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INFINITELY MANY SOLUTIONS TO THE YAMABE PROBLEM

ON NONCOMPACT MANIFOLDS

RENATO G. BETTIOL AND PAOLO PICCIONE

Abstract. We establish the existence of infinitely many complete metrics

with constant scalar curvature on prescribed conformal classes on certain non-
compact product manifolds. These include products of closed manifolds with

constant positive scalar curvature and simply-connected symmetric spaces of

noncompact or Euclidean type; in particular, Sm × Rd, m ≥ 2, d ≥ 1, and
Sm×Hd, 2 ≤ d < m. As a consequence, we obtain infinitely many periodic so-

lutions to the singular Yamabe problem on Sm \Sk, for all 0 ≤ k < (m− 2)/2,

the maximal range where nonuniqueness is possible. We also show that all
Bieberbach groups in Iso(Rd) are periods of bifurcating branches of solutions

to the Yamabe problem on Sm ×Rd, m ≥ 2, d ≥ 1.

1. Introduction

The Yamabe problem on a Riemannian manifold (M, g) is to find a complete
metric with constant scalar curvature which is conformal to g. A landmark result
in Geometric Analysis is that a solution always exists if M is closed, see [29] for a
survey. The situation is much more delicate in the noncompact case, as there exist
complete noncompact manifolds (M, g) for which the Yamabe problem does not
have any solution [27]. There are several partial existence results in the literature,
such as [4, 12, 22], however existence is not settled in full generality. In this paper,
we exploit the geometry of discrete cocompact groups to provide large classes of
noncompact manifolds on which the Yamabe problem has infinitely many periodic
solutions.

We say that a solution to the Yamabe problem on a noncompact manifold (M, g)
is periodic, or Γ-periodic, if it is the lift of a constant scalar curvature metric on
a compact quotient M/Γ. The discrete cocompact group Γ is the period of the
solution, in the sense that it is invariant under the action of Γ. In all instances
studied in this paper, the infinitely many periodic solutions on noncompact mani-
folds correspond to infinitely many different periods. In other words, these infinitely
many metrics of constant scalar curvature do not descend to a common compact
quotient, meaning that our multiplicity results are indeed noncompact phenomena.

Our first main result regards products of closed manifolds and symmetric spaces:

Theorem A. Let (M, g) be a closed manifold with constant positive scalar curva-
ture, and (N, h) be a simply-connected symmetric space of noncompact or Euclidean
type, such that the product (M ×N, g⊕h) has positive scalar curvature. Then there
exist infinitely many periodic solutions to the Yamabe problem on (M ×N, g ⊕ h).

An immediate consequence of Theorem A is that there exist infinitely many
periodic solutions to the Yamabe problem on Sm ×Hd for all 2 ≤ d < m, and on
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2 R. G. BETTIOL AND P. PICCIONE

Sm×Rd for all m ≥ 2, d ≥ 1. We remark that there has been considerable interest
in the Yamabe problem on such noncompact manifolds in recent years [1, 25, 33].
Each of these infinitely many solutions is of the form φ gprod, where gprod is the
corresponding product metric ground ⊕ ghyp or ground ⊕ gflat, and φ is a smooth
positive function on Sm×Hd or Sm×Rd that does not depend on the Sm variable,
by the asymptotic symmetry method of Caffarelli, Gidas and Spruck [14].

It is easy to see that these infinitely many solutions on Sm × R translate into
infinitely many solutions also on Sm+1 \ {±p} and on Rm+1 \ {0}, which are con-
formally equivalent to Sm × R via the stereographic projection. A classification
of these periodic solutions and their relation to solutions on the compact quotient
Sm × S1 has been known for several years [28, 38], for further details see also [15].
These can be seen as simple instances of the so-called singular Yamabe problem,
which consists of finding solutions to the Yamabe problem on manifolds of the form
M \ Λ, where M is a closed manifold and Λ ⊂M a closed subset.

