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ABSTRACT

Continuing Artin’s investigations on representations of braids by permutations, we obtain
the following results. The image Im ¥ of a homomorphism ¢ from the Artin braid group
B(k) on k strings into symmetric group S(n) of degree n must be a cyclic group whenever
either (x)n < k#4dor (%x) 6 <k <n <2k and % is irreducible (i. e. Im 9 is a transitive
permutation group). For k& > 8 there exist, up to conjugation, exactly 3 irreducible non-
Abelian representations B(k) — S(2k), and each of them is imprimitive. For n < k # 4
the image of any braid homomorphism ¢: B(k) — B(n) is an Abelian group, whereas
any endomorphism ¢ of B(k) with non-Abelian image sends the pure braid group I(k)
into itself. Moreover, for k£ > 4 the intersection I(k) N B’(k) of I(k) with the commutator
subgroup B’(k) = [B(n), B(n)] is a completely characteristic subgroup of B/(k).
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§0. INTRODUCTION

In the middle 1970’s 1 announced some results on homomorphisms of braids and on
representations of braids by permutations {L.2,1.5,17]. The proofs were never published for
the following two reasons. First, some of them were based on a straightforward modifica-
tion of Artin’s methods [Ar3] and on the fact that for & > 4 the commutator subgroup
B’(k) of the braid group B(k) is a perfect group [GL1] (seemingly, Artin did not know
this property). On the other hand, some other proofs contained too long combinatorial
computations, and I felt that they might be simplified. Recently I found that this in fact
can be done using a cohomology approach, which lcads also to some new results. The
new proofs are still lengthy, but involve less combinatorics and seem more suitable for
publication.}

Some motivations: braid homomorphisms and polynomaials. The principal moti-
vation for our study of braid homomorphisms was the fact that they are closely related to
algebraic equations, algebraic functions, and, particularly, to the 13th Hilbert problem for
algebraic functions. Some of these relations may be described as follows.

Take a point z = (2, ...,2,) € C and consider the polynomial

Pa(t,2) =t + 21 t" " 2,
in one variable ¢. Let d,(z) be the discriminant of p,, (-, z); consider the domain
G, ={z€ C|d.(z) #0};

we call G,, the space of separable polynomials of degree n. Translating all the roots of
P, we can “kill” the coefficient zp; this leads to a natural isomorphism G, = C x GJ,
where G2 = {2z € G, | z1 = 0}. The discriminant defines the holomorphic bundle
dp: G2 — C* = C — {0} with the standard fiber

SG, ={z|21 =0, d.(z) =1},

which is a nonsingular algebraic hypersurface in C*~!. The spaces G, and SG,, are
Eilenberg-MacLane K (, 1)-spaces for the braid group B(n) and its commutator subgroup
B’(n}, respectively.

Consider a separable algebraic equation f(f) = " + a1t ! + ... + a, = 0 over the
algebra C(X) of all complex continuous functions on a “nice” topological space X (so,
for any £ € X the polynomial f(¢,z) has no multiple roots). Then we can define the
continuous mapping X 3 z — f(t,z) € G, which, in turn, induces the homomorphism of
the fundamental groups

far m(X) =5 m(G,) 2 B(n).

Moreover, since G,, is a K{(m,1)-space, every homomorphism ¢: m1(X) — B(n) may
be obtained from some separable polynomial of degrec n over C(X). Any knowledge
on the behavior of homomorphisms 71(X) — B(n) may provide us with some essential
information about separable algebraic equations over C(X} (sce, for instance, [GL1]).

LThis Preprint contains the first part of the paper; the second part will be devoted to some applications.

Typeset by ApS-TEX



2 VLADIMIR LIN

Consider an entire algebraic function ¢ = F{w) of several complex variables w =
(w1, ..., wg) € C* with the defining polynomial Pr(t,w) = t* + a1 (w)t""! + ... + an(w)
(a; € Clw]). Let Dp(w) be the discriminant of Pr(t,w) and Gp = C* — £ be the com-
plement of the branch locus $r = {w € C*¥ | Dp,.(w) = 0} of the function F(w). Then we
have the polynomial mapping

a: Growe (a1(w),...,an(w)) € G,

and the corresponding homomorphism a,: 71(Gr) = B(n).

In some settings of the 13th Hilbert Problem (see e. g. [Al,A2,L3,1L4,L6,L7,1L9]) one
should investigate an entire algebraic (or algebroidal) function ¢ = F(w) of k complex
variables w = (wq, ..., wx) € C* with the branch locus ©r that coincides with the branch
locus £y, = {w € CF | dp(w) = 0} of the “universal” algebraic function ¢ = u(w) defined
by the equation

tF fwith g = 0.

In this case we deal with the corresponding polynomial (or more generally, holomorphic)
mapping f: Gy — G, and with the induced homomorphism

for B(k) &2 m(Gg) = m(G,) = B(n).

The behavior of the homomorphism f, affects strongly the behavior of the mapping f. For
instance, if the homomorphism f, is Abelian (that is, its image is an Abelian subgroup of

B(n)), then f is homotopic to a composition i o di: Gy 2, ¢+ 2y Gy, of the canonical
discriminant mapping dj and a continuous mapping h: C* — G,,; we call such a mapping f
splittable. We prove that any homomorphism B(k) — B(n) is Abelian whenever k > 4 and
n < k; thus, for such k and n, every mapping Gy — Gy, Is splittable. Further, let Ex — Gy
and SE; — SGy, be the coverings corresponding to the pure braid group I(k) C B(k) and
to the pure commutator subgroup J(k) = I(k) N B’(k), respectively. We prove that for
k > 4 the pure braid group I(k) is invariant under any non-Abelian endomorphism of
B(k), and the pure commutator subgroup J(k) is a completely characteristic subgroup
in B'(k). These algebraic results imply that any nonsplittable self-mapping of Gy and
any self-mapping of SGy can be lifted to self-mappings of the coverings Ex and SEg,
respectively. This enables us to obtain a complete explicit description of holomorphic self-
mappings of the spaces Gy and SGg. Notice that not every homomorphism B(k) — B(n)
is induced by a holomorphic mapping Gy — Gy,; the homomorphisms that are induced by
holomorphic mappings are contained in the narrow class of special homomorphisms (§0.6).

Any homomorphism ¢: B(k) — B(n) produces the corresponding homomorphism
i: B(k) - S(n) into the symmetric group S(n) (the composition of ¢ with the canonical
projection B(n) — S(n)). The behavior of the homomorphism % influences strongly the
behavior of the original homomorphism . This is one of the reasons of studying also
homomorphisms B(k) — S(n). Another reason is that the latter homomorphisms are in
a natural correspondence with the finite coverings of the space G, which, in turn, are of
great interest. Our algebraic results imply, for instance, that any (connected) n-covering
over Gy, is cyclic whenever k > max{n,4} or 6 < k < n < 2k; we prove also that for k > 8
there exist only three different (i. e., non-equivalent) noncyclic connected 2k-coverings
over Gy.
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0.0. Notation and some definitions. For the readers’ convenience, we start with some
notation and definitions used throughout the paper.

0.0.1. Sets, groups, homomorphisms. The cardinality of a set I' is denoted by # I
The order of a nonunit clement g of a group G' is denoted by ord g. If two elements g, h € G
are conjugate, we write g ~ h.

We denote by F,, the free group of rank m (m € Z, or m = oo = #N); particularly,
F, =2 Z; if the value of m is not essential, we write simply F.

Commutator subgroup; perfect groups; residually finite groups. For any group
G, we denote by G’ the commutator subgroup of G. A group G is called perfectif G = G'.
A quotient group of a perfect group is a perfect group; a perfect group does not possess
nontrivial homomorphisms into any Abelian group.

A group G is called residually finite if homomorphisms into finite groups separate ele-
ments of G. The latter property is equivalent to the following one: for any element g € G,
g # 1, there is a subgroup H C G of finite index such that ¢ ¢ H. Any free group is
residually finite. The following theorem is due to A. I. Maltsev [Ma]:

Maltsev Theorem. Any semidirect product of finitely generated residually finite groups
1s a residually finite group.

Hopfian groups. A group G is called Hopfian if any surjective endomorphism G = G
is an automorphism. Any finitely generated residually finite group is Hopfian (see, for
instance, [Ne, 41.44, p. 151]).

Braid-like couples. A couple of elements g, 2t in a group G is called braid-like if gh # hg
and ghg = hgh; in this case we write gooh. Clearly, gooh implies g ~ h.

Conjugate homomorphisms. Two homomorphisms of groups ¢,%: G — H are said
to be conjugate if there is an element h € H such that 1(g) = h¢(g)h~? for all g € G;
in this case we write ¢ ~ 3; “~” is an equivalence relation on the set Hom(G, H) of all
homomorphisms G — H.

Abelian, cyclic and integral homomorphisms. A group homomorphism ¢: G =+ H
is said to be Abelian (respectively, cyclic, integral), if its image Im ¢ = ¢(G) is an Abelian
(respectively, cyclic, torsion free cyclic) subgroup of the group H (we include the trivial
homomorphism in each of these three classes).

Remark 0.1. If a group G and its commutator subgroup G’ are finitely generated, then
any homomorphism ¢: G — F is integral. (The image H = Im ¢ C F is a free group of
finite rank 7 < 1; indeed, if » > 1, then ¢(G’) = H' =2 (F,) = Fy, which is impossible,
since G' is finitely generated.) O

0.0.2. Symmetric groups. The permutations of a set I' form the symmetric group S(T');
We regard this group as acting from the left on the set T'.

Let H C S(T'). A subset & C T is H-invariant, if S(£) = X for every S € H; we denote
by Inv H the family of all nontrivial (i. e., # @ and # I') H-invariant subsets of I'. For a
natural r < #I" we denote by Inv, H the family of all H-invariant subsets of cardinality r
(if H cousists of a single permutation S, we write Inv S and Inv, S instead of Inv{S} and
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Inv, {S}, respectively). The restriction of S to a set T € Inv .S is denoted by S | ; we
regard S | ¥ as an element of S(X). '

An element v € T is a fized point of S € S(T') if S(v) = ~; we denote by Fix S the set of
all fixed points of S. The supportsupp S of S € S(I') is the complement I' — Fix S. For any
set ¥ C I' we identify S(X) with the subgroup in S(I'") consisting of all the permutations
S with supp § € ¥. Two permutations S, S’ are disjoint if supp S Nsupp S’ = @. If
n € Nand A, = {1,2,...,n}, we write S(n) instead of S(A,,); S(n) is the symmetric
group of degree n. The alternating subgroup A(n) C S(n) consists of all even permutations
S € S(n) and coincides with the commutator subgroup S’(n); for n > 4 the group A(n) is
perfect.O

Cyclic types, r-components. For A, B € S(n) we write A < B if and only if each cycle
entering in the cyclic decomposition of A is contained in the cyclic decomposition of B.
Let A = C;---Cy be the cyclic decomposition of A € S(n) and ; > 2 be the length of
the cycle C; (1 < @ < g); the unordered g-tuple of the natural numbers [ry,...,r,] is
called the cyclic type of A and is denoted by [A] (any 7; occurs in [A] as many times as
ri-cycles enter in the cyclic decomposition of A). Clearly, ord A = LCM(ry,...74) (the
least common multiple of 71,...74).

For any A € S(n) and any natural number r > 2 we denote by €,.(A) the set of all the
r-cycles in the cyclic decomposition of A; we call this set the r-component of A. The set
Fix A is called the degenerate component of A. O

Transitive and primitive homomorphisms. We suppose that the reader is familiar
with the notions of transitive and primitive groups of permutations (see, for instance, [Ha]).
A homomorphism ¥: G — S(n) is said to be transitive (respectively, intransitive, prim-
itive, imprimitive), if its image ¥(G) is a transitive (respectively, intransitive, primitive,
imprimitive) subgroup of the symmetric group S(n).

Disjoint products. Reductions of homomorphisms G — S(n). Given some de-
composition A, = Dy U---U Dy, #D; = n;, we have the corresponding embedding
S(D1) x -+ x S(Dq) — S(n). For group homomorphisms ¢;: G — S(D;) = S(n;), we
define the disjoint product ¥ = ¥y X --- X g0 G = S(Dy) x --- x 8(Dy) — S(n) by
¥(g) = 1(9) - ¥ql9) € S(n), g€G.

Let ¥: G — S(n) be a group homomorphism, H = Im %, and let ¥ C A, be some
H-invariant subset (for instance, ¥ may be an H-orbit). Consider the homomorphism
¢x: H> 8= §| X € S(L); the composition

by = dgod: G- H 22 8(x)

is called the reduction of ¥ to the (Im t)-invariant subset ¥.. The homomorphism ¥y
is transitive if and only if ¥ is an (Im )-orbit. Any homomorphism % is the disjoint
product of its reductions to all the (Im )-orbits (this is just the decomposition of the
representation 9 in the direct sum of irreducible representations.) The following simple
observation is used throughout the paper:
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Observation. A group homomorphism ¢: G — S(n) is Abelian if and only if its reduction
to each (Im v)-orbit is Abelian.

For natural numbers ¢, 7, we denote by (g,r) their greatest common divisor, and by |qg|,
the residue of ¢ modulo » (0 < |q], <7 —1).

0.1. Canonical presentation of the braid group B(k). The braid group B(k) on k
strings is defined by the presentation with &k — 1 generators o1, ..,0,_1 and the defining
system of relations

0i0; = 050 (i =34l 2 2)

Oi0i410i = 054100441 (1 S 7 S k- 2)
The generators o1, .., 0,1 and the presentation (0.1),(0.2) are called canonical.

Torsion. The following theorem was first proven by Fadell and Neuwirth, [FaN], using a
topological argument; an algebraic proof was suggested by ........ [77].

Fadell-Neuwirth Theorem. The braid group B(n) is torsion free.

It follows from (0.1),(0.2) that B(k)/B'(k) = Z. This fact and Fadell-Neuwirth Theorem
imply:
Abelian and cyclic homomorphisms of B(k). Any Abelian homomorphism of B(k)

is cyclic. Any Abelian homomorphism B(k) — B(n) is integral. If a homomorphism
¢: B(k) = H is cyclic, then ¢(o1) = ¢(o2) = -+ = P(ok—_1).

0.2. Special presentation of B(k). For 1 <7< j <k, we put

Qij = 030441 0j-1, Pij = 0%, 0= = 0102 Okp_1, [J=oy. (0.3)
It is easily checked that
Oig1 = aozo”? (1<i<k-2) (0.4)
o; = o oy D (1<i<k-1) (0.5)
Q0 = Om i for m<i—1 or m>j,
ij0m = Om410j for 1 <m<j-2, (0.6)
afjam = am+qafj for i<m<m+qg<j—1.

Relations (0.3), (0.6) imply that for 1 < ¢<j~1

?j = (@ij03) '&aijai) e (aijo'il: Q05 Tig1” "Ui+q—1agj_15

"

q—1 times
Y ] j—i Cgmiml -l
for ¢ = j — i this shows that B;" = ;00541 - -ay.lcrzj = a{j . Moreover, for
m = i relations (0.6) may be written as 0i4.q = of;oi; = afj-lﬂ,-ja{_jq (1<i+qg<j-1).
Therefore, we have:

o7 = gj—" for 1<i<j<hk, 07
Oivrg = ol Bya?  for 0<g<j—i-1. '

j—i

Particularly, these relations show that the element a{j_"“ = f3;; commutes with all the

elements o;,... ,0;_1.
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For : =1 and j = k, relations {0.7) take the form
Clk - ﬁk_l,

1 (0.8)
O14q = % Pa™ for 0<¢g<k-2,

which shows that the elements «, [ generate the whole group B(k), and the element
o = %=1 is central in B(k). The defining system of rclations for the generators «, 3 is
as follows:

BaiTIf=a'fa VBt (2<i < {k/2)), (0.9)
o = g1, (0.10)

The presentation of the group B(k) given by (0.9),(0.10) is called special. A pair of
elements a,b € B(k) is said to be a spectal system of generators in B(k) if there exists an
automorphism ¥ of B(k) such that ¥(«) = a and ¥(8) = b. If {a, b} is such a system of
generators, then the elements

si = P(0;) = a*"Zba (7D (1<i:<k-1) (0.11)

also form a system of generators of B(k) that satisfy rclations (0.1), (0.2); we call such
a system of generators standard. The clements oy, e also generate the whole group B(k)
(since B = aoy).

0.3. Pure braid group. The canonical projection p = pg: B(k) — S(k) is defined by
(o) = (4,i+1) € S(k) (1 < i < k—1). The kernel Ker p = I(k) C B(k) of the
epimorphism  is the normal subgroup in B(k) generated (as a normal subgroup) by the
elements o2,...,0%_; I(k) is called the pure braid group.

A presentation of the pure braid group I(k) was first found by W. Burau [Bu] (see also
[Mr,Bi]). We need some properties of the group I(k) proven in [Mr].

The group I(k) is gencrated by the elements s; ; € B(k) (1 <4 < j < k) defined by the
recurrent relations

Siit1 = U? and Si 41 = (J':,'.S',',J;('J'j_1 for 1<i<j<k.

The elements s; ; are called the canonical generators of I(k). Assume that 1 <r < k and
denote by s;;, 1 < i < j < r, the canonical generators of I(r). The mapping of the
generators

Eer(sij)=1 if 1<i<yj and r<j3<k
rloig) ;. o ’ (0.12)
Ekr(8i5) = s i 1<i<j<r,

defines an epimorphism § : I(k) = I(r). The kernel of this epimorphism coincides with
the subgroup I"(k) C I(k) generated by all the elements s; ; with 7 > r. The following
important theorem was proven by A. A. Markov [Mr}:

Markov Theorem. The normal subgroups I" (k) C I(k) fit into a normal series
(1} =T(k) c T*" k) € -~ C TP(k) C T'(k) = I(k)
such that I" (k) /I"t1(k) 2 F, (the free group of rankr, 1 <7 <k —1).

Each group I"(k) is finitely generated; Markov Theorem implics the following two corol-
laries.
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Corollary 0.1. A perfect group does not possess nontrivial homomorphisms into the pure
braid group I(k).

Proof. Tt suffices to show that any nontrivial subgroup H C I(k) has a nontrivial homo-
morphism into an Abelian group. For some r, 1 <7 < k —1, we have H C I"(k) and
H ¢ 1I"*1(k). Projecting H into the quotient group I"(k)/I"*!(k) = F,, we obtain a non-
trivial free subgroup H C I"(k)/I"+1(k), which certainly has nontrivial homomorphisms
into Abelian groups; hence, the subgroup H itself has such homomorphisms. O

Corollary 0.2. The group B(k) is residually finite; any finitely generated subgroup of
B(k) is Hopfian.

Proof. By Markov Theorem, every I"(k) is a semidirect product of the finitely generated
groups I"*1(k) and F,. Maltsev Theorem implies (by induction) that the group I(k) is
residually finite. Any subgroup H C I(k) of finite index in I(k) is also a subgroup of finite
index in B(k); hence, B(k) is residually finite and any finitely generated subgroup of B(k)
is Hopfian. O

0.4. Center. Denote by C(k) (k > 2) the infinite cyclic subgroup in B(k) generated
by the element Ay = of = (0103 0x—1)*. Since p(a) = (1,2,...,k) € S(k), we have
w(Ag) = 1; hence, C(k) C I(k). Clearly, C(2) = I(2). Chow [Ch] proved that for £ > 3
the subgroup C(k) coincides with the center of the braid group B(k) (see also [Bo]).

0.5. Transitive homomorphisms B(k) — S(k). Any transitive Abelian homomor-
phism 1: B(k) — S(n) is cyclic and conjugate to the homomorphism 1y defined by

1/)0(0’1) = ’l,[)o(d’g) =...= ‘l/)o(O‘k_l) = (1,2, Ve ,n);

particularly, [¢(o;)] = [n] for all ¢ = 1,...,k — 1. The following classical theorem of E.
Artin [Ar3] describes all noncyclic transitive homomorphisms of the group B(k) into the
symmetric group S(k). (See also Remark 2.2.)

Artin Theorem. Let i: B(k) — S(k) be a noncyclic transitive homomorphism.
a) If k # 4 and k # 6, then ¥ is conjugate to the canonical projection .
b) If k = 6, then v is either conjugate to 1 or conjugate to the homomorphism vg defined
by
VG(Ul) = (112)(3a 4)(5r6)) Vﬁ(a) = (112:3)(4:5)

c) If k = 4, then i is either conjugate to p or conjugate to one of the following three
homomorphisms v4 1, V42, V4 3:

V4,1(0'1) = (11 2,3, 4): V4,1(a') = (11 2); [y4,1(03) = V4,1(01)]
vaa(o1) = (1,3,2,4), vgo(a) = (1,2,3,4); [va2(03) = vaa(o] )]
va3(o1) = (1,2,3), vaa(a) = (1,2)(3,4);  [va3(o3) = va,3(01)].

d) Ezcept of the case when k = 4 and ¥ ~ 14,3, the homomorphism ) is surjective. In

the ezceptional case when ¢ ~ vy 3, the image of ¢ coincides with the alternating subgroup
A(4) C S(4). O
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0.6. Commutator subgroup B’(k); canonical integral projection. We have already
noted that B(k)/B’(k) & Z; the homomorphism x: B(k) — Z defined by

x(o1)=...=xlox—1)=1€Z
is called the canonical integral projection of the group B(k). Clearly, Ker x = B/(k).

Remark 0.2. If G is a torsion free group and ¢: B(k) — G is a nontrivial Abelian
homomorphism, then Ker ¢ = B’(k). (Clearly, B'(k) C Ker ¢; this inclusion cannot be
strict, for otherwise Im ¢ = B(k)/Ker ¢ would be a nontrivial proper quotient group of
the group B(k)/B’'(k) & Z, which is impossible since G is torsion free.) O

B’(2) = {1}; the following theorem (see [GL1] for the proof) contains some information
about the groups B'(k) for £ > 3. In the formulation of this theorem we regard the group
B’(k) as naturally embedded into the group B(k) and write generators of B/(k) as words
in the canonical generators of B(k).

Gorin-Lin Theorem. a) B'(3) is a free group of rank 2 with the free base
U= 0201”1, V= 0’10'20‘1_2.

b) For k > 3 the group B'(k) has a finite presentation with the generators

W= 020307 05, Ci = Oi420] (1<i<k-3)
and with the following defining system of relations:®
uclu_l = 1w, ( 14)
wwut = wiel lw, (0.15)
verv™! = ey tw, (0.16)
vwv™ ! = (c]w)3ew, (0.17)
uc; = ;U (2<i<k-3), (0.18)
ve; = cu (2<i<k-3), (0.19)
CiCj = C5C (1<i<yj—1<k-4), (0.20)
CiCit1Ci = Ci41CiCisl (1<i<k—4). (0.21)

c) The subgroup T of the group B'(4) generated by the elements w and ¢, is a free group
of rank 2; this subgroup coincides with the intersection of the lower central series of the
group B'(4); the quotient group B’(4)/T = F,.

d) For k > 4 the group B’ (k) s perfect. 0

Since B(k)/B’(k) = Z, statements (a) and (c) of this theorem imply:

2For k = 4 the generators ¢; with i > 2 and relations (0.18) - (0.21) do not appear.
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Corollary 0.3. The groups B(3) and B(4) admit finite normal series with free quotient
groups. Hence, these braid groups contain no perfect subgroups. For k < 4 any nonirivial
subgroup G C B(k) possesses nontrivial homomorphisms G — Z. O

Remark 0.3. The fact that the groups B’(k), k > 4, are perfect, was first proven in [GL1]
using the presentation given by (0.13)-(0.21). During a few years after the publication of
[GL1], it was a challenge to find a simpler proof of this very important property of the
braid groups. At the end, E. A. Gorin has discovered a simple and very beautiful relation
which holds for any k& > 4:

o301 = (0102) 7" - [o307 0105 "] - (0102),

where [0'30'1_1,0102_1] = (0301_1)_1 - (0102_1)_1 . (0301_1) : (crla.;l) is the commutator
of the elements g1 = o307 1 and g2 = 010, 1 Evidently, these elements g,, g2 belong
to the commutator subgroup B’(k), and Gorin’s rclation shows that the element oaoy’
belongs to the second commutator subgroup B” (k) = (B’(k))’. Hence, the whole normal
subgroup N of the group B(k) generated (as a normal subgroup) by the element o307 is
contained in B”(k). However, if £ > 4, it follows readily from relations (0.1), (0.2) that
this normal subgroup N contains the whole commutator subgroup B’(k) (for k£ > 4, the
relations (0.1),(0.2) joined with the additional relation o307 " = 1 give a presentation of
the group Z; see, for instance, Lemma 1.14). This implies that B’(k) = B" (k). O

Remark 0.4. Assume that k > 4 and denote the canonical generators in B(k — 2) and
B(k) by s; and o, respectively. Since oy commutes with o3, ..., 0%_1, for any integer m we
can define a homomorphism Ag m: B(k—2) = B(k) by Ak m(8i) = gig207™, 1 < i < k-3,
It is well known that Ag ., is an embedding (from the geometrical point of view, this is
evident).

Further, relations (0.20), (0.21) for the generators ¢; = o;,207 " in B’(k) show that we
can define a homomorphism

Mg Bk —2) - B'(k)

by s; = ¢, 1 <14 < k—3. The composition of A}, with the natural embedding of B'(k)
into B(k) coincides with A 1; hence, X} is an embedding. O

Canonical homomorphism B'(k) — S(k); pure commutator subgroup. The pre-
sentation of B’(k) given by Gorin-Lin Theorem is called canonical. The restriction g’ of
the canonical projection u to the commutator subgroup B'(k) C B(k),

i = | B(k): B'(k) = S(k),

is called the canonical homomorphism of B'(k) into S(k). Its image coincides with the
alternating subgroup A(k) C S(k), and its kernel coincides with the normal subgroup
J(k) = I(k) NB’(k) of the group B(k). The normal subgroup J(k) = I(k) N B’(k) is called
the pure commutator subgroup of the braid group B(k). It is easily checked that

#’(U) = (1,3,2), ,u'('u) =(1,2,3), IL’(w) = (1,3)(2,4),

Wie) = (1,2)(i+2,i+3) (1<i<k-—1). (0.22)
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0.7. What we prove. Here we formulate the main algebraic results of the paper.

Theorem A. Assume that k > 4 andn < k. Then

a) any homomorphism B(k) — S(n) is cyclic;

b) any homomorphism B(k) — B(n) is integral;

c) the commutator subgroup B'(k) of the group B(k) does not possess nontrivial homo-
morphisms into the groups S(n) and B(n).

Theorem B. Ifk # 4, then ¢(I(k)) C I(k), ¢~ (I(k)) =I(k) and Ker ¢ C J(k) for any
nonintegral endomorphism ¢: B(k) — B(k).

Let v§ denote the restriction of Artin’s homomorphism vg: B(6) — S(6) to the commu-
tator subgroup B'(6) C B(6).

Theorem C. Assume that k > 4. Let . B'(k) = S(k) be a nontrivial homomorphism.
Then either ¢ ~ ). (which may happen for any k) or k =6 and ¥ ~ vg. In particular,

Im ¢ = A(k) and Ker v = J(k) = I(k) n B'(k).

Theorem D. Suppose k > 4. The pure commutator subgroup J(k) = I{(k) N B'(k) is
a completely characteristic subgroup of the group B'(k), that is, ¢(J(k)) C J(k) for any
endomorphism ¢: B'(k) — B'(k). Moreover, ¢~ (J(k)) = J(k) for every nontrivial endo-
morphism ¢.

Theorem E. a) If k > 5, then any transitive homomorphism B(k) — S(k + 1) is cyclic.
b) For k > 4 any transitive homomorphism B(k) — S(k + 2) cyclic.

Theorem F. a) Assume that 6 < k < n < 2k. Then any transitive homomorphism
B(k) — S(n) is cyclic.

b) If k > 8, then any noncyclic transitive homomorphism : B(k) — S(2k) is conjugate
to one of the following threc homomorphisms ¢;:

p1(oy) = (21— 1,2 + 2,24, 2i + 1);

~ o

4—(2;(:18
@2(0:) = (1,2) -~ (20 — 3,21 — 2) (20 — 1,20 + 1)(24, 2i + 2)(2i + 3,20 + 4) - - - (2k — 1, 2k);
two tran::;osit.ions

@3(os) = (1,2) - (20 — 3,20 — 2) (20 — 1,24 + 2,24, 2i + 1)(2i + 3,21 + 4) - - - (2k — 1, 2k);

L o

4-cycle

(in each of the above formulas 1 =1,...,k — 1).

Theorem G. Assume that k > 4 and n < 2k. Then
a) any transitive imprimitive homomorphism ¥: B(k) — S(n) s cyclic;
b) any transitive homomorphism ¢': B'(k) — S(n) is primitive.

To formulate the next theorem, it is convenient to introduce the following definitions.
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Special homomorphisms. Let {a,b} be a special system of generators in B(m). Let
H.m(a,b) be the subset in B(m) consisting of all the elements g~ 'a%g and g~'b%g, where g
runs over B(m) and p runs over Z. We say that a homomorphism ¢: B(k) — B(n) is special
if p(Hy(a, b)) C Hn(a',b") for some choice of special systems of generators a,b € B(k) and
a', b’ € B(n).

Murasugi Theorem ([Mu]). A braid h belongs to H,,(a,b) if and only if h is an element
of finite order modulo the center C(m) of the group B(m).

This theorem implies that the set H,,(a,b) does not depend on a choice of a special
system of generators a,b € B(m), and a homomorphism ¢: B(k) — B(n) is special if and
only if for any element g € B(k) of finite order modulo C(k) its image ¢(g) € B(n) is an
element of finite order modulo C(n) (actually, we do not use this result in this paper).

It was stated in [L1] and proven in [L7] that for any holomorphic mapping f: Gx = G,
the induced homomorphism of the fundamental groups f,: B(k) — B(n) is special (see
also §8). This is a reason to study such homomorphisms.

Notation 0.1. Let P(k) be the union of the four increasing infinite arithmetic progres-
sions Pk* = {p;.“’i = (j-1)d(k) |j € N} (1 < i < 4) having the same difference
d(k) = k(k — 1) and starting, respectively, with the following initial terms:

Pyt =k, oY =k(k-1), piP=k(k-1)+1, and p* = (k-1)%. O

Theorem H. a) Assume that k # 4 and n ¢ P(k). Then any special homomorphism
B(k) — B(n) is integral.

b) For any k > 3 and any n € P%1 U P%? there erists a non-Abelian special homomor-
phism B(k) - B(n).

0.8. How and where the main theorems are proven. Let us start with some
comments on results concerning homomorphisms B(k) — S(n). For any k,n, the set
Hom(B(k),S(n)) of all such homomorphisms is finite; in fact, using the special presen-
tation of B(k), we see that # Hom(B(k),S(n)) < h(n) = (n! — 1)n!. To find all the
homomorphisms, one may use straightforward combinatorial computations. However, for
large n this approach is almost useless (say h(10) =~ 1.3 - 10'%).

Any homomorphism : B(k) — S(n) is a disjoint product of transitive homomorphisms
Y;: B(k) = S(n;), Y n; =n. If 9 is noncyclic, at least one of the homomorphisms ;
must be noncyclic. Taking into account this fact, we try to describe all possible cyclic
types of the permutation &; = ¥(o1) € S(n) for a transitive (or noncyclic and transitive)
homomorphism ¥: B(k) = S(n). (Note that all ; = (0;) are conjugate to each other,
and hence are of the same cyclic type.)

FIXED POINTS AND PRIMES. TRANSITIVE HOMOMORPHISMS B(k) — S(k) anp B(k) — S(k+1).
The following remarkable result is due to Artin:

Artin Lemma. If k > 4 and there is a prime p > 2 such that n/2 < p < k — 2, then for

any noncyclic transitive homomorphism : B(k) — S(n) the permutation 7, must have at
least k — 2 fized points.
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Artin treated the case n = k, but his proof does not depend on the latter assumption
(see Lemma 1.22).

The famous theorem of P. L. Chebyshev implics the existence of a prime p with the
required properties whenever kK >4 andn<korb6# k>4dandn <k If6#k=n>4,
Artin Lemma shows that all the permutations &; must be transpositions, and the proof of
Artin Theorem (a) can be completed in a few words. Moreover, for any k > 6 there is a
prime p such that (k+1)/2 < p < k—2. Hence, the inequality # Fix 7 > k —2 holds true
for any k > 6 and any noncyclic transitive homomorphism : B(k) — S(k + 1), which
yields Theorem E(a) whenever k& > 6 (in Theorem 6.3(a) the case k = 6 is treated as well).

HomoMorrHIsMs ¢: B(k) — S(n), k& > n. AN IMPROVEMENT OF ARTIN THEOREM. We
represent 9 as a disjoint product of transitive homomorphisms ;. If some 1); is noncyclic,
then, by Artin Lemma, all ,(0;) are transpositions. This leads to a contradiction, which
proves Theorem Af{a) (see Theorem 2.1(a)). Using this theorem and Artin Theorem, we
show that for k # 4 any nonsurjective homomorphism B(k) — S(k) is cyclic (Lemma 2.7).
This implies that for k # 4,6 any noncyclic homomorphism B(k) — S(k) is conjugate to
the canonical projection, which is a useful improvement of Artin Theorem (Remark 2.2).

HomomorprHisMs ¥: B/(k) — S(n). Take the restriction ¢ of a homomorphism % to the
subgroup B = B(k — 2) of B’(k) generated by the elements ¢; = oy4207 " (§0.6). Using
Theorem A(a) and Lemma 2.7, we show that for £ > 4 and n < k the homomorphism ¢
must be cyclic. On the other hand, using relations (0.14)-(0.21), we show that the original
homomorphism 1 is trivial whenever ¢ is cyclic {Lemma 6.4). This proves the statement
of Theorem A(c) concerning homomorphisms B’(k) — S(n). Using this result (which
is an essential strengthening of Theorem A(a)), we prove Theorem G. The primitivity of
transitive homomorphisms is a very helpful property: it allows us to apply Jordan Theorem
about primitive permutation groups. (See Theorem 6.6, Lemma 6.7, and Proposition 6.8.)

SMALL SUPPORTS. Artin proved that the cyclic decomposition of o7 cannot contain a cycle
of length > n/2 whenever k& > 4 and % is noncyclic and transitive (Lemma 1.19(a)).
On the other hand, in Lemma 1.21 we show that #supp 71 < n/F(k/2) whenever all
the cycles C < &, are of pairwise distinct lengths (F(z) is the integral part of z). This
means that the support of &y is relatively small; say for £ > 6 and n < 2k we have
#supp 7, < 4. Such homomorphisms can be studied without great difficulties. Actually,
for 6 < k < n < 2k Lemma 6.9 provides an explicit description of all noncyclic transitive
homomorphisms 1: B(k) — S(n) that satisfy #supp ;1 < 5. In particular, it is proven
that for k,n as above such a homomorphism does exist only if n = 2k and 7, is a 4-cycle.

WHAT TO DO IF 1 1S CLOSE TO 2k? The above methods do not go too far from original
Artin’s ideas (the main innovation is that Gorin-Lin Theorem applies systematically).
With some exceptions, Artin Lemma still works if n > &£ + 1 but n is close to k. Say, if
n=k+2and 812# k> 7o0orn=k+ 3 and 11,12 # k > 9, then it follows from the
Finsler inequality 7(2m) — w(m) > m/(3log(2m)) (sce [Fi, Tr]) that there is a prime p on
the interval (n/2, k — 2]. However, if n is near 2k, these methods hardly work, since there
is no hope to find a prime on a rather short interval (n/2, k — 2]. Actually, for such n, even
if we were lucky to get # Fix o1 > k — 2, the support of &; may still contain about k + 2
points, and we cannot come to any immediate conclusion. We must look for new ideas.
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HOMOMORPHISM §2; COHOMOLOGY. By the reasons explained above, we should mainly han-
dle a noncyclic transitive homomorphism : B(k) — S(n) such that the cyclic decomposi-
tion of o) contains a few cycles of the same length. A simple idea described below occurs
crucial (see §8§4, 5).

Fix some r > 2 and assume that the r-component €, of &, consists of ¢ > 2 r-cycles
Ci, ..., Cy. Since 73, ...,0,—1 commute with &1, the conjugation by any 6; (3 <7<k —1)
induces a permutation of the r-cycles C,...,C;. This gives rise to a homomorphism

Q: B(k — 2) — S(C,) 2 S(1),

where B(k — 2) is the subgroup of B(k) generated by o3, ..., 0%—1.

Further, for any ¢ = 3, ..., k — 1, the support £ = Z(¢,) = U:zl supp C; of the r-
component €, is a 7;-invariant subset of A,,. Take the restriction ¥ = ¢ | B(k — 2) of the
original homomorphism ¢ to the above subgroup B(k — 2) € B(k), and then consider the
reduction of ¥

U_: B(k-2) — S(X) 2 S(rt) C S(n)

to the above (Im ¥)-invariant subset £ C A,,. It is casily seen that the homomorphisms
{2 and ¥ fit in a commutative diagram of the form

B(k — 2) B(k - 2)

| |

1 »y H > G — 5 s(¢,) —— 1.

Here H = (Z/rZ)* is the Abelian subgroup of S(X) generated by the (disjoint) r-cycles
Ch,...,Ct, G is the centralizer of the element C = Cp---C; in S(X), and the second
horizontal line of the above diagram is an exact sequence with a fixed splitting p: S(¢,) &
S(t) — G. The latter exact sequence is, in fact, universal, meaning that we have “the
same” sequence for all the homomorphisms % having an r-component of length ¢.

The complementary set £’ = A, — X is also (Im ¥)-invariant, and we can take the re-
duction ¥y of ¥ to £'. The perfectness of the commutator subgroup implies the following
two properties of the homomorphism §2 (see Lemma 4.4 and Theorem 5.10{(a)):

Suppose k > 6. If+ is noncyclic and Wy is Abelian, then €2 must be noncyclic. Moreover,
the same conclusion holds true whenever ¥y, is noncyclic.

Since k — 2 < k and ¢t < n/r < n/2, we may hope to handle £2. Assuming that § is
already known, we try to recover (as far as possible) the homomorphism ¥y, which keeps
important information about the original homomorphism . Clearly, this is a homological
problem. Namely, the homomorphism  and the splitting p give rise to a B(k — 2)-action
T on the Abelian normal subgroup H C G. We show (Proposition 4.6) that there is a
natural bijection between the cohomology group H:(B(k — 2), H) and the set of all the
classes of H-conjugate homomorphisms ¢: B(k — 2) — G that satisfy the commutativity
relation mop = Q. The action T and the corresponding cohomology H}(B(k — 2), H) can
be computed explicitly in many cases that we are interested in (see §§5,6). As a result,
we obtain a description of all possible homomorphisms ¥y (up to conjugation). This
description leads to some very restrictive conditions on the original homomorphism 1.
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On the other hand, &4_, is conjugate to &, the r-component €& of &x_; is also of
length t. Actually, the conjugation by the clement @*~2 = (o) - ok_;)}*~2 induces

natural isomorphisms ¢, — ¢r and S(C,.) = S(C}). All the permutations &, ..., k-3
commute with ox_1, and we can apply the above construction to obtain a homomorphism

Q% B*(k - 2) — S(€*) = S(1),

where B*(k — 2) = B(k — 2) is the subgroup of B(k) generated by o1,...,0,—3. The
following simple observation is very useful: under the identification B(k — 2) = B*(k — 2)
given by gi42 = 0;, 1 < i < k— 3, the homomorphism * coincides with the above
homomorphism Q (Lemma 4.3).

DOWN WITH LONG COMPONENTS! FIXED POINTS WITHOUT PRIMES. Using the cohomology
approach (and also Lemma 4.3 mentioned above), we prove that for a noncyclic homo-
morphism : B(k) — S(n) the permutation o1 cannot have an r-component of length
t > k — 3 whenever 6 < k < n < 2k (see Lemma 6.11, which is one of the crucial technical
results). On the other hand, using Theorem A(a), we prove in Lemma 6.10: if & > 6 and
all the components of @, (including the degenerate component Fix ;) are of length at
most k — 3, then the homomorphism ¥ must be cyclic. Combining these two results, we
prove the following analog of Artin Lemma: if 6 < k < n < 2k, then #Fix gy > k — 2 for
any noncyclic homomorphism 1 (Corollary 6.12). This leads to Theorem E(b) (at least for
k > 6; the cases k = 5,6 may be treated as well; sec Theorem 6.15(a)).

