on the n-th level of T and level transitive on any subtree Tv with v
in the n-th level.

Theorem 1.5 ([18]). Suppose, G is a saturated weakly branch group on a tree T . Then its
automorphism group AutG coincides with the normalizer of G in the full group of isome-
tries Iso(T ) of the rooted tree T : every automorphism ϕ of the group G is induced by the
conjugation by an element t from the normalizer and the centralizer of G in Iso(T ) is trivial.

Definition 1.6. For a group G acting on T and any vertex v ∈ T denote by G{v} the
subgroup of all elements g ∈ G fixing v and all vertexes of T from the next level, except of
immediate descendants of v.

In other words, if v ∈ Lj, then

G{v} =
∩

w∈Lj , w ̸=v

∩
u∈D(w)

St(u)

Thus,
Ristv ⊂ G{v} ⊂ Stj .

Definition 1.7. We call a group G acting on T weakly stabilizer transitive (WST) if for
any vertex v one can find a vertex v0 ∈ Tv such that G{v0} acts transitively on immediate
descendants of v0.

Remark 1.8. If G acts level-transitively, then G{v} are pairwise isomorphic for v from the
same level. Also, they pairwise commute and we can introduce the following well-defined
group Γ{i}.

Definition 1.9. Denote
Γ{i} :=

∏
v∈Li−1

pi(G{v}),

where pi : G → G/ Sti is the natural projection.

Let t be an automorphism of a tree T . Let Orbi(t) be the number of orbits of t at the
level Li. Evidently,

1) Orbi(t) is a not-decreasing function of i;
2) a fixed vertex of t may be only a successor of a fixed vertex;
3) if there is a fixed vertex at the level i+ 1, then Orbi+1(t) > Orbi(t).

So, we have two possibilities:

(a) Orbi(t) −→ ∞ as i → ∞;
(b) Orbi(t) is bounded. In this case, there is no fixed vertices starting some level, by 3)

above.

Finally, we will need the following statement from the Galois theory (see, e.g. [3, Sect.
3.5]):

Lemma 1.10. A solvable transitive subgroup of the symmetric group Sp, where p is prime,
is isomorphic either to Zp, or to Zp ⋊ Zp−1. In particular, it is either abelian, or contains
an odd permutation (a generator of Zp−1).
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2. Finite order automorphisms and around

Lemma 2.1. Let ϕ : G → G be an automorphism of oder n < ∞ of a weakly branch group
with ϕ(g) = tgt−1. Then there exists j0 such that for any j > j0 there exists an element
gj ∈ Stj and a number i > j such that {gj}ϕ ∩ Sti = ∅.

Proof. It is sufficient to find an element gj such that hgjth
−1t−1 ̸= e at the level Li for any

h ∈ G, or equivalently

(1) gjt ̸= h−1th.

By the condition, t has at some level an orbit of length n, and does not have a longer
orbit. Take for j0 the first time when t has on Lj0 an orbit of length n. Then the orbits of
successors also will have the length n. Consider any j > j0 and an orbit of length n in Lj.
Let v0 ∈ Lj be a vertex from this orbit. Using the weak branching property we can find a
non-trivial element gj ∈ Rist(v0). Let i be the first level where gj acts non trivially, say at
v ∈ Tv0 (see Fig. 1). Then

b b b b b b b b b

b b b

bv0

gj

v Li

Li−1

Lj

t-orbits

Figure 1

(2) (gjt)
n(v) = gjt

n(v) = gj(v) ̸= v,

because the t-orbit of v has the form v, t(v), . . . , tn−1(v), tn(v) = v and t(v), . . . , tn−1(v) ̸∈ Tv0

implying gt(v) = t(v), . . . , gtn−1(v) = tn−1(v). So, gjt has an orbit of length > n and can
not be conjugate to t at the level Li. We obtain (1). �

Theorem 2.2. Suppose, G is a saturated weakly branch group and each automorphism from
Out(G) is of finite order. Then G has the R∞ property.
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Proof. By Lemma 1.3 it is sufficient to verify R(ϕ) = ∞ for some ϕ of finite order n.
By Theorem 1.5 ϕ(g) = tgt−1 for an automorphism t of the tree. Then Lemma 2.1 gives

inductively an infinite sequence of representatives of distinct Reidemeister classes. Thus
R(ϕ) = ∞. �
Example 2.3. The most studied branch groups – the Grigorchuk group [14] and the Gupta-
Sidki group [16] – have outer automorphisms of finite order [15, 23].