One of the most interesting consequences of Theorem A regards a more involved
instance of the singular Yamabe problem; that of the complement Sm\Sk of a round
subsphere Λ = Sk in a round sphere Sm. The special case k = 0 is addressed above,
using the stereographic projection on Sm \ {±p}. For k ≥ 1, a direct computation
shows that the (incomplete) round metric on Sm \ Sk is conformally equivalent to
the product (Sm−k−1 × Hk+1, gprod), see Subsection 3.5. Thus, pulling back the
infinitely many solutions we obtained in the latter yields the following:

Corollary B. There are infinitely many periodic solutions to the singular Yamabe
problem on Sm \ Sk, for all 0 ≤ k < (m− 2)/2.

The above extends our previous result in [10], where bifurcation techniques were
used to obtain infinitely many solutions in the particular case of Sm \ S1. These
techniques cannot be used if k > 1 due to the Mostow Rigidity Theorem. Further-
more, 0 ≤ k < (m− 2)/2 is the maximal range of dimensions for which multiplicity
of periodic solutions is possible, by the asymptotic maximum principle.

Theorem A is a particular case of the following more general multiplicity result:

Theorem C. Let (M, g) and (Σ,h) be closed Riemannian manifolds with constant
scalar curvature, such that scalg > 0 and π1(Σ) has infinite profinite completion.
Then there exists λ0 > 0 such that, for any λ > λ0, there are infinitely many

periodic solutions to the Yamabe problem on
(
M × Σ̃, g ⊕ λ h̃

)
.

In the above, (Σ̃, h̃) denotes the Riemannian universal covering of (Σ,h), and λ0

is the smallest nonnegative real number such that λ0 ≥ − scalh
scalg

. The profinite com-

pletion of a group is infinite if and only if there exists an infinite nested sequence
of normal subgroups of finite index, see Subsection 3.1. For instance, infinite resid-
ually finite groups have infinite profinite completion. In the proof of Theorem C,
this infinite chain of subgroups of π1(Σ) is used to produce an infinite chain of
finite-sheeted coverings of M ×Σ with arbitrarily large volume. Since the pull-back
of g ⊕ λ h is not a Yamabe metric if one goes sufficiently high up along this chain,
there must be another solution at some level. Iterating this argument gives the
infinitely many solutions.

The first key input to prove Theorem A using Theorem C is a classical result of
Borel [11], which states that every symmetric space N of noncompact type admits
irreducible compact quotients Σ = N/Γ. The same is obviously true for symmetric
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spaces of Euclidean type, that is, the Euclidean space Rd. Second, if (Σ,h) is locally
symmetric, then it clearly has constant scalar curvature, and π1(Σ) is infinite and
residually finite (see Example 3.1). Thus, π1(Σ) has infinite profinite completion.
We may hence apply Theorem C, which implies the desired statement in Theorem A.
We stress that there are many manifolds (Σ,h) which are not locally symmetric but
still satisfy the hypotheses of Theorem C, see Subsection 3.2.

Despite providing infinitely many solutions to the Yamabe problem, none of the
above results carries any information on the (local) arrangement of these solutions
or the structure of their moduli space. However, this can be achieved through other
techniques in the particular case of M ×Rd, where (M, g) is a closed manifold with
constant positive curvature. Namely, it can be shown that solutions bifurcate, in
the sense that there are sequences of new solutions forming branches that issue
from a trivial 1-parameter family of solutions.

In order to state our final main result, recall that a Bieberbach group π is
a torsion-free crystallographic group, i.e., a discrete and cocompact subgroup of
isometries of Rd that acts freely, so that F = Rd/π is a closed flat manifold.

Theorem D. Let (M, g) be a closed Riemannian manifold with constant positive
scalar curvature and let π be a Bieberbach group in the isometry group of Rd,
d ≥ 2. Then there exist infinitely many branches of π-periodic solutions to the
Yamabe problem on

(
M ×Rd, g ⊕ gflat

)
.