HomomorpHisMs B(k} — S(n), k < n < 2k. Theorem F(a) is proven by induction
on k. First, to get a base of induction, we study the cases & = 7,8 (Lemma 6.17 and
Lemma 6.19). Further, assuming that 6 < k < n < 2k and ¢: B(k) — S(n) is a noncyclic
transitive homomorphism, we take the restriction ¢: B(k—2) — S(n) of ¢ to the subgroup
B(k — 2) C B(k) generated by 03, ...,0k-2 and the reductions ¢: B(k — 2) — S(X) and
¢': B(k—2) =& S(&') of ¢ to the mutually complementary (B(k — 2))-invariant sets
¥ = supp o1 and ¥’ = A, — %, respectively. So, ¢ is the disjoint product of ¢ and ¢'.
In Lemma 6.16, which is the main technical tool of induction, we show that ¢ Is trivial,
¢’ is noncyclic and ¢ = ¢’. The proof of this lemma involves the homomorphisms €2, Q2*
(corresponding to each nondegenerate component of 71} and Theorem 5.10(a) mentioned
above. Finally, assuming existence of a natural m such that any transitive homomorphism
¥: B(k) — S(n) is cyclic whenever k,n satisfy 6 < & < m and k < n < 2k (the induction
hypothesis), we prove that the same conclusion must be true whenever 6 < k¥ < m+2 and
k < n < 2k. The justification of this induction step involves Lemma 6.16, Corollary 6.12,
Artin Theorem, Theorem G, and Jordan Theorem on primitive permutation groups. (See
Theorem 6.20.).

The case n = 2k is more sophisticated, since for a noncyclic transitive homomorphism
¥: B(k) — S(2k) the permutation &; = (01) may possess a 2-component of length
t > k — 3. However, using the corresponding cohomology and Theorem F(a), we show
that in the latter case either t = k and ¥ ~ @3 or t = k — 2 and 9 ~ 3 (see Lemma
6.21). Combining this property with Theorem A(a), Artin Theorem, and Theorem F(a),
we prove Theorem F(b) (see Theorem 6.23).
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HoMmoMorpHIsMS ¢: B(k) — B(n). Assume that & > 4 and consider the composition
Y = pod¢: B(k) - S(n) of ¢ with the canonical projection iz B(n) — S(n). If ¥ is
cyclic, then ¥ (B’(k)) C Ker pp = I(k). Since B’(k) is perfect, Markov Theorem implies
that ¢(B’(k)) = {1} and ¢ is integral. Combining this simple observation with Theorem
A(a), we obtain Theorem A(b). In the same way, we complete the proof of Theorem A(c)
(we already have commented on the absence of nontrivial homomorphisms B’'(k) — S(n)
for k > 4 and n < k).

To prove Theorem B, we show (using Lemma 2.7 cited above) that if k # 4, then for
a nonintegral endomorphism ¢ of B(k) the composition ) = j o ¢ must be surjective
and, therefore, noncyclic and transitive. By Artin Theorem, Ker 9 = I(k), which implies
¢~ 1(I(k)) = I(k); the other assertions of the theorem follow readily from this fact.

HomoMorpHIsMS ¥: B'(k) — S(k). ENpomorpHisms oF B'(k). Suppose 6 # k > 4.
Restricting a nontrivial homomorphism % to the subgroup B(k — 2) C B/(k) generated by
all the elements ¢; = 0;4007 ", i < k—3, we obtain a homomorphism ¢: B(k —2) — S(k).
Using Lemma 6.4, Theorem A(a), and Theorem E, we show that 4 is tame, meaning
that the permutation group ¢(B(k — 2)) C S(k) has an orbit Q C Ay of length k& — 2
(Lemma 7.3). By Artin Theorem, the reduction ¢g of ¢ to @ is conjugate to the canonical
projection B(k — 2) = S(Q) = S(k — 2); hence, without loss of generality, we may assume
that ¢; = ¥(c;) = (1,2)(i -+ 2,1+ 3) for all ¢ = 1, ...,k — 3. Using this property and the
defining relations {0.14)-(0.21), we show (by a straightforward computation) that ¢ ~ puj;
this proves Theorem C (see Theorem 7.5, where the case & = 6 is treated as well). In view of
Markov Theorem and the perfectness of the group B/(k), Theorem D follows immediately
from Theorem C (see Theorem 7.7).

SPECIAL HOMOMORPHISMS ¢: B(k) — B(n). The proof of Theorem H is mainly based on
Lemma 1.17, which provides us with some “arithmetical” properties of noncyclic homo-
morphisms of braid groups (see Theorem 8.1).

0.9. Some open problems. We present here a list of some questions and open problems
on homomorphisms of braids and related topics. Some of these problems certainly can be
solved by the methods described in the paper, but some other problems seem more difficult.

0.9.1. HoMoMorpPHIsMS ©: B(k) — S(n). a) Describe all noncyclic transitive homomor-
phisms % in the following cases: k=4 andn =8, k=5and n =8,9,10; kK =6 and
n=10,11,12; k=7 and n=14; k=8 and n = 16.

b) It seems that our methods make it possible to classify all noncyclic transitive homo-
morphisms ¥ for n < 3k (at least for k large enough). However, for n > 3k one needs some
new ideas to simplify computations.

I do not know any counterexample to the following conjecture:

Conjecture. For any natural v there exists K(r) such that any transitive homomorphism
¥: B(k) = S(n) is cyclic whenever k > K(r) and (r — 1)k < n < rk.

Theorem A(a) and Theorem F(a) show that Conjecture is true for r = 1,2 (with K(1) =4
and K (2) = 6, respectively). On the other hand, even if k is large and does not divide n,
a noncyclic transitive homomorphism : B(k) = S(n) can exist. Indeed, take any prime
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p and consider the family Py, , of all partitions of the set Ay, into two complementary
subsets &, &' with #X = #¥' = p. Clearly, the number

_ L2\ (2p-1\ _ (2p-1)(2p-2)---(p+1)
n(2p) = # s = 3 (7)< (7)) - n2)

is not divisible by p. However, S(2p) acts transitively on P2, ,, and we have a noncyclic

transitive homomorphism B(2p) 2% s(2p) = S(P2p,p) = S(n(2p)). (If p is large, then the
ratio n/k = n(2p)/2p is certainly very large.)

0.9.2. EnpomorpHISMS oF B(k) anp B'(k). TorsioN. Any non-Abelian endomorphism
of the group B/(3) = F, is injective, but the group B'(4) = F, X\ F, admits non-Abelian
noninjective endomorphisms. Any nonintegral endomorphism of B(3) is injective (The-
orem 2.12). However, B(4) admits nonintegral noninjective endomorphisms ¢ (say the
composition of the well-known epimorphism B(4) — B(3) with the natural embedding
B(3) — B(4)); actually, Ker ¢ = T for any such ¢ (Theorem 2.15)}.

Suppose k > 4. a) Does exist a nonintegral noninjective endomorphism ¢ of B(k)? (By
Lemma 2.11, Ker ¢ C B’(k) for any nontrivial endomorphism ¢.)

Does exist a nontrivial endomorphism ¢ of B'(k) such that b) the kernel of ¢ is non-
trivial? ¢) ¢ is not an automorphism? d) ¢ does not extend to an endomorphism of the
whole group B(k)?

e) Is it true that any automorphism of B’(k) extends to an automorphism of B(k)? (A
complete description of automorphisms of B(k) was obtained by J. Dyer and E. Grossman
in 1982).

Does exist f) a proper torsion free quotient group of B'(k)? g) a proper torsion free
non-Abelian quotient group of B(k)? (See Remark 7.3.)

0.9.3. SPECIAL HOMOMORPHISMS AND HOLOMORPHIC MAPPINGS. a) Suppose k > 4. Is it
true that for n ¢ P*! U P*2 any special homomorphism ¢: B(k) — B(n) is cyclic? (See
Theorem H and §8.)

b) Is it true that for n # &k > 4 any holomorphic mapping G — G,, is splittable?
Theorem H implies that this is the case if n ¢ P(k).
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§1. AUXILIARY RESULTS

To facilitate the exposition of the main proofs, we have collected here many auxil-
iary results. Some of them are used just occasionally; however, some other are involved
throughout the paper. We recommend to read them when and if it is needed.

1.0. Three algebraic lemmas. Recall that a word in the variables aq,...,a; and

a,l_l, ...,a; ! is said to be reduced if it does not contain a part of the form a.,-a,i_1 or a; o

(1<i<s).

Lemma 1.1. Let f(z,z7'y,y7!) be a nonempty reduced word in variables z,y and
z=l y~1. If the elements u and v of a group G satisfy f(u,u',v,v™!) = 1, then for
any homomorphism ¢: G — F into a free group the elements u = ¢{u) and ¥ = ¢(v)
commaule.

Proof. The subgroup H C F generated by the elements %, 7 is a free group of rank r < 2.
In fact, 7 < 1; for otherwise {u, 7} would be a free base of H, which is impossible since
f(@ 41,7,971) = 1. Hence the group H is commutative. O

Lemma 1.2. Let H be a group and K C H be a subgroup generated by two elements u,v.

Assume that there exist an element 0 € H and elements x,y in the commutator subgroup
K' of K such that
ouo~! = uPviz, ovo~! = utvly, (1.1)

where the integral exponents p,q, s,t form the matrizc M = (IS) 3) with det M = X1 and

without eigenvalues £1. Then any integral group homomorphism : K — G admitting an
extension ¥: H — G to the whole group H is trivial.

Proof. Put ©@ = ¥(u) = ¥(u), v = ¢(v) = ¥(v), 7 = V(o). It suffices to show that
u = v = 1. Since 1 is integral, the subgroup K=Imy= U(K) C G generated by these
two elements is either trivial or isomorphic to Z. In the first case there is nothing to prove.
So, we may assume that K =~ Z. Since z,y € K’ and the group ¥(K) = K is commutative,
we have U(z) = ¥(y) = 1. Therefore, it follows from relations (1.1) that

s~ =aPeY, 505! = 0ot (1.2)

Since det M = +1, these relations imply that the conjugation by the element & € G defines
an automorphism S of the subgroup K=~z Any automorphism of Z is involutive; that
is, $? = id. Combining this fact with relations (1.2) and passing to the additive notations
(which is natural since we deal with the elements @, € K 2 7), we obtain the following
system of linear equations for u, v:

(5)=(5) =

By our assumptions, this system has only trivial solution, which concludes the proof. 0O

<) &)



18 VLADIMIR. LIN

Ezample 1.1. Let H = G be the group with two generators a, o and one defining relation
cac™! = a?. The subgroup K C H generated by the elements u = a2 and v = a®
is isomorphic to Z. The identical embedding ¢: K — H = G is a nontrivial integral

homomorphism that extends to H. Clearly, cuc™! = u?, ove~! = v2; the corresponding

matrix M = (g g) has det M = 4 (and has no eigenvalues +1). This example shows
that the condition det M = +1 in Lemma 1.2 is essential. O

Lemma 1.3. Let g > 2 be a natural number and let v = (q+1,4). Assume that a braid-like
couple a,b in a group G satisfy also the condition booat. Then

avla-1) = bu(q—l) =1.

Proof. The conditions booa and booa? imply that
a? b = h9a971, (1.3)
bad™1 = 97 1p9, (1.4)
and also

ab2(0=Vg=1 = p=1g20-Dp = =140 19071 = p= g0 1701 = p=1pg?~ g9~ = 21— 1),

Hence, b2(9=1) = q(9=1) and a commutes with 5(9=1). Further, it follows from (1.3),(1.4)
that b7t1a971 = ba9~1b = a7~ 147+ i, c., @97 ! commntes with »9T1; therefore, the element
¢ = a?"! commutes with b9t and b2(¢=1), This implies that the element ¢ commutes also
with b%, where d = (¢+1,2(g— 1)) (since d = (g + 1)m -+ 2(g — 1)n for suitable m,n). But
(g+1,2(q—1)) = (¢g+1,4) = v, and thus

a?"! commuts with b”. (1.5)

Since v divides ¢ + 1, we have ¢ = v + (v — 1) for some nonnegative integer r. Taking
into account (1.5) and using one time (1.4) and v — 1 times (1.3}, we obtain

baq—l — aq—lbq — aq—lbrubu—l — bruaq—lbn—-l — brub(u—l)qaq—l — bru-i-(u—l)qaq—l'

Hence, b¥(a=1) = prv+{v—1)e-1 = 1 Because of the condition acob, the latter relation
implies that a*(?~1 =1, O

Exzample 1.2. Let G = S(8), a=(1,2,3,4,5,6,7,8),b=(1,7,6,8,5,3,2,4) and ¢ = 3.
Then booa, booa®, v = (¢+1,4) =4 and

v(g—1)=8=orda = ordb.

This shows that the result of Lemma 1.3 is sharp. O
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1.1. Some properties of permutations. Here we prove some simple lemmas on per-
mutations.

Lemma 1.4 (cf. [Ar3]). Suppose A, B € S(n) and AB = BA. Then:

a) the set supp A is B-invariant;

b) if for somer, 2 <r <n, the r-component of A consists of a single r-cycle C, then
the set supp C is B-invariant, and B | supp C = C? for some integer q, 0 < g <.

Proof. a) Let i € supp A; then A(i) # ¢ and AB(i) = BA(4i) # B(i); therefore, B(i) €
supp A.
b) Let A= CD;--- D, be the cyclic decomposition of A. Then

CD,---Dy=A=B"'AB=B"'CD,---D,B=B"'CB-B™'D,B---B™'D,B.

Since C is the only r-cycle in the cyclic decomposition of A, we have C = B~'CB, and
(a) implies that the set supp C is B-invariant. Let C = (dg, %1, ...,%r~1). Then B(ip) = i4
for some ¢, 0 < g <7 — 1. Let us prove that B | supp C = CY. Since C¥(i,) = Us+ql,» WE
should show that B(i;) = %|44|,. for all s = 0,1,...,7 — 1. The proof is by induction over
s with the case s = 0 clear (0 < ¢ < 7 — 1 and modog, = ¢). Assume that for some k,
1<k <r—1, we have B(iy) = i|g4q foralls =0,...k~1. Then

B(ix) = BA(ix-1) = AB(ix-1) = Aijk-144l,) = 7| jp—14q], 41| = Ub+al,- H

Lemma 1.5. Assume that A € S(n) and for some natural r (1 < r < n) the family
Inv, A consists of a single set X.

a) If C € S(n) and D = CAC™}, then Inv, D consists of the single set C(Z).

b) If B € S(n) and AB = BA, then the set ¥ is B-invariant.

¢) If a permutation B € S(n) commutes with A and is also conjugate to A, then Inv, B
consists of the single set 3.

Proof. a) Since DC(X) = CA(X) = C(Z), the set C(X) € Inv,. D. If ¥’ € Inv, D, then
AC~YZY = C~ID(¥) = C~1(¥'), so that C~'(Z') € Inv, 4; hence, C71(Z) = L.

b) A= BAB™', and (a) implies that B(X) € Inv, 4, so that B(X) = X.

¢) In this case we have AB = BA and B = CAC™! for some C € S(n). By (a), Inv, B
consists of the single set C(X). By (b), we have € Inv, B and C(X) = E. d

Lemma 1.6. #(supp ANsupp B) =2 for any braid-like couple of 3-cycles A, B € S(n).

Proof. Since AB # BA, we have supp ANsupp B # &. Moreover, supp A # supp B
(every 3-cycles with the same support commute). Finally, if #(supp ANsupp B) =1, a
simple computation shows that ABA ## BAB. O

The following lemma is evident.

Lemma 1.7. If [A] = [C] = [3] and supp A Nsupp C # &, then supp A = supp C and
C = A9, where either g =1 or g = 2. d
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Lemma 1.8. Assume that [A] = [B] = [C] = [3], ABA = BAB, BCB = CBC, and
AC=CA. Then A=C.

Proof. If B commutes with A or with C, the assumed relations imply that A = B = C. So,
we may assume that BooA and BooC. Then Lemma 1.6 implies that supp B has exactly
two common points with each of the sets supp A and supp C. Hence, the commuting
3-cycles A and C' are not disjoint and, by Lemma 1.7, we have C' = A? with ¢ = 1 or
gq=2. 1fqg=2,then (¢+1,4) =1, g—1=1, BooA, BooAY, and Lemma 1.3 implies
A = B =1, which contradicts our assumptions. Thus, g =1 and C = A. O

Lemma 1.9. Let p be a prime number. Assume that A, D € S(2p), AD = DA, and
A = BC, where B = (bo,b1,...,bp_1) and C = (co,c1,... ,¢p—1) are disjoint p-cycles.
Then the following three cases may only occur:
1) D= B"C", 0<m,n<p;
11) D is the product of p disjoint transpositions D; = (b;-,(:|,-+,,1p), 0<i<p-1, where
an integer v satisfies 0 <7 <p and does not depend on 1,
itt) D is a 2p-cycle of the form

(B0 Cry Blrtsls Clrt-(r48) 150 D2(r49)1 0 Clr2(r49)po  + 5 Dlp=1) (85> Clrt (p=1) ()1 )

and A = D¥, where 0 < 1,5 <p, |[r+ s|lp # 0, and the number q is defined by the
conditions 1 < g <p, |g(r+s)lp,=1.

Proof. Since D commutes with A = BC, we have DBD~! . DCD~! = BC. Clearly,
DBD~! and DCD™! are disjoint p-cycles. So, either DBD~! = B and DCD~! = C, or
DBD~! = C and DCD~! = B. In the first case Lemma 1.4(b) implies that D = B™C",
where 0 < m,n < p. In the second case there are uniquely determined integers r, s such
that D(bo) = ¢, D{cp) = bs, and 0 < 7,8 < p. Then, for all 4,7, 0 < 4,j < p, relations
D(b;) = Clitry, and D(c;) = bljtal, are held. If [r + |, = 0, we have D2(b;) = D(C|i+r|,,) =
b|i+,+5|p = b;, so that D is the product or p disjoint transpositions D; = (b,-,c|,-+,.|p).
Finally, if |r + s, # 0, then |¢(r + )|, # 0 for any ¢ with 1 < ¢ < p (since p is prime), and
therefore D must be the 2p-cycle exhibited in the formulation of the lemma. The other
assertions related to this case are evident. O

The following three lemmas may be proved by a direct checking.

Lemma 1.10. Let A # B be two commuting nondisjoint permutations such that [A] =
[B] = [2,2]. Then either supp A = supp B and the cyclic decompositions of A and B
contain no common transpositions, or supp A and supp B have ezactly two common points
and the transposition of these points is contained both in A and B. [

Lemma 1.11. Let A, B be a braid-like couple of permutations of cyclic type [2,2]. Then
either supp A and supp B have ezactly three common points and a transposition of two
of them is contained both in A and B, or supp A and supp B have ezactly two common
points and the transposition of these points is neither contained in A nor in B. ]

Lemma 1.12. Let A, B be a braid-like couple of 4-cycles. Then either supp A = supp B
and B may be obtained from A by a transposition of two neighboring (in A) symbols, or

supp A and supp B have ezactly two common symbols which are neither neighboring in A
nor in B. a
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1.2. Some elementary properties of braid homomorphisms. Statements 1.13-1.17
concern a group homomorphism 3: B(k) — H, k£ > 3. Lemmas 1.13-1.15 are contained in
[Ar3] (the latter one in a slightly weaker form}), but for the completeness of the exposition
we give the proofs.

Lemma 1.13. Assume that for some i, 1 <i <k — 2, the elements ¥(o;) and ¥{ci+1)
commute. Then the homomorphism i is cyclic.

Proof. Relation (0.2) implies (o) = ¥(oiy1). In view of (0.1), it follows that ¥(o;_1)
commutes with ¥(o;), and ¥(0y41) commutes with ¥ (o;.2). Hence, we have ¥(o;_1) =
Y(o;) = Y(oiy1) = ¥(oi42). Proceeding with this process, we obtain that all the elements
P(o;), 1 <i<k-—1,coincide. 0

Lemma 1.14. Assume that (o;) = ¢(0j) for some i,j, 1 <i<ji<k—1 Ifj#i+2
or k # 4, then vy is cyclic.

Proof. If k = 3 or j = i+ 1, then ¢ is cyclic by Lemma 1.13. So, we may assume that
k>3and j >i+2 Ifj> i+ 2, then (0.1) and the assumption ¥(o;) = (o;) show
that 1 (o;) commutes with 1 (o;41), and ¥ is cyclic (Lemma 1.13). Finally, if £ > 4 and
¥(o;) = ¥(0iy2), then either i > 1l ori=1and i +2 =3 < k—1; in the first case ¥(o;_1)
commutes with ¥(o;); in the second case ¥(o3) commutes with %(o4); by Lemma 1.13, 9
is cyeclic. O

Lemma 1.15. Assume that for some i,j (1 <i<j—1<k—1) there exists a natural
number v such that |r|j_i11 # 0, but P(af;) commutes with ¢(o:). Then (o1) = P(o3);
particularly, if k # 4, then the homomorphism 1 is cyclic.

Proof. Put ¢ = |r|j—i+1, so that 1 < ¢ < j —4. Relations (0.7) imply that the element
oy *1 commutes with all the clements 0,051, ...,0,_1; therefore, it follows from our
assumptions that

o )v(o:) = (o) p(a])). (1.6)

If g =37 —1, then ¢ = —1 (mod j —i+1), and (1.4) shows that ¢(ai_jl) commutes with
¥(o;). But then 9(q;;) commutes with ¢(0;), and (0.6) implies ¥(0;) = ¥(oiy1); by
Lemma 1.14, 1 is cyclic .

Assume now that ¢ < j~i—1. Theni+¢—1 < 7 — 2 and (0.6) implies that
al;0; = 0iyqaf;. Combining this with (1.6), we obtain ¢(0:) = ¥(0itq). If ¢ # 2 or
k # 4, the homomorphism ¥ is cyclic (Lemma 1.14); if ¢ = 2 and k = 4, then 7 = 1 and
P(o1) = ¥(o3). O

Lemma 1.13, Lemma 1.15, and relations (0.2) imply the following corollary:
Corollary 1.16. Assume that ¢¥: B(k) = H is a noncyclic homomorphism. Then
P(oi)oop(oisr) for 1<i<k—~2.

F1<i<j<k theng(ay)#1. If 1<i<j—1<k-1#3 (ork=4, 1<i<2,
j =1+ 2) and the group H is finite, then ord (c;;) =0 (mod j — i+ 1). a



22 VLADIMIR LIN

Lemma 1.17. Let: B(k) — H be a noncyclic group homomorphism and m be a natural
number.
a) Assume that {(a™) commutes withy(B). Then either k dividesm ork =4, (m,4) =

2, and Y(01) = Y(o3).
b) If Y(B™) commutes with ¥(a), then k — 1 divides m.

Proof. Set @ = ¢(a), B =(B). Since af = 1, the element &* = B*~! commutes with
@ and . Note that & > 2 and @ does not commute with 3 (for 1 is noncyclic).

a) Assume that & does not divide m; then v & (m, k) < k. Since &™ and & commute

with E, the element @ also commutes with B, and therefore v > 2. Moreover, v < k — 2,
since k > 2. Now, relations (0.3), (0.8) show that

Y(ou) = P Pa) =@ A = a7 = Y1) = Y(ow),

and Lemma 1.14 implies that k = 4, v =2, and ¢ (o3) = ¥(01).
b) Assume that k - 1 does not divide m and set 2 = (m,k — 1). Then

2< pu<k—2 (1.7)
(since B* commutes with @ and 4 is noncyclic). It follows from relations (0.6) that
g102 0,01 =02 0102 0Oy,

Using the expressions of o1, ..., 0, in terms of «, 8 given by (0.8), we can rewrite the latter
relation in the form
(@7 '8-Ba"t a'Ba"? a?Bad - a* 7 Ba ) 7B

=Ba"t (o8 ot o' Ba? - ?Ba3 ot B,
which leads to the relation o~ !f*a~#8 = Ba—?f*a~#1!. Hence,
a~'\prap = fapra it

Since A% commutes with &, it follows from the latter relation that &—(#+1) B = pa—w+1),
that is, ¥(a#*!) commutes with 1(8). Because of (1.7), k cannot divide p + 1; it follows
from statement (a) that ¥ = 4 and (12 + 1,4) = 2, so that x must be odd. However, (1.7)
implies ;1 = 2, and we obtain a contradiction. O

Remark 1.1. For any homomorphism ¢: B(k) — H, it follows from relations (0.5) that
Y(oi) ~ YP(o;) (1 <1,j < k). Particularly, if H ="S(n) then all the permutations ¥(c;)
have the same cyclic type, that is, [#(o1)] = ... = [¥(ok—1)]. O

In the following lemmas 1.18-1.20 we assume that & > 3 and consider a homomorphism
¥: B(k) - S(n).
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Lemma 1.18. If k > 4 and for some v, 1 < r < n, the family Inv.(G;) consists of a
single set £, then the homomorphism ¢ is intransitive.

Proof. If 1 # 2, then 7; commutes with &, and is also conjugate to &1; by Lemma 1.5(c),
¥ is the only &;-invariant set of cardinality . Particularly, it is so for ¢ = 4; since 75
commutes with &4, we obtain ¥ € Inv(53). Thus, ¥ € Inv(g;) foralli=1,... ,k—1 and
1 is intransitive. O

Assertions (a) and (b) of the following lemma were proved in [Ar3] (in the slightly less
general case n = k; the general case may be treated as well).

Lemma 1.19. Let k > 4 and let ¢ be transitive. Assume that the cyclic decomposition of
o1 contains an r-cycle C.

a) If r > n/2, then v =n and 9 is cyclic.

b) If n is even and r = n/2, then the cyclic decomposition of & is of the form 6, =
By - B,C, where all the cycles B; are of the same length t, 2 <t <r, and r = st.

¢) If n = 2p, where p is a prime number, then either r < p orr = 2p = n, and in the
latter case ¢ is cyclic.

Proof. a) Let £ = supp C, so that #X = r. It follows from the assumption r > n/2 that
¥ is the only @-invariant set of cardinality r; since v is transitive, Lemma 1.17 implies
that & = A,,, » =n, and 7, = C. The permutations 73 and &4 commute with &;; hence,
each of them is a power of the cycle C and % is cyclic (Lemma 1.13).

b) If 5y = BC, where B is an r-cycle, then assertion (b) is true (with s =1, ¢ = r}.
So, we may assume that C is the only r-cycle in the cyclic decomposition of ;. In this
case for each 7 # 2 the set & = supp C is 7;-invariant and @; | £ = C% for some integer
gi, 0 < q <r (Lemma 1.4(b)). Set s = (q4,7); let us show that 1 < s < r. If s = 1,
then C% is the only r-cycle in the cyclic decomposition of 74; since T commutes with
g4, the set X is also gp-invariant, which contradicts the transitivity of 4. If s = r, then
gs = 0 and 74 | £ = C% = idy, so that & C Fix(74). However, the cyclic decomposition
of 54 must contain some r-cycle (for 74 ~ 7). Conscquently, ¥ = Fix (64) and therefore
¥ € Inv(&;), which contradicts the transitivity of 1. Thus, 1 < s<r, r=st, 2<t <,
and C% is a product of s disjoint f-cycles. Since o7 ~ @4 and C < 71, we obtain the
desired representation of 7.

c¢) In view of (a), we should only show that » # p. Assume, on the contrary, that r = p;
since p is prime, (b) implies that o = BC, where B and C are disjoint p-cycles.

Note that p # 2. For otherwise n = 4 and [7,] = [02] = [2, 2]; however, in S(4) any two
permutations of cyclic type [2,2] commute and, by Lemma 1.13, the homomorphism % is
cyclic. Since 1) is transitive, o1 must be a 4-cycle (§0.4), and we obtain a contradiction.

So, p > 3. It follows from Lemma 1.9 that for each ¢ # 2 there exist natural numbers
mi,n; (1 < my,n; < p) such that 5; = B™iC™. (Cases (i), (4i7) described in Lemma
1.9 cannot occur here, since [7;] = [71] = [p,p] and p > 3.) Applying Lemma 1.9 to the
permutations 2 and G4, we conclude that 7, is also of the form B?C?, which contradicts
the transitivity of 1. O
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Lemma 1.20. a) If k < n and [61] = [2], then ¢ is intransitive.
b) If k > 3 and (71] = [3], then Gy = T3; consequently, if k > 4, then v is cyclic.
¢) If4 <k <n and #Fix 6, > n — 4, then ¢ is intransitive.

Proof. a) Clearly, [;] = [2] for any ¢; it is readily seen that in this case either 1 is cyclic and
#(UF-! supp ;) = 2 < k < n or ¢ is noncyclic, 5;000;41, and #(UF=} supp 7;) < k < n.
Anyway, v is intransitive.
b) Since [7;] = [3] for every i, Lemma 1.8 implies that &; = 773; if & > 4, then 1 is cyclic
by Lemma 1.14.
c) Let m = #Fix 7y; so, cither m =n, or m =n—2, or m = n — 3. If m = n, then
= id and ¥ is trivial. If m = n — 2, then [7,] = [2] and % is intransitive by (a). Finally,
1f m = n — 3, then {51] = [3] and, by (), ¥ is cyclic; in this case all &; coincide with the
same 3-cycle, and 1) is intransitive, since n > k > 4. (]

In the following lemma we show that the support of the permutation &; = 9(o1) mast
be relatively small whenever 9 is transitive and all the cycles in the cyclic decomposition

of &, are of pairwise distinct lengths. For any real & > 0, we denote the integral part of z
by E(z).

Lemma 1.21. Suppose k > 4. Let p: B(k) — S(n) be a transitive homomorphism.
Assume that [G1] = (r1,...,7,), where all the integers r,, 1 < v < p, are distinct and
satisfy 1 < r, < n. Then the permutations ¢; and o; are disjoint whenever |j —i| > 2; in

particular,
In

> o <n/E(k/2).

v=1

Proof. Bach 7;, 1 < i < k-1, is a disjoint product of u cycles of pairwise distinct
lengths 74, ...,7,. Let us fix some 2 and consider the cyclic decomposition &; = Cy - - - Cl,
[C)] = [r,]. Set Z, = supp C, and ¥ = supp 0; = U,,_,%,. Clearly, any set &, is o;-
invariant. For every j that satisfies 1 < j < k=1 and |j — 4| > 2, the permutation &;
commutes with 7;; since all the numbers r,, are distinct, any set £, is ¢j-invariant, and

g; 1T = C‘bl <o Clin
with some integers q;,, 0 < ¢;., <7, (Lemma 1.4(b}).

Let us show that all ¢;, = 0 whenever |j — 4| > 2. Assume, on the contrary, that for
some j, with |jo —i| > 2 there is a nonzero ¢j,,. Then D = C’°” is an r,-cycle (for
otherwise, the permutation D < 7;, would be a product of a few cycles of the same length,
which is impossible). Clearly, D = C¥°"* is the only r,-cycle in the cyclic decomposition
of 5;,. Since |j, — | > 2, the permutations &, with |s —¢| = 1 commute with &;_; so, the
set supp D = ¥, is 7,-invariant. However, this sct ¥, is 5;-invariant and also 7;-invariant
for every 7 with |7 —1| > 2. It follows that ¥, is an (Im ¢)-invariant set. Since 2 <71, < n,
this contradicts the transitivity of .

Thus, for |j—1| > 2 all g;,, = 0, so that 5; | ¥ = idg. This means that the permutations
o; and ; are disjoint.
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We are left with showing that 7; and &; are also disjoint for |j —i| = 2. Since k > 4,
there exists an index t, 1 < ¢ < k — 1, neighboring to one of the indices ,j and non-
neighboring to another; say |t — j| = 1 and |t — ¢] > 2. Since |j — i} = 2, it follows that in
fact |t — 2| > 2. Therefore, as we have already proved, for any m € £, we have 5;(m) = m
and 7;(m) € L; particularly, 6,(7;(m)) = 7;(m) = 5;(5.(rn)). Hence, taking into account
that the indices ¢ and 7 are neighboring, for any m € ¥ we obtain

a;(m) = 6:(7;(m)) = 5:((7;(7:(m))) = (3:7;0:)(m)
= (7;6:0;)(m) = 0;(0.(d;(m))) = 7;(@;(m)) = m.
This shows that &;(m) | £ = idg and the permutations &; and @; are disjoint. O

1.3. Transitive homomorphisms B(k) — S(n) and prime numbers. The following
lemma is the heart of Artin’s methods developed in [Ar3]. Actually, it was not formulated
explicitly, but it was proven in the course of the proof of Lemma 6 in the cited paper (for
the case £ = n). For completeness of the exposition, we present the proof of this very
important lemma.

Lemma 1.22 (E. Artin). Let k > 4 and n be natural numbers such that there is a prime
p > 2 satisfying
nf2<p<k-2 (1.8)

Then for every noncyclic transitive homomorphism 1: B(k) = S(n) the permutation o, =
P(o1) has at least k — 2 fized points (particularly, n > k).

Proof. Set @ = 1(«); since the elements «, o generate the whole group B(k), the permu-
tations &, o1 generate the whole subgroup Im ¢ C S(n).

For each i, 3 <i<k—p+1, put T; = @ pyi—1 = (% pri—1). Relations (0.3) and
(0.4) imply that T;,; = &T;a~'. Thus, the permutations T3, ..., Tk—p+1 are conjugate to
each other and have the same cyclic type.

Corollary 1.16 implies that T; # 1 and ord T; = 0 (mod p); since p is prime, the length
l; of some cycle C; < T; is divisible by p. Since p > n/2, we have I; = p, and Cj is the only
p-cycle in the cyclic decomposition of T;. Let ¥; = supp C;, #%; = p. The permutation
71 commutes with all T;, 3 <1 < k—p+ 1. By Lemma 1.4(b), 71 | £; = C¥ for some
gi, 0 < ¢q < p. In fact, each ¢; = 0 (for otherwise, (g;,p) =1 and CJ* 5 7, is a p-cycle of
length > n/2, which contradicts Lemma 1.19(a)). Hence, 7; | Z; = 1 and £; C Fix o for
1i=3,..k—p+1

Consider the sets S, = |J_;Zi, 3<r <k—p+1. Clearly, S3C Ss C -+ C Sk_p41.
We shall show that all these inclusions are strict; if so, then #Fix 71 > #Sk—pt1 >
#¥3+k—p—2=k—2, and we are done.

Every S, is a nontrivial 1-invariant set. Indced, S, C Fix o1, #S5, > p, and S, # A,
(for otherwise, A, = S, C Fix o7 and 71 = 1).

Suppose that S, = Sy for some r, 3 <7 <k —p+ 1. Since C; is the only p-cycle
in the cyclic decomposition of T;, we have @a(X;) = £;4,. If 3 < i < r, then £;4; C S;
and if 2 = r, then ;4; C Sy, = Sy. Thus, @(Z;) = ;4 € S, for all 7 < r. Hence,
@(Sy) = S, and the set S, is @-invariant. However, S, is also &j-invariant. Therefore, it
is a nontrivial (Im )-invariant set, which contradicts the transitivity of . O
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Remark 1.2. The mapping oy — (1,2)(3,4)(5,6), o~ (1,2,3,4,5), extends to a non-
cyclic transitive homomorphism 5 ¢: B(5) — S(6). This shows that the assertion of
Lemma 1.22 becomes false if we replace the inequalities (1.8) by the slightly weaker in-
equalities n/2 <p <k - 2.

Nevertheless, the conclusion of Artin Lemma holds true whenever there is a prime p > 3
that satisfies n/2 < p < k — 3. For p > n/2 this follows directly from Lemma 1.22. Thus,
to justify our assertion, we need only to consider the case whenn =2pand 3 <p < k-3.
Define the elements T; as in the proof of Lemma 1.22; as before, the length I; of some cycle
C; < T; must be divisible by p. Hence, either ¢) T; contains the only cycle of length p, or
ii) [T3] = [p, pl, or i) T3] = [2p].

In case (i) all the arguments used in the proof of Lemma 1.22 work as well, with only
one exception: to prove that g; = 0, we should refer to Lemma 1.19(¢) instead of Lemma
1.19(a). Let us show that cases (4i) and (i%2) cannot occur. Note that k —p+1 > 4;
therefore, we can deal with the permutation A = Tj.

In case (i1}, A = Ty = BC, where B and C are disjoint p-cycles. Let B = (b, ... ,by—1),
C = (co,- .. ,Cp—1). Since the permutations D = 7; and D' = 7y commute with A =T =
BC, we can apply Lemma 1.9 to the couples A, D and A, D', respectively. Note that D, D’
are conjugate, and thus they have the same cyclic type. Clearly, D and D’ are nontrivial.
So, if one of these permutations is of the form (i) described in Lemma 1.9, then it contains
a p-cycle; however, this contradicts Lemma 1.19(c). The same lemma shows also that
[D] = [D’] # [2p]. So D, D' must be of the form (i) described in Lemma 1.9, that is, D =
31 = DO T ‘Dp_l and D' = 32 = D(’J . 'D;)—la where D,’ = (b,’,C|,’+r|p), D; = (bj, C|.'j+"‘fp)’
r and v’ do not depend on ¢, , and 0 < r, 7’ < p. Clearly, (610261)(bo) = (G20102)(bo). It is
readily seen that the left hand side of the latter relation cquals ¢, I, and the right hand
side equals Clar—r| - Consequently, 2r—r' = 2r' —r (mod p), that is, 3(r—r') = 0 (mod p).
Since p is prime and p # 3, we have r = r’; therefore, D; = D] for all ¢. Thus, o1 = 72
and the homomorphism % is cyclic, which contradicts our assumption.

In case (441), the permutation Ty is a 2p-cycle. Since 2p = n and the permutations o,
72 commute with Ty, they commute with each other (Lemma 1.4(b)), and we again obtain
a contradiction.

The homomorphism vg: B(6) — S(6) shows that the condition p > 3 is essential. (O

Remark 1.3. A prime number p € ((k +1)/2,k — 2] does exist in each of the following
cases: a) 6# k>5, l=0; b)k>7, 1=1; ¢)812# k27, 1=2; d)11,12# k> 9,
=3

Case (a} is known as “Bertrand Postulate”; it was proven by P. L. Chebyshev in the last
century. In fact, all cases may be treated using the following inequality due to P. Finsler
[Fi] (see also [Tr, p. 60, Satz 32]): w(2) — w(m) > m/(3log(2m)) for any natural m > 1.
(Here m(z) denotes the number of all primes p < z.) O
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§2. HomoMORPHISMS B(k) = S(n) AND B(k) = B(n), n <k

In this section we prove Theorem A{a, b) and Theorem B (see Theorem 2.1 and Theorem
2.12, respectively). To prove Theorem 2.1, we follow the methods of E. Artin, but the
important new point is that we make use of the fact that for £k > 4 the group B'(k) is
perfect. (see §0.6). Using Theorem 2.1, we obtain also an improvement of Artin Theorem
on homomorphisms B(k) — S(k) (see Remark 2.2 below).

Theorem 2.1. Assume that k # 4 andn < k. Then
a) any homomorphism v: B(k) = S(n) is cyclic;
b) any homomorphism ¢: B(k) = B(n) is integral.