Example 2.4. A more evident example is the group of all isometries of a symmetric rooted
tree. In this case all automorphisms are inner.

3. Finite number of orbits

Now we consider the opposite case, when the number of orbits t on Li is uniformly bounded.
We will need to restrict ourselves to the WST case.

Lemma 3.1. Let ϕ : G → G be an automorphism of a WST group with ϕ(g) = tgt−1, where
t is an automorphism of the tree T . Suppose, t satisfies (b) above, namely, maxiOrbi(t) =
M < ∞. Then there exists j0 such that for any j > j0 there exists an element gj ∈ Stj and
a number i > j such that {gj}ϕ ∩ Sti = ∅.

Proof. Let j0 be the level of stabilization of the number of orbits, i.e., Orbj0−1(t) < M and
Orbj0(t) = M , hence Orbj(t) = M for any j > j0. Note that the lengths of orbits of t
at next levels, are the multiples of lengths of orbits on Lj0 (with the coefficient equal to
the appropriate product of branching numbers) and an orbit of smallest length (not unique
generally) lies under a smallest orbit on Lj0 .

Now take an arbitrary j > j0 and consider an orbit of t of the smallest size on Lj. Let v
be a vertex from this orbit, and find by the WST property an element v0 ∈ Tv, v0 ∈ Li−1

for some i, with a transitive action of G{v0} on its immediate successors. Let v1 be one of
these successors. Then, as it was explained, its t-orbit has the smallest length among the
orbits on Li. This length is equal to m · b, where m is the length of t-orbit of v0 and b is
the branching number of v0. Choose gj ∈ G{v0} such that gjt

m(v1) = v1 (see Fig. 2). By the
definition of G{v0},

gjt(v1) = t(v1), (gjt)
2(v1) = t2(v1), . . . (gjt)

m(v1) = gjt
m(v1) = v1.

Hence, the smallest length of a (gjt)-orbit on Li is m < m ·b =the smallest length of a t-orbit
on Li. Thus, git and t can not be conjugate and we arrive to (1) and the same argument as
in the beginning of the proof of Lemma 2.1, completes the proof. �
Remark 3.2. By Lemma 1.1 R(ϕ) < ∞, if the number of ϕ-orbits is finite. But the number
of ϕ-orbits in G is rather weakly related to the number of t-orbits on T . For example, for
t = Id, this depends on “how saturated G is”.

Similarly to the proof of Theorem 2.2, one can deduce from Lemma 3.1 the following
statement.

Theorem 3.3. If a saturated weakly branch group G is a WST group and each its non-trivial
outer automorphism has the properties from Lemma 3.1, then G is an R∞ group.

Example 3.4. We do not expect interesting examples of groups here, moreover, we need
the results of this section mostly as a tool for proofs with using for some automorphisms in
the next section (case b) below).

Nevertheless, Example 2.4 works here too.
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b b b b b b b b b

b b b

bv

v0

gj

tm(v1)

v1

Li

Li−1

Lj

t-orbits

part of t-orbit

Figure 2

4. The general case

Lemma 4.1. Let ϕ : G → G be an automorphism of a group G acting level-transitively on
a spherically symmetric tree T , with ϕ(g) = tgt−1. Suppose,

(1) G is finitely generated;
(2) G is a WST group;
(3) moreover, for an infinite subsequence {ik}of the sequence of levels, arising as transi-

tivity levels in the definition of WST, the corresponding group Γ{i} (see Def. 1.9) is
not abelian;

(4) branching numbers are prime (may be distinct for distinct levels).