An important part of the above statement is that every Bieberbach group π
acting onRd can be realized as the period of infinitely many periodic solutions to the
Yamabe problem on M ×Rd. The special case in which π ∼= Zd is a lattice follows
from a recent result in [35], using similar techniques. These techniques to apply
variational bifurcation theory to the Yamabe problem originated in [8, 9, 18]. The
main input is a 1-parameter family gt of highly symmetric solutions that collapse at
t = 0. By proving that the Morse index of gt becomes unbounded, we establish the
existence of a sequence of bifurcation instants accumulating at t = 0. The proof of
Theorem D relies on showing that for all Bieberbach groups π acting on Rd, there
exists such a collapsing 1-parameter family ht of flat metrics on F = Rd/π, and
understanding the spectral behavior of their Laplacian. The first task is achieved
using results on the holonomy representation of (F,ht), while the second follows
from estimates relating the spectrum of the Laplacian on (F,ht) with the diameter
of this manifold. Arbitrarily small eigenvalues of the Laplacian on (F,ht) translate
into arbitrarily large Morse index for g ⊕ ht on M × F , and hence bifurcation of
this family of constant scalar curvature metrics on M ×F . Lifting these metrics to
the universal covering M ×Rd, we obtain the desired π-periodic solutions.

This paper is organized as follows. Section 2 is an overview of existence and
uniqueness of solutions to the Yamabe problem on closed manifolds. Section 3
begins with a discussion of closed manifolds whose fundamental group is residu-
ally finite or has infinite profinite completion, leading to the proof of Theorem C,
from which Theorem A and Corollary B follow. Finally, Theorem D is proved in
Section 4, combining bifurcation theory with the collapse of closed flat manifolds.

Acknowledgements. It is a pleasure to thank Claude LeBrun for suggestions that
eventually led to Theorem C, Benson Farb and Matthew Stover for suggestions con-
cerning Proposition 3.2 and Example 3.3, and Andrzej Szczepański for discussions
on the holonomy group of flat manifolds and reference [26].
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2. Classical Yamabe Problem

In this section, we briefly recall some facts about the classical Yamabe problem
for the convenience of the reader and to establish notation. A detailed exposition
can be found in Lee and Parker [29], Aubin [3, Chap. 5], or Schoen [38].

Given a closed Riemannian manifold (M, g0), let [g0] = {φ g0 : φ ∈ H1(M)} be
the Sobolev H1 conformal class of g0, and consider the Hilbert-Einstein functional

(2.1) A : [g0]→ R, A(g) = Vol(M, g)
2−n
n

∫
M

scalg volg,

where n = dimM . It is well-known that g ∈ [g0] is a critical point of the above
functional if and only if scalg is constant, that is, g is a solution to the Yamabe
problem (see [29, 38]). In this case, the value of the functional is clearly

(2.2) A(g) = Vol(M, g)
2
n scalg .

Existence of solutions is proved by showing that (2.1) always achieves a minimum.
More precisely, define the Yamabe invariant of the conformal class [g0] as

(2.3) Y
(
M, [g0]

)
= inf

g∈[g0]
A(g).

The combined work of Yamabe [43], Trudinger [41], Aubin [2], and Schoen [37]
yields the following statement, that settled the existence problem:

Theorem 2.1. There exists a metric gY ∈ [g0], called Yamabe metric, that achieves
the infimum in (2.3), Y

(
M, [g0]

)
= A(gY). Moreover, this minimum value satisfies

(2.4) Y
(
M, [g0]

)
≤ Y

(
Sn, [ground]

)
and equality holds if and only if (M, g0) is conformally equivalent to (Sn, ground).