Proof. For k < 3 the statements are trivial, since B(2) = Z. Suppose therefore that k£ > 4.

a) Assume that the homomorphism % is noncyclic. Put H = Im ¢ C S(n). Then
there is at least one H-orbit @ C A, of some length m = #Q < n < k such that
the reduction ¥¢g: B(k) — S(Q) = S(m) of the homomorphism ¥ to @ is a noncyclic
transitive homomorphism (see Observation in §0.0.2). Since £ > 4 and m < k, it follows
from Chebyshev Theorem (Remark 1.3(a)) that there exists a prime number p > 2 such
that m/2 < p < k — 2. Lemma 1.22 implies that the permutation ¥g(c1) € S(m) has at
least k —2 > m — 2 fixed points; hence, g(0o1) = idg and ¢ is trivial, which contradicts
the choice of Q.

b) Consider the composition

¥ = pog¢: Blk) - B(n) - S(n)

of ¢ with the canonical projection p: B(n) — S(n). By (a), ¥ is cyclic; therefore, its
restriction to the commutator subgroup B/(k) € B(k) is trivial. Thus, ¢(B’(k)) C Ker =
I(n). Since the group B’(k) is perfect, it does not possess nontrivial homomorphisms into
the pure braid group I(n) (Corollary 0.1). Hence, the restriction of ¢ to B'(k) is trivial
and the homomorphism ¢ is integral. O

Remark 2.1. The condition & % 4 in Theorem 2.1 is essential. To see this, take the
canonical systems of generators {01, 02,03} in B(4) and {0}, 05} in B(3), and consider the
surjective homomorphism 7: B(4) — B(3) defined by

n(o1) =m(os) =01,  w(02) =0y

This example shows that for k = 4 statement (b) of Theorem 2.1 is false; statement (a)
1s also false, since the composition g o m: B(4) — S(3) of 7 with the canonical projection
w: B(3) — S(3) is surjective. We call m: B(4) — B(3) the canonical epimorphism. 1t is
casily seen that the kernel of 7 coincides with the normal subgroup T C B(4) described in
§0.6. With the special generators ¢, § € B(4) and o/, ' € B(3), the canonical epimorphism
7 looks as follows: 7: a— B, B~ (8)" ()% O

Our goal now is to prove Theorem B. To this end, we need some preparations. We start
with some additional properties of the pure braid group I{k). In what follows, we use the
notation introduced in §0.1-0.4. Particularly, oy, - ox_1 are the canonical generators of
B(k), and the elements oy;, 1 <4< j <k, are defined by (0.3).
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Lemma 2.2. Assume that1 <t <k—1. Then
(@)t ovo0_1 01 = (1 040)" (2.1)

Proof. Let ¢, 7, s be integers such that 0 <r < s<#, 1<g<t, and g+ r <t. We prove
that

(05115)3 0T 1 " 0q = (alt)s_r cOt0y1 'Uq+r(a1,t+1)r- (2-2)
The proof is by induction on r with the case » = 0 trivial. Suppose that (2.2) is true for
some r > 0 such that r +1 < s and g+ r + 1 <t. Notc that

Q0 = 01" 0p—1 " O = (¥] 441 (23)
Therefore, using relations (0.6), we obtain

(Oflt)s TO0t—1 " 0g = (Oflt)s_r 001 Ogdr (0’1,1.+1)r

)T 001 O - (@141)” = (1) T T a1 0ot g (@1,041)"

g={(r-1 1,
a=(r+1) O Og(r41) ° (al,t+1)r+ )

= (alt
= ()’ "oy o104 - (@a41) = (1)

this completes the step of induction and proves (2.2). Forq =1, r =t -1, and s = ¢,
relation (2.2) takes the form

(1)t 000410y =y 0y - (al,a+1)t_1-
In view of (2.3}, the latter relation coincides with (2.1). O

Assume now that 1 <r <k. Let s;; € B(k) (1<i<j<k)ands; (1<i<j<r)
be the canonical generators in the groups I(k) and I(r), respectively. Consider the group
epimorphism & r: I(k) — I(r) defined by (0.12) and sct

Ry =s1482¢S—1¢ (2<t < k), Ri=5),850,8_1, (2<t<r).
Lemma 2.3. For every integer t that satisfies 2 < t < k the following relations hold:
Ry =0y 109 020502+ 042011, RoRy -+ Ry = (0109 0p1)". (2.4)

Proof. The proof is by induction on ¢t with the case t = 2 trivial (R = s1,2 and $; 5 = o?).
Assume that relations (2.4) hold for some ¢, 2 <t < k. Then

Rt+1 = 81,t4+152,¢4+1° ** St—1,t4+15t 41 = Uzsl,tag—l ’ Utsz,tag—l e 'Utst—l,tU;I : Utz
= 0tS1t82,t " St—1,40t = o R0y = 04041043 -+ 020%02 C O 20t-10¢
and, according to (2.1),
RoRy - RyRyy1 = (0102 04-1)t - 0y04m1 - - 020209 - - - 0410
= [(alt)t OOy - '0'201] 0102 - 04—10¢
= (al,t-i-l)t 0102 010t = (051,t+1)t+1;
this completes the step of induction and proves the lemnma. O

Recall that C(m) C I(m) is the cyclic subgroup of B(m) generated by the element A,,.
This subgroup coincides with the center of B(m)} whenever m > 2; moreover, C(2) = I(2).
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Lemma 2.4. Assume that 1 <r < k. Then

Ek,r(Ak) = Ar; (2.5)
in particular, & » | C(k): C(k) — C(r) is a group isomorphism.
Proof. According to Lemma 2.3,

Ekr(Ak) = &y (017 0k1)F) = Eu (2 Ry). (2.6)

Clearly, &k -(R;) = R; for j < r and & (R;) = 1 for j > r. Using these relations and
taking into account relations (2.6), (2.4) (the latter one for the elements R”’s and ¢'’s), we
obtain & ,(Ax) =Ry Ry = (07 --0._1) = A,. O

Corollary 2.5. For any k > 3, the pure braid group I(k) is the direct product of its
subgroups 12(k) and C(k).

Proof. We noted in §0.3 that the kernel of the epimorphism & 2: I(k) —+ I( ) = C(2 )

coincides with I2(k); so, we have the exact sequence 1 — I2(k) — I(k) C(2) -
By Lemma 2.4, & 2 maps the subgroup C(k) onto C(2) isomorphically; since C(k) is the
center of B(k), this proves the lemma. O

Lemma 2.6. Suppose k # 4. If G is the kernel of a cyclic homomorphism ¢: B(k) —
S(k), then every homomorphism ¢: G — I(k) is integral.

Proof. Assume first that k > 4. Since 1 is cyclic, G = Ker 3 2 B/(k). Taking into account
that B’(k) is perfect, we have B'(k) 2 G’ D (B'(k)) = B'(k); hence, G’ = B'(k) and G’ is
perfect. By Corollary 0.1, ¢(G') = {1} and the homomorphism ¢ is Abelian. Furthermore,
G/G' = G/B’(k) is a subgroup of B(k)/B/(k) = Z; thus G/G' is cyclic. Consequently, the
homomorphism ¢ is cyclic. Since I(k) is torsion free, ¢ is integral.

Now consider the case k = 3. By Corollary 2.5, I(3) & I?(3) x C(3). Let m; and m
be the projections of I(3) onto the first and the second factor, respectively. We know also
that C(3) & Z and I?(3) = F, (Markov Theorein).

If 9 is trivial, then G = B(3) and the homomorphisms m; o ¢: B(3) — I?(3) and
mp 0 ¢: B(3) - C(3) are integral (Remark 0.1); consequently, the homomorphism ¢ is
Abelian and, therefore, integral.

Assume that 1 is nontrivial. Then either (a) [(o1)] = [2] or (b) [(01)] = [3]. Using
Reidemeister-Schreier process, it is easy to show that in case (a) the group G = Ker ¢
is generated by the elements u = o0y !'and v = o? that satisfy the single defining

relation (uvu)? = vuw. In case (b) the group G is generated by the elements u = o907,

T = 010905 2, and y = 0?0y that satisfy the defining relations yuy=! = u~?!, yry~! =z~ L
In case (a), applying Lemma 1.1 to the elements u, v and to the homomorphisms 71 o ¢,
ma 0, we obtain that the elements ¥ = ¢(u) and ¥ = ¢(v) commute. Since they satisfy the
relation (701)? = 74w, we have @3 = 1. But the group I(3) is torsion free; hence, @ = 1.
Consequently, the subgroup Im ¢ C I(3) is generated by the single element ¥; therefore,
the homomorphism ¢ is integral. Similarly, in case (b) we obtain that the element i = q‘;( )
commutes with the elements % = ¢(u) and T = ¢(z). Since guy~! =a~t, gzg—! = 771,
and the group I(3) is torsion free, we obtain % = T = 1. Thus, the group Im ¢ is generated
by the single element 3 and the homomorphism ¢ is integral. O
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Lemma 2.7. For k # 4, any nonsurjective homomorphism 1: B(k) — S(k) is cyclic.

Proof. If 1) is transitive, then the statement of the lemma follows directly from Artin
Theorem. So, we may assume that ¢ is intransitive; then #@Q < n for any (Im 1)-orbit
Q C A,,. Theorem 2.1 implies that the reduction of % to any such orbit is cyclic; therefore,
1 itself is cyclic. (I

Remark 2.2. Lemma 2.7 shows that any noncyclic homomorphism ¢: B(k) — S(k) is
transitive provided k # 4. This implies the following useful improvement of Artin Theorem:

statements (a), (b) (and also (d) for k # 4) of Artin Theorem hold true for any noncyclic
homomorphism v: B(k) — S(k) (even if we omit the additional assumption that 1 is
transitive). So, for k # 4,6 any noncyclic homomorphism : B(k) — S(k) is conjugate to
i, and any noncyclic homomorphism : B(6) — S(6) is conjugate either to ug or to vg.

O
Lemma 2.8. For k # 4, any homomorphism ¢: B(k) — B/(k) is integral.

Proof. If k = 3, the lemma follows from Remark 0.1, since B/(3) = F,. Assume that k£ > 4.
Let p': B/(k) — S(k) be the canonical homomorphism. Consider the composition

¥ = Wog: B(k) -5 B(k) 25 S(h).

Clearly, Im v C Im p/ = A(k); hence, ¢ is nonsurjective and, by Lemma 2.7, cyclic.
Consequently, (,u, $)(B ’( ) = ¥(B(k)) = {1} and ¢(B'(k)) C Ker ¢/ C I(k). Since
B’(k) is perfect, ¢(B’(k))} = {1} and ¢ is cyclic. O

Remark 2.3. If k > 4 and the restriction ¢’ of a homomorphism ¢: B(k) — G to B’(k)
is Abelian, then ¢(B'(k)) = {1} (since B’(k) is perfect) and ¢ is cyclic. For k = 3 (and
also for k = 4) this is not the case; for instance, the image of B’(3) under the canonical
projection pu: B(3) — S(3) is the cyclic group A(3) = Z/3Z. Moreover, the natural
projection ¢: B(3) = B(3}/(B’(3))’ is non-Abelian and ¢(B’(3)) = Z & Z; so, even if we
assume that G is torsion free, this will not save the situation. Nevertheless, the following
statement is true. O

Lemma 2.9. Assume that 3 < k < 4. Let ¢: B(k) = G be a group homomorphism, and
¢': B'(k) = G be the restriction of ¢ to B'(k). If the homomorphism ¢ is integral, then
it is trivial and ¢ s integral.

Proof. Assume first that & = 3. Let u = o07" and v = 0,0907> be the canonical
generators of the group B/(3) (§0.6). It is easily seen that relations oyuoy = v and
o1v0] ! = 419 hold; so, Lemma 1.2 applies to the homomorphism 1 = ¢' (the matrix

M = ( 01 1) has the eigenvalues (1 £+4+/3)/2 and det M = 1). Therefore, ¢' = 1 and

¢ is integral.

Now consider the case k = 4. Let m: B(4) — B(3) be the canonical epimorphism
(see Remark 2.1), T = Ker 7. Since ¢' is integral, Ker ¢ 2 Ker ¢’ 2 (B"(4)) (the
second commutator subgroup of the group B(4)). By Gorin-Lin Theorem (c), the normal
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subgroup T coincides with the intersection of the lower central series of the group B'(4).
Hence, T ¢ B""(4)) C Ker ¢. Therefore, the homomorphism ¢ may be represented as the
composition of the homomorphisms

¢ =vom B(d) " B(4)/T2B@3) -5 G.

Let ¥’ be the restriction of ¢ to B/(3). Then ¢'(B’(3)) = ¢(n(B'(4))) = ¢'(B'(4)).
Hence, the homomorphism 4’ is integral. Since for ¥ = 3 the lemma is already proven, 1
is integral; therefore, the original homomorphism ¢ = 1 o 7 is integral. O

'Lemma 2.10. Assume that k # 4. Let ¢ be an endomorphism of the group B(k) such
that the composition

¥ =pod B(k) L B(k) 2 S(k)
of ¢ with the canonical projection p s cyclic. Then ¢ is integral.

Proof. Let G = Ker 9. Then (no ¢)(G) = ¥(G) = {1} and ¢(G) C Ker p = I(k). By
Lemma 2.6, the homomorphism ¢ |g: G — I(k) is integral. Since 9 is cyclic, G = Ker ¢ 2
B'(k); hence, the restriction ¢’ of ¢ to B’(k) is integral. If £ > 4, the group B’(k) is perfect,
which implies that ¢’ is trivial and ¢ is integral. For & = 3 the same conclusion follows
from Lemma 2.9. a

Recall that x: B(k) — Z denotes the canonical integral projection (§0.6).

Lemma 2.11. Ker ¢ C B'(k) for any nontrivial endomorphism ¢: B(k) —» B(k). More-
over, if k # 4 and ¢ is nonintegral, then ¢~1(B/(k)) = B'(k).

Proof. If ¢ is integral, then Ker ¢ = B’(k) (for B(k) is torsion free). Assume that ¢ is
nonintegral.

If k = 4, then there is a nontrivial homomorphism 7: Im ¢ — Z (Corollary 0.3). The
composition

¢=nog¢: B) -2 BU)-LZ

is also nontrivial; so, Ker £ = B’(4) and Ker ¢ C Ker £ = B'(4).
Finally, if & # 4, then Lemma 2.8 implies that the subgroup Im ¢ C B(k) is not
contained in B'(k); therefore, the composition

¢ =xo¢: B(k) 5Bk 2

is nontrivial. Hence, B/(k) = Ker { = Ker(x o ¢) = ¢ 1 (Ker x) = ¢~ 1(B'(k)) and
Ker ¢ C Ker ( = B/(k). a

E. Artin [Ar3] proved that the pure braid group I(k) is a characteristic subgroup of the
braid group B(k), that is, ¢(I(k)) = I(k) for any automorphism ¢ of the group B(k). The
following theorem shows that for & # 4 the subgroup I(k) possesses in fact some stronger
invariance properties.
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Theorem 2.12. If k # 4, then ¢[I(k)] C I(k), ¢~ (I(k)) = I{(k) and Ker ¢ C J(k) for
any nonintegral endomorphism ¢: B(k) — B(k).

Proof. According to Lemma 2.10, the composition
¥ =po¢: Blk) - Bk) -2 S(k)

is noncyclic. By Lemma 2.7, 9 is surjective and hence transitive. It follows from Artin
Theorem that Ker ¢ = I(k). Thus,

I(k) = Ker ¢ = ¢~ ! (Ker ) = ¢~ (I(k))

and ¢(I(k)) = ¢(¢~1(I(k))) C I(k). Moreover, Ker ¢ C Ker(pzo¢) = Ker o = I(k).
Finally, by Lemma 2.11, Ker ¢ C B’(k), and thus Ker ¢ C I(k) N B'(k) = J(k). 0

Remark 2.4. It follows from relations (0.6), (0.1), (0.2) that

(0102) - (0302) - (0102) = (010203) - 020102 = 030203 - (010203) = (0302) - 01 - (030203)

= (030'2) cJ1 (0’20‘30‘2) = (030‘2) . (0‘10’2) . (0’30’2).
Therefore, we can define an endomorphism ¢ of the group B(4) by

¢(‘71) = ¢(03) = 0102, ¢(f72) = 0303.

This endomorphism is non-Abelian (for ¢(a,) # ¢(02)), but ¢(0?) = (0102)? &€ I(4); thus
$(1(4)) € I(4). Besides, Ker ¢ = T € J(4). Morcover, ¢(o3) = (0102)® € I(4), which
shows that o € ¢~ 1(1(4)); but o3 ¢ I(4), and therefore ¢~1(I(4)) € I(4). This example
shows that the condition k£ # 4 in Theorem 2.12 is essential.

For any k > 3, there is an integral endomorphism ¢: B(k) — B(k) with ¢(I(k)) € I(k).
Indeed, take ¢ € B(k) such that ¢ ¢ I(k) and define ¢ by ¢(o1) =... =¢(ok—1)=c. O

The rest of this section is devoted to some results on endomorphisms of the groups B(3),
B{4) and on homomorphisms from B(4) into B(3) and S(3).

Theorem 2.13. Any nonintegral endomorphism ¢ of B(3) is an embedding.

Proof. Since ¢(B’(3)) C B/(3), the restriction ¢’ of ¢ to B’(3) may be regarded as an
endomorphism of the group B'(3) = F,. The image G = Im ¢’ is a free group of rank
r < 2. Since ¢ is nonintegral, Lemma 2.9 implies that ¢’ is nonintegral; hence, G = F,
and ¢': B’(3) = G is an isomorphism. By Lemma 2.11, Ker ¢ € B/(3). Thus, Ker ¢ =
Ker ¢’ = {1}. O

Remark 2.5. For any k > 2, there exist proper embeddings B(k) — B(k). For k = 2
this is evident. If £ > 2, take any m € Z and define the endomorphism ¢, by

drm: B(k) 3 g (A)™X& . g e B(k),
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where x: B(k) — Z is the canonical integral projection. For any ¢ € B'(k), we have
x(g) = 0 and ¢x m(g) = g; particularly, @i, is nonintegral. By Lemma 2.11, Ker ¢ m C
B’(k); hence ¢, is an embedding. If h = ¢ 1. (g9) € Im P 1n, then

X(1) = x (Br,m(9)) = x ((Ae)™ - g) = (mk(k - 1) + 1)x(g);

consequently, x(h) is divisible by the number s(m) = mk(k — 1) + 1. On the other hand,
if h € B(k) and x{h) = ts(m) for some ¢ € Z, take g = (Ax)~"™ - h; then

x(g) = —tmk(k - 1)+ t(mk(k - 1)+ 1) =1,

and hence
brm(9) = (A) ™D . g = (Ax)™ - (Ap)™"™  h =h.

It follows that the image of ¢y, coincides with the normal subgroup x~!(s(m)Z) C
B(k). If m # 0, then s(m) # 1, Im ¢ m = x~*(s(m)Z) # B(k), and ¢, is a proper
embedding. O

Let m: B(4) — B(3) and p: B(3) — S(3) be the canonical projections.

Theorem 2.14. a) Any noncyclic homomorphism ;. B(4) — S(3) is conjugate to the
composition o m: B(4) < B(3) - S(3).

b) Let ¢: B(4) — B(3) be a nonintegral homomorphism. Then there exists a monomor-
phism & B(3) = B(3) such that

é=¢Eom B(4) = B(3) - B(3).

Particularly, Ker ¢ = T. Moreover, if ¢ is surjective, then £ is an automorphism of the
group B(3).

Proof. a) Clearly, 1(B'(4)) C $'(3) = A(3) = Z/3Z. Consequently,
Ker ¢ 2 (B'(4))' > T = Ker .

Therefore, there exists a homomorphism ¢: B(3) — S(3) such that ¢ = ¢ o . Since 9 is
noncyclic, ¢ is noncyclic too; by Artin Theorem, ¢ is conjugate to p. Hence, 1 is conjugate
to the composition po 7. '

b) Since ¢(B'(4)) C B(3) and T = Ker 7 is the intersection of the lower central series
of the group B’(4), the image ¢(T) is contained in the intersection H of the lower central
series of the group B’(3). But B’(3) &£ F,, and thus H = {1}. Consequently, ¢(T) = {1}
and Ker 7 = T C Ker ¢. Therefore, there exists an endomorphism & of the group B(3)
such that ¢ = £ o 7. Since ¢ is nonintegral, £ is also nonintegral; according to Theorem
2.13, € is injective. Hence, Ker ¢ = 7~ 1(Ker £) = 7~ 1({1}) = Ker 7 = T.

Finally, if ¢ is surjective, £ is surjective, too. Hence, £ is an automorphism of B(3). O
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Theorem 2.15. Ker ¢ =T for any nonintegral noninjective endomorphism ¢ of B(4).

Proof. Let ¥ = w o ¢, where m: B(4) — B(3) is the canonical epimorphism. The homo-
morphism 1 is nontrivial (for otherwise Im ¢ C Ker # = T = Fy and, by Remark 0.1, ¢ is
integral). Consider the following two cases: a} v is integral, and b) 1 is nonintegral.

a) In this case ¢(B'(4)) C Ker # = T & F,, and (as in the proof of Theorem 2.14(b))
we obtain a homomorphism £: B(3) — B(4) such that ¢ = £ o 7. Since ¢ is nonintegral,
¢ is nonintegral. By Lemma 2.9, the restriction & of £ to B’(3) is nonintegral. It is casily
seen that ¢'(B’(3)) C T. Consequently, Im ¢’ = F,., where r < 2. Since €’ is nonintegral,
r = 2. Thus, we obtain a surjective endomorphism Fy = B’(3) —» Im £ = Fy of the
Hopfian group Fs; hence £’ must be injective. On the other hand, it is easy to check that
Ker ¢ C B/(3). Thus, Ker £ = Ker £’ and € is injective. Therefore,

Ker ¢ = Ker (€om) = 77 (Ker &) = 771 ({1}) = Ker 7 = T.

b) T is a completely characteristic subgroup of the group B(4). Hence, ¢(T) C T. Let
a: T — T be the restriction of ¢ to T. Since 9 is nonintegral, Theorem 2.14(d) implies
that Ker 9 = T; hence, Ker ¢ C T and Ker ¢ = Ker r’,bd Clearly, [j:(T) = F, where r < 2.
If r = 2, then 5 is injective (since T = F, is Hopfian), and ¢ is injective too. Finally, if
r < 2, then @ is integral. In this case it follows from relations (0.14), (0.15) and Lemma
1.2 that the homomorphism a is trivial; hence Ker ¢ = Ker a =T. O
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§3. TRANSITIVE HOMOMORPHISMS B(k) — S(n) FOR SMALL k AND n

For k large enough, transitive homomorphisms B(k) — S(n), k < n < 2k, can be
studied using some general methods based mainly on Lemma 1.22, Theorem 2.1, Gorin-
Lin Theorem and the techniques developed in §§4,5. However, for small k these methods
do not work. For this reason, we consider the case of small & in this section.

Given a group homomorphism ¥: B(k) — H, we denote the 1-images of the canonical
generators o1, ...,05~1 and of the corresponding special gencrators @ = o101, =
aoy by 71,...,0k_1 and @, E, respectively. Assume that the group H is finite and the
homomorphism % is noncyclic. Then it follows from Lemma 1.17 that ordﬁ is divisible
by k — 1. Moreover, ord @ is divisible by k¥ whenever k& # 4; if & = 4, then either ord @
is divisible by 4 or @ = o3 and ord@ is divisible by 2 (but not by 4). The following
proposition follows immediately from these remarks. '

Proposition 3.1. Suppose 4 < n < 7. Then any noncyclic transitive homomorphism
¥: B(3) — S(n) is conjugate to one of the following homomorphisms 1,[)&"21

ayn=4: P aw (1,2,3), B (1,4); ¥5) am (1,2,3), B~ (1,2)(3,4)
(m %) = S(4), Im 4] = A(4)).

byn=>5: ¢35 a— (1,2,3), B (1,4)(2,5) (Imyss = A(5)).

c)n==6:
B am (1,2,3)(4,5,6), B (1,2)(3,4)(5,6), o1 (2,3,6,4);
3 e (1,2,3)(4,5,6), B (1,4)(2,6)(3,5), o1+ (1,6)(2,5)(3,4);
D am (1,2,3)(4,5,6), B (1,2)(3,4), o1 (2,3,6,5,4);
§2: 0 (1,2,3)(4,5,6), B (1,4)(2,5), o1 (1,6,5)(2,4,3);
£ o (1,2,3)(4,5,6), B (1,2), o1+ (2,3)(4,6,5);
9 aes (1,2,3)(4,5,6), B (1,4), a1 (1,6,5,4,3,2);
0 e (1,2,3), B (1,4)(2,5)(3,6), o1 (1,4,3,6,2,5).
dn=7:
Yi o (1,2,3)(4,5,6), B (1,4)(2,7), o1+ (1,6,5,4,3,2,7);
¥§2: avr (1,2,3)(4,5,6), B (1,2)(3,4)(5,7), o1 (2,3,6,5,7,4);
P a (1,2,3)(4,5,6), B (1,4)(2,5)(3,7), o1~ (1,6,5)(2,4,3,7). D

Remark 3.1. One of the 7 homomorphisms 1,[)&% B(3) — S(6) listed above, namely,

1 N :
gg, appears in a way, which deserves some comments.
)
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Take any z = (21, 22, z3) € C3; let A1, A2, A3 be the roots of the polynomial p3(t, z) =
t3 4+ 2182 + 29t + z3. Let P(f,w) = t% 4+ wit® + wyt? + wat® 4+ w4t? + wst + wg be the monic
polynomial in t of degree 6 with the roots uf‘, ;ﬁ,,u,si defined by the quadratic equations

(1 = A% = (A1 — M) (A1 — Ag),
(15 = A2)® = (A2 — As) (A2 — Av), (3.1)
(13 = 23)% = (A3 — A1) (A3 — A2).

The set of the 6 numbers p’s (taking into account possible multiplicities) is invariant under
any permutation of the roots A;. Since the coefficients w; are the elementary symmetric
polynomials in p’s, they are polynomials in 21, 23, 23. Thereby, we obtain a polynomial
mapping f: € 3 2 = w € C8. It is easy to compute the coordinate functions of this
mapping:

f1(z) = 2zq; fa(2) = 202123 ~ 522;
fa(2) = Bao; fs(z) = 82%23 — 22022 — dzy23; (3.2)
fa(z) = 20z3; fo(2) = dzy 2025 — 23 — 823,

The formulas for fy, fa, f3 show that f is an embedding. Computing the discriminants
Dp(w) and D,,(z) = d3(z) of the polynomials P(t,w) and ps(t, z), respectively, we obtain
the relation Dp(w) = —4% - [d3(2)]°. Particularly, if the polynomial ps(t,z) has no mul-
tiple roots, then the polynomial P(t,w) = ps(t, f(z)) has no multiple roots. Hence, the
restriction of f to the domain Gz = {2z € C3 | d3(z) # 0} (sce §0) defines the polynomial
mapping

f:Gadzm w= f(z) € Gg = {we C°| dg(w) # 0}.

Moreover, formulas (3.1} show that for any z € G3 the polynomials p3(t, z) and P(t,w) =
pe(t, f(2z)) have no common roots.

On the other hand, it was proven in [L9] that for any k > 3, any natural n, and
any holomorphic mapping F: Gy — G,, there must be a point z° € Gy such that the
polynomials pg(t, 2°) and p,(t, F(z°)) have common roots. This means that the mapping
f: Gz — Gg constructed above is very exceptional.

Take 2° € G and fix an isomorphism 7: B(3) —» m1(Gs, 2°). Any element s € B(3)
produces the permutation § of the 6 roots of the polynomial P(t, f(z)) along the loop in
G3 (based at 2°) representing the 3-braid s. This gives rise to a homomorphism B(3) —
S(6); up to conjugation, this homomorphism does not depend on z,, T and coincides with

gle); Since 1/)1(;,12; is noncyclic, the mapping f is unsplittable. This mapping is related
to a holomorphic section of the universal Teichmiiller fanily V'(0,4) — T(0,4) over the
Teichmiiller space T(0,4) and to elliptic functions. In fact, this is the way how f was
found; however, now it is written down explicitly, and one can ask whether it may be
found in a shorter way (say in some paper of the last century!). Let me also mention that
the points p’s lie on the bisectors of the triangle A with the vertices A’s (these bisectors
are well defined, even if A degenerates to a segment with a marked interior point), and
the distance between ); and pf is the geometric mean of the corresponding legs of the
triangle A (the latter observation is due to E. Gorin). O
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Lemma 3.2. ¥(01) = ¥(o3) for any transitive homomorphism v: B(4) — S(5).

Proof. Suppose ¥(o1) # ¥(o3). Then 1 is noncyclic, 4 divides ord &, and 3 divides ord B.
Hence, [@] = [4] and [B] = [3]. Regarding S(5) as S({0,1,2,3,4}), we may assume that
a = (0,1,2,3). Since 9 is transitive, 4 € supp B; consequently, 3 = (p,q,4), where
pg € {0,1,2,3} and p # q. Put A = BaB and B = a2Ba—3pa*. It follows from (0.9)
(with 7 = 2) that A = B; particularly, A(4) = B(4) and A(p) = B(p). A(4) = B(4) implies
that ¢ = |p + 1|4. Combining this with A(p) = B(p), we obtain that |p + 2|4 = |[p + 3|4,
which is impossible. 0

Proposition 3.3. Any noncyclic transitive homomorphism . B(4) = S(5) is conjugate
to the homomorphism 45 a v (1,4)(2,5), f+— (3,5,4) (Im 945 = A(5)). Moreover,
P(o1) = ¢(o3).

Proof. It follows from Lemma 3.2 that the homomorphism 7 may be represented as a

composition of the canonical epimorphism m: B(4) — B(3) (Remark 2.1) with a noncyclic
transitive homomorphism B(3) — S(5); Proposition 3.1(b) completes the proof. O

Our next goal is to describe all transitive homomorphisms 3: B(4) = S(6) that satisfy
the condition (o) # ¥(o3). We start with some examples of such homomorphisms.

Recall that S(6) is the only symmetric group having outer automorphisms. Any such
automorphism is conjugate to the automorphism s defined by

s 51 (1,2)(3,4)(5,6), @ (1,2,3)(4,5), (3.3)

where o9 = (1,2) and & = (1,2,3,4,5,6) (for instance, this can be proven using Artin
Theorem).

Define the following two embeddings £, 7: S(4) — S(6). The embedding £ is just induced
by the natural inclusion Ay = {1,2,3,4} — {1,2,3,4,5,6} = Ag. Further, S(4) may be
regarded as the group of all isometries of the tctrahedron; thereby, S(4) acts naturally on
the set £ = Ag consisting of the 6 edges of the tetrahedron, which defines the embedding
7:S(4) «— S(6). With the canonical generators &; = (i,i 4 1) € 8(4), 1 < i < 3, the
embedding 7 looks as follows:

77(51) = (1) 2)(3: 4): W(EZ) = (21 5)(4a 6)3 T’(E3) = (1: 4)(2: 3)
Let pq: B(4) — S{4) be the canonical projection and v42: B(4) — S(4) be the homomor-
phism described in Artin Theorem. It is easy to check that each of the compositions

512:}{050,&4, i?g):}fOEOV,i'g] ‘(1?%:710”4, eg?()i:’qoytij
defines a noncyclic transitive homomorphism B(4) — S({6) such that ¢¢(;f25(01) + wi‘;%(ga)

for each i = 1,2, 3,4. These homomorphisms act on the canonical generators oq,02,03 €
B(4) as follows:

W: o1 (1,2)(3,4)(5,6), 02— (1,5)(2,3)(4,6), 03 — (1,3)(2,4)(5,6);

Y o1 (1,2,4,3), oo+ (1,5,4,6), o3 (3,4,2,1); 04
0 o1 (1,2)(3,4), oo = (2,5)(4,6), o3+ (1,4)(2,3);
8: o1 (4,3,2,1)(5,6), 02— (4,6,2,5)(1,3), 03— (1,2,3,4)(5,6).
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We shall show that any transitive homomorphism #: B(4) — S(G) tha.t satisfies the con-
dition 9(o1) # ¥(o3) is conjugate to one of the homomorphisms 1/)4 e 1<i<4.

Lemma 3.4. Let ¢ B(4) —> S(6) be a homomorphism that satisfies 61 # G3. Then a)
[61] # [2,3]; b) [61] #[5]; ) [61] # [6]; d) [o1] # [3,3].

Proof. a) Assume that oy = 0203, where supp Cy Nsupp C3 = &, [Ca] = {2}, and [C5] =
(3]. Since [73] = [2,3] and 7103 = 7301, Lemma 1.4 implies that

0'3 = 0203 = (0203)5 = 0'1

Since 1) is noncyclic, the latter relation shows that &5 forms braid-like couples with &y and
7;. By Lemma 1.3 (with ¢ =5, v = (g +1,4) = 2, and v(q ~ 1) = 2-4 = 8}, we have
7% = 1, which contradicts the property C3 < 7

b) For [61] = [5] Lemma 1.4 shows that 53 = 67, where g=3orq= 4 Hence, o forms
braid-like couples with 7, and 7. By Lemma 1.3, either 55 = 1 or o3 = 1, respectively;
but this is impossible.

¢) Similarly, for [7;] = [6] we obtain 33 = &> and § = 1, which is impossible.

d) Assume that oy = BC, where B, C are disjoint 3-cycles. Then Lemma 1.9 implies
that o3 = BC? (cases (i1), (i41) described in this lemma cannot occur here, because of
[G3] = [3,3]). Since (o) # ¥ (o3), Lemma 1.17(a) shows that 4 divides ord @. Therefore,
either [@) = [4] or [@] = [4,2). In any case, [@%] = [2,2]. It follows from relation (0.5) that

D~

g3 = 0’5, 2. So, either
B=3a%Ba"? and C?=a%a"% or B=a*Ca? and C?=a’Ba~2.

However, it easy to see that this contradicts the condition [&?%] = [2,2). O

Proposition 3.5. Any transitive homomorphism 1: B(4) — S(6) that satisfies 1(o1) #
P(o3) is conjugate to one of the homomorphisms @b,% (1 < i< 4) defined by (3.4).

Proof. Lemma 1.20 and Lemma 3.4 show that &; has one of the following cyclic types: a)
3= 12,22 b 01 = 4] ) Ba] = [2,2]; d) (2] = [4,2].

a) We may assume that 7; = (1,2)(3,4)(5,6). This permutation is odd; hence, @ =
010203 is also odd. Since 4 divides ord@, we have [&] = [4]; so, & has precisely two
fixed points. These points cannot be in the same transposition entering in &; (since 7y,
@ generate Im ¢ and ¢ is transitive). Thus, up to a &;-admissible conjugation (1. e., a
conjugation that does not change the above form of @), we have Fix @ = {1,4}. Since 53 =
a%6,6~% commutes with 7; and G3 # &1, we obtain that @2 = (2, 3)(5,6). It follows that
(up to a 7;-admissible conjugation) & = (2,5,3,6); so, 02 = @oa~! = (1,5)(2,3)(4,6),
03 = azala 2= (173)(274)(57 6)) and 1/} ~ ¢t(1,1(2

b) Since &y, 53 commute but do not coincide, it follows from Lemma 1.4 that 73 = (7,)3.
Therefore, up to conjugation, 73 = (1,2,4,3) and 3 = (3,4,2,1). Since 7 is transitive,
we have {5,6} C supp 7. It follows from Lemma 1.12 that (up to a &1, 03-admissible
conjugation) g, = (1,5,4,6). Thus, ¢ ~ 1/)‘(&«2

c) We may assume that o, = (1,2)(3,4). It follows from Lemma 1.11 that (up to
a 71-admissible conjugation) either 7, = (1,2)(4,5) or 52 = (2,5)(4,6). Using Lemma
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1.10, Lemma 1.11, and taking into account that &3 # &, we obtain that in the first
case 03 = (1,2)(5,6) (which contradicts the transitivity of ), and in the second case
53 = (1,4)(2,3). Hence, ¢ ~ p{%.

d) We may assume that o7 = (4,3, 2,1)(5,6). Since 71, 73 commute but do not coincide,
Lemma 1.4 implies that 3 = (1,2,3,4)(5,6). All 5; (1 < i < 3) are even; so @ is
even too; since 4 divides ord @, we see that (@] = [4,2]; hence, [@?] = [2,2]. Since
is transitive, the transposition T £ @ cannot coincide with (5,6). Therefore, it follows
from the relation 63 = &2G,3~2 that &2 | {5,6} = (5,6) and (up to a &;,53-admissible
conjugation) @2 | {1,2,3,4} = (1,3). So, @ = (1,3)(5,6). Since [@] = [4,2], it follows
that @ = (2,4)(5,1,6,3) (up to conjugation of the above type). Thereby, 7, = ac1a~! =
(2,5,4,6)(1,3) and % ~ 9. O

Proposition 3.6. Any noncyclic transitive homomorphism : B(4) — S(6) is either

conjugate to one of the homomorphisms 1})223 (1 <1 < 4) defined by (3.4) or conjugate to
one of the compositions

(i}

¥ihom: B(4) - B(3) =3 5(6),

where m: B(4) — B(3) is the canonical epimorphism and ¢§‘)6 (1 <1< T7) are the
homomorphisms exhibited in Proposition 3.1(c).

Proof. Proposition 3.5 covers the case when t(o,) # ¥(o3). If ¥(o1) = 9(o3), then
hatos&7 " = 1, so that the element ¢; = o307 € Ker ¢ (see (0.13)). Hence, the element
w = uciu~! (see (0.14)) also is in Ker ¢. Since the kernel T of = is generated by c¢;
and w (see Gorin-Lin Theorem (¢) and Remark 2.1), it follows that Ker m = T C Ker .
Therefore, there exists a homomorphism 3 ¢: B(3) = S(6) such that ¢ = 93 gom. Clearly,
3,6 must be noncyclic and transitive; Proposition 3.1(c) completes the proof. O

Remark 3.2. The homomorphism 1[}5?% is conjugate (by (1, 3,2)(5,6)) to the homomor-
phism 7§ that is defined as follows. Let »§ be the restriction of Artin’s homomorphism
vg: B(6) — S(6) to B/(6). The mapping of the generators o; = ¢; = oy4207" € B/(6),
i =1,2,3, extends to an embedding Ay: B(4) — B’(6) (Remark (.4). The homomorphism
U is the composition of Ag with vg. O

Remark 3.3. The trivial embedding S(5) — S(6) is of little moment. However, its
composition with the outer automorphism s of S(6) is more interesting. This composition
can be also described as follows. It is well known that A(5) may be regarded as the group
of all rotations of the icosahedron. Particularly, A(5) acts on the set LD = Ag of all the
6 ”long diagonals” of the icosahedron. This action of A(5) on Ag extends to an action
of S(5), which leads to an embedding ¢56: S(5) — S(6). In terms of the generators
g; = (i,1+ 1) € S(5), 1 <i <4, it looks as follows:

b {51 o (1,2)(3,4)(5,6), 72— (1,5)(2,3)(4,6), 55)

Famr (1,3)(2,4)(5,6), 74 (1,2)(3,5)(4,6).
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Of course, it is easy to check directly that these formulas indeed define a group homo-

morphism, which is certainly transitive and non-Abelian, and therefore faithful (since S(5)
does not possesses proper non-Abelian quotient groups). Hence, the composition

5.6 = b5 0 st B(5) 25 S(5) 23 5(6) (3.6)

is a noncyclic transitive homomorphism with Ker 95 ¢ = I(5) and Im 15 ¢ = S(5). It is
easily seen that s ¢ coincides with the composition

e = g0 j2: B(5) <> B(6) 22 S(6), (3.6')
where j3: B(5) 3 0;— 0; € B(6), 1 <1i<4, and v is Artin’s homomorphism. O

Proposition 3.9. Any noncyclic transitive homomorphism : B(5) — S(6) is conju-
gate to the homomorphism s ¢ defined by (3,5), (3.6) (or by (3.6"), which is the same).
Particularly, Ker ¢ = I(5) and Im 1 = S(5).

Proof. Since 3 = 6/2 is prime, Lemma 1.19(c) shows that the cyclic decomposition of
71 cannot contain a cycle of length > 3. Lemma 1.20(c) excludes the case [51] = [2].
The noncommuting permutations 73, &4 commute with ;. On the other hand, any two
permutations of cyclic type [2,2] supported on the same 4 points commute; therefore,
Lemma 1.9 excludes the case {71] = [2,2]. Thus, the only possible case is [¢1] = [2,2, 2].
Two distinct permutations of this cyclic type in S(6) commute if and only if they have
precisely one common transposition. Therefore, without loss of generality, we may assume
that

o1 = (1,2)(3,4)(5,6), g3 = (1,3)(2,4)(5,6). (3.7)

By the same reason, 4 has one common transposition with @; but not with @3; this
common transposition may be either (1,2) or (3,4). The renumbering of the symbols
1 2 3, 22 4 takes one of these cases into another and does not change the forms (3.7);
so, we may assume that this common transposition is (1,2). Since 74 has no common
transpositions with 73, we have either 74 = (1,2)(3,5)(4,6) or 04 = (1,2)(3,6)(4,5). The
second case can be obtain from the first one by 5 2 6, which does not change the forms
(3.7); hence, we may assume that

e = (1,2)(3,5)(4, 6). (3.8)

An argument of the same kind shows that 72 must contain a single common transposition
with 74, but not with &, and 73. Each of the transpositions (1, 2), (3, 4), (5,6), (1,3), (2,4)
is contained in &, or in 73; hence, cither 3 = (1,5)(2,3)(4,6) or o2 = (1,4)(2,6)(3,5).
However, the second case may be obtained from the first one by 1 22, 32 4, 526,
which does not change the forms (3.7),(3.8). This shows that ¢ ~ 95 6. O
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§4. RETRACTIONS OF HOMOMORPHISMS B(k) — S(n);
HOMOMORPHISMS AND COHOMOLOGY

We are interested to study homomorphisms v: B(k) — S(n) up to conjugation. In this
section we develop an approach to this problem. In general terms, this approach may be
described as follows.