Suppose, R(ϕ) < ∞. Then there exists j0 such that for any j > j0 there exists an element
gj ∈ Stj and a number i > j such that {gj}ϕ ∩ Sti = ∅.

Proof. As in the proof of Lemma 2.1, it is sufficient to find an element gj ∈ Stj such that at
the level Li for any h ∈ G

(3) gj ̸= h−1tht−1.

Consider two cases:

a) Orbi(t) → ∞;
b) Orbi(t) is bounded.

Case a). Since R(ϕ) < ∞ and G is finitely generated, by Lemma 1.4 the number of
ϕ-fixed elements for the quotient G/Sti is strictly less Orbi−1(t) at each level i greater some
j0.
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Now for any j > j0, let i − 1 > j be the number of a level with transitive action of G{v}
for any v ∈ Li−1 (see Remark 1.8) such that Γ{i} is not abelian.

Each of the above-mentioned ϕ-fixed elements (except of e) acts non-trivially at some
vertex ws. Thus an element, which fixes these vertexes, is not ϕ-fixed. Hence there exists
v0 ∈ Li−1 such that for any v in its t-orbit, pi(G{v}) does not contain ϕ-fixed points, where
pi : G → G/Sti. Suppose, the t-orbit of v0 has some length k (k = 1 can occur in particular).
Then

piG{tm(v0)} = tmpiG{v0}t
−m, m = 0, 1, . . . , k − 1.

Evidently, elements of these groups commute, and we can form a group

Γ := pi(G{v0}) · · · piG{tk−1(v0)}

with an action of ϕ. Each γ ∈ Γ acts trivially on all ws. Hence, Γ has no nontrivial ϕ-fixed
elements. So, Γ is a subgroup with a fixed-point-free automorphism ϕ. Then it is solvable
by [22].

Hence, its subgroup pi(G{v0}) is also solvable. It is a transitive subgroup of the symmetric
group Sp, where p is the prime branching number for vertexes from Li−1. Then, by Lemma
1.10, it is either abelian, or contains an odd permutation pi(gj) ̸∈ Ap, gj ∈ G{v0}. In the
first case, Γ{i} is abelian in a contradiction with the supposition. In the second case, gj is
trivial on Li except the successors of v0. So it is an odd permutation on the entire Li, while
h−1tht−1 is an even one. This gives (3).

Case b). This case immediately follows from Lemma 3.1. �
Similarly to the proof of Theorem 2.2 we obtain from Lemma 4.1 the following statement.

Theorem 4.2. Suppose, G is a finitely generated saturated weakly branch WST group on a
spherically symmetric tree with prime branching numbers and an infinite sequence of non-
abelian Γ{i} (i.e. satisfying the suppositions of Lemma 4.1). Then G is an R∞ group.

Remark 4.3. Reasonable examples will be given in the next section for a version of this
statement, namely Theorem 5.2.

5. Some generalizations

Evidently the above statements can be easily extended to some more general cases (with
more complicated formulations).

For example, Theorem 2.2 can be evidently generalized in the following way.

Theorem 5.1. Suppose, G is a weakly branch group and each automorphism from Out(G)
is of finite order and defined by an automorphism of the tree. Then G has the R∞ property.

Now we will give another version of Theorem 4.2.

Theorem 5.2. Suppose, G is a saturated weakly branch group on a spherically symmetric
tree, such that for any j, Stj contains an element gj defining an odd permutation at some
level j0 > j. Then G is an R∞ group.

Proof. Indeed, (3) keeps, because h−1tht−1 is an even permutation and gj is an odd permu-
tation at the level j0. �
Example 5.3. The full isometry group as in Example 2.4 satisfies the conditions of Theorem
5.2.
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Example 5.4. Consider a saturated weakly branch group G and consider a group Γ gen-
erated by G and an infinite series of isometries gj, e.g., transpositions of two neighbouring
elements at level Lj+1 and somehow defined at their successors. Then Γ satisfies the condi-
tions of Theorem 5.2.
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