Regarding the uniqueness problem, by the maximum principle, if Y
(
M, [g0]

)
≤ 0,

then gY is the unique solution on (M, g0). However, if Y
(
M, [g0]

)
> 0, there may

exist several metrics g ∈ [g0] with constant scalar curvature, but all have scalg > 0.
Nonuniqueness phenomena for the classical Yamabe problem have been extensively
studied in the literature, see, e.g., [6, 8, 9, 23, 24, 34, 35].

Remark 2.2. Nonuniqueness of solutions on (M, g0) means the existence of two
or more nonconstant conformal factors φ : M → R such that φ g0 has constant
scalar curvature. However, it should be noted that these different conformal fac-
tors may give rise to isometric metrics. For instance, consider the case of the
round sphere (Sn, ground), in which a metric g ∈ [ground] has constant scalar curva-
ture if and only if it is the pull-back of ground by a conformal diffeomorphism [38,
Sec. 2]. Thus, the moduli space of solutions is the (n + 1)-dimensional manifold
Conf(Sn, ground)/Iso(Sn, ground) ∼= SO(n+ 1, 1)0/SO(n+ 1), but all the correspond-
ing metrics are isometric to ground.

Moreover, it is known that if (M, g0) is a complete manifold not conformally
diffeomorphic to (Sn, ground) or (Rn, gflat), then there exists g∗ ∈ [g0] such that
Conf(M, g0) = Iso(M, g∗), see [21, 39]. In particular, if g0 = φ g∗ has constant
scalar curvature and f ∈ Conf(M, g0) is nontrivial, then f∗(g0) = (φ ◦ f) g∗ is
isometric to g0 hence also has constant scalar curvature, and φ ◦ f is a different
conformal factor. However, by the same reasoning, if g∗ itself has constant scalar
curvature, then there are no other solutions on [g∗] that are isometric to g∗.
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3. Multiplicity of solutions via chains of coverings

We begin by discussing the relationship between infinite towers of finite-sheeted
regular coverings of a manifold and the profinite completion of its fundamental
group, providing several examples. This is then combined with Theorem 2.1 to
prove Theorem C, from which Theorem A and Corollary B follow.

3.1. Profinite completion and residually finite groups. A groupG is profinite
if it is isomorphic to the limit lim←−Gs of some inverse system {Gs}s∈S of finite

groups.1 For instance, the group of p-adic integers Zp = lim←−Z/p
nZ is profinite.

Given a finitely generated group G, its profinite completion is defined as the limit

(3.1) Ĝ = lim←−G/Γ,
where Γ runs over the collection of finite index normal subgroups of G. Note that
{G/Γj}ΓjCG, [G:Γj ]<∞ is an inverse system, where i > j corresponds to Γi ⊂ Γj ,
and the epimorphism φij : G/Γi → G/Γj is given by φij(gΓi) = gΓj .

Clearly Ĝ is a profinite group, and it is characterized by the universal property
that any group homomorphism G → H, where H is profinite, factors uniquely

through a homomorphism Ĝ→ H. Furthermore, there is a natural homomorphism

ι : G→ Ĝ induced by the projections, whose kernel is ker ι =
⋂

ΓCG, [G:Γ]<∞ Γ.

Groups G for which ι is injective are called residually finite. Equivalently, G is
residually finite if for any g ∈ G \ {e}, there exists a finite index subgroup Γ ⊂ G
such that g /∈ Γ. Elementary arguments show that such Γ may be assumed to
be normal, as it can be replaced by core(Γ) =

⋂
h∈G hΓh−1, whose index satisfies

[G : core(Γ)] ≤ [G : Γ]!. Key properties of residual finiteness are that if G is
residually finite, then so are all of its subgroups; and if H is a finite index residually
finite subgroup of G, then also G is residually finite.

3.2. Examples. Let us mention a few classes of examples of finitely generated
groups with infinite profinite completion, as well as some closed manifolds whose
fundamental groups satisfy this property, which is a hypothesis in Theorem C.

Our main source of examples is the class of infinite residually finite groups.