Consider the permutations 7; = ¥(0;), 1 <1 < k—1. Allg; with3 <i < k-1
commute with ;. Hence, for any r-cycle C <5, (2 <r <mn), the r-cycles C{ = 6;Ca; L
3 <1 £ k—1, also enter into the cyclic decomposition of ;. Thereby, we obtain an action
0y of the braid group B(k — 2) onto the set €, of all the 7-cycles entering in the cyclic
decomposition of &1, or (which is the same) the representation Qy: B(k—2) — S(C,). Since
#¢€, < n/r < n/2, the homomorphism €, is “simpler” than the original homomorphism
. If we are lucky, we can study €2y and then obtain some information on .

4.0. Components and corresponding exact sequences. We denote by {#} the
conjugation class of a homomorphism ¥ € Hom(B(k),S(n)); that is, ¥’ € {3} if and
only if ¢ ~ 9. Recall that for any r > 2 the r-component, € = €,.(A) of a permutation
A € S(n) is the set of all the r-cycles entering in the cyclic decomposition of A (§0.0.2).
For natural numbers 7, (2 < r < n, t < n/r), we denote by Hom,.,(B(k), S(n)) the
subset of Hom(B(k), S(n)) consisting of all homomorphisms v that satisfy the following
condition:

(1) the permutation 1 = ¢¥(o1) € S(n) has an r-component € of length t.

Let ¢ € Hom, ;(B(k),S(n)) and let € = {C), ..., C}} be the r-component of the permu-
tation 1 = ¥(o1) (s0, C1, ..., Cy are disjoint r-cycles). The union

t
L=%(¢) = U supp Con Csupp o1 C A, ={1,...,n}
m=1

of the supports Z,, = supp Cj, of all the cycles C}, is called the support of the r-component
¢; we denote this set X also by supp €.
A homomorphism v € Hom, ,(B(k), S(n)) is said to be normalized if

Y =supp €={1,2,...,tr}, C€={Cy,..,Ci},
(" Cpn=((m-1)y+1,(m-1r+2,...,mr), m=1,...,t, and
Plo) | E=C1---C.
The following two statements are evident:

Claim 1. If ¢ € Hom, (B(k),S(n)), then {¢} C Hom, (B(k),S(n)) and the class {1}
contains at least one normalized homomorphism. Two normalized homomorphisms ¥,y €
Hom, .(B(k), S(n)) are conjugate if and only if there is a permutation s € S(n) such that
the set ¥ =supp € = {1,2,...,tr} is S-invariant and

B(b) = 5(0)5~! for allbe B(k)  and

_ (4.1)
E'Cl"‘ct'g_lzg"l,b(al) | v.371! =1!)(orl) ‘ v=0C,---C,.
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Claim 2. To study homomorphisms in Hom, ,(B(k), S(n)) up to conjugation, it is suffi-
cient to study normalized homomorphisms up to conjugation by permutations s that satisfy
(4.1). All such permutations § form the subgroup G C S(n) that coincides with the cen-
tralizer C(C,S(n)) of the element C = Cy---C, in S(n). This subgroup G is naturally
isomorphic to the direct product G x S(X'), where G = C(C,S(X)) is the centralizer of the
element C in the symmetric group S(X) = S(rt), and S(X') is the symmetric group of all
permutations of the complement ¥/ = A,, — X.

We denote by H = (Z/rZ)* the Abelian subgroup of the symmetric group S(X) gen-
erated by all the r-cycles C, ..., Cy defined in (!!); particularly, H contains the product
C = C;---Cy, and therefore H C G. Clearly, H is an Abelian normal subgroup in G,
and the quotient group G/H is isomorphic to the symmetric group S(€) 2 S(t) of all
permutations of the cycles Cy, ..., Cy. Thereby, we obtain the exact sequence

15 H-G-5S(0#) =1, (4.2)

where 7 is the natural projection onto the quotient group; in fact, this projection 7 may
be described explicitly as follows. Since any element g € G commutes with the product
C =Cy---C;, we have

Cr-Ci=g-CrCo-g7 ' =gCig" - gCg™".
Since Cy,...,C; and also gC1g~1,...,gCg~?! are disjoint r-cycles, there is a unique per-
mutation s = s, € S(t) such that gCprg™! = Cyny for all m; clearly, 7(g) = s,.

Lemma 4.1. The exact sequence (4.2) splits, that is, there exists a homomorphism
p: S(t) — G such that wo p = idg). In fact, the group G is the semi-direct product
of the groups H and S(t) defined by the natural action of the symmetric group S(t) on the
direct product (Z/vZ)*.

Proof. For any element s € S(t), define the permutation p(s) € S(X) by
ps((m—=Ur+qg)=((m)-1)r+q (1<m<t, 1<qg<r); (4.3)
thereby, we obtain the homomorphism
p: S(t) 3 s — p(s) € S(X).

Using the explicit forms of the cycles Cy,...,C; (see (1)), it is easy to check that for any
m=1,...,t and any s € S(¢t)

p(S)Cmp(S)_I = CS(m): (44)

which implies p(s)Cp(s)~! = C. So, p(s) € G, and hence p may be considered as a
homomorphism from S(t) to G. It follows from (4.4) and the above description of 7 that
7o p=idg- O

From now on, we fix the splitting homomorphism p: S(t) — G C S(X) defined by (4.3).
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4.1. Retractions of homomorphisms to components. In what follows, we fix a
normalized homomorphism ¢ € Hom, ;(B(k),S(n)). and put ; = ¢¥(0y), 1 <i < k- 1.
We work with the r-component € = {Cj,...,C;} of the permutation &, keeping in mind
the particular forms of the r-cycles Cy, ..., C; exhibited in condition (!).

Relations (0.5) show that o; = &7~ 1 51:0-0~Y for any j = 1,...,k — 1 (as usual,
& =0y 0k-1). For any natural numbers ¢, m such that 1 <¢<k—-1and 1 <m <,
we put

Cl) = a9 1Cpa~te~l), @ ={c .  clD}. (4.5)

Clearly, ,(,}) = Cp for each m = 1,...t, and ¢V} = ¢&; moreover, the set €@ =

(¢l .. ,C'1 coincides with the r-component ¢, (3,) of the permutation @,, and for-
mulas (4.5) provide the marked identifications

T € (6,) =€@ = A, and J;: S(C.(7,)) = S(€) = S(1). (4.6)
In what follows, we always have in mind these identifications.
Put
2@ = supp CP = a7 (supp Cp);
clearly,

supp €,(,) = supp ¢la) = »la) — )3(@:(0)) = &7 (supp €) = U E(Q) C Ay

m=1

The set (9 is invariant under all the permutations 75, J#q—1,q+1 (for each of them
commutes with ;). By the same reason, for any j # ¢ —1,¢+ 1 and any m = 1,... ,,
the r-cycle

CW =35;-Cl 57"

belongs to the cyclic decomposition of 5, and therefore 5,(,?) coincides with one of the cycles

C’@, e ,CEQ). Thereby, for each 7 € {1,... ,k -1}, 7 # g — 1,¢ + 1, the correspondence

C:r(rg) — C(‘I) — 0’ C(Q) m=1,...,1,

gives rise to the permutation g (@) ¢ S(€{@)) = §(t), and we obtain the correspondence

3
;o es (@W)) ¥S(), je{l,....k—1}, j#q-lg+1, (47

such that
5O 57 =gl (CP) =€, 5= gl(m). (4.8)

It is convenient to introduce some special notations for some of the above objects corre-
sponding to the values ¢ = 1 and ¢ = k — 1. Namely, we put

_951)2 and (Jt _ggk Y for ,’:=11"'3k—3:

(4.9)
Ccx = Cck=D and NS Nl for m=1,...,t,
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and
¢t =ct-V=(cr,.,Cr}, C=Cr--C, T =3¢"D —gupp ¢*. (4.10)
We should also keep in mind that

Cn=C =0 ---C, ¢={Cy,..,C;} =),
Y = Z,(,];) = supp Ch, r=3x0= supp €.

The construction of §4.0 applies also to the r-cycles CT, ... ,C;. Namely, we denote by
G™ the centralizer of the element C* = C7 -+ - Cf in S(X*), and denote by H* = (Z/rZ)* the
Abelian normal subgroup in G* generated by all the r-cycles C7,...,Cf. Then G*/H* =

~J

S(C*) 2¢ S(t), and we obtain the exact sequence
1o H* 5 G* 25 8(t) - 1. (4.2%)

The projection #* may be described as follows. Any element ¢ € G* commutes with the
product C* = C} ---Cf, and thus

Ct - Cf=g-Ci---Cl-g7  =gClg~" - - gCig™".
Since C},...,C} and also gCig~!,...,gCrg~"! are disjoint r-cycles, there is a unique
permutation s* = s € S(t) such that gCryg~t =Cx (m) for all m; we put 7*(g) = s;. The
following statement follows immediately from our definitions:

1

Claim 3. The conjugation by the element 3%~2 = (a*~2),

cy: S(n)3 A 2. A.a= D e §(n),
provides the commutative diagram

1 —— H —— G —— S(t) —— 1
glc.p glc\o lid (CD[r,t;9])

1l —— H* —— G* —— S(t) y 1

The first line of this diagram (the ezact sequence (4.2)) is universal for all normalized
homomorphisms ¥ € Hom, (B(k),S(n)). However, the second line (the ezact sequence
(4.2*)) and the vertical isomorphisms cy may depend on .

As we know, o is a central clement in B(k) (see (0.8) or §0.4); this implies some useful
relations between the permutations g§Q) (with various ¢, j) defined by (4.7),(4.8).
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Lemma 4.2. a) If 1 <q< k—3 then

k— .
ggq) = gg_ql_)l =9)_qo1 Jor q+2<j<k-L (4.11)

b) If 3<q<k—1 then

8 =g\ 1 = Gik—go1 Jor 1S j<q-2. (4.11%)
Particularly,
gi=gy V=gile=9; Jor 1<j<k-3. (4.12)

Proof. a) Take any m € {1,...,t} and any ¢,j such that 1 <¢< k-3, ¢+2<j<k-1,
and put s = gg-q)(m). It follows from (4.5) and (4.8) that

@ =41 (W) =5..c9 .51
ci0 =g (C) =;-Ci2)-5; (4.13)
=35 &7 Cpa 0N 5T = 55807 G- (5807 T

k

Since @ commutes with any element in Im 1, we have

o~ aqtla ~—(g+1) _ ~—(k—g-1)~. ~k—q—1
o; =« cr]_q_la =X Oj_g-1C¥ y

and thus
g;at =g k-alg, . GRR (4.14)

Relations (4.13),(4.14) and (4.5) (the latter one with ¢ = k — 1) show that

) -1
~—(k—g—1)~ ~f—? A~ (e g—1) ~k—2
Cg‘ﬂ =g (k—a )crj_q_la Cpy - (a (k—q )ojuq_la )

-1
=g k-a-Vg,_ G20, a*D. (&—(k—q—l)aj_q_l) (4.15)
= g~ (k—gq-1) | g1 C,(,f_l) . 33-'-—1(;—1 Lpk—e-t

According to (4.8) (with ¢ =4k — 1 and j — ¢ — 1 instead of j), we have

Fjoqo1 - CE D 572 =gl 0 (C) = Y, where o' = g0, (m);

thus, (4.15) can be written as

C'SEQ) = 5~ (k—q-1}), Cﬁf“'l) . gF-a-1

SENCAT)
= a-k=a-1) g2 5=(k=2) . gh—a-1 = go-1. g, . a=(a-D) = Cﬁ? ,

where

s = ggfn (m), § = ggk__ql_)l(m)
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It follows from (4.16) that s = s, and thus g((’)(m) = g;("i_ql_)l (m). The latter relation holds

for any m € {1, ... t} which means that g(Q) = gj(k b= =g _g-1-

by Forany ¢ =3,... ,k—1l,any j=1,... ,g—2 dndeverym=1,...,twehave:
Ccl@) = G; cla) .'*_-1 =507 C, -a " lE !
m %
= RI- 15k q+1A a=k=atl) o gE-atlg-lg—(k—a+l)g=(a-1)
T

~q—1~ 571 H-la-1) = z9-1 a1 2 @)
= Q' Gjqk—q+1 Cm Tjtk—q+1@ - Cy ( =C,/

where s = g(Q)( ) and 8’ = gg_gk q+1{m}. Consequently, g (Q) = ggﬁk_qﬂ Gj+k—q+1-
Using the la.tter relations for ¢ = k — 1, we obtain (4.12). O

CONSTRUCTION OF THE HOMOMORPHISM (). Assume that £ > 3 and denote by sq,...,85-3
the canonical generators of the braid group B(k — 2). Consider the homomorphisms

VE B(k - 2) - S(n), \I’(S,’) = '(,l)(O'H_g) = 3,‘4.2,

U*: B(k —-2) = S(n), U (s5) = Y(os) =5, (i=1,...,k=3). (4.17)

According to (4.7),(4.8), we have:

U(se) - O W(s) ™ = Biva - G-y = ally (C1)

(4.18)
=CM = Chpmy, 5= gisn(m) = gi(m),

V() - Gl W ()t =5 G 57 = gD (04D)

=C¢ V) =Crpyy 5= (m) = g7 (m),

(4.18%)

foranyi=1,...,k—3.

The image of ¥ is gencrated by the permutations 7;, 3 < j < k — 1; since any
such &; commutes with 7;, Lemma 1.4 implies that the set ¥ = supp € is invariant
under the subgroup Im ¥ C S(n). Similarly, Im ¥* is generated by the permutations &,
1< j <k—3, and the set £* = supp €* is invariant under the subgroup Im ¥* C S(n).

Let

Uy: B(k—2) > S(X) and Pg.: B(k—2) - S(Z*) (4.19)

be the reductions of the homomorphisms ¥ and ¥* to the invariant sets 3 and I*, respec-
tively (see §0.0.2). That is,

Us(si) =¥(s:) |2 =v(oi2) [ E =Tis2 | 5,
Ui (s:) = O () [ " =p(o3) [ T* =74 | T

It follows from (4.18),(4.18*) that

‘I’E(Si) Cp - ‘IJE(S,')—I C < (m) (4.21)
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and
‘I}%' (Si) ) C:?‘n ’ ;2"‘ (Si)_l = ;:(1n) (421*)
forallm=1,...,tand alli=1,...,k — 3, and thus

Us(s;)-C-Vg(s;)™ ! =C, Ut (s;)  C* - U (s5)" 1 = C.

Therefore,
Im ¥y C G, Im ¥5.. C G*,

which means that Uy and U§. may be regarded as homormorphisms from B(k — 2) into
the groups G and G*, respectively.
Relations (4.21), (4.21*) and the definitions of the projection =, 7* show that
(Pe(s;:)) =g and (U5 () =97 forall i=1,...,k-3. (4.22)

Consider the compositions

Q=mo¥g: Bk-2) 2B G-5S(t) (4.26)
and o
Q* = 7* o Uk.: B(k—2) = G* == S(). (4.26%)

The following simple lemma is, in fact, important for us.

Lemma 4.3. a) The homomorphisms : B(k — 2) — S(t) and Q*: B(k — 2) — S(t)
coincide.

b) All the permutations g
other.

Proof. a) Formulas (4.22), (4.22*) show that Q(s;) = ¢; and Q*(s;) = gf for all 1+ =
1,...,k—=3. According to Lemma 4.2(b) (see (4.12)), g; = g! for all such i. Consequently,
Q=00

b) Lemma 4.2 implies that for 1 < ¢ < k—1and 7 # ¢—1,¢,q+ 1 the permutation g_s.Q)
coincides either with some g; or with some g}. Sincc the latter permutations coincide with

(s;) and the canonical generators s; are conjugate to each other, all the permutations

ggq) are pairwise conjugate. [

Definition 4.1. The homomorphism Q: B(k — 2) — S(¢) defined by (4.26) is called
the retraction of the original normalized homomorphism ¢ € Hom, ,(B(k),S(n)) (to an
r-component € of &1). According to Lemma 4.3, Q coincides with the homomorphism 2*
defined by (4.26*); Q* is called the co-retraction of . O

(@)

; (1<¢g<k-1;, j#q-1,q, q+1) are conjugate to each

Since the set ¥ = supp € is (Im ¥)-invariant, its complement ¥’ = A, — T is also
(Im ¥)-invariant, and we can consider the reduction Uyg:: B(k — 2) — S(X') of the homo-
morphism ¥ to ¥’

\sz(s;) = ‘I’(S,‘) l ):I = 1/)(0','+2) | E' = 3,'4_2 I E’, 1= 1, crvy k—3. (4.20’)
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Lemma 4.4. Assume that k > 6 and that the homomorphism i is noncyclic. If the
homomorphism WUy is Abelian, then the homomorphisms W, Uy and {0 are non-Abelian.

Proof. If ¥ is Abelian, then it is cyclic and ¥(s3) = ¥(s4) (k—2 > 4}. So ¥(05) = ¥(0s),
which contradicts the assumption that ¥ is noncyclic.

Since ¥ and ¥’ are disjoint, ¥ is the disjoint product of the reductions ¥y and ¥y.
Since ¥y is Abelian and we have already proved that ¥ is non-Abelian, ¥y must be
non-Abelian.

Finally, assume that the homomorphism {2 = 7 o Uy, is Abelian. Then

(mroUg)(B'(k—2)) = {1}, thatis, Ug(B'(k—2)CKerm=H  (4.27)

Since k—2 > 4, the group B'(k —2) is perfect. On the other hand, the group H is Abelian.
Hence, (4.27) implies that Y5 (B’(k — 2)) = {1}; this means that the homomorphism ¥y
is Abelian, which contradicts the statement proven above. O

The construction described above provides us with the universal exact sequence (4.2)
with the fixed splitting p. This sequence and the homomorphisms ¥y and 2 defined by
(4.20),(4.27) form the commutative diagram

B(k - 2) B(k - 2)
wnl ln (4.28)

m

1 y H > G — S{t) —1

The homomorphism Uy defined by ¥x(s;) = ¥(oia) | £, 1 < i < k-3 (see (4.17),
(4.20)), keeps a lot of information on the original normalized homomorphism . Hence, it
seems reasonable to find out to which extent we can recover the homomorphism ¥y if we
know the homomorphism §2.

Remark 4.1. Let us clarify the actual nature of this problem.

We are interested to classify (as far as possible) homomorphisms B(k) — S(n) up
to conjugation. If the permutation &, corresponding to such a homomorphism 1 has
an r-component of length £, then, without loss of generality, we may assume that ¢ is
normalized. So, we have diagram (4.28) corresponding to this ¥. Suppose that we can
somehow find out what is the homomorphism ¥y. Then we know all the restrictions
w(os) | ,... ,%(0k-1) | . This would provide us with an essential (and in some cases
even sufficient) information to determine the homomorphism % itself. The knowledge of
all these restrictions is certainly the best possible result, which we may hope to get by
studying diagram (4.28).

Unfortunately, if ¥ is unknown to us, then we know neither 2 nor ¥y in diagram (4.28).

A reassuring circumstance is, however, that £k — 2 < &k and ¢t < n/r < n. Hence, we
may suppose that we succeeded in classifying the homomorphisms B(k — 2) — S(¢) up to
conjugation, meaning that we have a finite list of pairwise nonconjugate homomorphisms
9, B(k—-2)— S(t) (p=1,...,N) such that any 2 € Hom(B(k — 2), S(t)) is conjugate
to one of €},’s. Morcover, suppose that for each {2, we have classified up to conjugation
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the homomorphisms ¢: B(k — 2) — G satisfying the commutativity condition o ¢ = £,,.
If so, then for any p=1,..., N we have a finite list {¢, 4, | 1 < g, < Mp} of the pairwise
nonconjugate representatives, and any ¢ € Hom(B(k — 2), G) that satisfies 70 ¢ = §, is
conjugate to one of pp 4.

Further, let ¥y and © be the homomorphisms related to our {(unknown) normalized
homomorphism 3 € Hom,.,(B(k), S(n)). Then Q = s§,s~! for some p and some s € S(¢).
Using the splitting p, define the homomorphism ¢: B(k — 2) = G by ¢ = p(s™)¥gp(s).
It is easily seen that there arc an element g € G and an index ¢ (1 < ¢ < M,) such
that ¢ = g@p 9~ 1. Since the element § = p(s)g € G C S(E) C S(n), we can define the
homomorphism

¥: B(k) = S(n),  ¢=7""dg=9""p(s7") ¥ p(s)g.
The condition § € G means that gCg~! = C; therefore,
¥ is a normalized homomorphism in Hom, ;(B(k),S(n)) conjugate to our original homo-
morphism .
Let E’E and € be the homomorphisms related to this homomorphism 1;; then 7o liz =Q.
The set ¥ = supp C is ¥(0;42)-invariant (for any 7, 1 < i < k — 2), and (by definition)
the permutation ¥ (s;) coincides with the permutation

P(oip2) | E=7"" (Y(oig2) | Z) - g =97 p(s™1) - Wy (s3) - p(s)g
=97 (s:) 9= 079 Ppalsi) 979 = ppqlsi),
which means that ¥(oi4s) | = ¥p,q(si) and \iz = ¢, These observations lead to the
following

Declaration. Suppose that we solved the above mentioned classification problems for ho-
momorphisms B(k—2) — S(t) and B(k—2) — G. Hence, we have the list of representatives
{¢pq}. Then, without loss of generality, we may assume that the homomorphism i (which
we want to identify up to conjugation), besides the normalization condition (1), satisfies
for some p, q the condition

(1) Y(oit2) | E=pg(si)  forall i, 1<i<k-3. O

We have almost nothing to say about the first classification problem. If fact, this is
the same problem which we started with, but rather casier (since ¢t < n/2); in some cases
it can be solved, indeed. For instance, if £ # 6 and n < 2k — 4 then t{ < k — 2 and any
homomorphism Q: B(k—2) — S(t) is cyclic (Theorem 2.1(a)); this puts a strict restriction
to the original homomorphism .

As to the second problem, it is as follows:
Problem. Given ezact sequence (4.2) and a homomorphism
Q: B(k—2) — S(¢),

find (up to conjugation) all the homomorphismns ¢: B(k —2) — G that satisfy the commu-
tativity relation mo ¢ = (.

We postpone the study of this problem to §5, since we need first to develop an adequate
tool; the next subsection is devoted to this task.
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4.2. Homomorphisms and cohomology. In this section we consider a diagram of the
form

B B
la (4.29)
1 s H y G —— S y 1

where all the groups and all the homomorphisms are given, and the second horizontal line
is an exact sequence with some fixed splitting homomorphism

p: S -G, nop=idg. (4.30)

Moreover, we assume that H is an Abelian group and identify this group with its image
under the given embedding H — G.

Definition 4.2. A homomorphism ¢: B — G is said to be an Q-homomorphism, if
7o = . The set of all 2-homomorphisms is denoted by Homq (B, G). O

We consider the composition
e=eq=pol: BS5-5G, woe=0, (4.31)

and define the left actions 7 and T = T of the groups S and B, respectively, on the group
H by
Ts(h) = p(s) - b« p(s), Ty(h) = oy (h) = e(b) - h- (™). (4.32)

Note that if the exact sequence
1-H- 5851

(with the fixed splitting homomorphism p) in diagram (4.29) is given, then the homo-
morphism € = € and the action T' = T defined by (4.31),(4.32) are determined by the
homomorphism 2. Therefore, in our notation of the groups and homomorphisms related
to the corresponding cohomology, we use the sign of the homomorphism 2 instead of the
traditional usage of the sign of an action.

A mapping z: B = H with 2(1) = 1 is called a 1-cochain on B with values in H. A
1-cochain z is a 1-cocycle if its 1-coboundary 642z: B x B — H is trivial, that is, if

(642) (b1,b2) B [Ty, 2(b2)] - [2(b1b2)] ™" - 2(b1) =1  for all by,by € B. (4.33)
The group of all 1-cocycles is denoted by Z&(B, H). The subgroup BL(B, H) C Z4(B, H)
consists of all 0-coboundaries, that is, a 1-cocycle 22 B — H belongs to B4(B, H) if and

only if

Cmn) hlvbe B, (4.34)

there is an element h € H such that z(b) = (6Q0) (b)
The cohomology group H(B, H) is defined by

H(B, H) = 2o(B, H)/By(B, H).
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For any Q-homomorphism ¢: B — G, define the mapping
2,0 B =G, z,(b) = p(b)e(b™1), (4.35)
and vice versa, for any 1-cocycle z € Z5(B, H), define the mapping
b B G, 0u(b) = 2(0)e(b). (4.36)

The following simple lemma seems very well known; however, I could not find it in standard
textbooks in homological algebra.

Lemma 4.5. a) The mapping z,: B = G defined by (4.35) is, in fact, a 1-cocycle of the
group B with values in H.

b) The mapping ¢,: B — G defined by (4.36) is an 2-homomorphism, and, besides, the
1-cocycle z, corresponding to this Q-homomorphism ¢ = @, (via statement (a)) coincides
with the original 1-cocycle 2.

Thereby, formulas (4.35), (4.36) define the two (mutually inverse) one-to-one correspon-
dences

Z5(B,H)> 2 ¢, € Homg(B,G), Homg(B,G) 2 ¢ 2, € Z5(B, H). (4.37)

Proof. a) Since mop = Q = woe, we have 7 (2,(b)) = 7(p(b)) ('fr e) (") =Q®)Q (1) =
1, and thus z,(b) € Ker m = H; moreover, z,(1) = ¢(1)e(1) = 1. So, we can regard z, as
a 1-cochain of the group B with values in H. Further,

(‘sflzzrp) (b1, b2} = [T, 2 (b2)] - [ (blb2)]_1 + 24 (b1)
=Ty, [p(b2) € (b37)] x [‘P (bibe) - ((blbz)_l)]_l x [ (b1) e (677)]

=e(b) (ba) € (b77) £ (b7) x [ (babz) - (b6)™)] ™ x [p(61) - (7))

= e(b1) p(b2) € (b7") € (b7) -e(br) - £(b2) -0 (b37) - @ (677) - o(br) - € (b77) = 1,
which shows that z, is a 1-cocycle.

b) Since z is a l-cocycle, (6}2:5) (b1, b3) = 1 for all by, b € B, which means that
e(by)z(b2)e (b71) - [z(b1b2)]"" - 2(b1) = 1. Since H is Abelian, the latter relation may
be written as

2(bibg) = 2(b1)e(b1)z(ba)e (077) ;

hence,

@z (b1b2) = z(b1b2)e(b1b2)
= z(by)e(br)z(ba)e (b7 1) e(brbz) = z(b1)e(b1)2(ba)e(b2) = w.(b1)w.(b2),
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which shows that ¢,: B — G is a group homomorphism. Moreover, z(b) € H = Ker = for
any b € B, and moe = Q; thus, 7(p.(b)} = 7(z(b)e(b)) = n(2(b))x(e(b)) = Q2(b) and ¢, is
an Q-homomorphism. Finally, applying (4.35) to the Q-homomorphism ¢ = ¢, and using
(4.36), we have

zo(b) = p(b)e (b7) = @ (b)e (b71) = 2(D)e(h) - e (b71) = 2(b),
which concludes the proof. O

Our immediate goal is to study Q-homomorphisms B — G up to conjugation. In view of
the previous lemma, it is useful to find out the binary relation in Z4(B, H) corresponding
to the conjugacy relation ”~” for Q-homomorphisms. The optimistic expectation that the
equivalent cycles must be in the same cohomology class is not very far from the truth.
Actually, it is so under some simple and soft. additional restriction on §2.

Definition 4.83. Two 2-homomorphisms ¢y, ¢2: B — G are called H-conjugate, if there
exists an element h € H such that

o (b) = h - (b) - h~! (4.38)

for all b € B. If the latter condition holds, we write ¢ = 5. O

Clearly, &~ is an equivalence relation on the set Homg (B, G), which is stronger than the
usual conjugacy relation ~ (that is, ¢1 & @2 implies w1 ~ p2). There is the following evi-
dent inclusion involving the centralizers: w{C(rx~'(Im Q),G)} C C(Im 2, S). In general,
this inclusion may be strict; however, if

(1) C(Im §2, S) = {1}, that is, the centralizer of the subgroup Q(B) C S in § is trivial
(for instance, § is surjective, and the center of S is trivial)

or the group G is Abelian, then we have
7{C(r~}Im Q),G)} = C(ImQ, ). (4.39)

Proposition 4.6. Let 1, p2: B = G be two 2-homomorphisms, and let 2y = z,,, 22 =
Z,, be the corresponding 1-cocycles.

a) The relation @, ~ @ holds if and only if z12;" € BL(B, H). Thus, the set of the
~s-equivalence classes of Q2-homomorphisms is in natural one-to-one correspondence with
the cohomology group H, (B, H).

b) Assume that condition (4.39) is held. Then the relations o1 ~ @ and @1 = @, are
equivalent, and the set of the classes of conjugate Q-homomorphisms B — G 1is in natural
one-to-one correspondence with the cohomology group HA(B, H).

Proof. a) First, assume that ¢, = ¢2; so, for some h € H, we have

(pg(b)zh-gal(b)-h_l for all b € B.
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According to (4.35), z1(b) = w1(b)e(b™1), 22(b) = h - @1(b) - A~ -g(b~1). Consequently,

21(b)(22(0)) ™ = [ (B) € (57Y)] - [h-oa(0) - R e (1]
o) (7] [ 1 (7)1 (.40

= [p1(6) e (b71)] - [e(®) - h-e (071)] - [e(0) - 02 (b~1)] - [R71).

The four expressions in the brackets in the third line of (4.40) belong to the Abelian normal
subgroup H C G, and the first and the third of them are mutually inverse; hence,

21(b)(22(0)) ™ = [e(b) - h-e (b7Y)] - A7E = (Toh) - b7t = (83h) (b))  forall b€ B,

and 225 € BY(B, H).
Now, let 2125 ' € B4(B, H). Then there is an element h € H such that for all b € B

21 (b) - [2(0)] ™" = (63h) (b) = (Tph) - A~ = [e(b) - h-e (071)] - A7 (4.41)
By (4.36), ¢;(b) = z;(b)e(b), j=1,2. Using (4.41) and commutativity of H, we have

02(0) - [h- o1 (1) - k1] = [22(b)e(b)] - [h e (b7) (m (b)) h—l]
=2(0) [e(®) - hoe (7)) - () 7
- [zz(b) (21 (b))"l] e(®) - hoe (b7Y) - A7

= z(0)(21(0)) 7" - 21 () (22(0)) Tt = 1;

50, pa(b) = h-@1(b)- h~! for all b € B and ¢ = @s.

b) In view of (a), we should only prove that (under condition (4.39)) @1 ~ o implies
p1 = 3. The relation w; ~ @s means that there exists an element g € G such that
wa(b) =g 1(b)- g~ ! for all b€ B. Since ¢; and p; are -homomorphisms, we have

Q) = (mopa)(b) =7 [g-01(b) - 97 = 7(9) - (mo 1) (b) (g™ ") = m(g) - Q) - w(g™ ")

for all b € B; thus, 7w(g) € C(Im €, 5). It follows from (4.39) that there is an element
g € C(n~}(Im Q),G) such that m(§) = n(g); clearly, the element h = gg~! is in H. The
element § commutes with any element of the subgroup 7~ !(Im ). This subgroup contains

the image of any Q-homomorphism B — G; hence, § commutes with all the elements ¢, (b),
be B, and

p2(b) =g-p1(b) - g7 = hg- 1 (b) - (hg) ™ = h- oy (b) - b7
This shows that ¢; & 3. 0
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Remark 4.2. If we replace Q2 by a conjugate homomorphism ', /(b)) = sQ(b)s™?, and
define the corresponding ¢’ = eq and T' = Tqr according to (4.31),(4.32), then we have
the bijection

2B, H)> 2w 2' € 25(B, H), Z'(b) = p(s)z(b)p(s™1),

which induces an isomorphism of the cohomology groups HE (B, H) =, HL.(B,H). We
have also the bijection

Homg(B,G) 3 ¢ — ¢’ € Homg/ (B, G), @' (b) = p(s)p(b)p(s™1),

which is compatible with the equivalence relations &, &'. The matching between cocycles
and (- or '-) homomorphisms defined by (4.35),(4.36) is also compatible with the above
bijections. Moreover, if  satisfies (4.39), then ' does as well. Combined with Remark
4.1, this shows that in our problem we may freely pass from a homomorphism €2 to a
conjugate one. O

Remark 4.3. Even if condition (4.39) is not held, we may compute the cohomology
group H4(B, H), choose some 1-cocycle zy in each cohomology class #, and then take the
corresponding 2-homomorphisms ¢y = ¢,,,. The homomorphisms ¢ corresponding to
distinct cohomology classes H cannot be H-conjugate; but some of them can be conjugate
(by means of an element in G). Even if this happens, the homomorphisms 3, H €
H§(B, H), form a complete system of Q-homomorphisms B — G, meaning that any Q-
homomorphisms ¢: B — G is conjugate to some of py. Such a system {yy} provides us
with a solution of our problem (maybe, not with “the best” one; see Remark 4.1). Anyway,
this procedure reduces our nonlinear classification problem to computation of cohomology,
which is, in a sense, a linear algebra problem. O
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§5. Q-HOMOMORPHISMS AND COHOMOLOGY: SOME COMPUTATIONS

In this section, we study some particular diagrams of the form (4.29) and compute the
corresponding cohomology and €2-homomorphisms. Namely, we consider a diagram

B(n) B(n)
ln (5.1)
1 y H y G —— S(t) —— 1,

where : B(n) — S(t) is some given homomorphism of the braid group B(n) into the
symmetric group S(t) (n,t > 2). We fix some Abelian group A, which is written as
additive, and assume that H is the direct sum of £ copies of A:

t
H=A%=(pA (5.2)
7=1

We denote elements of the group H by bold letters (say h) and regard them as “vectors”
with ¢ “coordinates” in A: h = (al,...,at) € H, a!,...,a* € A. We consider the standard
left action T of the symmetric group S(¢) on this group H. Namely, for any element
h = (al,...,a*) € H and any s € S(t), we put

reh=(a*" W, .. e O (5.3)

The group G is assumed to be the semidirect product H X, S(t) of the groups H and S(t)
corresponding to the action 7. That is, G is the set of all pairs (h,s), h € H, s & S(¢t),
with the multiplication

(h,s)-(h',s') = (h+ 7,h’,s-5'). (5.4)

The injection j: H <— G, the projection m: G — S(#), the splitting homomorphism
p: S(t) — G, and the homomorphism e: B(n) — G arc defined as follows:

j(h) = (h,1), w(h,s)=s, p(s)=(0,5), &(b) = (po)(b) = (0,2(b)). (5.5)

We identify any element h € H with its image j(h) = (h,1) € G (however, we must
remember that the group H is additive, and G is multiplicative). The left action T of the
group B(n) on the group H is defined by the given homomorphism  and the action 7:

Tyh = () (h, De(b™1) = (0,2(8)(h, 1)(0, (™)) = (ragyh, 1) = amh.  (5.6)
For a cocycle z € ZL(B(n), H), we have z(1) = 0 and
(672) (b1, b2) = Ty, z(b2) — z(byba) +2z(b1) =0  for all by, b, € B(n)
(this is the additive version of (4.33)); thus, ‘

z(b1be) = z2(b1) + Tp,z(b2). (5.7)
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Particularly, setting by = b and by = b~ !, we obtain
z(b™1) = —T}-1z(D). (5.8)
It follows from (5.7),(5.8) that any 1-cocycle z is completely determined by its values
h =2z(s;) = (2},.,2) € H, €A, (5.9)

on the canonical generators sy, ..., Sp—1 of the group B(n).
Assume that some elements

hy = (a},.,a)) e H, aled, 1<i<n-—1, (5.10)
are given, and we are looking for a cocycle z € Z1.(B(n), H) with the values
z(s;) = h;, 1<i:<n—1. (5.11)

Since s,8, = $¢8p whenever 1 <p,q <n—1 and |p — ¢| > 2, we have for any such p, ¢ the
relation z(spsq) = z(s4sp). In view of (5.7), the latter relations may be written as

Ts,2(sq) + 2(sp) = Ts,z(sp) + 2(sq), (5.12)
which shows that the elements (5.10) must satisfy the relations
hy — T, hy = h, — T, hy, 1<p,g<n-—-1, |p—gq|>2 (5.13)

We should also take into account the braid relations s,8;,118, = sp418p8p41, 1 <p < n—1,
which leads to the conditions

Tspsp+1z(3p) + Tspz(-9p+1) + z(sp) = Tsp+ns,>z(3p+l) + qu+lz(s])) + Z(Sp-l-l) (6.12")
and
h, - ﬁﬂ,p_‘_lhp + Tsp3p+1hp =h,4 - Tsphp+1 + T3p+lsphp+1, 1<p<n—2. (5.13")

The following lemma is cvident.

Lemma 5.1. A cocycle z € ZL(B(n), H) with the values z(s;) = h; (1 <i<n-1) does
exist if and only if the elements h; satisfy relations (5.18), (5.13'). If these relations hold,
then the corresponding cocycle z is uniquely determined by the elements h;. Moreover, this
cocycle z 15 a coboundary if and only if there crists an clement h € H such that

h,=T; h—h forall p=1,... ,n—1. (5.14)

The cohomology group H:(B(n),H) is isomorphic to the quotient group Z/B, where 2
consists of all the solutions [hy,...,h,_1] of the linear system (5.13), (5.13'), and B C Z
is the subgroup consisting of all the solutions [hy, ..., h,,_1] such that there is an element
h € H that satisfies (5.14). O

If the action T is given explicitly, the computation of the quotient group Z/B is a
routine (however, it can be very long).
In the sequel we use the coordinate representation (5.10) of the vectors h; € H.
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Lemma 5.2. Assume that t = n and that @ = p: B(n) - S(n) = S(t) is the canonical
projection. Then system of equations (5.13) is equivalent to the system

ag=a§+l, 1<p,g<n—1, |p—gq|>2, (5.15)
and system (5.16') is equivalent to
ah = af ., 1<g¢<n=-2, 1<p<n, p#qq+1,9+2
adt? =al,,, 1<g<n-2 (5.15)
ag—l-ag*'l-—-agﬁ-l—agif, 1<g<n-2

Proof. Take any element h = (a,...,a™) € H. Using the definitions (5.3), (5.6) of the
actions 7 and T, and taking into account that for £ = i we have

Q(SP) = (p:p+ 1): Q(SPSIH*I) = (p&p+ 1:p + 2)7 a‘nd Q(SP+1SP) = (p + 23p+ 11p)a

we can readily compute that

(1 -1 p+l +2 _p+3 n
T,,h =(a’,...,a? ", aPT P, a?T" a0, L a”),
N e’
— 1 -1 +2 +1 +3 n
Typs, . h=(a",...,aP7",aP"* aP,aP™ a7, .. a"),
———

(5.16)

T.

(1 —1 . p+l _ pt+2 +3 n
apasp = (a’, ... ,aP70, aPT el aP aPTE L a”)
N e’

(we underbrace the “nonregular” permuted parts). Using these formulas, we can write

relations (5.13), (5.13’) in the coordinates; after evident cancellations, this leads to (5.15)
and (5.15"), respectively. a

Now we can compute certain cohomology and homomorphisms.

Remark 5.1. Assume that A = Z/rZ and take the following ¢ disjoint r-cycles
Con=(m-1Dr+1,(m-1r+2,...,mr)€S(rt), m=1,...,¢

Identify any h = (al, ..., a*) € (Z/rZ)®* with the product Cf] o -C't“t € S(rt). Thereby, we
obtain an embedding (Z/rZ)® — S(rt). Using this embedding and Lemma 4.1, we may
identify the second horizontal line of diagram (5.1) with the exact sequence (4.2). This
identification is compatible with the actions, splittings, etc. This means that for the group
A = Z/rZ any Q-homomorphism in diagram (5.1) may be regarded as a homomorphism
B(n) — G C S(rt). _

When A is a commutative ring with unit 1 (say A = Z/rZ), we set

e; =(0,...,0,1,0,...,00 e H, 1<i<t. (5.17)
e N’
1i—1 times t—1 times
Clearly, in this case H is a free A-module with the free base eq,... ,e;, and the action T

on H is compatible with the A-module structure of H. Hence, the cohomology group is
also an A-module. O
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Theorem 5.3. Assume that t = n and that Q = p: B(n) = S(n) = S(¢) is the canonical
projection. Then

H)(B(n),A®") 2 4@ A.