Since their natural homomorphism ι : G → Ĝ is injective, these groups trivially
have infinite profinite completion. For example, every finitely generated abelian
(or, more generally, nilpotent) group is residually finite. The following classical
result provides a very rich family of finitely generated residually finite groups:

Selberg-Malcev Lemma. Finitely generated linear groups are residually finite.

Recall that a group is linear if it is isomorphic to a subgroup of GL(n,C) for
some n ∈ N. A proof of the Selberg-Malcev Lemma can be found in [36, Sec. 7.6].

Example 3.1. The fundamental group of any locally symmetric space Σ of noncom-
pact type is residually finite (and infinite, if Σ is closed). Indeed, if Σ is irreducible,

then Σ̃ = G/K, where G is a semisimple noncompact Lie group, K is the maximal

compact subgroup, and Σ = Σ̃/Γ, where Γ is a discrete torsion-free subgroup of
G. The image of Γ under the adjoint representation Ad: G → GL(g) is linear, and
Ad(Γ) ∼= Γ/Z(G) ∩ Γ. Assuming that the G-action on G/K is effective, Z(G) is
trivial, hence Γ ∼= Ad(Γ) is residually finite as a consequence of the Selberg-Malcev

1Although it is usual to consider profinite groups as topological groups, assuming that Gs have
the discrete topology, for the purposes of this paper we consider them solely as algebraic objects.
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Lemma. In particular, the fundamental group of any space form of nonpositive
curvature is infinite and residually finite, hence has infinite profinite completion.

It follows from the proof of the Geometrization Conjecture that the fundamental
group of any 3-manifold is residually finite. For a topological viewpoint on residual
finiteness of fundamental groups, see Reid [30, Sec. 2.1]. We remark that there
exist nonlinear finitely generated residually finite groups [20].

There also exist many finitely generated groups that are not residually finite but
have infinite profinite completion, such as the Baumslag-Solitar groups

BS(m,n) =
〈
a, b : b am b−1 = an

〉
, m > n > 1.

Since this is a finitely presented group, it can be realized as the fundamental group
of a closed manifold. A useful tool to produce finitely generated groups with infi-
nite profinite completion that are not necessarily residually finite is the following,
communicated to us by B. Farb:

Proposition 3.2. If L is a finitely generated infinite subgroup of a Lie group G,
then L has infinite profinite completion.

Proof. Consider the image of L under adjoint representation Ad: G → GL(g). By
the Selberg-Malcev Lemma, Ad(L) is residually finite. Thus, if Ad(L) is infinite,

then so is ι(Ad(L)) ⊂ Âd(L). By the universal property of L, since Âd(L) is profinite,

the homomorphism ι ◦ Ad factors through a homomorphism L̂ → ι(Ad(L)), hence

L̂ must also be infinite. Else, if Ad(L) is finite, then L ∩ Z(G) has finite index in L
and is hence a finitely generated abelian group. Thus, L ∩ Z(G) is residually finite,

and hence so is L. This implies that L→ L̂ is injective, so L̂ is infinite. �

Example 3.3. According to Deligne [19], the universal central extension of Sp(2n,Z),

which is the inverse image ˜Sp(2n,Z) of Sp(2n,Z) in the universal covering of

Sp(2n,R), is not residually finite for all n ≥ 2. However, ˜Sp(2n,Z) is a lattice in a
connected Lie group, hence it has infinite profinite completion by Proposition 3.2.

Example 3.4. Any group with positive first (rational) Betti number has infinite
profinite completion.

Remark 3.5. It is generally difficult to exhibit finitely generated groups with finite
profinite completion, besides simple groups. One such example is the Higman group

Hig =
〈
a, b, c, d : a−1 b a = b2, b−1 c b = c2, c−1 d c = d2, d−1 a d = a2

〉
,

which is infinite, finitely presented, and has no proper normal subgroups of finite
index.

3.3. Coverings. Let Σ be a closed manifold with fundamental group G = π1(Σ).
Recall that there is a natural bijective correspondence between conjugacy classes of
subgroups of G and equivalence classes of coverings of Σ. The trivial subgroup of

G corresponds to the universal covering Σ̃→ Σ. A normal subgroup ΓCG of index

n = [G : Γ] corresponds to the n-sheeted regular covering Σ̃/Γ → Σ, where Σ̃/Γ

is the quotient by the restriction to Γ of the monodromy action of G on Σ̃. The

group of deck transformations of this covering Σ̃/Γ→ Σ is G/Γ, and π1(Σ̃/Γ) = Γ.

Lemma 3.6. Let Σ be a closed manifold, G = π1(Σ). The following are equivalent:

(i) G has infinite profinite completion;
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(ii) There exists an infinite nested sequence of normal subgroups Γj CG,

· · · ( Γj ( · · · ( Γ2 ( Γ1 ( G,

with finite index nj = [G : Γj ], 2 ≤ nj <∞;
(iii) For any V > 0 and any Riemannian metric h on Σ, there is a finite-sheeted

regular covering ρ : Σ̃/Γ→ Σ such that Vol(Σ̃/Γ, ρ∗h) > V .

Proof. The equivalence between (i) and (ii) follows from the definition of limit of an
inverse system. The equivalence between (ii) and (iii) follows from the correspon-

dence between normal subgroups ΓCG and regular coverings Σ̃/Γ→ Σ described

above, using the fact that Vol(Σ̃/Γ, ρ∗h) = [G : Γ] Vol(Σ,h). �

Remark 3.7. The statements (ii) and (iii) in Lemma 3.6 remain equivalent to (i)
even if we remove the words “normal” from (ii) and “regular” from (iii).

3.4. Multiplicity of solutions. We now combine the above discussion of covering
spaces with Theorem 2.1 to prove Theorem C.

Proof of Theorem C. Let λ0 be the smallest nonnegative constant such that λ0 ≥
− scalh

scalg
. Fix λ > λ0 and consider the product manifold

(
M ×Σ, g⊕ λ h

)
, which has

constant positive scalar curvature. We are going to define a sequence gj of metrics
on finite-sheeted regular coverings of M×Σ with constant positive scalar curvature,

such that the pull-backs of gj to M × Σ̃ provide the desired periodic solutions.
If A(g⊕λ h) > Y

(
M ×Σ, [g⊕λ h]

)
, then let g1 be a Yamabe metric in [g⊕λ h],

see Theorem 2.1. Otherwise, if A(g ⊕ λ h) = Y
(
M × Σ, [g ⊕ λ h]

)
, i.e., g ⊕ λ h

is a Yamabe metric, then by Lemma 3.6 there is a finite-sheeted regular covering
Σ1 → Σ such that the product map p1 : M ×Σ1 →M ×Σ of the identity in M and
Σ1 → Σ satisfies

Vol
(
M × Σ1, p

∗
1(g ⊕ λ h)

) 2
n scalg⊕λ h > Y

(
Sn, [ground]

)
.

By Theorem 2.1, there is a Yamabe metric g1 in [p∗1(g⊕λ h)] with constant positive
scalar curvature. Note that g1 is not isometric to p∗1(g ⊕ λ h) since they lie in
different levelsets of the functional A on this conformal class.

The fundamental group of Σ1 is a finite index normal subgroup of π1(Σ), hence
its profinite completion is also infinite. Applying Lemma 3.6 again, there is a finite-
sheeted regular covering Σ2 → Σ1 such that the product map p2 : M×Σ2 →M×Σ1

of the identity in M and Σ2 → Σ1 satisfies

Vol
(
M × Σ2, p

∗
2(g1)

) 2
n scalg1

> Y
(
Sn, [ground]

)
.

By Theorem 2.1, there is a Yamabe metric g2 in [p∗2(g1)] with constant positive
scalar curvature. Once more, g2 is not isometric to p∗2(g1) since they have different
values of A.