If A is a ring with unit, then the A-module H}‘(B(n), A®™Y 45 generated by the cohomology
classes of the following two cocycles z,, zo:

21(8:) = eit1,

(1 <i1<n-— ].) (5.18)
Zg(S,') =e;+...te_1+ey2+...1+e,

Proof. a) Any solution hy, ..., h,_; of the system of equations (5.15),(5.15') is of the form

hi=(b..,b, ¢ ae—c, b.,b ), i=1.,n-1,
\,‘—/ H,_/
i—1 times n—i—1 times

where a,b and ¢y, ..., ¢,,—1 are arbitrary elements of the group A (the elements a and b do
not depend on t¢). Hence,

n+1
Z = ZL(B(n), H) = A®"1 = EBA

Such a solution satisfies the system of equations (5.14) for some h € H if and only if
a = b= 0. That is, the subgroup

B = B)(B(n), H) C Z}(B(n), H)
consists of all [hy, ..., h,,_1] of the form
h,'=( 0,...,0, Ciy —Cy, 0,...,0 ), i=1,...,n—1.
N——
i—1 timnes n—i—1 times

This implies that any cohomology class in H(B(n), H) contains a unique cocycle z €
Z.(B(n), H) that takes on the generators s1, ..., sp—1 the values of the form

z(s;)=h;=(b,...,b,0,a, b..,b ) i=1.,n-1, (5.19)
SN—— S——r
i—1 times n—i—1 times

where elements a,b € A do not depend on ¢. Therefore, Hﬁ(B(n),A‘B") A A
Now, if A is a ring (with unit), any cocycle of the form (5.19) may be represented as
z =a-2z + b- 2y, where 21,2, are defined by (5.18). O

Remark 5.2. Remarks 4.2 and 2.2 show that for n # 4,6 Theorem 5.3 applies, in fact,

to any noncyclic homomorphism 2: B(n) — S(n). Namely, for such a homomorphism 2,
we have H(B(n), A®") = Hi(B(n), A®"). O

Now we should compute the A®%-cohomology for the two exceptional homomorphisms
Q= 156: B(5) = S(6) and Q = vs: B(6) — S(6), where 5 6 is defined by (3.6") and vg
is Artin’s homomorphism (§0.5). We skip some completely elementary details, since the
computations are very long.
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Notation. For an additive Abelian group A, we denote by A, the subgroup in A consisting

of the zero element and all clements of drder 2: A; =

{a€ A| 2a=0}.

O

Theorem 5.4. Let n =5,t =6 and let Q = 1561 B(5) — S(6) be the homomorphism

defined by (3.6),(3.6"). Then

H,},E'ﬁ(B(S), AP > Ay @ A,

Moreover, any cohomology class contains a cocycle z that takes on the canonical generators

si € B(5) the values z(s;) = h; of the form

hi=( 0, z+2y, 0, x + 2y, 0,

ho=( 0, 0, r+2y, z+2y, z+2y, 0
hy =(-y, -y, z+ 3y, x+ 3y, T, 2y
hy=( z, 2y, 2y, 2y, T, T

where z € Ay and y € A.

x + 2y)

)
)
)

(5.20)

Proof. The action T = Ty, . of B(5) on the group A®® corresponding to the homomor-

phism 15 ¢ is given by

4a ,a® a5,
?

¥

)
)
341 5)
)-

h; = (a}, ..., a?)

Let z be a cocycle with the values z(s;) =

€ A®% i=1,2,3,4. Then the

system of equations corresponding to the commutativity relations s; 2 s; (|t — j| > 1)
and the braid relations s;00s;4.1 between the generators s; looks as follows:
1_ 3 1_ 2, 2 _ 4 _ 2_ 1, 3_,1_ .3 _ 4,
a1 — ap = az — ag; ay — Gy = a3 — ag; )y — G = a3 — ag; (51 2 55)
81 « 83
4 _ .2 _ 4 _ 3 5_ 6 _ 5_ 6, 6_ .5_.6_ 5
Gy — @y = a3 — Qg; @) —ay, = ag — ag; ) — @y = dz — ag;
1.2 _ 1 _ .2 2_ 1 _ .2 _ 1 3_.5_ 3 _ .4,
@y = @) = Qg — Gy, @) — Gy = a4 — Gy; @) — 0y = 04 — Qyg; (51 2 54)
81 = 854
4 _ 6 _ 4 _ 3, 5_ .3 _ 5 _ 6. 6 __ 4 _ 6 _ 5,
) — Ay = aq — Qy; Ay — Q1 = Q4 = Qg; 1 — a1 = a4 — Ay;
1_ 2 _ 1_ 5 2 _ .1 _ 2 _ 3 3_ 5 _ .3 _ .2,
Gy — Q3 = Q4 — Ay; Gz — 4z = a4 — Gy, y = Qg = Qg = Qy; (52 2 s4)
So «— 84
4 _ 6 _ 4 __ 6, 5_ .3 _ 5_ 1, 6_ 4 _ 6 _ 4.
(p = Ay = Qg — Qy; Ay — Gy = Q4 — Qy; Ay = Oz = Qg = Ay,
(810082)1
1_ .2, .6 .2_ .3, 3 2_ .1, 4 .3 _ 2, 6_ 3_ 4 _1,
a}—ai’—l—a?:az—az-l—az; a] —a]+a] =a; —ag+y; a] —aj+a{ = a; — aq -+ ag;

4 6 2 _ 4 3 5 5 5
a, —ayt+ajy =ay —ay+ay; aj

4 6 2
- a{ +ay = ay — ay + ay; ag’

4 1
—(L1+a1:az—

6 5 3
Qo + az;
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(s20083):
1 3 6 1 5 2
a2—a2+(12=(13—a3+a3;

4 2 5
g — a5 + Gy

(1

ag - (Lg + ag;
($30084):

1 2 5 1 3 4
a3—a«3+a3 =a.4 —’a4+a4;

4 2,5
Gy — Gy + ay;

H

4 6, 1
y — a3 -+ a3

2
aq

5 6 3
ay, — @y + Ay

2 1 6
aa—a3+(1.3

a3
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4, 1
— Gyt ag

3 4
— a3 + ag

— 3, .6, 1 4
=a3 — a3+ a3, ay —a;+a,

= n — aé + r.L‘é;

2_ 4, 3 3 _ 5, 2
=ay — a4+ ay;, a3 — az-+aj
- 5_ 6, 1. 6_ 4., 3_ 6
=g — a4+ 1y a3 —az+a3=ay

_ 3 2, 5.
= a3 — a3 + ag;

5 2 4 1
as — ay + a3 = a3 — a3 + a3;

3 1, 6.
= ay — a4 + ay;

5 2

Straightforward computations show that the general solution h; = (al,...,a8) (1 <i < 4)

of this system depends linearly {over Z) on seven parameters zi,..

satisfy the only relation

Explicitly,
G,% = XT3
a%:$1+2$2—$3
a:{' = T4
a% = Tg
ag = TI7
3

Qg = T +2.’L‘2 — &Ly

a3 = —T2 + T3+ &7
a§:—$2+$4+3:7
3

a3 =121+ 3r; — 23— 27

a‘11=$1+$3

aﬁ = 2Ty — I3

a2=2$2—$3+$5—:ﬁ7

iy iy

2.’L‘1 = 0.

the general solution is of the form

ac‘l1 =Ty + 229 — B4

5

a? =z + 229 — x5

1+ 289 —23 — Ts + Ts + Tg — Ty
T, + 2x9 — g

T3+ T4 — L5 — Tg+ T7

1+ 330 — gy — &7
T+ Ts

21132 — Iy

20 — T3 — L4+ T5 + Tg — T7
T+ L3 — &g+ Ty

Ty -+ Tz + Ly — Ty — Tg+ T7

.,x7 € A that must

(5.21)

(h3)

(ha)

To select the solutions corresponding to coboundaries, we must find out all the solutions
h; = (a},...,af) (1 <i < 4) such that the system of equations

£ b

h; =T, h - h,

1<i<4,
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has a solution h = (u!,...,u®) € A®5 In coordinates, this system of equations looks as
follows:

a{ =:1:3——-u2—u1; a‘l‘=$1+2.’n2—:1:4 =u3—u4;
14
a? =1 4 229 — 13 = ul — u? al = 5 = ub —u®; (hl)
ad = x4 = ut — b a$ = 1 + 2wq — @5 = u® — u5;
1
a%::r:s:uf’—u; ag=m1+2m2~az3—~m4+x5+x5—$7:uﬁ—u4;
a3 = o7 = u’ — u? a5 = 1 + 2z — wg = u! — u; (h})
ag=$1+2$2—z7=u2—u3; ag=$3+$4—$5—:r;6+m7=u4—u6;
(1%=—.’1’?2+.’L'3+.'E7=?L3—’u1; a§=x1+3$2—$4—x7=u2—u4;
a§:—$2+$4—|—$7=u4—uz; agzml-}-ms:us—us; (h%)
a§=$1+3x2—x3—$7=u1—u3; ag=2zg—$5=u5—u6;
a) =z + r3 = u? — ul; aj = 2z5 — x3 - o4 + x5 + w5 — 7 = u® — u?;
ai = 2z9 — 3 = ul — u? ad =z + w3 — w + x7 = v — u’ (hj)
3. 6 4 6

a§:2$2—$3+$5—$7=u5—u ; Oy =1+ T3 +Ly —Ts—Tg+Tr=U —U.
It has a solution (u!,...,u%) € A®® if and only if the parameters z; satisfy the relations
Ty =9 =0. (5.22)
Hence, the group Zv}m,e (B(5), A®%) of all cocycles is isomorphic to the direct sum
2 =A0 A% = {(z1,...,77) € A®T| 22, = 0},
and the group By (B(5), A®°) of all coboundaries is isomorphic to the subgroup B C Z
B= A% = {(z4,...,77) € A®" | 2; = 2, = 0}.

This means that
Hy, (B(5),A%%) = Z/B> A; @ A.

Clearly, any cohomology class in Hl},ﬁ . (B(5), A®%) contains a cocycle of the form (h;)—(hy)
with z3 = £4 = x5 = xs = T7 = 0; this proves (5.20) (with z =21 € A2, y =2, € 4). O

Remark 5.3. In the next theorem we use some details of the proof of Theorem 5.4. To
simplify our notations, we denote the system of equations (s 2 s3) — (s30084) by (S), and
formulas (hy) — (hg) by (H). We denote by (Ho) the formulas for a? given by (h;) — (hy)
with the particular value z; = 0. Finally, we denote by (Up) the system of equations
(h}) — (h}) with the same particular value z; = 0. It follows from the proof of Theorem

5.4 that system (Up) has a solution (ul,...,u®) € A®8 if and only if zo = 0. O
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Theorem 5.5. Lett =n =6, and let Q = vg: B(6) — S(6) be Artin’s homomorphism.
Then

H, (B(6), A®%) = A

Any cohomology class may be represented by a cocycle that takes on the canonical generators
s; € B(6) the values z(s;) = h; of the form

z(sy)=hy=( 0, 2y, 0, 2y, 0, 2y)
z(sg)=hy=( 0, 0, 2y, 2y, 2y, 0)
z(s3) =hy=( -y, -y, 3y, 3y, 0, 2y) (5.23)
z(ss) =hy=( 0, 2y, 2y, 2y, 0, 0)
z(ss) = hs = (-2y, 0, 2y, 4y, 0, 2y)

Proof. According to (3.6"), we may regard the homomorphism 5 6: B(5) — S(6) as the
restriction of Artin’s homomorphism vg: B(6) — S(6) to the subgroup B = B(5) in
B(6) generated by the first four canonical generators s, sg, 3, $4. Since £, = po v5 and
Eypse = PO Y56, we have €, | B(5) = ey;,, and thus the B(5)-action Ty, , coincides
with the restriction of the B(6)-action T, to B = B(5). It follows that the restriction
zp(s) of any 1-cocycle z € Z. (B(6), A%%) to the subgroup B(5) = B C B(6) belongs
to Zi})m (B(5), A®®). Moreover, if such a cocycle z is a coboundary, then its restriction
zg(s) is also a coboundary. So, in order to compute H (B(6), A®°), we may use some
computations already made in the proof of Theorem 5.4.

Let z € Z% (B(6), A%5 be a cocycle with the values z(s;) = h; = (af,...,af) € A®S,
1 <1 < 5. Then the elements a] with 1 <7 < 4 must satisfy the system of equations (S).
According to the proof of Theorem 5.4, they are of the form (H) with some z,...,z7 € A.
The elements af (1 <4 < 4) together with the elements a}, ..., a$ must satisfy the system
of equations (s; 2 s5), (840085) corresponding to the relations s;s5 = szs; (1 < ¢ < 3)
and $48584 = S558485. Using the formula

T (a',a® a® a* a® a%) = (a*, a3, a?, a', a® a°)

for the transformation Ty, = (Ty,)s,, we can write down the equations (s; 2 s5),(540085)
explicitly:

dod=d-di d-atmdosh  a-dos-ah
§1 « S5

4 1_ .4 3, 5 6_ 5 6. 6 5_ 6 5,

ay — @) = a5 — Gs; @) — @y = a5 — as; ) — @y = a5 — Qs;

1 4 _ 1 5, 2 3_ 2 3, 3 2 _ .3 2.

aaz—az—as—a5, (12—(1,2—(1.5—(1.5, (12—0.2—(1.5—0,5,

4 1 4 6 5 6 _ .5 1 6 5 6 4 (s2 = s5)

3 — Gz = G5 — G5 Gz — Gz = 05 — Os; 3 — 4z = a5 — Qg;

d-a=al-al  d-dd=d-eh  d-dod-a

4 1_ 4 _ 2 5  6_ 5 _ 6 6 5_ 6 _ 5 (s3 & s5)
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(840085):
1 4 3_ 1 2 6. 2 3 4 _ 1 5. 2 6 _ ,3 5 1,
ay — a4+ a3y =05 — a5 -+ag; Ay —ay+a; =a;—ag+ag;, ay —az;+ a3 =az — ag + Ay,

4 1 5 4 6 2, 5 6 2 5 3 4, 6
Ay —ay+0ay = a5 —ag +a5; Qg — g + a5 = as — a5 + Qs; a4—ai+ai=ag—a§+ag.

2 3

Let us denote the system of equations (s; 2 s5) (1 <4< 3) and (840085) by (Snew)-

7 (1 <4< 4) in terms of the parameters

By substitution of the expressions () for a?

z; into the equations (Snew),_we obtain the system of nonhomogeneous equations (Spey)
for the remainder elements al € A, 1 < j < 6. This (very unpleasant!) procedure leads
to the following result:

Claim. System of equations (Spew) has a solution a} € A (1 < j < 6) if and only if
z1 = 0. Clearly, the latter condition means that the clements a] (1 < i < 4) must be

————

chosen according to formulas (Ho). If this is done, the solution (al, ..., al) € A®® of (S,ew)
is unique and reads as follows:

4
a§=—2z2+m3+m4+:ﬂ7, as = 4x9 — 23— T4 — T7,
2 _ 5 __ ,
(15 = .’L"], (145 = sy, (h5)
ag = 2z — x7, ag = 2o — 5.

Combined with formulas (#p), this shows that
Z =2, (B(6), A%°) = A% = {(x),...,w7) € A®7 | z; = 0},

Now we must select the solutions corresponding to coboundaries. To this end, we add
the following new equations (hf)

4
aé=—2m2+$3+$4+$7=U4—~u1, Qy = 4xy — W3 — Tq — Ty = U — U4,
2 _ _ 5 _ .. _ '
Uy = Ty = Uz — Uy, 5 = &5 = U — Us, (5)
a§=2x2—:t:7=u2—ug, ag=2.’n2—m5 = u5 — Ug,

to the equations (Up); then we need to find out when the resulting system of equations
(Up), (h%) has a solution (ul,...,u®) € A®5. We must certainly assume that z, = 0 (this
is necessary for solvability of the equations (I4y); sec Remark 5.3). A straightforward
computation shows that, in fact, zo = 0 is the only condition for solvability of the system
of equations (Up), (h}). That is, a cocycle z of the form (Hy),(hs) is a coboundary if and
only if zo = 0. Hence,

B = B}, (B(6), A%%) 2 A®° = {(zg, ...,0:7) € A®® | 1, = 0},

and thus
H) (B(6),A®%) =Z/B=~ A



64 VLADIMIR. LIN

Since the parameters (z3, ..., 27) € A®® arc completely free both in cocycles and cobound-
aries, any cohomology class may be represented by a cocycle of the form (Hp), (hs) with
z3 =...= z7 = 0, which gives formulas (5.23) (y = x5 € A). O

Remark 5.4. The homomorphisms Q@ = p: B(n) — S(n) and Q@ = vs: B(6) — S(6)
are surjective, and the image of the homomorphism Q = 95 6: B(5) = S(6) is isomorphic
to S(5). In any of these cases, the centralizer of the image Im Q in the corresponding
symmetric group is trivial, and thus the two equivalence relations ~ and ~ on the set
of all Q-homomorphisms coincide (see Proposition 4.6(b)). Hence, to compute all the
Q-homomorphisms up to conjugation, it is sufficient to choose one cocycle z in each co-
homology class (which indeed was done in Theorems 5.3-5.5), and then to compute the
corresponding §2-homomorphisms ¢, defined by (4.36). For the latter step, we must also
compute the homomorphism £ = p o 2; this is not a problem at all, as far as the splitting
p and the homomorphism ? are given explicitly. O

In the following three corollaries we consider only the case when A = Z/2Z, which is
important for some applications (see §6). We skip the proofs since they follow immediately
from the results stated in Theorems 5.3-5.5 (see¢ also Remarks 5.1 and 5.4).

Corollary 5.6. The cohomology group H,(B(n), (Z/2Z)%") = (Z/2Z) ® (Z/2Z) consists
of the cohomology classes of the following four cocycles:

zo(si) =0 (zero cocycle),

z1(8:) = €11,

22(5,') =e;+---+e_1+e42+- -+ ey,

z3(s;) =21(8;) + 22(s5) = e+ -+ei1+ €41+ +e,

(1<i<n—1). (5.24)

Any pn-homomorphism ¥: B(n) —» G C S(2n) is H-conjugate to one of the following four
p-homomorphisms ¢;, 7=0,1,2,3 (in each formula 1 <i<n—1):

PO = PO fin = Ep, ~ Hn X fin wolsi) = (20 — 1,20+ 1)(2¢, 21 + 2);
@1(si) = (20 — 1,20 + 2,24, 2 + 1);
4-(;;(:10

@a(si) = (1,2) -~ (2 — 3,2 — 2) (26 — 1,20 + 1)(24, 25 + 2)(2i + 3,20 + 4) - -- (2n — 1, 2n);
two tra.n;rpositions

@3(s:) = (1,2) - (26— 3,2 — 2) (2i — 1,23 4+ 2,2i,2i + 1)(2i + 3,21 + 4) - - - (2n — 1, 2n).

4-cycle

Corollary 5.7. The cohomology group H,},u_ﬁ (B(5),(Z/2Z)®%) = (Z/2Z)®(Z/2Z) consists

of the cohomology classes of the four cocycles 2y, (v,y) € (Z/2Z)® (Z/2Z) that take
on the generators sy, 89, 83, 84 the values

Zizy)(81) = (0, z, O, z, 0, z), Z(zy)(s2) = (0, 0, z, z, =, 0),
z(a:,y)(s3) = (fl'j, Y, £+Yy, TH+Y, T, 0): z(:z,y)(""‘l) = (ma 0, 0, 0, z, .’B)
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Any 15 g-homomorphism ¥: B(5) = G C S(12) is H-conjugate to one of the following
four +5 6-homomorphisms n; = ¢5.6,(2,4), ¢ =0,1,2,3, (z,y) € (Z/2Z)D (Z/2Z):
Mo = $5,6,(0,0) = Expp,
no(s1) = (1, 3)(2,4)(5,7)(6,8)(9,11)(10,12), no(s2) = (1,9)(2,10)(3,
mo(s3) = (1,5)(2,6)(3,7)(4,8)(9,11)(10,12), no(s4) = (1, 3)(2,4)(5,
= ¢5.6; ;(1,0) ¢
7]1(31) (1,4,2,3)(5,8,6,7)(9,12,10,11),  mi(s2) = (1,10,2,9)(3,6,4,5)(7, 11,8, 12),
m(sa) = (1,6,2,5)(3,8,4,7)(9,11,10,12),  m1(s4) = (1,3,2,4)(5,10,6,9)(7,12,8,11);

5)(4,6)(7,11)(8,12),
9)(6,10)(7,11)(8,12);

2 = 955,6;(0,1) :

n2(s1) = (1,3)(2,4)(5,7)(6,8)(9,11)(10, 12), m2(s2) = (1,9)(2,10)(3,5)(4, 6)(7,11)(8,12),
n2(s3) = (1,6)(2,5)(3,8)(4,7)(9,11)(10, 12), m2(s4) = (1,3)(2,4)(5,9)(6,10)(7,11)(8, 12);
M3 = P5,6,(1,1)

na(s1) = (1,4,2,3)(5,8,6,7)(9,12,10,11),  n3(s2) = (1,10,2,9)(3,6,4,5)(7,11,8,12),
ms(s3) = (1,5,2,6)(3,7,4,8)(9,11,10,12),  na(sa) = (1,3,2,4)(5,10,6,9)(7, 12,8, 11).
Corollary 5.8. The group H,, (B(6), (Z/2Z)®°) = Z/2Z consists of the cohomology clas-
ses of the two cocycles z,, (y € Z/2Z) that take on the generators sy, ..., ss the values

zy(s1) = (0,0,0,0,0,0), z,(s2)=(0,0,0,0,0,0), z,(s3)=(v,9,%,%,0,0),
z,(s4) = (0,0,0,0,0,0), zy,(ss5)=(0,0,0,0,0,0).

Any vg-homomorphism ¥: B(6) = G C S(12) is H-conjugate to one of the following two
vg-homomorphisms ¢,, y € Z/2Z:

¢)0=p01}6=£l/e,a

po(s1) = (1,3)(2,4)(5,7)(6,8)(9, 11)(10, 12), do(s2) = (1,9)(2,10)(3,5)(4, 6)(7,11)(8, 12),

do(s3) = (1,5)(2,6)(3,7)(4,8)(9, 11)(10,12), do(se) = (1,3)(2,4)(5,9)(6,10)(7,11)(8,12),
bolss) = (1,7)(2,8)(3,5)(4, 6)(9, 11)(10,12);

b1(s1) = (1,3)(2,4)(5,7)(6, 8)(9, 11)(10, 12), ¢1(s2) = (1,9)(2, 10)(3, 5)(4, 6)(7,11)(8,12),

$1(55) = (1,6)(2,5)(3,8)(4, 7)(9, 11)(10,12), ¢1(sa) = (1,3)(2,4)(5,9)(6,10)(7, 11)(8,12),
b(ss) = (1,7)(2,8)(3,5)(4, 6)(0, 11)(10,12)

Remark 5.5. For any natural m and any group G, we denote by 1,, the trivial homomor-
phism G — S(m). {2} denotes the unique nontrivial homomorphism B(n) — S(2); so for
every 1 = 1,...,n— 1, {2}(s;) is the unique transposition in S(2). Given a homomorphism
@: B(n) — S(INV), we regard the disjoint products ¢ X 1,,, ¢ % {2} as homomorphisms in
the groups S(N + m), S(N + 2), respectively (§0.0.2). For instance, the homomorphism
ftn X 11: B(n) = S(n + 1) is defined by (py, X 11){s;) = (5,1 +1), 1 <:<n—1. O

‘We skip the (trivial) proof of the next corollary; ¢;: B(n) — G C S(2n) are the
ftn-homomorphisms exhibited in Corollary 5.6.
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Corollary 5.9. Any (p, % 11)-homomorphism U: B(n) = G C S(2(n + 1)) is conjugate
to one of the eight homomorphisms ; x 13, p; x {2}, 7=0,1,2,3. 0

Remark 5.6. Take any n > 3 and any r > 2. Remark 5.1 and Theorem 5.3 give rise to

some noncyclic homomorphisms B(n) — S(rn). To simplify the form of the final result,

we identify the group S(n) with the group S(Z/nZ), and regard the group S(rn) as the

symmetric group of the direct product D(r,n) = (Z/rZ) x (Z/nZ) via the identification
A, daw— (Rla),N(a)) € (Z/rZ) x (Z/nZ),

where R(a) = [a — 1|, € Z/rZ and N(a) = |(a ~ 1 - R(@)/r}n € Z/nZ 2

(||~ and |-|,, denote the 7- and n-residues, respectively). Then the subgroup H = (Z/rZ)®"
generated by the r-cycles

Cn=((m-1)r+1,(m=-1r+2,...,mr)€S(rn), 1<m<mn, (5.26)
acts on D(r,n) by translations of the first argument:

H>h=(C{---C&""): D(r,n) 3 (R,N) (R +a™,N) € D(r,n),

5.27
where a°,...,a"" ' € Z/rZ. (5.27)

The subgroup G C S(rn) (the centralizer of the element C = C;---C,) was already
identified with the semidirect product (Z2/rZ)®" X ,S(n) = (Z/rZ)®" X .S(Z/nZ); the
latter group acts on the set D(r,n) by permutations as follows:

(h,5)(R, N) = (R+ 6"V, 5(N)), (5.28)

where h = (8°,...,6" 1) € (Z/rZ)®", s € S(Z/nZ). Clearly, this action is transitive and
imprimitive (any subset (Z/rZ) x {N} in D(r,n) is a set of imprimitivity).

According to Theorem 5.3, there are 72 cocycles z( ,y, (z,y) € (Z/rZ)®?, representing
all the cohomology classes. The p-homomorphism

Pz B(n) = (Z/rZ)®" X .S(n) C S(D(r,n))

corresponding to the cocycle z(, ,y is defined by its values 55 ;)i = P(s,4) (i) € S(D(r,n))
on the canonical generators s; € B(n). The permutations 5; = 5(; ;i act on the clements
(R,N) € D(r,n) as follows:

(R+1y,N) if N#£i—1,1
S(R,N)=( (R, N+1) if N=i-1, (1<i<n—1). (5.29)
(R+z,N-1) if N =g;

It is casy to show that the homomorphism ¢(, .y defined by (5.29) is transitive if and only
if the elements x,y € Z/rZ generate the whole group Z /rZ, or (which is the same), if and
only if x and y are co-prime. However, the homomorphism @, .y never can be primitive
(since its image is contained in the imprimitive permutation group G = (Z/7Z)®"X;S(n)).

Using the same approach and Theorems 5.4, 5.5, one can construct “exceptional” non-
cyclic homomorphisms B(5) — S(67) and B(6) — S(6r), r > 2. O
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Remark 5.7. Assume that the hommomorphism Q in diagram (5.1) is the disjoint product
Q=0"xQ" B(n) - S(t') x S(t") C S(t), '+t =t

Then we have the decomposition H = A%t = A48 g A®" the actions 7/, 7/ of the groups
S(t') and S(t”) on A® and A®" | respectively, and the corresponding semidirect products
G' = A%\, S(t') € G and G" = A®"' X ., S(t") C G. Any two elements ¢’ € G/, g" € G
commute in G and 7(g'g"”) € S(t') x S(t”). It is rcadily seen that the image of any Q-
homomorphism ¥: B(n) — G is contained in the subgroup G’ - G” &2 G' x G”. Hence, ¥
is the direct product of the two homomorphisins

¥: B(n)—» G and ¥”: B(n) - G".

Each of the latter homomorphisms fits in its own commutative diagram of the form (5.1)
and may be studied separately. O

Let us compute £2-cohomology for a ¢yclic homomorphism €: B(n) — S(¢). In this case
there is a permutation S € S(t) such that Q(s;) = S for all2 =1,...,n — 1. Actually, in
view of Remark 5.7, it is sufficient to consider the following two cases: i) t =1; ) ¢t > 2
and S is a t-cycle.

Theorem 5.10. Suppose n > 4. Let Q: B(n) — S(t) be a cyclic homomorphism.

a) Any Q-homomorphism ¥: B(n) = G is cyclic.

b) Assume that either i)t =1 or i)t > 2 and S is a t-cycle. Then H5(B(n), A®t) = A,
In case (12), any cohomology class contains a unique cocycle z of the form

z(s;) = (a, 0,...,0), acA 1<i<n-1 (5.30)
—— .

t—1 times

Proof. a) Since the homomorphism 7 o ¢ = § is cyclic, we have 7[¥(B’(n))] = {1}; hence,
U(B’(n)) is contained in the Abelian group Ker # = H. Therefore, ¥(B’(n)) = {1} and
¥ is cyclic.

b) In case (i), the B(n)-action on the group H = A is trivial, and hence

Hi(B(n), A) = Hom(B(n), 4) = A.

Consider case (ii). By Lemma 5.1, the elements h; = (a}, ..., a) € A®* are the values z(s;)

12

of a cocycle z if and only if they satisfy relations (5.13), (5.13'), which may be written as
h; — Tsh; = h; — Tshy, 1<4,5<n-1, [i—j]2>2, (5.31)

and
h; — Tsh; + Tsah; = h; 1 — Tshiy + Ts2hitq, 1<i<n—-2, (5.31’)
respectively. Since n > 4, system (5.31) contains the cquations
hy —Tshy =h; —Tsh;, 3<j7<n~1,
hg—Tsh2=hj—T5hj, 4§j§n—1;
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thereby,
h1 - Tghl - hg - Tshz _— ... = hn—l - Tshn_]_ .

Combined with (5.31'), this shows that Tgsh; = Tgzhy = ... = Ts2h,,_;. However, 5% is
just a permutation of coordinates, and thus

hl = h2 - ... = hn_]_. (532)

In turn, (5.32) implies both (5.31) and (5.31"), which shows that

Z = Z1(B(n), A®) = A9t (5.33)

Further, a cocycle z with the values hy = h, = ... =h,_, =v = (v!,...,v*) € A®* isa
coboundary if and only if there exists h = (u?, ..., u*) € A®* such that

v=Tsh—h. (5.34)

Since S is a t-cycle, it is readily seen that for a given v the equation (5.34) has a solution
h if and only if

Y vi=0. (5.35)

Thus, B C Z = A% consists of all the elements v = (v!,...,v%) € A®* that satisfy (5.35).
Joined with (5.33), this completes the proof of the statement (b). O
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§6. HoMoMORPHISMS B/(k) — S(n), B'(k) — B(n) (n < k),
AND B(k) = S(n) (n < 2k)

Here we prove Theorems A(c), E, F, and G. Our first goal is Theorem E(a).

6.0. Homomorphisms B(k) — S(k + 1). We start with the following obvious property
of retractions Q.

Lemma 6.1. Let ¢: B(k) = S(n) be a homomorphism, and let € = {C4,...,C;} be the
r-component of the permutation 1. Assume that eithert < k —2 # 4 ort < 2. Then the
homomorphism Q = Qg is cyclic, 1. e. there erists a permutation g € S(€) = S(t) such
that

Gi42Cm0; 1 = 9(Cm) = Cy(m) (6.1)
whenever 1 <1 <k—-3 and1 <m <.
Proof. The case ¢t < 2 is trivial. If t < k — 2 # 4,  is cyclic by Theorem 2.1(a). O

The next lemma might be proven by a straightforward (but rather long) computation.
Instead, we use the cohomology approach in order to show how it works in the simplest
case.

Lemma 6.2. Assume that 3 < k # 4. Let¢: B(k) — S(n) be a noncyclic homomorphism
such that 71 = [2,2]. Thenn > k -+ 2. Moreover,

a) if n < 2k, then the homomorphism v 1s conjugate to the homomorphism
m. : : S Lo (1 .
kot OiF? (1,2}(i+2,i+3), 1<i<k-1, kom ™ {2} X pg X 1pog—2;
b) if n > 2k, then 1 is either conjugate to gl’),(:,z1 or conjugate to the homomorphism
D oie (20-1,20+1)(26,204+2), 1<i<k—1, &L ~ e X e X Lnag;

¢) in any case the homomorphism v is intransitive.

Proof. For k = 3, all the assertions follow from Lemma 1.9. Suppose k > 4. Let 77 = C1C4,
where C; = (1,3), Cy = (2,4)%; so, € = {Cy,C,} is the only nondegenerate component of
71, with ¥ = supp € = {1,2,3,4}. The corresponding retraction Q: B(k — 2) — S(2) is
cyclic; hence, either Q is trivial or Q = {2}.

Suppose first = {2}. Then Theorem 5.10 shows that the cocycles zp(s;) = (0,0) €
(Z/2Z)%% and 2:(s;) = (1,0) € (Z/2Z)®? (1 < i < k — 3) represent all the cohomology
classes. It follows from Lemma 4.5 that the Q-homomorphism ¥y : B(k —2) - G C S(4)
(up to H-conjugation) coincides with the homomorphism e = po 2, e(s;) = (1, 2)(3,4) for
all 7 (the second possibility, namely, ¥, (s:) = C1(1,2)(3,4) = (1,2,3,4) for all i < k — 3,
cannot occur here, since [0y42] = [2,2]). This means that 5342 | £ = (1, 3)(2,4), and the
condition [0;42] = [2, 2] implies that 749 = (1,3)(2,4) for all i < k—3. Hence, ¥ is cyclic,
which contradicts our assumption.

. Cot ¢ !
3Here we choose this normalization of ¥ instead of the usual C1 = (1,2), C2 = (3,4).
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So,  is trivial; any Q-homomorphism is just a homomorphism ¢: B(k—2) — H. There
are precisely four of them, namely, the homomorphisms defined by

do(si) =1; d1(si) = Cr; da(si) = Co; ¢3(s:) =C1Cs; (1 <i<k—3).

Therefore, we may assume that the homomorphism ¥_ coincides with one of the homo-
morphisms 9;, 7=0,1,2,3.

If O, = ¢, then G40 | & = ¥ (si) = do(si) = 1. Hence, all the permutations
@3, ..., 0k—1 are disjoint with &1, and we may assumc that 73 = (5,7)(6,8). The relations
020001, 020003 and Lemma 1.9 imply that (up to a &1- and 3-admissible conjugation)
o2 = (3,5)(4,6). Since supp 74 N {1,2,3,4} = @ and 0402 = F204, Lemma 1.8 shows
that supp &4 Nsupp &y = &; in particular, 5,0 € supp d4. Since 40073, it follows from
Lemma 1.9 that 54 = (7,9)(8,10) (up to conjugation that is o;-admissible for all z < 3).
By induction, we obtain that n > 2k and ¥ ~ qﬁf’i

The homomorphisms ¢1, ¢2 are not H-conjugate; however, they are G-conjugate; so,
it is sufficient to handle the case ¥, = ¢;. In this case C; < 7; for all ¢ # 2; hence,
o; = C1D;, where every D; is a transposition disjoint with Cy and Cs. Since 0364 = 0402,
we have ,C1. D405 ! = CyD4. The relation 5,005, implics that 72.C105 ! = ¢y. (For
otherwise, 72C155 1 = D4, and the supports of &; and 7, have exactly two common
symbols belonging to the transposition C7; however, this contradicts Lemma 1.9.) Hence,
the set ¥; = supp 71 is oz-invariant. The relations 730001 and @3 | £¥1 = Cy imply that
g2 | £1 = C;. Thus, C; < 7,. Taking into account that k > 4, it is easy to see that
n>k+42and 3 ~ qﬁgl

Finally, if ¥ = ¢3, we have 012 | £ = ¥ (s:) = ¢s(s:) = (1,3)(2,4) for all 1 < k - 3.
But (Gix2] = [2,2]; hence, Giy2 = (1,3)(2,4) for all ¢ < k — 3 and 9 is cyclic, which
contradicts our assumption. Thereby, statements (¢) and (b) of the lemma are proven.
The statement (c) is a trivial corollary of (a) and (b). O

Remark 6.1. Let i: B(4) = S(n) be a noncyclic homomorphism such that o, = {2,2].
Then, besides the possibilities described in statements (a) and (b) of Lemma 6.2, only the
following four cases may occur:

4c) n > 5 and 4d) n > 6 and

3) oy,03 — (1,2)(3,4), @) o1,03 — (1,2)(3,4),
v din { oy = (1,2)(4,5); b dan { oy~ (2,5)(4,6);
4e) n > 6 and 4f) n > T and
o1~ (1,2)(3,4), o1 — (1,2)(3,4),
P~ g {2 (2,5)(4,6), b~ g0 { oa e (2,5)(4,6),
o3 — (1,4)(2,3); a3 — (1,2)(6,7).

All these homomorphisms except ,¢,(£’¢)3 = fé~(see Proposition 3.8) are intransitive. a
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Theorem 6.3. Assume that k > 5. Then:
a) any transitive homomorphism : B(k) — S(k + 1) is cyclic;
b) any noncyclic homomorphism ¥: B(k) = S(k + 1) is either conjugate to the homo-
morphisms
,u‘;§+1 = x 13: B(k) - S{k + 1),

or (which may happen for k = 6 only) conjugate to the homomorphism
Ve =g x 1;: B(6) = S(7),

where vg is Artin’s homomorphism.

Proof. a) Assume first that for some k > 7 there is a noncyclic transitive homomorphism
¥: B(k) = S(k+1). By Lemma 1.24(b), there is a prime p that satisfies 4 < (k+1)/2 <
p < k-2, and Lemma 1.22 implies that & has at least k — 2 fixed points. Therefore,
#supp 0, < 3, and thus either [77] = [2] or [¢1] = [3]. However, this contradicts Lemma
1.20.

Assume now that there is a noncyclic transitive homomorphism ¢: B(6) — S(7). Let
T = Q36 = 030405 € S(7). We apply Corollary 1.16 withi =3, j = 6 (so, j—i+1 = 4) and
obtain that 4 divides ord T'. Hence, the cyclic decomposition of T’ contains precisely one 4-
cycle C. &; commutes with 7" (see (0.6)), and Lemma 1.4(b) implies that &, | supp C = C1?
for some integer ¢, 0 < g < 3. Let us consider all these possibilities for g.

If g = 0, then supp C C Fix ; and # supp 7, < 3, which contradicts Lemma 1.20.

If g =1 or ¢ = 3, then [C9] = [4] and C? < 7, which contradicts Lemma 2.19(a) (with
k=6,n=7,7r=4>7/2=n/2).

Finally, let ¢ = 2. Then [CY] = [C?] = [2,2] and C? < 7. If G, # C?, then either
[71] = [2,2,2] and &, has the only fixed point, or [71] = [2,2,3] and 7, has the only
invariant set of length 3 (the support of the 3-cycle); however, this contradicts Lemma
1.18. Hence, 5; = C? and [7;] = [2, 2], which contradicts Lemma 6.2(c).

b) Since 9 is noncyclic and (by the statement (a)) intransitive, Theorem 2.1(a) shows
that the group G = Im 1 C S(k+1) has exactly one orbit @ of length k and one fixed point.
Hence, ¢ is the composition of its reduction g: B(k) — S{Q) = S(k) and the natural
embedding S(Q) — S(k + 1). Clearly, 9¢ is a noncyclic transitive homomorphism, and
Artin Theorem shows that (up to conjugation of 9) either ¢g = g or k = 6 and Pg = ve.
This gives the desired result. (N

6.1. Some homomorphisms of the commutator subgroup B’(k). Our next goal is
Theorem A(c). For any k > 4, we have the embedding A}: B(k — 2) = B’(k) defined by
i = 0.~+201_1, 1 <1i < k-3 (Remark 0.4). Recall also that the multiple commutator
subgroups H™ of a group H are defined by H(® = H and H"™ = (H®*~V) for n > 1.
Lemma 6.4. Suppose k > 4. Given a group homomorphism 1. B'(k) — H, consider the
composition ¢ = o X,: B(k — 2) -5 B'(k) - H.

a) Im ¢ CImy C H™ for any n > 0.

b}y Assume that either i) ¢(s1) = ¢(sq) for some q that satisfies 2 < q< k—3, or i)
$(sTh) = $(s3). Then ¢ is trivial. Particularly, if ¢ is cyclic, then ¢ is trivial.
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Proof. a) Since k > 4, the group B’(k) is perfect; hence, B(k) = (B/(k))(™ for any n > 0.
Therefore, Im ¢ C Im 1 = (B’ (k)) = ¥((B'(k))™) € H™ for any n > 0.

b) Clearly, ¢(si) = ¥ (A(s:)) = ¥(ci); thus, (i) means 1(c1) = ¥(cq) and (2) means
W(cy!) = w(ca). Hence, to prove the lemma, it is sufficient to show that the system of
relations (0.14) — (0.21) joined with one of the relations (i,) ¢i = ¢4, (ii3) ¢7' = c3 defines
a presentation of the trivial group. This is a simple exercise, and we only sketch the proof.

Assume that (¢,) is fulfilled. Then (0.19) implies vc;v™! = ¢;u™!; by (0.16), this shows
that ¢? = wu. Now (0.14) implies uciu~! = w?, which leads to w? = uv and u = w. Using
(0.14) once again, we obtain uciu™! = w = u; hence, ¢; = u = w. In view of (0.15), this
means that ¢; = v = w = 1. Braid relations (0.20), (0.21) and the relation ¢; = 1 imply
that ¢; = 1 for all ¢. Finally, (0.18) shows that u = 1.

Assume that ¢! = ¢3. Then (0.19) implies vc,v~! = uc;; taking into account (0.16),
we obtain uc; = ¢;'w. Then (0.14) leads to uwu~™! = wuw. Using this and (0.15), we
obtain ¢; = u~w, and (0.14) shows that © = 1 and w = ¢;. These relations and (0.15)
imply ¢ = w = 1, and relations (0.20), (0.21) show that ¢; = 1 for all 4. Finally, from
(0.18) we obtain v = 1. O

Lemma 6.5. Consider a homomorphism : B'(6) — S(5) and assume that the composi-
tion ¢ = o Ag: B(4) — B'(6) — S(5) is intransitive. Then ) is trivial.

Proof. In view of Lemma 6.4(b), it is sufficient to show that ¢(s1) = ¢(s3). Set G =
Im ¢ C S(5) and consider all G-orbits £ C As and all the reductions

¢x: B(4) — S(E)

of ¢ to these orbits. By our assumption, #X < 4 for any G-orbit . If all the reductions
are cyclic, we are done. Assume that there is a G-orbit ¥ with the noncyclic reduction ¢yx;
then ¥ is the only orbit with this property and #% > 3. If #% = 3, then Theorem 2.14(a)
implies that ¢x(s1) = ¢x(s3); in fact, we have ¢(s1) = #(s3) (since the reduction to any
other G-orbit is cyclic). Finally, assume that #% = 4. By Lemma 6.4(a), G = Im ¢ C
S’(58) = A(5); hence, G contains only even permutations. The set As — E consists of a
single point that is a fixed point of G. It follows that the image of the noncyclic transitive
homomorphism ¢5: B(4) — S(X) = S(4) contains only even permutations. This property
and the sentence (¢) of Artin Theorem imply that ¢y is conjugate to the homomorphism
va,3; thus, ¢u(s1) = ¢n(sa) and ¢(s1) = ¢(s3). O

Theorem 6.6. If k > 4 and n < k, then the group B'(k) does not possess nontrivial
homomorphisms into the groups S(n) and B(n).

1

Proof. Consider first a homomorphism ¢: B’(k) — S(n). By Lemma 6.4(a), we have
Im ¢ C §'(n) = A(n); particularly, the homomorphism 1 cannot be surjective. The case
n < 5 is trivial, since for such n the alternating group A (n) is solvable and the group B’ (k)
is perfect. So, we may assume that 4 < n < k and k > 5.

Consider the composition ¢ =9 o A B(k —2) 2k, B'(k) N S(n). By Lemma 6.4(b),
it is sufficient to prove that ¢ is cyclic or at least satisfies the condition ¢(s;) = ¢(s3). If
k> 6 and n < k — 2, then ¢ is cyclic by Theorem 2.1(a). Hence, must only consider the
following three cases: ) k=6andn =25; 4) k> 6andn =k —2; 4) k > 6 and
n==k-—1. o
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1) In this case we deal with the homomorphism ¢: B(4) — S(5). If ¢ is intransitive,
then the conclusion follows by Lemma 6.5. If ¢ is transitive, then Lemma 3.2 shows that

¢(s1) = ¢(s3).

1) In this case we deal with the homomorphism ¢: B(k — 2) — S(k — 2). As we noted
above, the homomorphism ¢ cannot be surjective; hence, ¢ is nonsurjective and Lemma
2.7 implies that ¢ is cyclic.

212) In this case we deal with the homomorphism ¢: B(k — 2) — S(k — 1). We shall
consider the following two cases: 3##i;) the homomorphism ¢ is intransitive; #ii) the
homomorphism ¢ is transitive.

1141) In this case we may also assume that the image G = Im ¢ C S{k — 1) has at least
one G-orbit ¥ C Aj_; such that the reduction ¢y is noncyclic. Since ¢ is intransitive,
it follows from Theorem 2.1(a) that #X = k — 2; certainly, ¥ is the only orbit of such
length. By Lemma 6.4(a), G =Im ¢ C S’(k—1) = A(k - 1); hence, G contains only even
permutations. The set Ag_; — 3 consists of a single point that is a fixed point of G. This
implies that the image of the noncyclic homomorphism ¢g: B(k — 2) = S(X) = S(k — 2)
contains only even permutations. However, this contradicts Lemma 2.7.

i) If k> 7, then £ — 2 > 5 and ¢ is cyclic by Theorem 6.3(a). Finally, if £ = 7, then
n =k — 1= 6 and we deal with the transitive noncyclic homomorphism ¢: B(5) — S(6).
By Proposition 3.9, ¢ must be conjugate to the homomorphism 5 6. However, this is
impossible, since the 5 ¢ is surjective and Im ¢ C A(6). This concludes the proof for
homomorphisms B'(k) = S(n).

Consider now a homomorphism ¢: B'{(k) — B(n). As we have already proved, the
composition ¥ = po ¢: B'(k) = B(n) - S(n) of the homomorphism ¢ with the
canonical projection p must be trivial. Therefore, ¢(B’(k)) C Ker p = I(n). By Corollary
0.1, the perfect group B’(k) does not possess nontrivial homomorphisms into the pure
braid group I(n); hence the homomorphism ¢ is trivial. d

Remark 6.2. The groups B'(3) and B’(4) have many nontrivial homomorphisms into
any (nontrivial) group. Moreover, for any & > 3 and any n > k there exist nontrivial
homomorphisms B’(k) — S(n) and B/(k) — B(n). This shows that the conditions k£ > 4
and n < k in Theorem 6.6 are, in a sense, sharp. Theorem 6.6 implies Theorem 2.1 for
k > 4. However, we could not skip Theorem 2.1 since it was used essentially {and many
times) in the proof of Theorem 6.6. Note that Theorem 2.1 would hardly help to prove
the very useful proposition 6.8, while Theorem 6.6 works perfectly. O

Now we are almost rcady to prove Theorem G (sce Proposition 6.8 below).

Lemma 6.7. Suppose n < 2k. Let p: B — S(n) be a transitive group homomorphism.
a) Assume that for any m < k the commutator subgroup B’ of B does not admit
nontrivial homomorphisms into S(m). If ¢ is imprimitive, then it is Abelian.
b) Assume that for any m < k the group B itself does not admit nontrivial homomor-
phisms into S(m). Then the homomorphism ¢ is primitive.
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Proof. The statement (a) presumes that ¢ is imprimitive; to trecat (b) simultaneously with
(a), we assume that i is imprimitive and show that this leads to a contradiction.

Let A, =Q1U---U@, t> 2, be some decomposition of A, into imprimitivity sets
of the group G = Im ¢ C S(n). Since 9 is transitive, #Q1 = -+ = #Q; = r, where r > 2
and rt = n. Clearly,

2<t<k and 2<r<k. (6.2)

Consider the normal subgroup H < G consisting of all elements i € G such that every set
Q; is h-invariant. Thus, we have the exact sequence

15 H-G -5 G -1, (6.3)

where 7 is the natural projection onto the quotient group G = G/H. This quotient group,
in turn, possesses the natural embedding G < S({Q1,...,Q:}) & S(t). Consider the
composition

J=ﬂ0¢:Bi)Gl)é, égS(t).

Clearly, 9 is surjective.

Under the assumptions made in the statement (b), the homomorphism J must be trivial;
this means that the quotient group G is trivial, and hence H = G. It follows that every
set Q; is G-invariant. However, this contradicts transitivity of the homomorphism .

Under the assumptions made in the statement (a), the restriction of ¢ to the commutator
subgroup B’ must be trivial; hence, 1,7;: B Gisa surjective Abelian homomorphism,
and the group G is Abelian. Thereby, the exact sequence (6.3) shows that the commutator
subgroup G’ of G is contained in H. Particularly, we have

Y(B)CG'CH. (6.4)

Every Q; is H-invariant, and (6.4) shows that the restriction ¢’ =+ | B - G’ C H may
be regarded as the disjoint product of the reductions

Yh: B = S(Q)=S(r), 1<i<t,  db,(b)=@'()|Q: foral be B

In view of (6.2), each homomorphism 1, is trivial. Hence, the homomorphism ¢’ = ¢ | B’
is trivial, and our original homomorphism v is Abelian. O

Proposition 6.8. Assume that k > 4 andn < 2k. Then
a) Any transitive imprimitive homomorphism i: B(k) — S(n) is cyclic.
b) Any transitive homomorphism ': B'(k) — S(n) is primitive.

Proof. The statement (a) follows immediately from Theorem 6.6 and Lemma 6.7(a) (for
the group B = B(k)), and (b) is a trivial corollary of Theorem 6.6 and Lemma 6.7(b) (for
the group B = B/(k)). O
6.2. Homomorphisms B(k) — S(k + 2). Here we prove Theorem E(b) (see Theorem

6.15 below). To this end, we need some preparation. In the following lemma, ¢ is the
homomorphism exhibited in Corollary 5.6 (with n = k).

Lemma 6.9. Assume that 6 < k <n < 2k. Let 3): B(k) = S(n) be a transitive noncyclic
homomorphism. If #supp 01 < 6, then n = 2k, 7 is a 4-cycle, and the homomorphism
1 is conjugate to the homomorphism ;.
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Proof. A priori, we have the following 6 possibilities for the cyclic type of ;:
[6:] = [2); [2,2]; (2,3]; [3]; [4]; [5]-

The types [2], [3], and (2, 2] are forbidden by Lemma 1.20 and Lemma 6.2(c), respectively.
Let us note that E(n/E(k/2)) < E(2k/E(k/2)) < 4 for any k > 6; hence, the inequality
of Lemma 1.21 eliminates the types [2, 3] and [5].

So, we are left with the type [61] = [4]; in this case [7;] = [4] for all i. Put I; = supp ;.
The first statement of Lemma 1.21 says that ¥; N Z; = @ for |¢ — j| > 2; particularly,
YNy =@ for 1 <1< k—3. Since ¢ is noncyclic, we have 7;41000;, 741000542, and
all three permutations are 4-cycles. The set ¥;4; cannot coincide with one of the sets 3;,
%42 (for otherwise, 7;41 would be disjoint with one of the permutations &;, 5;42). Hence,
Lemma 1.12 implies that #(Z; N X;41) = 2 and #(E; N X;42) = 2. 1t follows immediately
that for any m < k —1 the union Z; U¥,U...UL,, C A,, consists of 4 + 2(m — 1) points.
Particularly, for m = k — 1 this union consists of 4 + 2(k — 2} = 2k > n points; so, n = 2k.
Without loss of generality, we may assume that 7; = (1,4,2,3). It follows from Lemma
1.12 and from what has been proven above that we may assume 7 = (3,6,4,5) (any of
the other possibilities can be reduced to this case by a 7;-admissible conjugation of ).
Taking into account the above arguments and the property £; N 33 = &, we obtain that
(up to an admissible conjugation) o3 = (5,8,6,7), and so on. Hence, 3 ~ ¢;. O

Lemma 6.10. Suppose k > 6. Let 9: B(k) = S(n) be a homomorphism such that all
the components of o (including the degenerale component Fix 1) are of lengths at most
k — 3. Then 1 is cyclic.

Proof. If 7, = id, then % is trivial. So, we may assume that for some r > 2 the permutation
01 has the r-component € of some length ¢ > 1. Put ¥¢ = supp € and consider the
retraction Q¢: B(k —2) — S(€) = S(¢) of ¥ to € (see §4). According to our assumptions,
we have k — 2 > 4 and £ < k — 2; by Lemma 6.1, Q¢ is cyclic. It follows from Theorem
5.10(a) that the Q¢-homomorphism ¥y,.: B(k — 2) — G¢ C S(rt) is also cyclic. This
means that ¥g,(s1) = ... = Uy, (8k—3), and thus

33| Se=...= k1| Ze. (6.5)

Put ¥ = |J Z¢, where € runs over all the nondegenerate components of oy; clearly, & =
supp 01. The sets ¥ and ¥’ = Fix 7 = A,, — ¥ are invariant under all the permutations
03, ..., 0k—1. Since (6.5) holds for every nondegenerate component € of 74, it follows that
there is a permutation S € S(X) such that &3 | ¥ = ... =041 | £ = S. By our
assumption, the degenerate component £’ = Fix &; contains at most k£ — 3 points:

#Y' = #Fix 5, < k - 3. (6.6)
Set S; =0; | ¥, ¢=3,...,k— 1. Clearly,
=S58 forall i=3,..,k—1. (6.7)

For any 7 = 3, ..., k— 1, we have supp SNsupp S; = @; hence, it follows from (6.7) that the
permutation S3,..., Sj,_; satisfy the standard braid relations ${S} = S5S] for i — j[ > 1
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and S;S{,,S; = 8;,,5;S;., for 3 <i < k—1. This means that we can define a group
homomorphism ¢: B(k—2) = S(Z') by ¢(s;) = S{,,, i=1,...,k—3. By Theorem 2.1(a),
condition (6.6) implies that this homomorphism ¢ is cyclic. Hence, S5 =...=S;_;. In
view of (6.7), this shows that &3 = ... = 6%, and the homomorphism v is cyclic. a

The following lemma supplies the upper bound ¢ < k — 2 for the length ¢ of any nonde-
generate component of every permutation 7; (provided 6 < k < n < 2k and ¥ is noncyclic).
Actually, Theorem 6.20 shows that ¢ < (k + 1)/2; however, we are not ready to prove the
latter statement now.

Lemma 6.11. Suppose 6 < k < n < 2k. Let iy: B(k) - S(n) be a homomorphism such
that the permutation &1 has a nondegenerate component € of length t > k — 3. Then ¢ is
cyclic.

Proof. Suppose, on the contrary, that i/ is noncyclic. The assumptions n < 2kandt > k-3
imply that € is the 2-component of 7,. Put ¥ = supp Cand &' = A,, — Z; so #L = 2t
and #L' = n—2t < 2k—2(k—2) = 4. Since k > 6, any homomorphism B(k —2) = S(¥’)
is cyclic (Theorem 2.1(a)). Particularly, the homomorphism ¥y is cyclic, and Lemma 4.4
implies that the homomorphisms Q: B(k — 2) — S(t) and ¥s: B(k — 2) = G C S(2t)
must by noncyclic.

We may assume that the homomorphism % is normalized; this means that

r=1{1,2,...,2t}, 51| E=C1---Cy, where Cp, = 2m —1,2m) form =1,... ,t.

Clearly, ¢ < k —1; s0, either t = k — 2 or t = kK — 1. Therefore, we must consider the
following three cases:

i) t = k — 2 and 7, is a disjoint product of k& — 2 transpositions;
1) t =k — 2 and 7, is a disjoint product of k — 2 transpositions and a 3-cycle;
1) t = k — 1 and &, is a disjoint product of & — 1 transpositions.

1) In this case we deal with the noncyclic homomorphisms : B(k — 2) — S(k — 2) and
Uy: B(k —2) > G C S(2k — 4). By Artin Theorem and Remark 2.2, either

iq) S is conjugate to the canonical projection p: B(k — 2) = S(k — 2)
or
ip) k = 8 and Q is conjugate to Artin’s homomorphism vg: B(6) = S(6).

We shall show that these cases are impossible.

i.) In this case, without loss of generality we may assume that Q = p (see Remark 4.1).
Then the homomorphism ¥y must be H-conjugate to one of the four g-homomorphisms
w;: B(k—2) > G CS(2k—-4), 1=0,1,2,3, listed in Corollary 5.6 (with n = k — 2).

The homomorphisms g, ¢1, s may be eliminated by trivial reasons. Indeed, if ¥y is
conjugate to one of g, ¢1, then the support of 7;4» | ¥ = Ux(s;) consists of 4 points;
however, # supp G;+2 = #supp o1 = 2k — 4, and the rest 2k — 8 points of supp ;42 must
be situated in the set ¥’ containing at most 3 points, which is impossible. If ¥y ~ @3,
then the cyclic decomposition of 742 | ¥ = Ux(s;) contains a 4-cycle; but this is not the
case, since Giqpp ~ 07.
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By condition (!!) (see Declaration in §4.1), we may assume that ¥y coincides with (5.
Then any permutation &;12 | £ = Uxg(s;) = @2(s;) is a product of k — 2 disjoint transpo-
sitions. However, G2 itself is such a product; therefore, ;12 = @2(s;). Particularly, for
1t =1 and 2 = k — 3, we obtain, respectively,

53 = (1,3)(2,4)(5,6) - (2k — 9,2k — 8)(2k — 7, 2k — 6)(2k — 5, 2k — 4),
———

Ge_1 = (1,2)(3,4)(5,6) - - (2k — 9,2k — 8) (2k — 7, 2k — 5)(2k — 6, 2k — 4).

-

Tt

Using these formulas and computing the permutations &3 - C - 53 for some particular
transpositions C =< 0x_;, we obtain:

53(1,2)55 " = (3,4), 63(2k — 7,2k — 5)55 ! = (2k — 6,2k — 4),
53(3,4)5; 1 = (1,2), G3(2k — 6,2k — 4)55 1 = (2k — 7,2k — 5).

In view of our definition of the homomorphism Q*, these formulas show that the cyclic
decomposition of the permutation 2*(s;) € S(€*) = S(k — 2) must contain at least two
disjoint transpositions. On the other hand, since 2 ~ ji, the permutation Q(s;) ~ p(s1) is
a transposition; hence, Q*(s1) # ©(s1), which contradicts Lemma 4.3(a).

ip) We may assume that € = 15 (see Remark 4.1). Then the homomorphism ¥y must
be H-conjugate to one of the two vg-homomorphisms ¢;: B(6) - G C S(12), j = 0,1,
listed in Corollary 5.8. We may assume that ¥y coincides with one of the homomorphisms
¢j. Then any permutation 42 | ¥ = ¥g(s;), ¢ = 1,..,5, is a product of 6 disjoint
transpositions. Since 7;42 itself is such a product, this means that either &; 2 = ¢o(s;) or
Giye = P1(s;) for alli =1,...,5.

In each of these two cases the permutations ¢;(s1) and ¢;(ss) contain two common
transpositions, namely, D5 = (9,11) and Dg = (10, 12). Hence, the conjugation of the six
transpositions Dy, < 67 = ¢;(s5) by the permutation o3 = ¢;(s1) does not change these
transpositions Ds and Dg. Consequently, the permutation Q*(s;) € S(€*) 2 S(6) (defined
by this conjugation) has at least two fixed points. However, this contradicts Lemma 4.3(a),
since the permutation Q(s1) = ve(s1) = (C1,C2)(C3,C4)(Cs,Cs) € S(€) = S(6) has no
fixed points. This concludes the proof in case (7).

1) In this case 2k > n > #supp 0, = 2(k—-2)+3 =2k —1;s0,n =2k —1 and 7,
has no fixed points. Hence, £’ (the support of the 3-cycle) is the only 71-invariant set of
length 3 and, by Lemma 1.18, 4 is intransitive. Clearly, % is the disjoint product of its
reductions ¥y and g to the (Im ¢)-invariant sets ¥ and X', respectively.

The homomorphism 9y is cyclic (k > #X'). As to the homomorphism

P =g Bk) o S(T) = S(2k — 4),
it must be noncyclic (since ¥ is noncyclic). Clearly, the permutation

P(o1) = Y(o1) = ¥(01) | &
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is a product of k¥ — 2 disjoint transposition. However, it has been already proven that this
is impossible (see case (7)).

i1¢) In this case either n = 2k — 2 or n = 2k — 1, and the set ¥’ contains at most 1
point. We deal with the noncyclic homomorphism Q: B(k —2) — S(k—1). It follows from
Theorem 6.3 and Proposition 3.9 that either

i114) §2 is conjugate to the homomorphism
pE? =y g x 13 Bk —2) = S(k - 1),

or
i1iy) k = 7 and Q is conjugate to the homomorphism 5 g: B(5) — S(6).

Let us show that these cases are impossible.

11i,) Again, we may assume that 2 = pf:f. Then the homomorphism ¥y must be

H-conjugate to one of the eight homomorphisms ., 1,5,

Yo = @i X 12, Y15 =9; x{2}, 7=0,1,2,3,

listed in Corollary 5.9 (with n = k — 2).

The homomorphisms ¥z.0, ¥z;1, ¥Yz3 (x = 0,1) may be eliminated as in case (i,).
Indeed, if ¥y is conjugate to one of ¥z.1, ¥5,3, then the cyclic decomposition of @42 |
¥ = Uy(s;) contains a 4-cycle, which is impossible (for ;12 ~ 71). If ¥y ~ )40, then
either [Gite | ] = [2,2] or [Gi42 | ] = [2,2,2]. Since §i42 is a disjoint product of k — 1
transpositions, at lecast (k—1)—3 = k—4 of them must be situated on the set &’ containing
at most 1 point, which is impossible.

So, we may assume that the homomorphism ¥y coincides with one of the homomor-
phisms ¥.2, = =0,1. In any of these two cases

Gitz | &= Wg(si) = Yg2(5:) = @a2(si) - T7,

where T = (2k — 3,2k — 2). Hence, G320 = @a(s;) - T foralle=1,...,k—2. Fori=1 and
1= k — 3, we have, respectively,

53 =(1,3)(2,4)(5,6) - (2k — 9,2k — 8)(2k — 7,2k — 6)(2k — 5,2k — 4) - T*,
| W .

Grer = (1,2)(3,4)(5,6) - - - (2k — 9, 2k — 8) (2k — 7, 2k — 5)(2k — 6, 2k — 4) -T".

v

As in case (i4),

73(1,2)75 1 = (3,4), 73(2k — 7,2k — 5)55 ' = (2k — 6,2k — 4),
53(3,4)57 = (1,2), G3(2k — 6,2k — 4)55 ' = (2k — 7,2k — 5).

This implies that the cyclic decomposition of 2*(s;) contains at least two disjoint trans-
positions, which is impossible, since Q(s1) = pb-3(s1) = (1,2).
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i1ip) In this case, we can assume that = 5 6: B(5) — S(6) and ¥y coincides with
one of the four homomorphisms 7;: B(5) = S(12), j =0,1,2,3, exhibited in Corollary
5.7. We may certainly exclude the homomorphisms 7,, 773 because of the 4-cycles presence.
If Uy =1n;, j=0or j=2, then, in fact, G;4o = n;(s;} for all i = 1,2, 3,4. In both cases
the permutations 7;(s1) and 7;(s4) contain the two common transpositions D; = (1,3)
and Dj = (2,4); as in case (1), it follows that the permutation Q*(s;) € S(€*) = S(6) has
at least two fixed points. However, this contradicts Lemma 4.3(a), since the permutation
Q(s1) = Ps5.6(s51) = (C1,C2)(C3,C4)(Cs, Cs) € S(€) =2 S(6) has no fixed points. O

Corollary 6.12. Suppose 6 < k < n < 2k. Let : B(k) — S(n) be a noncyclic homo-
morphism. Then the permutation oy has at least k — 2 fized points.

Proof. Lemma 6.11 implies that &; does not possess nondegenerate components of length
t > k — 3; combined with Lemma 6.10, this shows that # Fix o, > k — 2. O

Remark 6.8. Corollary 6.12 is a useful and powerful “partner” of Artin Lemma 1.22.
If 6 < k < n < 2k and n is far from k, we have no reasonable hope to find a prime
number p between n/2 and k — 2; hence, Lemnma 1.22 docs not work. However, this lemma
played important part in the proof of Corollary 6.12 (via Artin Theorem, Theorem 2.1({a),
Theorem 6.3, Lemma 6.10 and Lemma 6.11). O

In order to study homomorphisms B(k) — S(k + 2), we start with the “exceptional”
cases k=5 and k = 6.

Remark 6.4. Note that for £k > 4 there are the following evident noncyclic homomor-
phisms : B(k) = S(k + 2):

WEin =k x 130 B(k) = S(k+2);  ¥F, = x {2}: B(k) = S(k + 2);
$S = vs x 13: B(6) = S(8); $s =g x {2}: B(6) = S(8);
P§ = 56 x 11: B(5) = S(7),

where 15 ¢ is defined by (3.6) or (3.6'), and v is Artin’s homomorphism. All these ho-
momorphisms have the following property: the image of any generator o; is a product of
disjoint transpositions. O

Proposition 6.13. Let ¥: B(5) — S(7) be a noncyclic homomorphism. Then i is in-
transitive and conjugate to one of the homomorphism 3, 12, ¢5. In particular, every
permutation 0;, 1 <1 <4, is a product of disjoint transpositions.

Proof. Suppose, on the contrary, that 1 is transitive. Then Lemma 1.21 implies that if all
the cycles C, < &, are of the distinct lengths 7, then Y 7, < 3. This eliminates all the
cyclic types for o1 but [2], [3], (2, 2], [3,3], [2,2,2], [2, 2, 3]. However, Lemma 1.20 excludes
(2], [3], Lemma 6.2(c) excludes [2,2], Lemma 1.18 excludes the rest types, and we obtain
a contradiction.

Further, since % is noncyclic and (as we already have proved) intransitive, the group
G = Im v C S(7) has exactly one orbit @ of length L, 5 < L < 6; put Q' = A7 — Q.
Clearly, either @’ is a G-orbit of length 7 — L or @’ consists of 7 — L fixed points. The
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homomorphism % is the disjoint product of its reductions ¢ and 1. The reduction ¢
is a noncyclic transitive homomorphism B(5) — S(Q) = S(L). By Artin Theorem and
Proposition 3.9, we obtain that (up to conjugation of %) either L = 5 and 9o = us or
L = 6 and g = 1s6. The reduction g/ is cither trivial or takes all o; to the same
transposition. This concludes the proof. O

In the sequel, we use the following theorem of C. Jordan (see [Wi, Theorem 13.3,
Theorem 13.9], or [Ha, Theorem 5.6.2, Theorem 5.7.2)):

Joroan TueoreM. Let G C S(n) be a primitive group of permutations. If G contains a
transposition, then G = S(n); if G contains a 3-cycle, then either G = S(n) or G = A(n).
Moreover, if n = p 4+ v, where p is prime, v > 3, and G contains a p-cycle, then either

G =S8(n) or G = A(n).

Remark 6.5. The following fact (certainly, well known to experts in permutation groups)
follows trivially from Jordan Theorem:

Let G C S(n) be a primitive permutation group. Assume that either i) k < n and
G contains a p-cycle of length p < 3, or i) k=6 and 8 <n <9, or i) k = 7 and
10 < n < 13. Then the group G cannot be isomorphic to S(k).

Indeed, suppose on the contrary that G = S(k); then #G = k! < n!/2. Let us show
that either G = S(n) or G = A(n) (clearly, this will contradict the above inequality). In
case (i) our statement follows immediately from Jordan Theorem. In all other cases the
assumption G = S(k) implies that there is an clement g € G of order p, where p = 5 in
case (11} and p = 7 in case (273). It follows from the constraints on n that g is a p-cycle and
r =n—p > 3. Hence, the last sentence of Jordan Theorem shows that either G = S(n) or

G = A(n). O
Proposition 6.14. Any transitive homomorphism : B(6) — S(8) is cyclic.

Proof. Suppose that 1 is noncyclic. We claim that then any cycle C < o7 must be a
transposition, that is, 52 = 1. If this is the case, then 2 = 1 for all 4, and hence
I(6) C Ker 1. Therefore, there is a homomorphism ¢: S(6) — S(8) such that ¢ = ¢ o ps.
Since g is surjective, we have G = Im 9 = Im ¢ C S(8). The group G is transitive
and non-Abelian, and the group S(6) has no proper non-Abelian quotient groups; hence,
G = S(6). Moreover, by Proposition 6.8(a), the group G is primitive. These properties
contradict Jordan Theorem (see Remark 6.5).

To justify the above claim, assume, on the contrary, that 7% # 1, and let us find out
the possible cyclic types of &;. Certainly, o, cannot contain a cycle of length > 4 (say by
Lemma 1.19(a)). Since E(8/FE(6/2)) = 2, Lemma 1.21 shows that if all the cycles < 7, are
of distinct lengths, then @) is a transposition (in fact, this is forbidden by Lemma 1.20);
s0, we may assume that (*) &y contains at least two cycles of the same length. Under this
assumption, Lemma 1.19(b) shows that if o) contains a 4-cycle, then either [d1] = [4,4] or
[71] = [4,2, 2]. Moreover, (*) and Lemma 1.18 exclude all the cyclic types with a 3-cycle.
This shows that (**) either [o1] = [4,4] or [01] = [4,2,2]. Consider now the permutation
A = Q35 = 0304. By Corollary 1.16 (with = 3 and j = 5}, ord A is divisible by 3; hence,
only the following cyclic types of A may occur:

31, 13,21, 3,2, 2], 3, 3], 3,3, 2], [3,4), [3,5), [6], [6,2].
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Since o, satisfies (**) and commutes with A, Lemma 1.4(b) excludes all the types but
[3,3], [3,3,2] (for A of any other type, 7; would contain either a power of a 3-cycle or a
power of a 6-cycle; however, this contradicts (**)). The same argument exclude the case
[61] = [4,2,2] (a permutation of cyclic type [3,3] or (3,3, 2] cannot contain a power of a
4-cycle). Finally, the type [61] = [4, 4] is also impossible; indeed, A has only one invariant
set of length 2 (two fixed points for [A] = [3,3] and the support of the transposition for
[A] = [3,3,2]); this set must be &y-invariant, which cannot happen if [71] = [4,4]). This
completes the proof. O

Theorem 6.15. a) Any transitive homomorphism : B(k) — S(k+2) is cyclic whenever
k>4,

b) Suppose k > 4. Let ¢: B(k) = S(k+2) be a noncyclic homomorphism. Then either
1 is conjugate to one of the homomorphism t,bf_l_z, '1};2_'_2 (this may happen for any k) or
k =5 and ¢ is conjugate to the homomorphism ¢3, or, finally, k = 6 and 1 is conjugate
to one of the homomorphisms ¢§, Eg.

Proof. a) The cases k = 5 and k = 6 are already considered in Propositions 6.13 and 6.14;
assume now that & > 6 and that the homomorphism % is noncyclic. By Lemma 6.12(a}, the
permutation 7, has at least k — 2 fixed points, and thus #supp 7; < (k+2) - (k—2) = 4.
Hence, only the following cyclic types of @ may occur: (2], {2, 2], {3], [4]. However, [2], [3]
are forbidden by Lemma 1.20, {2,2] is forbidden by Lemma 6.2(c), and [4] is forbidden
by Lemma 1.21, since the numbers Ry = (k + 2)/E(k/2) satisfy E(R7) = 3 for k > 6 and
E(Ry) =2 for k> 1.

b) Since % is noncyclic and (by the statement (a)) intransitive, Theorem 2.1(a) shows
that the group G = Im ¢ C S(k + 2) has exactly onc orbit Q of length L, k¥ < L <k +1;
set @ = Agys — Q. Clearly, either @' is a G-orbit of length £+ 2 — L or @' consists of
k + 2 — L fixed points. The homomorphism  is the disjoint product of its reductions ¢
and ¥gs. The reduction ¢ is a noncyclic transitive homomorphism B(k) — S(Q) = S(L).
By Artin Theorem, Theorem 6.3, and Proposition 3.9, we obtain that (up to conjugation
of ¢) either g = pr, or k = 5 and Yg = s, or, finally, k = 6 and g = vs. The
reduction g is either trivial or takes all o; to the same transposition. This concludes the
proof. O

6.3. Homomorphisms B(k) — B(n), 6 < k < n < 2k. Our main goal now is to
prove Theorem F(a) (see Theorem 6.20 below). We prove this theorem by induction on k.
Lemma 6.11 and Lemma 6.16 enable us to pass from & to k + 2 (the step of induction);
Lemma 6.17 and Lemma 6.19 provide a base of induction.

Convention. Given a homomorphism ¢: B(k) — S(n), we use the following notation.
We set
Gi=1p(os), 1<i<k—1; Ty=suppdi; ¥ =TFixay

— . r_ /. _ (6.8)
N = #%;; N' = #%5; G =1Im ¢ C S(n).

Obviously, N, N’ do not depend on i, and N + N' = n. Moreover, ifk > 4, n < 2k, and
the homomorphism 1 is noncyclic, then G is a non-Abelian primitive permutation group
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of degree n (see Proposition 6.8). We denote by

4 B(k-2) =5 BB s() (6.9)

the restriction of 9 to the subgroup B = B(k — 2) C B(k) generated by o3, ...,04_1, and
set
H=Im¢CGCSn).

Since @, commutes with 73, ..., 0,1, the sets ¥y and £} are H-invariant, and the homo-
morphism ¢ is the disjoint product ¢ x ¢’ of its reductions

¢ = ¢g,: Blk—2) = S(Z,) = S(N) (6.10)

and
@' = ¢g: Bk —2) = S(X]) = S(N') (6.11)

to the sets ¥y and X, respectively. We consider also the restriction

7 B(k—2) = B Y8 g(n) (69)

of the homomorphism 1 to the subgroup B & B(k — 2) C B(k) generated by oy, ..., 0k—3.
The homomorphism ¢ is the disjoint product @ x @’ of its reductions

@ =dz,_,: Blk—2) = S(Ep_1) ¥ S(N) (6.10)
and _ .

¢ =¢x,_: B(k—2) - S(Z}_,) ¢ S(N) (6.11)
to the sets £x_y and Z_,, respectively. O

Lemma 6.16. Suppose k > 6. Let ¥: B(k) — S(n) be a noncyclic homomorphism.
Assume that every nondegenerate component of the permutation 7, is of length at most
k — 3 (certainly, this is the case if 6 < k < n < 2k; see Lemma 6.11). Then the following
statements hold true:
a) The homomorphism ¢ = ¢y, is cyclic, and the homomorphism ¢’ = ¢x; is noncyclic.
In particular,
;=88] foral i=3,... k-1, (6.12)

where the permutation
S =p(oi) =7: | £, € S(Z1) = S(N) (6.13)
does not depend on i, and all the permutations
S =¢' (o) =7: | B] € S(Z]) = S(N) (6.14)

are disjoint with S and ;.
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b) The homomorphism ¢ = 52,,_1 18 cyclic, and the homomorphism @' = 531-1 18
noncyclic. In particular,

5:=85"  forall i=1,.. k-3, (6.12)
where the permutation
S = 3(0;) =i | Tk-1 € S(Tp-1) 2 S(N) (6.13)

does not depend on t, and all the permutations

——

§f = {,5’(0‘,') = ai | E;g—l € S(E;;-l) S(N’> (6'14)

3

He

are disjoint with S and Or_1-

c) Actually, S = S and Si = 5‘: foralli=3,..,k—3. Moreover, if ¢ is transitive, then
S=8=1, 3;= Si for i > 3 (so every such G; is disjoint with 1), the homomorphism
¢ = ¢x, 18 trivial, and the homomorphism ¢’ = ¢z coincides with the restriction ¢ of
to the subgroup B(k — 2) C B(k) generated by o3, ...,05_1.

Proof. a) Lemma 6.1 shows that for any nondegenerate component € = {C1, ..., C;} (of
some length £, 1 <t < k — 3) the retraction

Q= Qe B(k—2) — S(€) = S(1)

is cyclic. By Theorem 5.10(a), any Q-homomorphism B(k — 2} = G¢ C S(supp €) is
cyclic; particularly, the homomorphism Wgpp «: B(k — 2) — G¢ C S(supp €) is cyclic
(recall that G¢ is the centralizer of the element C = Cy - -+ C; in S(supp €)). Thereby,

\I’supp 0:(31) =...= ‘I’supp (‘J(Sk—B)-

By the definition of Wg,p;, ¢, we have

a\i+2 | supp € = ¢(0i+2) | supp €= ‘I'supp l‘.‘(si) = \Ilsupp @Z(Sl)a 1=1,.., k— 3;

hence, the reduction @geupp ¢: B(k — 2) — S(supp €) of ¢ to the H-invariant set supp €
is a cyclic homomorphism. The homomorphisin ¢ = ¢x, is the disjoint product of all the
reductions ¢supp ¢, Where € runs over all the nondegenerate components of ;. Hence,
v is cyclic and the permutation S defined by (6.13) does not depend on 7. Clearly, the
permutations S (i = 3,...,k — 1) defined by (6.14) are disjoint with S and 7;. Finally,
the homomorphism ¢’ must be noncyclic (for otherwise, S = ... = S, _; and (6.12) shows
that 1 is cyclic).

The statement (b) follows by the same argument (one has just to work with the permu-
tation &x_; and the sets £x_1, ¥} _; instead of 71, £, and I, respectively).

¢) The proof of this statement is an exercise in elementary set theory. By (a) and (b),
we have

supp SC £, = supp 04, ' supp S: C ¥} = TFix 7, 3<i<k—-1,
supp S C Yg_1 =supp Ok_1, supp g’,’ C 35 _q = Fix 5%_1, 1<i<k-3.
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———

Taking into account the representation for o given by (6.12), we see that
supp S C %y = supp &1 = (supp 5) U (supp 5})
and
supp S, C T} = A, —supp 51 = A, — ((supp S) U (supp 8})), 3<i<h—1.
Hence,

(supp S!) N (supp §) =O for 3<i<k-1. (%)
Completely analogously, using the representation for 65— given by (6.12), we get
(supp g’,’) N{supp S) =@ for 1<i<k-3 (%)

There are at least two #’s such that 3 < i < k — 3 (since k > 6); for any such 4, formu-
las (6.12), ((6.12)) provide us with the two representations of &; in the form of disjoint
products: _

58 =70;= 55! (%)
Obviously, (), (¥), and (++) imply § = § and S} = §: for 3 <i < k—3. In view of (6.12),

(6.12), the set @ = supp S = supp S is invariant under all the permutations &y, ..., 0gp—1.
Clearly, @ # A,, (for 7, has at least k — 2 fixed points). If 7 is transitive, the set @ must
be empty, and we get S =S = 1. Hence, 5; = S; for 3<i<k—1, ¢ = ¢, and 7y is
diSjOiIlt with 33, cery Gk_l. O

To get a base for induction, we study some homomorphisms of B(7) and B(8).

Lemma 6.17. Suppose 7 < n < 14. Then any transitive homomorphism ¢: B(7) — S(n)
18 cyclic.

Proof. Suppose, on the contrary, that 3 is noncyclic. By Lemma 6.9, we have N =
#X¥, = #supp o1 > 6. Corollary 6.12 shows that N/ = #3] = #Fix &, > 5. Hence,
11<N4+N =n<13and 5< N' 7.

By Lemma 6.16(a, ¢), all the permutations 73, ..., 5 are supported in the set £/, and the
noncyclic homomorphism ¢ (that is, the restriction of 1 to the subgroup in B(7) generated
by @3, ...,06) coincides with its reduction ¢’ = ¢x:: B(5) = S(X]) = S(N').

Claim. Every permutation o;, 1 <1 <6, is a product of disjoint transpositions.

It is sufficient to prove this for ¢ > 3; let us deal with such #’s. We consider the following
three cases: N' =5, N =6 and N' = 7. If N/ = 5, then ¢ must be transitive
(otherwise, all orbits are of length < 5 and ¢ = ¢’ is cyclic); by Artin Theorem, any &; is
a transposition. If N/ = 7, Claim follows from Proposition 6.13. Suppose N’ = 6. If ¢’ is
intransitive, then its image in S(Z]) = S(6) has exactly one orbit @ of length 5 and one
fixed point; Artin Theorem applies to the reduction of ¢’ to @J, and we see that any 0 is
a transposition. Finally, if ¢’ is transitive, then, by Proposition 3.9, ¢’ ~ 95 ¢ and every

o; 1s a product of 3 disjoint transpositions.

To conclude the proof of the lemma, we use the approach that was already used in the
proof of Proposition 6.14. Claim shows that ¢ = 1 for all 4, and hence the non-Abelian
primitive group G = Im 9 C S(n) (7 < n < 14) is isomorphic to 8(7); in view of Remark
6.5, this contradicts Jordan Theorem. ' O
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To treat homomorphisms B(8) — S(n), 8 < n < 16, we need the following fact.

Proposition 6.18. a) Any transitive homomorphism . B(6) — S(9) is cyclic.

b) Any noncyclic homomorphism ¢: B(6) — S(9) is conjugate to a disjoint product
Y1 X g, where P12 B(6) — S(6) is either pg or vg, and y¥: B(6) — S(3) is a cyclic
homomorphism. In particular, either every o; is a disjoint product of transpositions or
every o; is a disjoint product of transpositions and a 3-cycle that does not depend on 1.

Proof. a) Suppose, on the contrary, that 1 is noncyclic. By Proposition 6.8(a) and Remark
6.5, 02 # 1. Using this and Lemmas 1.18, 1.19, 1.21, we can exclude all the cyclic types of
o1 but the following three: i) [2,2,3]; 42) [3,3]; i) [3,3,3]. Let us consider these cases.

i) For 7 > 3, let 7} be the restriction of 7; to the support of the 3-cycle C in &1; then,
by Lemma 1.4, 5; = C%, 0 < ¢; < 2. Clearly, ¢; # 0 (for 7; has only 2 fixed points);
hence, all C% are 3-cycles with the same support supp C. Now, C% is the only 3-cycle
in the cyclic decomposition of &5, and 2 commutes with 5. Hence, the set supp C is
(Im %)-invariant, which contradicts the transitivity of .

1) In this case the only nondegenerate component of & is the 3-component € =
{Cy,C1}, and we have the corresponding retraction @ = Q¢: B(4) — S(2). Clearly,
either Q is trivial or all Q(s;) coincide with the transposition (Cp,C;). In any case
Q(s2) = 1, which means that 3;°‘+2Cj8;2 = C; whenever j = 0,1 and ¢ = 1,2, 3; thus,
6%, | supp € = C§**CT™" with some ¢;;, 0 < ¢;; < 2. Because of [Gi4] = [3,3], this
implies that for some p;;, 0 < p;; <2, the permutations 7;;, themselves satisfy

Git2 | supp € = CJ> CT", i=1,2,3. (6.15)

Since #(Ag — supp €) = 3, the conditions [F;1+2] = [3, 3] and (6.15) show that the permu-
tations @40, 2 = 1, 2,3, commute with each other, which is impossible.

i7i) In this case the only nondegenerate component of &, is the 3-component € =
{Cy, C1,C3}, and we have the retraction 2 = Q¢: B(4) — S(3). We consider the following
two cases: 11y) §2 is noncyclic; 4itp)  is cyclic.

i231) In this case, by Theorem 2.14, Q ~ puz o m, where m: B(4) — B(3) is the canonical
epimorphism. This means that all ((s;) are transpositions; hence, also Q(s?) are transpo-
sitions. Therefore, there is a value j, j = 0,1, 2, such that 53C;55 34 C;. However, this
contradicts the relation 7§ = 1.

iti2) In this case all Q(s;) = A, where A € S(3) does not depend on i. If A2 =1, then
3"2+2Cj6::+_22 =Cj fori=1,2,3, j=0,1,2; combined with the condition [7;42] = [3, 3, 3],
this shows that the permutations 745, i = 1,2,3, commute with each other, which is

impossible. Finally, if A2 # 1, then A is a 3-cycle, and we may assume that
5:C;07 ' = Cljq1ss i=1,2,3, j=0,1,2, (6.16)

where | - |3 € Z/3Z. Let C; = (a?,a},a?), j =0,1,2. It follows from (6.16) that there
exist t(j, 1) € Z/3Z such that

Gi(ch) = ci10%, j k€ Z/3Z, i=3,4,5. (6.17)
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The condition 7} = 1 implies that
£(0,4) -+ £(1,8) + £(2,1) =0,  i=3,4,5 (6.18)
(here and below all the equalities are in Z/3Z). Using 530074, we obtain that

t(0,3) + t(1,4) + t(2,3) = (0,4) + (1, 3} + ¢(2,4),

t(0,3) + t(2,4) + t(1,3) = t(0,4) + £(2, 3) + t(1, 4). (6.19)

Relations (6.18), (6.19) show that ¢(j,3) = (4, 4) for all j = 0, 1, 2; it follows that

-~ k(4,3 k+t(4) _ ~ ke
G3(c5) = Cjilu = chI(J )= Ga(c5)

and o3 = 04. This contradiction concludes the proof of the statement (a). The proof of

(b) follows immediately from (a), Theorem 6.3, and Theorem 6.15. ]

Remark 6.6. By Theorem 6.3, Proposition 6.14, and Lemma 6.18, any transitive ho-
momorphism B(6) — S(n) is cyclic whenever 7 < n < 9. However, there is a noncyclic
transitive homomorphism B(6) — S(10). To see this, consider all the 10 partitions of Ag
into two (disjoint) subsets consisting of 3 points. The group S(6) acts transitively on the
family B = Ao of all these partitions; this action defines the transitive homomorphism
S(6) — S(10); the composition of the canonical projection pg with this homomorphism
is a noncyclic transitive homomorphism B(6) — S(10). Under suitable notations, this
homomorphism looks as follows:

o1 = (132)(334)(53 6)5 oy = (1:7)(3:8)(5’9); 03 = (3’ 6)(4’5)(7: 10);
T4 = (1:3)(2:4)(7a 8)5 05 = (3) 5)(4,6)(8,9).

Instead of the canonical projection pg, one could use Artin’s homomorphism vg.

O

Lemma 6.19. Assume that 8 < n < 16. Then any transitive homomorphism ¢: B(8)
S(n) is cyclic.

1

Proof. Suppose, on the contrary, that i is noncyclic. By Lemma 6.9, N = #X; =
#supp g; > 6. Corollary 6.12 shows that N' = ¥ = #Fix7; > 6. Hence, 12 <
N+N =n<15and 6 < N' <9.
By Lemma 6.16(a, c), all the permutations 73, ...,47 are supported in T}, and the re-
striction
¢ = ': B(6) = S(Z)) = S(N')

of 9 to the subgroup in B(8) generated by o3,...,07 is a noncyclic homomorphism. As
usual, we set H =1Im ¢ C S(Z]) = S(N').

Claim. There is exactly one H-orbit @ C T} of length 6. The reduction
$q: B(6) — S(Q) = S(6)

is conjugate to one of the homomorphisms pg, 6. The complement Q' = L' — @ contains
at most 3 points, and there is a permutation A € S(Q') such that every g; (1 =3,...,7) is
a disjoint product of some transpositions and this permutation A.
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Indeed, since #¥] = N’ < 9 and the homomorphism ¢ is noncyclic, theorems 2.1(a),
6.3, 6.15, and Proposition 6.18 show that there is only one H-orbit @ of length 6. In view
of Artin Theorem and Theorem 2.1(a}, the other statements of Claim follow immediately
from this fact.

We have the following cases: i) N'=6; ) N' =7; i) N' =8; iv) N =9.

Let us show that in all these cases the primitive group G = Im ¢ C S(n) is isomorphic
to S(8) and, besides, contains a 3-cycle; this will contradict Jordan Theorem.

i) In this case &} = Q; hence, either ¢ = ¢ ~ g or to ¢ = ¢g ~ vg. Therefore, 7% = 1
for all 4 and G =2 S(8).

If ¢ ~ g, then any &; is a transposition, and the product (6354)? is a 3-cycle in G (in
fact, the element 7354 itself is a 3-cycle; we take its square only to unify the proofs for all
cases (1) — (iv)).

If ¢ ~ vg, then the permutation (0304 ---57)
essential, since G304 - - - 07 is of cyclic type [3,2]).

17) In this case Q' consists of one point that is a fixed point of H. Applying the same
arguments as in case (i), we obtain the desired result.

i11) The only difference with the previous cases is that all the permutations o;, i >
3, may contain one additional disjoint transposition A. However, this does not change
anything (the square kills this transposition).

iv) Here #Q' = 3. Hence, either A = 1, or [A] = [2], or, finally, [4] = [3]. In the
first two cases we follow the same arguments as above. Let us show that the third case
cannot occur. Indeed, N' = 9 and N > 6; thus, N = 6 (for N + N’ = n < 15). That is,
the support of any permutation &; consists of 6 points. If A is a 3-cycle, it takes 3 points
from the 6, and the rest three places cannot be filled by transpositions. This concludes
the proof. O

2 is a 3-cycle in G (here the square is

Now we are ready to prove Theorem F(a). Actually, the proof is simple, since the main
work was already done.

Theorem 6.20. Assume that 6 <k <n < 2k. Then

a) any transitive homomorphism B(k) — S(n) is cyclic;

b) any noncyclic homomorphism . B(k) = S(n) is conjugate to a homomorphism of
the form pg X ¥, where ¢: B(k) = S(n — k) is a cyclic homomorphism.

Proof. a) Let us call I'(m) the following conjecture:

Conjecture I'(m). Every transitive homomorphism : B(k) — S(n) is cyclic whenever
6<k<mandb<k<n<2k.

We have already proved I'(m) for m = 7 and m = 8 (Lemma 6.17, Lemma 6.19).
Suppose that ['(m) is fulfilled for some m > 7. We shall show that then I'(m + 2) is
fulfilled. By Induction Principle, this will prove the statement (a).

Suppose, on the contrary, that I'(m + 2) is wrong. That is, for some k and n that
satisfy k < m+ 2 and 6 < k < n < 2k there exists a transitive noncyclic homomorphism
¥: B(k) — S(n). It follows from Lemma 6.17 and Lemma 6.19 that k£ > 8; hence,
6 < k—2<mandI(k - 2)is fulfilled.
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By Lemmas 6.9 and Corollary 6.12, we have N > 6 and N’ > k — 2; thus
6<k—2<N' <n—6<2k—6<2(k—2). (6.20)

By Lemma 6.16(a, ¢), the restriction ¢: B{k —2) — S(n) of ¢ to the subgroup B(k —2) C
B(k) generated by e3, ..., 05_1 coincides with its noncyclic reduction

¢ = ¢zy: Bk —2) - S(T}) = S(N)

to the H-invariant set ¥] = Fix &y. To conclude the proof of the statement (a), it is
sufficient to prove the following

Claim. 5% = 1 for all 4, and hence G = Im v = S(k). Moreover, the primitive permutation
group G € S(n) contains a 3-cycle.

Indeed, as we know, these properties are incompatible; hence, the assumption that
['(m + 2) is wrong leads to a contradiction.

To justify Claim, assume first that N' = k — 2. Since ¢’ is noncyclic, Theorem 2.1(a)
shows that ¢’ is transitive; by Artin Theorem, ¢ = ¢’ ~ pg_s (for £ — 2 > 6). Hence, any
g; 1s a transposition and 7,05 is a 3-cycle containing in G.

Assume now that N/ > k — 2. Since I'(k — 2) is fulfilled, any transitive homomorphism
B(k—2) — S(IV') is cyclic; therefore, the homomorphism ¢ = ' must be intransitive. The
reduction ¢¢ of the noncyclic intransitive homomorphism ¢ = ¢’ to any H-orbit Q C I is
a transitive homomorphism B(k—-2) — S(Q). Clearly, #0Q < N’ < 2(k-2). If #Q # k-2,
then @¢ is cyclic (this follows from Theorem 2.1(a) whenever #Q < k — 2; if #Q > k — 2,
then ¢¢ must be cyclic by our assumption that I'(k — 2} is fulfilled). Hence, there exists
a unique H-orbit ¢ of length k£ — 2, and the reduction ¢g of ¢ to this orbit is noncyclic
and transitive. Since k — 2 > 6, Artin Theorem shows that ¢g ~ pg—_2. Let @' =¥’ — Q;
clearly, ¢ is the disjoint product of the reductions ¢¢o and ¢g/, and ¢¢g is cyclic. This
means that there is a permutation A € S(Q’) such that for every i, 3 <4 < k-1, the
permutation ; is the disjoint product of A and the transposition A; = ¢g(0;).

Let us show that A2 = 1. Indeed, if this is not the case, then for some r > 2 the cyclic
decomposition of A contains an r-cycle. Let €,.(A) be the r-component of A. Since any 73,
3 <1< k—1, is the disjoint product of A and the transposition A;, we obtain that €,.(A)
is, actually, the r-component of every 7;, 3 <7 < k— 1. Thereby, the support ¢ (4) of
this component €.(A) is invariant under all the permutations 73, ...,0,—;. Moreover, the
permutations &1, & commute with &1, and hence the set ¢, 4y Is invariant under &,
and 2. However, this contradicts the transitivity of 1.

Since 7; = A;A for i > 3 and all A; are transpositions, the property A2 = 1 implies
that 32 = 1 for 7 > 3, and hence for all i. Moreover, 7304 = AzAA4A = A3A, is a 3-cycle
containing in G. This concludes the proof of Claim and proves the statement (a). In view
of Theorem 2.1(a) and Artin Theorem, (a) implies (b). O
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Remark 6.7. There is a noncyclic transitive homomorphism B(6) — S(10) (see Remark
6.6). On the other hand, for any k > 3, Corollary 5.6 provides us with the four noncyclic
homomorphisms ¢;: B(k) = S(2k), j=0,1,2,3. The homomorphism g is intransitive,
and the homomorphisms ¢;, j = 1,2,3, are transitive (see also Remark 5.6 and §6.4).
These remarks show that the conditions 6 < k& < n < 2k of Theorem 6.20(a) are, in a
sense, sharp. O

6.4. Homomorphisms B(k) — S(2k). Here we prove Theorem F(b). In the following
lemma (which is similar to Lemma 6.11) we use the homomorphisms ¢;: B(k) — S(2k)
exhibited in Corollary 5.6 (with n = k).

Lemma 6.21. Assume that k > 6. Let v: B(k) = S(2k) be a noncyclic homomorphism
such that the permutation 7, has a nondegenerate component € of length t > k — 3. Then
eithert =k —~2 and i ~ @3 ort =k and 9 ~ @s.
Proof. We follow the proof of Lemma 6.11. Clearly, € must be the 2-component of &, and
t < k; hence, either t =k —-2ort=k—-1ort==k.

Set

Y =supp €, X' =ABg-Z, Q=supp 71, Q = Ay —Q,
#T = 2t, #Y =2k -2t <2k —2(k-2)=4.

Since k£ > 6, any homomorphism B(k — 2} — S(¥’) is cyclic (Theorem 2.1(a)). Particu-
larly, the homomorphism Uy is cyclic, and Lemma 4.4 implies that the homomorphisms
2 B(k —-2) > S(€) 2 S(t) and ¥yx: B(k —2) — G C S(2t) must by noncyclic.

We may assume that the homomorphism 1 is normalized; this mecans that

Y={12,...,2t}, 1| Z=Cy---C, where Cp, = (2m —1,2m) form =1,... ,t.

We must consider the following five cases:

(6.21)

i) t = k — 2 and &, is a disjoint product of k — 2 transpositions;
1
o

)
) t =k — 2 and 7 is a disjoint product of k£ — 2 transpositions and a 3-cycle;
it') t = k — 2 and 7, is a disjoint product of £ — 2 transpositions and a 4-cycle Fy;
iit) t = k — 1 and &, is a disjoint product of k¥ — 1 transpositions;

)

w) t = k and 7, is a disjoint product of k transpositions.

First we prove that cases (z), (i), (#4i) are impossible.

Case (7) may be eliminated by the same argument that were used in the proof of Lemma
6.11 (the only difference is that now X’ consists of four points; actually, this does not change
anything).

i1) In this case 71 has exactly one fixed point. Clearly, this point is also the only fixed
point of any ; (see, for instance, Lemma 1.18). Hence, 9 is the disjoint product ¥¢g x 11,
where ¥go: B(k) = S(Q) = S(2k — 1) is the reduction of ¥ to the (Im 9)-invariant set
@ = supp 1. Since 9 is noncyclic, ¥ is noncyclic too, and the permutation ¥g(o1) = 01
has a 2-component of length & — 2. However, this contradicts Lemma 6.11.

i31) In this case £ = @, ¥’ = @', and we deal with the noncyclic homomorphisms
U.: B(k—2) - G C S(2k—2) and Q: B(k-2) = S(k—1). By Remark 4.1, Proposition
3.9, and Theorem 6.3, we must consider the following two cases: ii,) Q = pgp_2 X 1y;
iip) k=7 and Q = 95 6: B(5) = S(6). '
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In case (ii1,), as in Lemma 6.11, ¥, must be conjugate to onc of the eight homomor-
phisms z.; listed in Corollary 5.9 (with n = k — 2). All these cases may be eliminated in
the same way as in Lemma 6.11 (the only differcnce is that now the set 3’ consists of two
points, which does not change anything). Case (i%,) is impossible by the same reasons as
in Lemma 6.11.

Now we must handle cases (i) and (iv).
it') We prove that in this case ¢ ~ @3. We may assume that

L ={1,..,2k -4}, ¥ = {2k - 3,2k -2,2k - 1,2k}.
We deal with the noncyclic homomorphisims
U.: B(k-2) > G CS(2k-4), Q: B(k-2) > S(k-2).

Clearly, either i) Q ~ pg_2 or i) k = 8 and Q ~ vg.

Case (#1}) is actually impossible; this may be proven by the argument used in Lemma
6.11 in case (4p) (the only difference is that now the cyclic decomposition of &, contains
the additional 4-cycle Fy € S({13,14,15,16}), and 73, ..., 07 contain the additional 4-cycle
F= Ffbl; however, this does not change anything).

11,) We may assume that Q@ = pg_y. Then, by Corollary 5.6, ¥, is conjugate to
one of the homomorphisms ¢;, j = 0,1,2,3 (with n = k —2). For j = 0,1 we have
Oivz | Z = Uy(si) = @;(s:i); hence, #supp (diy2 | £) = 4 and there is no room in ¥
for the rest 2k — 4 points of supp G;42. For j = 2 we have 742 | ¥ = pa(s;), and hence
Oira = @a(s;}F for all ¢ > 1, where F € S({2k — 3,2k — 2,2k — 1,2k}) is a 4-cycle; the
argument used in Lemma 6.11 for case (i,) show that this is impossible. So, we are left
with the case 7 =3, 1. e. ¥ = @3: B(k —2) - S(2k —4). Without loss of generality, we
may assume that Fy = (2k — 3,2k, 2k — 2,2k — 1); to simplify notation, put a = 2k — 3,
b=2k—2,c=2k—1,d=2k. Since v is normalized and 7;12 | £ = p3(s;), we have

&1 = (1,2)(3,4)(5,6) - - (2k — 9, 2k — 8)(2k — 7,2k — 6)(2k — 5,2k — 4)(a,d, b,c) (6.22)

and

5:=(1,2)(3,4)- - (26 — 7,21 — 6) (2 — 5,2 — 2,2 — 4,2 — 3)(2 — 1, 23)

4-cycle (623)
x - x (2k — 5,2k — 4)(a, b)(c, d)

for 3 < 1 < k—1. To recover the homomorphism %, we need to compute op. This
permutation commutes with 7;, 4 < ¢ < k — 1; the cyclic decomposition of &; contains
only one 4-cycle, namely, F; = (2i — 5,21 — 2,2i — 4,27 — 3); therefore, each of the sets
{21 — 5,21 — 2,2t — 4,2i — 3}, 4 < i < k — 1, must be F-invariant. It follows that each of
the sets {3,4}, {5,6},..., {2k — 5,2k — 4} is Gp-invariant. Since the permutation &3 ~ 7,
has no fixed points, its cyclic decomposition contains the product

A=(3,4)(56) - (2k— 5,2k — 4)
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of k — 3 disjoint transpositions; it must also contain one more transposition T and some
4-cycle Fy. By Lemma 4.3(a), Q* = £ = pg_9; it follows that exactly k — 4 transpositions
from the k — 2 transpositions (1,2), (3,4),..., (2k — 9,2k — 8), (a,b), (c,d) entering in the
cyclic decomposition of 7x_; must be Q*(s3)-invariant (that is, invariant under conjugation
by &2), and the rest two transpositions must mutually interchange. Evidently, the k — 3
transpositions (3, 4), (5,6), ..., (2k—5, 2k —4) are the fixed points of Q*(s3); hence, exactly
one of the transpositions (1,2), (a,b), (¢, d) must be a fixed point of Q*(s2); denote this
transposition by T.

Let us show that T' # (1,2). Indeed, if T = (1, 2), then the cyclic decomposition of &5
contains the product P = (1,2)A and a 4-cycle F3 supported on {a,b,c,d}. Since Gx_1
commutes with &2, and the product (a, b)(c,d) is contained in 5x_1 (see (6.22)), we have
(a,b)(c,d) = F}; thereby Fy = (a,c,b,d)*!. It is casy to check that in this case 7, 7,
cannot be a braid-like couple.

So, either T' = (a,b) or T = (¢,d). If T = (a,b), then either F, = (1,¢,2,d) or
F, =(1,d,2,c); however, conjugation by (a, b)(c, d) does not change 54,53, ...,6,-1, T and
transforms (1, d, 2, ¢) into (1, ¢, 2,d). Similarly, if T = (¢, d), then either Fy = (1,a,2,b) or
Fy =(1,b,2,a), and the same conjugation transforms (1,5,2,a) into (1,a,2,b). Moreover,
conjugation by (a,d, b, c) does not change 1,73, ...,04—1 and transforms (¢, d) into (a,b)
and (1,q,2,b) into (1,d,2,c). Hence, without loss of generality, we may assume that
T = (a,b) and Fy = (1,¢,2,d), and thus

g2 = (1,¢,2,d)(3,4)(5,6) - - - (2k — 5,2k — 4)(a, b).
Finally, we conjugate the original homomorphism ¢ by the permutation

1 2 3 ... 2k—-4 a b ¢ d
B‘(s 6 7 .. 2% 1 2 3 4) (6.24)

and obtain the homomorphism ¢: B(k) — S(2k),
W(0:) = By(o:) B~ = BF;B7Y, 1<i<k -1,

that coincides with 3. This concludes the proof in case (3i’).

iv) We prove that in this case ¥ ~ ¢,. We deal with the noncyclic homomorphisms
Q: B(k—2) — S(k) and ¥ = B(k — 2) — S(2k) (we write ¥ instead of ¥, for & = Agg).
According to Theorem 6.15, we must consider the following cases:

1:’0,1) k=7and Q= 1/)5,6 X 1y;

ivp) k=8 and 2 = 15 X w;

e) Q= pr_2 X w;
in cases (ivp), (iv.) w: B(6) — S(2) is some (cyclic) homomorphism.

Cases (iv,), (ivp) cannot actually occur. . To see this, we use Corollary 5.7, Corollary
5.8, and Theorem 5.10.
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Since [75] = (2, ..., 2], in case (iv,) we may assume that ¥ coincides with one of the four

k

homomorphisms 7; x [2]: B(5) — 8(12) x S(2) C S(14), 7 =0,1,2,3 (see Corollary 5.7),
where [2}: B(5) — S(2) is the cyclic homomorphism sending each generator s; into the
transposition (13, 14). The cases 7 = 1,3 cannot occur because of 4-cycles. For j = 0,2 the
permutation A = 7475 is a product of four disjoint 3-cycles supported on A2 = {1,...,12}.
Since &; commutes with A, Aqs is Gp-invariant. Hence, A;z is (Im %)-invariant, and the
reduction ¥a,,: B(7) = S(12) is a noncyclic homomorphism; it follows from Theorem 6.20
that Im % a,, must have an invariant set & C Ay of cardinality 12 — 7 = 5. Particularly,
E must be invariant under all the permutations 012 | A2 = 7;(s:), 1 <4 < 4, which is
not the case.

In case (ivy) we may assume that ¥ is of the form
U =¢; X p,: B(6) = S(12) x S(4) C S(16)

(see Corollary 5.8). Here ¢,:B(6) — S(4) is a cyclic homomorphism defined by the
following conditions: if the homomorphism w: B(6) — S(2) is trivial, then ¢,(s;) =
(13,14)(15,16), i = 1,..,5; and ¢,(s;) = (13,15)(14,16), ¢ = 1,...,5, for the only
nontrivial w. As in case (iv,), the permutation A = 7405 is a product of four disjoint 3-
cycles supported on Ag, the set Ajs is (Im #)-invariant, and the reduction ¥a,,: B(8) —
S(12) is a noncyclic homomorphism. It follows from Theorem 6.20 that there is an (Im )-
invariant set E C Aqq of cardinality 4. However, the formulas for ¢g, ¢; show that even
the permutations G2 | A1z = ¢;(si), 1 < i <5, do not have a common invariant set of
such cardinality (in fact, ¢; is transitive and Im ¢ has in A;5 exactly two orbits, each of
length 6). Hence, case (ivp) is impossible.

We are left with case (iv.). By Corollary 5.6 and Theorem 5.10, we may assume that
U is of the form

U =y X p,: Bk ~2) = S(2k — 4) x S(4) C S(2k) (6.25)

(see Corollary 5.8); here ¢,: B(k —2) — S(4) is a cyclic homomorphism defined as follows:
if the homomorphism w: B(k—2) — S(2) is trivial, then @, (s;) = (2k—3, 2k—2)(2k—1, 2k),
i=1,..,k=3;and @, (s;) = (2k—3,2k—1)(2k-2,2k), i = 1, ..., k—3, for the only nontrivial
w. (In fact, there is one more possibility, namely, ¢, (s:) = (2k — 3,2k)(2k — 2,2k - 1),
i =1,..., k= 3; if so, we conjugate 9 by the transposition {2k — 1, 2k) and reduce this case
to the previous one).

First, we note that the set R = {2k — 3,2k — 2,2k — 1,2k} cannot be gy-invariant.
Otherwise, R would be (Im #)-invariant and the reduction g of ¥ to the complement
S = Ay, — R would be a noncyclic transitive homomorphism B(k) = S(2k — 4), which
contradicts Theorem 6.20 (1)s must be transitive, since ¢z is so0).

Now we show that w must be nontrivial. Indeed, if w is trivial, then 2 = pg_o X 12 and
the action of €2(s3) on the 2-component € of &; (that is, the conjugation by 74) interchanges
some two transpositions and does not move the rest k — 2. By Lemma 4.3, the action of
Q*(s2) on the 2-component €* of G,_; (that is, the conjugation by @) is of the same
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type. This means that 7, and o%—; have exactly £k — 2 common transpositions. Any of
these common transpositions is neither (2k — 3, 2k — 2) nor (2k — 1, 2k), since otherwise the
reduction of 1 to at least one of the complements Agy, — {2k —3,2k—2}, Aqr—{2k—1, 2k},
Ay, — {2k — 3,2k — 2,2k — 1,2k} would be a noncyclic transitive homomorphism

B(k) = S(n), 6<k<n, n=2k—2 or n=2k—4,

which contradicts Theorem 6.20. Hence, the conjugation by &2 interchanges the transpo-
sitions (2k — 3,2k — 2), (2k — 1,2k). It follows that the set {2k — 3,2k — 2,2k — 1,2k} is
op-invariant; however, we have already proved that this is impossible,

Taking into account that i is normalized and using (6.25) and what has been proven
above, we see that

o1 =(1,2)(3,4)(5,6)--- (2k — 5,2k — 4)(a, b)(c¢, d)
and for3<:1<%k-1

;= (1,2)(3,4) - (2 — 7,2 — 6) (2i — 5,2i — 3)(2i — 4,2 — 2)(2 — 1, 2)

X -+ %X (2k = 5,2k — 4)(a, c)(b, d),

where a =2k — 3, b =2k -2, ¢c =2k — 1, d = 2k. Now it is convenient to conjugate the
original homomorphism ¥ by the permutation

C_123...21.:—4(Lbcd_
“\5 6 7 .. 21 3 2 4)°

we denote the new homomorphism by J, but preserve the notations &; for all the permu-
tations ¥(o;), 1< i <k — 1. Clearly,

71 =(1,3)(2,4)(5,6) - - (2k — 3,2k — 2)(2k — 1,2k) (6.26)
————

and for3<i<k -1

.= (1,2)(3,4) (20 = 3,2i — 2) (20 — 1,20 + 1)(24, 2i + 2)(2i + 3,21 + 4)
~ ~ - (6.27)
x - x (26 — 3,2k — 2)(2k — 1, 2k).

Claim. The set Ag = {1,2,3,4,5,6} is 0p-invariant and the restriction of G, to the
complement Ay, — Ag coincides with (7,8)(9,10) - - - (2k — 1, 2k).

Indeed, it follows from (6.27) that 03041 = (26 — 1,24 + 2,27 + 3)}(2¢,2¢ + 1, 2¢ + 4); if
4 <1< k — 2, this product commutes with &'3; hence, for such i every set {27 — 1,2¢,2i +
1,2¢ + 2,2i + 3,21 + 4} is &p-invariant. In particular, the set Ag = {1,2,3,4,5,6} is
T2-invariant. Moreover, if k > 7, then each of the sets {7,8},{9,10},..., {2k — 1,2k} is
Op-invariant; since is &2 has no fixed points, this shows that the cyclic decomposition of
02 contains the disjoint product (7,8)(9,10) - - - (2k — 1, 2k).
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Consider the case k = 7. We still have the two o2-invariant sets {7,8,9,10,11,12} and
{9,10,11,12,13, 14}; hence, each of the sets {7,8}, {9,10,11,12}, {13, 14} is Go-invariant.
Since o2 has no fixed points and is a product of disjoint transpositions, it must con-
tain the transpositions (7,8), (13,14) and some two transpositions that are supported
in {9,10,11,12}. The product 7556 = (9,12,13)(10,11,14) commutes with &3, and we
already know that o contains the transposition (13,14); hence, the restriction of g5 to
{9,10,11, 12} coincides with (9,10)(11,12). This completes the proof of Claim.

To complete the whole proof, we consider the restrictions
A=0, ] Qg = (173)(2}4)(&6)) B=7y|As, C=04 I Ag = (1’2)(3&4)(5v6)'

Claim shows that the restrictions of @y and o5 to the complement Ao — Ag coincide;
hence AooB. Clearly, AC = CA; we know also that B must be a product of 3 disjoint
transpositions supported in Ag. There exist exactly 4 permutations B that satisfy all
these conditions:

Bi=(1,2)(3,5)(4,6); By =(1,2)(3,6)(4,5);
By = (1,5)(2,6)(3,4);  Ba=(1,6)(2,5)(3,4).

If B = By, then 7:5 coincides with the homomorphism @, from Corollary 5.6 (with n = k).
Any of the other three possibilities leads to a conjugate homomorphism. Indeed, the
conjugation by the permutation (5,6)(7,8)---(2k — 1, 2k) interchanges By with B, and
B3 with By; the conjugation by the permutation (1,3)(2,4) interchanges B; with Bs.
Further, these two conjugations preserve formulas (6.26), (6.27). They preserve also the
form of the restriction of 75 to A5 — Ag exhibited in Claim. This concludes the proof. [

The following statement is similar to Corollary 6.12.

Corollary 6.22. Assume thatk > 6. Let: B(k) — S(2k) be a noncyclic homomorphism
such that &1 has at most k — 3 fized points. Then either ¥ ~ pg or Y ~ 3.

Proof. Tt follows from Lemma 6.10 that &; must have a nondegenerate component of length
at least k — 2; Lemma 6.21 completes the proof. |

Theorem 6.23. For k > 8, any noncyclic transitive homomorphism : B(k) — S(2k) s
conjugate to one of the homomorphisms @1, 2, 3.

Proof. We use the notation introduced in §6.3 (see Convention therein). Suppose, on the
contrary, that there is a noncyclic transitive homomorphism v that is conjugate neither
to 1 nor to @z nor to 3. By Lemma 6.21, every nondegenerate component of 7y is of
length at most k& — 3. Hence, Lemma 6.16(a, ¢) applies to the homomorphism %; this leads
to the following conclusions:

a) the reduction ¢ = ¢g,: B(k — 2) = S(2;) = S(N) of the homomorphism ¢ =
P | B(k—-2): B(k—2) - S(2k) to the set £; = supp o7 is trivial (here and below
B(k — 2) C B(k) is the subgroup generated by o3, ..., 0x—1);

b) the reduction ¢’ = ¢x;: B(k ~2) = S(X) = S(N') of ¢ to the set &} = Fix 7y is
noncyclic;

c) since ¢ = ¢, X ¢g; B(k —2) = S(1) x S(Z7) C S(2k) and ¢g, is trivial, we see
that eventually ¢ coincides with ¢x; . '
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By Lemma 6.9, we have N > 6, and Corollary 6.22 shows that N’ > k — 2. It follows
that 6 < k-2 < N' =2k - N <2k—6 < 2(k—2). Since the homomorphism ¢g; is
noncyclic, Theorem 2.1(a), Artin Theorem and Theorem 6.20 imply that ¢x; is conjugate
to a homomorphism of the form pg_2 X v, where v: B(k—2) — S(N’'—k+2) is some cyclic
homomorphism. Hence, without loss of generality we may assume that £} = {1,...,N'},
Ly ={N'+1,..,2k} and 5; = (3,7 + 1) - S (disjoint product) for 3 < ¢ < k — 1, where S
is some permutation not depending on ¢ and supported on a set Q C &} — {3,...,k}. We
have #Q < N'—(k—2) <2k —-6-k+2=Fk~—4 and #Q +2 = #supp 0; = N > 6; hence,
the set (Q = supp S is nonempty and does not coincide with the whole set Agy. Clearly, @
is 0;-invariant for any i # 2 (since @ C Fix 71 and § < &; for every 7 > 3). On the other
hand, 7 commutes with any 7; = (4,7 + 1) - S, 4 <i < k — 1, and thus each of the sets
{4,5}UQ,....{k—1,k}UQ is Gp-invariant. Hence, their intersection @ is &2-invariant; this
contradicts the transitivity of 4 and concludes the proof. O

6.5. Some applications: n-coverings of Gy, n< 2k. We say that an unbranched
covering £ = (E,q,X), ¢ E = X over a connected topological space X is an n-covering
whenever E is connected and #¢~!(z) = n for any x € X. Assuming that X is “good
enough” (say a smooth manifold or a locally finite cell complex) and fixing a base point
z. € X, we have a natural 1 — 1 correspondence between the equivalence classes of n-
coverings over X and the classes of conjugate transitive homomorphisms m (X, z,.) —
S(n). An n-covering ¢ E — X is said to be cyclic if the corresponding monodromy
homomorphism ¢*: w1 (X,z.) — S(n) is cyclic; in this case we may regarded ¢* as an
epimorphism onto the group Z/nZ. We say that two epimorphisms ¢, ¢": m (X, z.) =
Z/nZ are equivalent if Ker ¢ = Ker ¢'; it is readily seen that the latter condition is
fulfilled if and only if there is an invertible element m € Z/nZ such that ¢(y) = me'(7)
for all v € m1(X,z.). The equivalence classes of cyclic n-coverings are in a natural 1 -1
correspondence with the equivalence classes of epimorphisms 7 (X,z,) = Z/nZ. The
set [X,C*] of homotopy classes of continuous functions X — C* = C — {0} is a group
isomorphic to the cohomology group H!'(X,Z) (Brushlinski-Eilenberg Theorem). If the
homology group Hy(X,Z) =2 m(X,z.)/m(X,z,)" is finitely generated and torsion free
(that is, a free Abelian group), then any n-covering over X is isomorphic to a covering
of the form Y = {(z,{) e X xC*| ("= f(z)} > (z,{) —» z € X, where f: X = C* is
a continuous function such that f1/ does not possess a global single-valued continuous
branch. Two n-coverings of the above form corresponding to functions fy, fo: X —» C*
are equivalent if and only if there exist an integer m and a continuous function g: X — C
such that fo = f*expyg (clearly, (m,n) = 1).

Let us study some n-coverings over the space Gy of all separable polynomials of degree
k over C (§0). The cohomology group H'(Gg,Z) & (G, C') = Hom(B(k),Z) = Z is
generated by the cohomology class of the canonical discriminant mapping dx: G 3 z =
(21, .., 2k) = di(z) € C*, where di(z) is the discriminant of the polynomial pe(t,z) =
t* 4+ z1t* =1 4 ...+ 2. Since B(k)/B'(k) 2 Z, any cyclic n-covering q: E — Gy, is equivalent
to the standard cyclic n-covering Eg;(k) = (EY), (k) C,(c"), Gy), where

cyel

CM: BU) (k) = {(A\,2) € C x Gi) | A" = di(2)} (A, 2) = z € Gy,
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We have also the standard noncyclic k-covering £1(k) = (E1(k), M,,,, Gg),
My, Ei(k) = {(A 2) € Cx Gy) | pr(A,2) =0} 2 (X, 2) = 2 € Gy,

corresponding to the canonical projection ug: B(k) — S(k).

There are three 2k-coverings 51(1 )(k) = (ng )(k), 45, Gi) corresponding to the transitive
homomorphisms ¢;: B(k) — S(2k), j = 1,2,3, which occur in Theorem 6.23. To describe
these coverings, consider the open subset G(Bg-1) C Gg-1 consisting of all separable
polynomials px_1(t,w) = t*7! + w#*=2 4 ... + wy_, in Gy, that satisfy the condition
wg—1 # 0. We use the notation G(Bg.1) since this set may be identified with the regular
orbits space of the complex Coxeter group Bj_; acting naturally onto C*~!. Using the
fact that pr(A,2) = 0 and pj.(A,2) # 0 for all (A, z) € Eq1(k), we can define a mapping
m: Eq (k) = G(Bg_1) as follows: the image m(A,z) of any point (A,2) € Ey(k) is the
separable polynomial P(¢; (A, z)) of degree k — 1 in ¢ defined by

k

1 1 th=3  dFipg
P(t; (A, 2)) = ?Pk(t+ A\ z)= ;Z o =) e (A 2)
A port !
tk—z dk_lpk dpk
— k-1 LGPk .
+ (=1 a1 (A2z)+ ..+ o (A, 2)

Actually, this mapping shows that Eq(k) & Cx G(Bg-1); thus, m1(E1(k)) = 71(G(Bk-1))
and
Hy(E1(k), Z) = Hi(G(Bk-1), Z) = m1(G(Br-1))/m1(G(Bk-1)) = Z D Z.

Moreover, the cohomology group H!(G(Bk-1),Z) = Z®Z is generated by the cohomology
classes of the two nonvanishing functions wg_, and dg_;(w) (the discriminant); it follows
that the cohomology group H'(E;(k),Z) is generated by the cohomology classes of the

functions 4
Ah2) =

Therefore, up to equivalence, there are exactly three 2-coverings over the space E;(k);
these coverings are as follows:

(A 2) and fo(A, 2) = di(2).

BO®) = {(6 (02 e C x B € = D20,

EC (k) = {(6 (N, 2)) € C x Eq(k) | €2 = di(2)},

BO®) = {60 ) € C xBfl) | € = 20, ) - dula) ],

all the three with the same natural projection ¢; = ¢: (&; (A, 2)) = (A, z). The compo-
sition of the latter projection with the projection M, : Eq,(k) — Gy defines the three

2k-coverings Egj)(k) — Gg, 7 =1,2,3. It is not difficult to see that for any 7 = 1,2,3
the monodromy homomorphism B(k) — S(2k) corresponding to the covering 8{3)(15) =
(E&’)(k),qj, Gy) is conjugate to ¢;.
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Let us say that a covering q¢: E — X splits if there exist two nontrivial coverings
q¢: E — FE'and ¢": E' - X such that ¢ = ¢" o¢’. An n-covering ¢: E — X splits if
and only if its monodromy homomorphism ¢*: 7 (X) — S(n) is imprimitive. (A cyclic
n-covering splits if and only if n is non-prime.)

The following corollary (which is, actually, a topological equivalent of Artin Theorem
and theorems 2.1(a), 6.20(a), and 6.23) describes all n-coverings over Gy for n < 2k.
Seemingly, no direct topological proof of this corollary is known.

Corollary 6.24. Let £ = (E,q,Gy) be an n-covering over Gy.
a) Assume that either n < k # 4 or 6 < k < n < 2k. Then £ is equivalent to the

standard cyclic n-covering Eé:g,(k) = (Eé:g;(k), Cl(cﬂ), Gy).

b) If k # 4,6 and n = k, then £ is equivalent to one of the two standard k-coverings
EQN (k) = (BEL(k), CI, Gr), Eu(h) = (Ba(k), M., Gi).

cycl
c) If k > 8 and n = 2k, then £ is equivalent to one of the iree standard 2k-coverings

EGR(k) = (BGR (k), G, G), €9 (k) = (BI(K), 45, G), 5 =1,2,3.
In particular, if 8 < k # n < 2k and an n-covering £ = (£, q, Gy) 1s noncyclic, then

n = 2k and £ splits into a composition of a 2-covering and a k-covering. 0
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§7. HoMmomorprHISMS B/(k) — S(k) anD B/(k) — B'(k)

In this section we apply the results of §6 to prove Theorem C and Theorem D. We start
with some preparations to the proof of Theorem C.

Assume that k£ > 4 and consider a nontrivial homomorphism ¢: B’(k) — S(k). Taking
into account the presentation of the commutator subgroup B'(k) given by (0.14)-(0.21),
we denote the ¥-images of the generators u, v, w, ¢; by %, %, W, ¢;, respectively. The latter
permutations satisfy the system of equations

e ul = o, (7.1)
awn ! = ey, (7.2)
ve ! = ld, (7.3)
so! = (6-15)% %@, (7.4)
uc; = v (2<i<k-3), (7.5(2))
G =GuT'0 (2<i<k-3), (7.6(3))
a8 = 5% (1<i<j—1<k-4), (7.7)
CiCi+1Ci = G4+1CiCit1 (1<i<k—4) (7.8)

Consider the embedding
Xeo: Bk —2) = B'(k), M.(si)=c, 1<i<k—3,

and the composition

p=vpoXy Blk—2) 5 B'(k) L Sk), ¢s)=a 1<i<hk-3.

Definition 7.1. For a nontrivial homomorphism #: B’(k) — S(k), set G = Im ¢ C S(k)
and H = Im ¢ C S(k). For any H-orbit Q@ C Ay we put Q' = Ay — @Q and denote by
$o: B(k-2) — S(Q) and ¢g:: B(k—2) — S(Q') the reductions of ¢ to the H-invariant sets
@ and @', respectively; ¢ is the disjoint product ¢g X ¢d¢g:. A (nontrivial) homomorphism
¥ is called tame if there is an H-orbit @ C Ay of length & — 2. This orbit @ (if it exists)
is the only H-orbit of length > k — 2; we call it the tame orbit of ¥; evidently, #Q' = 2,
and ¥ is the disjoint product of the noncyclic transitive homomorphism ¢¢: B(k —2) —
S(Q) = S(k —2) and the cyclic homomorphism ¢g: B(k — 2) = S(Q') = 8(2) (a priori,
$q+ might be trivial; however, we shall see that actually this cannot happen).

A group homomorphism K — S(k) is said to be ewven if its image is contained in the

alternating subgroup A(k) = S'(k). O
By Lemma 6.4, for any nontrivial homomorphism : B’(k) — S(k) (k > 4) we have:

() the homomorphisms i and ¢ are even, that is, H C G C A(k); moreover, ¢ is
noncyclic, ¢(s1) # #(s3), and ¢(s7") # ¢(s3).

To handle the "unpleasant” cases k = 5,6, we need the following simple lemma.
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Lemma 7.1. a) Assume that A, B € S(k) are 3-cycles. Then at least one of the permu-
tations AB, A~1B is not a 3-cycle.

b) Assume that A, B € S(5) are 5-cycles. Then at least one of the permutations AB,
A"'B, A=2B, B2AB is not a 5-cycle.

Proof. (a) is trivial. To check (b), suppose that A = (a,b,¢,d,e) and B, AB € S(5) are
5-cycles. Then B must be one of the following eight 5-cycles:

A, A% A3, (a,b,d,e,c), (a,b,e,cd), (a,cdb,e), (a,d,ebd,c), (a,d,b,c,e).

The condition [B2AB] = [5] eliminates all the cycles from this list but A and A%. Finally,
for B = A we have A~'B = 1; and if B = A%, then A™2B = 1. O

In the following lemma we establish some properties of the permutations @, v, @, ¢
corresponding to a nontrivial homomorphism .

Lemma 7.2. a) (@) = [¢] %] = [G1] = ... = [Ch_3)] and [4] = [7] = [a~19).
b} All the permutations u,v,w,¢; are nontrivial (and evern).
c) ¥ commultes with all the permutations ¢; ; = c,cg ¢, 2<i,j<k-3.
d) Ife2 =1, theni®>=3>=1and v =7"".
e) Ifk =5, then [€1] # [3] and [¢1] # [5].

Proof. a) Follows immediately from (7.1), (7.3), (7.5(2)), (7.6(2)), and (7.8), which shows
that all ¢; are conjugate to each other.

b) Since 7 is nontrivial, it is sufficient to show that if one of the permutations %, ¥, @, ¢
is trivial, then all of them are trivial. If some ¢; = 1 or @ = 1, then it follows from (a)
that W =¢; = ... =Ck—3 = 1, and (7.5), (7.6) imply that t=v=1. fa=1or v =1,
then, by (a), we have @ =7 = 1, and (7.1), (7.2) imply @ = ¢; = @2; hence @ = 1.

¢) Relations (7.5) may be written in the form

UV =Cy UL = Cq 1'1.463 = 0=y, _gUCE_3;

this shows that & = (gi¢; SRETR (“"‘1) ! for all2<zg<k 3.

d) By (a), the condition €% = 1 implies that ¢ =1 for all 4; hence ¢! = ¢;, and relation
(7.5(2)) can be written in the form @ = 692, ' = ¢, '9¢;. In view of (7 6(2)), the rlght

1 2

hand side of the latter relation is equal to 4=, and we get 4 = 4~ '7; hence, ¥ = @
Using the same relations (7.5(2)), (7.6(2)) and ¢Z = 1, we have

o~ ~ 1

V=005 = (@G )7 GG = (G ue) T u=114,
and thus % = 92. Thereby, #° =7 =1and 5 =u"*.

e) Assume that [)] = [p], where p = 3 or p = 5. Then also [¢'] = [p); by (a), we
have [@] = ['81'1'&3] = [p]. If p = 3, then (&7'@)® = 1, &% = ¢, and (7.4) shows that
[clw] [¢7%®)] = [@] = [3]; however, this contradicts Lemma 7.1(a) (with A = &' and

= ). Consider the case p = 5. Then [¢] = [¢]"]) = [®] = [¢; ' %] = [5]. Tt follows from
(7 1) and (7.2) that

Wee] W = uu and  Uctan ! =ote o = o'W,
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hence, [@%¢; ") = (5] and [¢21) = [5]. Moreover, from (7.3) (7.4) we have

vewv ! = (¢ 113)42'?2“’ = (Cl )Tt (A_lA),
therefore, [1®@] = [¢;'] = [5]. Taking A = &;', B = 0, we see that A, B, AB, A™!B,
A~?B, and B2AB are 5-cycles in S(5), which contradicts Lemma 7.1(b). O

The following lemma brings us essentially closer to the desired result.

Lemma 7.3. a) The homomorphism v is tame whenever k # 6.

b) If k = 6 and v is nontame, then the homomorphism ¢ is transitive and conjugate to
the homomorphism v§: B(4) — S(6) defined in Remark 3.2.

c) If ¥ is tame, then the reduction ¢g: Bk — 2) = S(Q) = S(k — 2) to the tame
orbit () is conjugate to the canonical projection pp_2: B(k — 2) — S(k — 2), and the
reduction ¢g: B(k —2) = S(Q') = S(2) is a nontrivial homomorphism. In particular,
G = () = ¢(si) = ST, 1 <i< k-3, where every S; = ¢o(si) is a transposition
supported in Q, and T is the (only) transposition supporied on Q.

Proof. We start with the following claim, which is true for any £ > 4 and any nontrivial
homomorphism :

Claim 1. There exists (exactly one) H-orbit of length ¢ > k — 2.

For k # 6 this follows immediately from the property (*) and Theorem 2.1(a). For
k = 6, we deal with the noncyclic even homomorphism ¢: B(4) — S(6) that satisfies ().
In this case there exists (cxactly one) H-orbit of length ¢ > 4. Indeed, let @ be an H-orbit
of some length ¢g. If ¢ < 3 and ¢¢ is noncyclic, then, by Theorem 2.14, ¢g(s1) = dg(sa)-
Hence, if #Q < 3 for all H-orbits, then the homomorphism ¢ cannot satisfy (*).

Claim 2. If i is nontame, then k = 6.

Taking into account Claim 1, we may assume that there is an H-orbit @ with #@Q =
q > k — 2. Clearly, either ¢ = £k — 1 or ¢ = k; in any case, #Q' < 1 and ¢ = jg o ¢q,
where jgo: S(Q) — S(k) is the natural embedding. Since ¢¢g is noncyclic and transitive,
Theorem 6.3 and Theorem 6.15 show that this could happen only in one of the following
five cases:

) k=5 k—2=3¢g=4, ¢=jgodo:B(3) D S(4)
noncyclic, ¢ is even;

{5

S(5), ¢¢ is transitive and

i) k=6,k—2=4,q=5, é=joodo Bd) 2% 5(5) L3 S(6), $g is transitive and
noncyclic, ¢ is even;

) k=7, k-2=5,9=6, ¢ =jgodg:B(5) fa, S(6) 8 S(7), ¢¢ is transitive and
noncyclic, ¢ is even;

w) k=5,k-2=3,¢9g=5, ¢=¢o:B(3) = S(5), ¢ is transitive, noncyclic and even;
v) k=6,k—2=4,9=6, ¢=¢g:B(4) = S(6), ¢ is transitive, noncyclic and even.
However, all these cases, but (v), are impossible. Indeed, in case (i), applying Propo-
sition 3.1(a), we see that the (evcn‘) homomorphism ¢¢g must be conjugate to the ho-
momorphism 1,b34, clearly, ¢; ~ ¢34(31) = (2,3,4); hence, [¢;] = [3], which contra-
dicts Lemma 7. 2( ). In case (%), by Lemma 3.2, the homomorphism ¢ would satisfy
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#(s1) = do(s1) = ¢o(s3) = ¢(s3), which contradicts property (*). In case (ii1), by
Proposition 3.9, the homomorphism ¢g must be conjugate to the homomorphism s ¢
that sends any s; into an odd permutation; clearly, ¢ makes the same (for #Q' = 1),
which is impossible (since ¢ must be even). To eliminate (iv), we use Proposition 3.1(b},
which shows that the homomorphism ¢ must be conjugate to the homomorphism %3 5; so,
€1 ~ a5(s1) = (1,4,3,2,5); however, this contradicts Lemma 7.2(e). This proves Claim
2 and the statement (a) of the lemma.

b) If £ = 6 and v is nontame, the proof of Claim 2 shows that we are in the situation of
case (v). By Proposition 3.5 and condition (x), the homomorphism ¢ must be conjugate to

one of the homomorphisms 1/)42:2i defined by (3.4). However, 1,05,16) and 1,[)&?% are not even, and
for 1[)‘(,?(); we have 'gb‘(:%(sl_l) = ,gf();(s;;), which is uncompatible with (x); hence, ¢ ~ 1,[)51?6).
By Remark 3.2, 1,[)&'?% is conjugate to the homomorphism 7.

¢) Since 1 is tame, the reduction ¢g: B(k—2) — S(Q) = S(k—2) is a noncyclic transitive
homomorphism. If this homomorphism is conjugate to px_o, the other assertions of the
statement (c) are evident (note that if ¢g ~ jiyz_2, then the ”complementary” reduction
do: B(k—2) - S(Q') = S(2) must be nontrivial, since the homomorphism 7 is even).

Let us assume that ¢g is not conjugate to px_o; by Artin Theorem, this may only
happen if k = 6 or £ = 8. The complementary reduction ¢ is cither trivial or takes each
8; to the only transposition T supported on Q'; in any case, we have ¢g/ (31} = dg(s3)
and ¢gr(s7') = do:(s3). If k = 6, the reduction ¢g must be conjugate to one of Artin’s
homomorphisms v4,;, 1 < j < 3; however, in each of these cases we have either ¥(s;) =
(s3) or (s7") = 1(s3), which contradicts (x).

Finally, we must show that the case when & = 8 and ¢¢ ~ v is impossible. Since vg(s1)
is the product of three disjoint transpositions and ¢ must be even, the complementary
reduction ¢¢: sends each s; to the only transposition T' supported on Q'. Without loss of
generality, we may assume that 7' = (1,2) and

10 G = (1,2)(3,4)(5,6)(7,8), s2 T = (1,2)(3,7)(4,5)(6,8),
¢ ¢ s3> T3 =(1,2)(3,5)(4,6)(7,8), ss =72 = (1,2)(3,4)(5,7)(6,8), (7.9)
s~ G5 = (1,2)(3,6)(4,5)(7, 8).

By Lemma 7.2(d), #® = 1; since # is even and nontrivial, we see that either [4] = [3] or
[@] = [3, 3]. By Lemma 7.2(c), & commutes with all the permutations ¢; ; = E,-E?l, 1,9 > 2
in particular, this is the case for ¢, 3 = (3,4, 8)(5,7,6). Since Fix ¢2 3 = {1, 2}, this set is
ti-invariant. It follows that {1,2} C Fix % (the cyclic decomposition of % cannot contain a
transposition). Hence, supp @ C {3,4,5,6,7,8}. Further, ¢35 = (3,4)(5,6). The set {7, 8}
is the fixed points set of the permutation (3,4)(5,6) acting on {3,4,5,6,7,8}; therefore,
it must be 4-invariant; as above, this shows that {7,8} C Fix % and supp % C {3,4, 5, 6}.
Therefore, 7 must be a 3-cycle supported in {3,4, 5, 6}; however, such a permutation cannot
commute with (3,4)(5,6). This contradiction concludes the proof. O

Recall that we denote by p; the restriction of the canonical projection

pe: B(k) — S(k)
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to the commutator subgroup B'(k); similarly, vg denotes the restriction to B'(6) of Artin’s
homomorphism vg. If 1 = py, then

a=(1,3,2), ©=(1,23), @ =/(13)(2,4),

~ . . : 7.1
G =(1,2)5+2,i+3), 1<i<k-3. (7.10)
Moreover, if k£ = 6 and ¢ = 1, then
u=(1,3,6)(25,4), v=(1,6,3)(2,4,5), @=(23)(,6), 11
B= (LR3I, &= (3605, =13 (1)

Remark 7.1. Suppose k > 4. In view of Lemma 7.3, in order to classify nontrivial
homomorphisms #: B’(k) — S(k) up to conjugation, it is sufficient to study the following
two cases:

i) The homomorphism v is tame, with the tame H-orbit @ = {3, 4, ..., k}. The reduction
$g: B(k —2) = S(k — 2) coincides with the “shifted” canonical projection

fig—2: B(k —2) = S(Q), fix-2(s:)=(+2,i+3), 1<i<k-3.

@ = {1,2} and the complementary reduction ¢g: B'(k - 2) — S(Q') = S(2) is
of the form ¢g:(s;) = (1,2), 1 <i < k—3. The homomorphism ¢ is the disjoint
product ¢g X ¢gr and

G=s)=(1,2)(i+2,i+3) forall i=1,.,k—3. (7.12)

1) k = 6 and the homomorphism % is nontame, with the only H-orbit Q = Ag. The
homomorphism ¢: B(4) — S(6) coincides with the homomorphism 7§ and

¢)(Sl) = El = (114)(2’3)s ¢(52) = EZ = (3a6)(4a5):

~ 7.13
P(s3) =¢3 = (1, 3)(2,4). (7.13)
Let us say that 1 is reduced if it is either of type (i) or of type (i7). O

Lemma 7.4. Let ¢ be a reduced homomorphism of type (7).
a) If k > 6, then u({1,2,3}) = {1, 2,3} end u({4,5,6}) = {4,5,6}.
b) If k > 7, then 4,5, ...k € Fix ¥ and @ is a 3-cycle supported on {1,2,3}.

Proof. By Lemma 7.2(c) and (7.12), @ commutes with any permutation
Giip1 = GEL = (i+2,i+3,i+4), 2<i<k—4.

Hence, each of the sets {4, 5,6}, {5,6,7},....,{k — 2,k — 1, k} is U-invariant. The union, the
intersection, and the difference of two U-invariant sets are u-invariant. This implies (a).
Moreover, if £ > 7, we have

j+2,j+5€Fix@ and 4({j+3,j+4}) = {j+3,7+4} whenever 2 < j < k — 5;

by Lemma 7.2(d), all the cycles in the cyclic decomposition of @ are of length 3; hence,
j+3,j+4€Fixu and supp &= {1,2,3}. ‘ O
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Theorem 7.5. Suppose k > 4. Let ¢: B'(k) — S(k) be a nontrivial homomorphism.
Then either i ~ py, or k=6 and ¢ ~ vf. In any case Im ¢y = A(k) and Ker ¢ = J(k) =
I(k) N B/(k).

Proof. By Remark 7.1, we may assume that 4 is reduced. Let us start with case (¢). By
Lemma 7.2(a), [¢] ‘@] = [@] = [61]) = [2, 2]; hence, @ and &, cannot be disjoint.

Claim 1. supp @ = {1,2,3,4} and either @ = (1, 3)(2,4) or 4 = (1,4)(2, 3).

Let m = #({1, 2, 3,4} Nsupp @). We already know that m > 1. The values m = 1 and
m=3 cannot occur by trivial reasons (m = 1 implies [¢; '@] = [3, 2, 2]; and if m = 3, then
either [¢7'®@] = [5] or [¢;'@] = [3]). Assume that m = 2, that is, supp @ = {a, b,p,q},
where a,b € {1, 2, 3,4} and p,q > 5. Thenk > 6. By (7.1) and (7.12), @ = 4(1,2)(3,4)u~"
hence ﬁ({1,2,3,4}) = supp W = {a,b,p,q}. In view of Lemma 7.4(a), this shows that
{1,2,3} = u({1,2,3}) c ©({1,2,3,4}) = {a, b, p, q}, which contradicts the condition p, g >
5. Thus, @ is a product of two disjoint transpositions supported on {1,2,3,4}, and the
condition [(1,2)(3,4) - ©] = {¢] "®] = [2, 2] implics the desired result.

If o = (1,4)(2,3), we conjugate the homomorphism % by the transposition (1,2) and
obtain a homomorphism that sends any ¢; into ¢ and sends w into (1, 3)(2,4); therefore,
without loss of generality we may assume that the original homomeorphism ) itself satisfies
the condition

w = P{w) = (1,3)(2,4). (7.14)
Then relation (7.1) takes the form
a(1,2)(3, 43" = (1,3)(2, 4); (7.15)
in particular,
u({1,2,3,4}) = {1,2,3,4}. (7.16)

Taking into account (7.10), (7.12), and (7.14), we conclude the proof of the theorem in
case (i) by proving the following claim:

Claim 2. a) Any i > 4 is a fixed point of %, and thus % is a 3-cycle supported on {1, 2, 3}.
by w=(1,3,2) and ¥ = (1,2, 3).

In view of Lemma 7.4(b), we need to prove (a) only for k = 5,6. For k = 6, Lemma 7.4(a)
shows that u({4,5,6}) = {4, 5,6}; by (7.16), we have 7(4) = 4 and u({5,6}) = {5,6}. In
fact, {5,6} C Fix @ (since % cannot contain a transposition); this proves (a) for k = 6.
If kK = 5, (7.16) shows that %(5) = 5. Relations (7.5(2)) and Lemma 7.2(d) imply that
(iep)(5) = (S2u~1)(5); since #(5) = 5 and (by (7.12)) €2(5) = 4, this means that %(4) = 4,
which coneludes the proof of (a). To prove (b), we note that & = (1, 3, 2) is the only 3-cycle
supported on {1, 2,3} that satisfies (7.15).

Case (77) may be treated by straightforward computations; however, they are too long,
and we prefer to use a simple trick. Namely, instead of the original homomorphism ¥ of
type (i), we consider its composition i = s o ) with the outer automorphism 3 of the
group S{6). (see (3.3)). It is completely clear that 1 is a tame homomorphism of type
(z}; it follows from wha.t has been proven above that 1/) ~ ,uﬁ The automorphism s is
involutive and v§ = s o jif;; therefore, v ~ vg. - ‘ ' O
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Corollary 7.6. Suppose k > 4. Any nontrivial homomorphism 1: B'(k) = S(k) admits
a unique extension U: B(k) — S(k).

Proof. The existence follows immediately from Theorem 7.5. The uniqueness follows from
the facts that pux(B'(k)) = A(k), vs(B’(6)) = A(6) and (for any k > 3) the centralizer of
A(k) in S(k) is trivial. O

Remark 7.2. In view of Artin Theorem, Corollary 7.6 implies Theorem 7.5. However,
I have no idea how to extend nontrivial homomorphisms : B’(k) — S(k) to homomor-
phisms ¥: B(k) — S(k) without Theorem 7.5. O

Theorem 7.7. Suppose k > 4. The pure commutator subgroup J{k) = I(k) N B'(k) is
a completely characteristic subgroup of the group B'(k), that is, ¢(J(k)) C J(k) for any
endomorphism ¢: B'(k) — B'(k). Moreover, ¢=1(J(k)) = J(k) and Ker ¢ C J(k) for
every nontrivial endomorphism ¢.

Proof. The case of trivial ¢ is trivial. Given a nontrivial ¢, consider the composition

=0 d: B'(K) 25 B(k) L5 S(k).

This homomorphism 4 must be nontrivial, since otherwise Im ¢ C Ker p; C I(k) and
Markov Theorem implies that ¢ is trivial. By Theorem 7.5, either ¢ ~ uj or k = 6 and
Y ~ v§; in any of these cases, Ker ¢ = I(k) N B'(k) = J(k) and wc have

J(k) = Ker = Ker (4 0 ¢) = ¢~ (Ker i) = ¢ (I(k)).

Certainly, this shows also that ¢(J(k)) C J(k) and Ker ¢ C J(k). O

Remark 7.3. For a nontrivial endomorphism ¢ the inclusion Ker ¢ € J(k) must be
strict, since B’(k)/J(k) = A(k) and B'(k) is torsion free. It scems that for ¥ > 4 no
examples of nontrivial endomorphisms B’(k) — B'(k) with nontrivial kernels are known.
I conjectured that for £ > 4 a proper quotient group of the commutator subgroup B’(k)
cannot be torsion free (this would imply that any nontrivial endomorphism of B’(k) must
be injective). I was told that D. Goldsmith’s braid group (which is a proper non-Abelian
quotient group of B(k)) is torsion free. For surc, this is true if ¥ = 3, but I newer saw any
proof for £ > 4. If so, this would disprove my conjecture.

E. Artin [Ar3] proved that the pure braid group I(k) is a characteristic subgroup of the
braid group B(k), that is, ¢(I(k)) = I(k) for any automorphism ¢ of the whole braid group
B(k) (see also Theorem 2.12). Formally, for k¥ > 4 Theorem 7.7 is essentially stronger than
this Artin theorem (and also essentially stronger than Theorem 2.12, which, in turn, is an
improvement of Artin’s result). However, I do not know any nontrivial endomorphism of
B’(k) (k > 4} that is not an automorphism. Secmingly, nobody knows whether there is an
automorphism of B’(k) that cannot be extended to an automorphism of the whole braid
group B(k). In view of these remarks, it may actually happen that Theorem 7.7 does not
say more than Artin’s result says. Nevertheless, Theorem 7.7 works in some situations
when Artin Theorem and Theorem-2.12-(in their present forms).are useless. O
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§8. SPECIAL HOMOMORPHISMS B(k) — B(n)

8.0. Necessary conditions. Here we prove Theorem H(a) that provides us with cer-
tain strict necessary conditions for the existence of nonintegral special homomorphisms
B(k) — B(n).

Given a special system of generators {a, b} in B(m), we denote by H,(a,b) the subset
in B(m) consisting of all the elements g~'a%g and ¢g~'4%g, where g runs over B(m) and p
runs over Z. By Murasugi Theorem (see §0.7), an m-braid h belongs to H,(a,b) if and
only if h is an element of finite order modulo the center C(m) of the group B(m); hence,
the subset H,,(a,b) C B(m) does not depend on a choice of a special system of generators
a,b € B(m).

Definition 8.1. A homomorphism ¢: B(k) — B(n) is said to be special if po(Hg(a, b)) C
Hn(a',b') for some {and hence for any) choice of special systems of generators a, b € B(k)
and o', b’ € B(n). O

My interests to the special homomorphisms is motivated by the fact that for every
holomorphic mapping f: Gy — G, every point 2° € Gy, and any choice of isomorphisms
B(k) = m(Gyg, 2°) and m(G,,, f(2°)) = B(n), the induced homomorphism of braid groups

fa B(k) = '/Tl(Gk,zo) - Wl(an f(zo)) = B("’)

is special (see [L7] or Part II of this paper for the proof).

Let P(k) be the union of the four arithmetic progressions P** (1 < i < 4) introduced
in §0.7 (Notation 0.1).

Theorem 8.1. Assume that for some k # 4 and some n there exists a nonintegral special
homomorphism ¢: B(k) —» B(n); then n € P(k). In more details, there exist a special
system of generators {a,b} € B(n), an element g € B(n), and integers l,t such that at
least one of the following four conditions? is fulfilled:
a) (@) = a? and p(B) = gblg~?!, wherep = t(l(k — 1)+ 1), ¢ = t(lk+ 1), | >0,
(tk(k—-1)=1, andn =k +1k(k—1) € Pi(k);
b) ¢(a) = aP and p(B) = galg~?, wherep = t(k—1), ¢ = tk, g commutes with a
1> 1, and n=1lk(k —1) € Py(k);
¢) @(e) = b and p(B) = galg~!, where p = t(k—1), ¢ = tk, g commutes with b*(*=1)
I>1, andn=1k(k-1)+1¢€ P(k);
d) p(a) = v and p(B) = ga¥g~!, where p = t(I(k - 1) - 1), ¢ = t(lk - 1),l > 1,
(t,k(k—=1)) =1, and n = (k = 1)(Ik — 1) € Py4(k).
In particular, every special homomorphism ¢: B(k) — B(n) is integral whenever k # 4
andn ¢ P(k).

th(k—1)

Proof. Let us denote by S;(k,n), 1 < i < 4, the class of all special homomorphisms
¢: B(k) — B(n) that satisfy (every time for an appropriate special system of generators

' . P A - N . .
4As usual, @ = 01 -+ ox1 and 8 = a0y is the'special*system of generators in B(k) corresponding to
the canonical generators o1, ,0%-1.
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{a,b} € B(n), an element g € B(n), and some integers p,q) one of the following four
conditions 1) — 4), respectively:

1) p(@) =a” and @(B) =gb%g™";  2) p(a) =a” and ¢(B) = galg™’;
3) p(a) =t and @(B) =gb%™";  4) p() =" and @(f) = gatg™".

Any special homomorphism ¢ must certainly belong to at least one of these four classes.
There exists a homomorphism §: B(n) — Z such that é(a) =n — 1 and §(b) = n (since
B(n)/B'(n) & Z and a™ = b*~1). Moreover, in view of a* = *~1 we have

k5(p(c)) = (k — 1)6((B)- (8.1)

The element a® = b"~! is central in B(n). Hence, if ¢ € S;(k,n) U Sz(k,n), then the
element p(a™) = aP™ commutes with p(f); since k # 4, Lemma 1.17(a) implies that k
divides n. If ¢ € Si(k,n) U S3(k,n), then @(B"~1) = ¢p(n~Vg=1 = pa(»-1) commutes
with ¢(a), and Lemma 1.17(b) shows that & — 1 divides n — 1. By a similar argument,
@ € Sa(k,n)US4(k,n) implies that (") = ga?g~! = a? commutes with p(a) and k—1
divides n, and ¢ € S3(k,n)USs(k,n) implies that p(a”~1) = pP{"~1) commutes with ¢(8)
and k divides n — 1.

Assume that ¢ € S (k,n), that is, p(a) = a?, ¢(B) = gb%g~'. It follows from the above
consideration that k divides n and k — 1 divides n — 1. Hence, there exists an integer [ > 0
such that n = k + lk(k — 1). Relation (8.1) shows that k(n — 1)p = (k — 1)ng; therefore,
(lk+1)p = (I{k—1)+1)q. Since the numbers lk+1, I(k—1)+1 are co-prime, there exists an
integer ¢ such that p = t(i{(k—1)+1) and ¢ = t(lk+1). Let us show that (¢, k(k—1)) = 1.
Indeed, if m = (t,k) > 1, then the ratios t' = ¢/m and ¥ = k/m are integral and
1<K <k, pk' =tk'(l(k—1)+ 1) =mt’k'({(k-1) +1) = t'k({(k — 1) + 1) = t'n. Hence,
the element @(o*') = a?* = at'™ commutes with ¢(f); by Lemma 1.17(a), ¥ must be a
divisor of £/, which is impossible. Similarly, one can check that the inequality (¢, k—1) > 1
leads to a contradiction; this completes the proof in the case when ¢ € S1(k,n).

Assume now that ¢ € Sy(k,n), that is, p(e) = a?, ©(8) = ga%9~!. Then k and
k — 1 divide n; hence, n = lk(k — 1) for some integer [ > 1. Relation (8.1) shows that
kp = (k — 1)q; consequently, there is an integer ¢ such that p = t(k — 1) and ¢ = tk.
Taking into account the relations kp = (k — 1)¢ = tk(k — 1) and of = p*~1, we obtain
atkk=1) = gathlk=1)g=1 thug, ¢ commutes with at**=1 This concludes the proof in the
case when ¢ € Sy(k,n).

We skip the proofs for the cases ¢ € S3(k,n) and ¢ € S4(k,n), which are very similar
to the cases considered above. O

Remark 8.1. B(3) possesses nonintegral special homomorphisms B(3) — B(n) for every
n that is not forbidden by Theorem 8.1. Morcover, the conditions () = b, @(8) = a2
define a special epimorphism ¢: B(4) — B(3); hence, if there exists a nonintegral special
homomorphism B(3) — B(n), then there is also a nonintegral special homomorphism
B(4) —» B(n). For £ > 4 and n € P3(k) U P4(k) I do not know any example of a
nonintegral special -homomorphism B(k) — B(n); however, Theorem H(b) proven below
asserts that for any k and any n € Py(k) U Py(k) such homomorphisms do exist. O
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8.1. Existence of non-Abelian special homomorphisms. Here we explain a con-
struction which proves Theorem H(b).

Definition 8.2. A geometric braid is called wide if the distance between every two of its
strings is at least 1. A geometric p-braid is said to be a é-thin p-rope if it is contained in an
open “circular tube” of diameter ¢ around one of its strings. We denote by 17 (respectively,
by 1%) the unity of B(p) (rcspectively, a d-thin p-rope representing 17).0O

Let g € B(k) and v € B(p). We represent g and v by a wide geometric k-braid g and a
%-thin p-rope v, respectively. Then, replacing each of the strings of § with the same thin
p-rope U, we obtain a geometric pk-braid g ® v; the corresponding element of the braid
group B(kp) is said to be the tensor product g @ v of g and v.

Let 0y, ...,0,_1 be the canonical generators in B(k) and x: B(k) = Z, o1,...,0k-1 — 1,
be the canonical integral projection. Given an element v € B(p), we define a homomor-
phism 4,: B(k) — B(pk) as follows: 1,(g) = g ® vX\9) for any g € B(k). In particular,
y(o;) = o; @v for any i = 1, ...,k — 1. Clearly, ¢, is an embedding.

This construction may be modified as follows. Let v € B(p). We represent v by a
%-thin p-rope U, and any generator o; € B(k) by a wide geometric k-braid ;. Then we
replace the i’th string of &; with the above thin rope v, and all the rest strings of o; with
1% . The resulting geomctric pk-braids defines an element of B(pk), which is denoted by
0:* v. The correspondence o; — o; v € B(pk), i =1,...,k — 1, determines an injective
homomorphism ¢,: B(k) — B(pk).

Let, as usual, a = aj p;, = 5152 - Spk—1 and b = sp_1 form the special system of gen-
erators in B(pk) corresponding to the canonical gencrators sy,... , Spr—1. In the following
lemma-notation we exhibit an algebraic description of the homomorphism ¢, (especially,
see statements (¢} and (d)).

Lemma-Notation 8.2. a) We define the elements a;; according to (0.3), that is,
a; =1 for all i, and Gij = SiSiq1 - 85-1 for 1 <i<j<kp. (8.2)
For1 <1<k set

Qi = Ap(i—1)41,pi = Sp(i—D)+18p(i—1)42 " " Sp(i=-1)+p-1> by = QiSp(i—1)+1)
Ai = Gp(i-1)41,pilp(i-1)+1,pi~1 " Bp(i=1)+1,pi—(p—2) (8.3)
=Sp(i—1)41 """ Spi=1 X Sp(i—1)4+1 " " Spi—2 X X Ip(i—1)4+15p(i—1) X Sp(i—1)41 -

Clearly,

af = bf_l and ;S5 = Sj+104 (8‘4)

whenever 1 < i < kandp(i—-1)+1< j <p(i—-1)+p-—2, and the element
A; def op — pp1 generates the center of the subgroup B; = B(p) in B(kp) spanned by

T 1

Sp(i—1)+1> Sp(i—1)+2s- -+ > Sp(i=1)+p—1-
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b) For 1 <i <k —1 define the elements t; = o; ® 1P. The following relations are held:

t,; = 8piSpi-1" " Sp‘i—(p—l) X Spit1Spi - sz‘—(p—z)
X oo X 8pit(p—1)Spi+(p—2) """ Spi
= SpiSpit1 " Spit(p—1) X Spi=15pi """ Spit(p—2) (8.5)
Kot X Spi(p—1)Spi—(p—2) " Spi
= pi,(i+1)pPpi—1,(i4+1)p-1 """ Cpi—(p—1),(i+1)p—(p—1) 5
tit; =t;t; wheneveri,j=1,...k—1 and |i — j| > 1; 8.6
titiv1ts = tipatitivy for1 <i<k-—1; (8.6)
bilig1 " b = Qpi (G41)pQpi—1,(j+1)p—1" " Bp(i—1)+1,jp+1 for 1<i<j<k; (8.7)
Spti = tiSryp whenever 1 <i<k—1 and pi—1) <7 <pi. (8.8)

Moreover, for any word w(y, ...,y(j_,-+1)p_1) in variables

-1 -1
Y, U1 o ¥G—-i+)p-1s y(j—i+1)p—1

and any i, 7, 1 <1< j<k—1, one has
W(Spi+1, ey S(j+1)p—1) “litigr oty =ttty 'w(";p(i—l)+11 ey Sjp—l) . (8-9)

¢) For any word v = v(%1,...,Tp_1) in variables z1,z7 ", ...,:c,,_l,:c;_ll define the ele-
ments v; € B(kp) by

U; = U(S(j—1)p+1> SG=1)p+21 -+ SG=D)ptp-1)1 1 <7 < k. (8.10)
Then o

ViV = UV fori,j=1,...k;

tiv; = vty whenever j <1 or j>1-+1; (8.11)

tivi = vigat; and tvi4 = vit; forl1<i<k-1.
d) It follows from relations (8.6) and (8.11) that the correspondence

Gy J,-l—)J,-*vd——Efv,-t,-, 1<:<k-1, (8.12)

defines @ homomorphism ¢,: B(k) — B(kp).

This homomorphism ¢, is non-Abelian
whenever k > 2 and v # 1.

e} The following relations are held:

(x) AZ2=A; for 1<i<k, (%%) Dqt; =1#;Asq for 1<i<k—1,  (813)

v

(I.p = A%tltg v 'tk—l . (814)
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Proof. The proofs of (a)-(d) are by geometric evidence or by a straightforward calcula-
tion; we leave it to the reader. Relation (8.13(%)) is actually very well known®. Relation
(8.13(xx)) is a special case of (8.9) (or the last of relations (8.11)). To prove (8.14), we
represent aP as the product of the p factors a = sy - - s,5—1. Using (8.5), we re-arrange the
factors s; in the product a? in order to single out the factors Ay, #1,...,fk—1, Ag_1; then
we use k — 1 times relation (8.13(x#)). The corresponding calculation looks as follows:

tlp:Sl“'Spk—l><31"'5pk—1x"'X51"'3pk—1

- ~ S
factor (1) factor (2) factor (p)
= 81°:+8p-1 X 81°++8p.2 XX S189 X 81 X
—_— —_ S’ S
from factor (1)  from factor (2) from factor (p—2) from factor (p—1)
Ay
X SpeerSgp1 X Sp_1-c-Sgp_2 XX Sy Sp e
from factor (1) from factor (2) from factor (p)
ty
X S2p--83p—1 X Sop—1°""83p—2 X -+ X Spq41°82p X 0 X
from factor (1) from factor (2) from factor (p)
Ny -
ty

X Sp(k—=1) """ Spk=1 X Sp(k=1)—1"""'Spk—2 X """ X Sp(k—2)41 """ Sp(k—1) X

—

from factor (1) from factor (2) from factor (p)

N\ o~
ol

1

X Spk—1 X 3pk—23pk—1J X fpk-—Sspk-23pk.w1J X+ X 8pk—1)+1"" " Spk—1-
N ~ ~ -

M p—

from factor (2) from factor (3) from factor (4) from factor (p)

v

B
It is easily seen that B = Ag. Indeed,
B = apk—1,pkCpk—2,pkpk—3,pk * * " Op(k—1)43,pkOp(k=1)-+2,pkCp(k=1)-+1,pk
= Qpk—1,pkQpk—2,pkpk~3,pk * * " Op(k—1)+3,pkCp(k—1)+1,pk Ep(k—1)+1,pk—1

= a‘pk—l,pkapk—z,pkapk—S,pk e ap(k—1)+1,pkap(k—1)+1,pk—1ap(]c—1)+]_,pk—2

= Qpk—1,pklpk—2,pk
X Qp(k—1)+1,pk%p(k—1)+1,pk—13p(k—1)+1,pk~2 """ p(k=1)+1,p(k—1)+4
= Opk—1,pk X Qp(k—1)+1,pkCp(k—1)+1,pk—14p(k—1)+1,pk—2
X oo Xy (k=1)41,p(k—1)+4Dp(k—1)+1,p(k—1)+3
= Op(k—1)+1,pkp(k—1)+1,pk—1Cp(k—1)+1,pk—2
X oo X Gp(k=1)+1,p(k—1)+4Bp(k—1)+1,p(k—1)+30p(k—1)+1,p(k—-1)+2 = Dk .
Hence a? = Al B ATSRREE | B = Al ~tite - tk.—l . Akl?,ﬂ% - i1t T tr—1- 0

5A; is the Garside fundamental element of the braid group B; = B(p), see [Ga] or [De]).
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By Theorem 8.1, a non-Abelian special homomorphism ¢: B(k) — B(n) may only exist
if n is contained in one of the four arithmetic progressions P¥* (1 < i < 4). The following
theorem states that for n € P*! U P*%2 such a homomorphism actually does exist; this
proves Theorem H(b).

Theorem 8.3. Suppose k > 3. The non-Abelian homomorphism ¢,: B(k) — B(kp)
constructed in Lemma-Notation 8.2 is special whenever one of the following two conditions
is fulfilled:

a) p=lk—-1)+1 andv = (z1- Tp_171)', wherel € Z;

Bp=1IUk-1) andv = (z;- zx_1)', wherel € N.

In the case when (a) holds, ¢, is conjugate to a homomorphism of the form described
in Theorem 8.1(a) witht =1, p=Uk—-1)+ 1, and q =1k + 1. That is,

by (@) ~ a'E-D+1 and ¢y (B) ~ bIETL, (8.15(a))

In the case when (b) holds, ¢, is conjugate to a homomorphism of the form described
in Theorem 8.1(b) witht =1, p=Uk —1), and ¢ =1k =p+ 1. That is,

pole) ~ D and  gy() ~a®. (8.15(8))
Proof. By Lemma-Notation 8.2, we already know that ¢, is a non-Abelian homomorphism.

Hence, to prove that ¢, is special, it is sufficient to prove relations 8.15(a) and 8.15(b),
respectively. Note that for our choice of the word v we have

by(0;) = 05 % v = vit; = bit; in case (a), and ¢, (0y) = 0y xv = v;t; = aﬁt,- in case (b).
Respectively, we have
bo(a) = ity bh_1te_y and @, (B) = ity bh_qtrk_1bit1  in case (a),
and
Po(a) =dlty - -ak_jtx_1 and  $y(B) = alt;---ab_ te 10ty in case (b).
In case (a), using (8.4), (8.11), and (8.14), we have:
Bu(@) = bty b _yteey = 015Vt
=0tk = alty by = Ay -ty = aP
$u(B) = ¢u(aor) = aPbity .

A straightforward (but rather long!) calculation shows that for p = {(k—1)+1 the element
aPbtt, of B(pk) is conjugate to b**+! = b%. This completes the proof in case (a).

In case (b)
I(k—
{ gbv(a) = alltl v -ai;__ltk_l = (1.1( 1)t1 L 'tk_]_ = afftl . 'tk—l = A%tl T 'tk—l - (.Ip y
¢v(ﬁ) = d’v(agl) = apﬂ"lltl .

It is not difficult to show that for p = I(k — 1) the element aPalt; of B(pk) is conjugate to
a** = a9. This completes the proof. O
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