Proceeding inductively in the above manner, we obtain an infinite sequence of
finite-sheeted regular coverings

· · · −→ Σj −→ · · · −→ Σ2 −→ Σ1 −→ Σ,

such that the maps pj : M × Σj →M × Σj−1 satisfy

Vol
(
M × Σj , p

∗
j (gj−1)

) 2
n scalgj−1

> Y
(
Sn, [ground]

)
,
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and gj is a Yamabe metric in [p∗j (gj−1)], which has constant positive scalar cur-

vature and is not isometric to p∗j (gj−1). The pull-backs of gj to M × Σ̃ clearly

lie in the conformal class of g⊕ λ h̃ and correspond to pairwise different conformal
factors, providing the desired infinitely many periodic solutions. �

Remark 3.8. The main technique in the above proof can be seen as an extension
of some arguments of Hebey and Vaugon [23] to a more general class of manifolds.

Remark 3.9. Despite the fact that at each step in the above construction the new
metric gj with constant scalar curvature on M×Σj is not isometric to the previous
one p∗j (gj−1), in this level of generality, we cannot guarantee that their pull-backs

to M × Σ̃ remain nonisometric. This corresponds to determining whether two
distinct conformal factors can be obtained from one another by composition with
a conformal diffeomorphism, see Remark 2.2.

More information in this regard may be available in some particular cases, such

as when M × Σ̃ is Sm × Hd with its standard metric. Since the conformal group
of (Sm ×Hd, ground ⊕ ghyp) coincides with its isometry group, it follows that none
of the infinitely many new metrics with constant scalar curvature are isometric to
ground⊕ghyp. However, some of these new metrics may be isometric to one another.

As explained in the Introduction, Theorem A is a consequence of Theorem C,
Example 3.1, and [11, Thm. A].

3.5. Singular Yamabe problem. Given a closed manifold (M, g) and a closed
subset Λ ⊂M , the singular Yamabe problem consists of finding a complete metric
g′ on M \ Λ that has constant scalar curvature and is conformal to g. In other
words, these are solutions to the Yamabe problem on M that blow up on Λ. Con-
sider the case in which (M, g) is the round sphere (Sm, ground) and Λ = Sk is a
round subsphere, which was also studied in [10, 31, 32, 38]. There is a conformal
equivalence

(3.2) f :
(
Sm \ Sk, ground

)
→
(
Sm−k−1 ×Hk+1, ground ⊕ ghyp

)
,

given by first using the stereographic projection with a point in Sk to obtain a
conformal equivalence with (Rm\Rk, gflat), and second using cylindrical coordinates
gflat = dr2 + r2dθ2 + dy2 to conclude that 1

r2 gflat = ground ⊕ ghyp, see also [10, 32].
The conformal equivalence (3.2) provides a trivial solution f∗(ground ⊕ ghyp) to

the singular Yamabe problem on Sm \ Sk, with constant scalar curvature equal to
scalm,k = (m− 2k − 2)(m− 1). If k > (m− 2)/2, then scalm,k < 0 and this is the
unique solution by an argument involving the asymptotic maximum principle [31].
Furthermore, this trivial solution is the unique periodic solution if k = (m− 2)/2,
since in this case scalm,k = 0 and any two conformal metrics with vanishing scalar
curvature on a closed manifold are homothetic [3, p. 175]. Thus, nonuniqueness of
periodic solutions on Sm \ Sk is only possible in the range 0 ≤ k < (m− 2)/2. The
existence of infinitely many periodic solutions on this entire range (Corollary B)
follows from Theorem A applied to Sm−k−1 ×Hk+1 and Sm−1 ×R, together with
the conformal equivalences (3.2) and Sm \{±p} ∼= Rm \{0} ∼= Sm−1×R. Existence
of infinitely many (nonisometric) periodic solutions if Λ = S1 is a great circle, i.e.,
k = 1, m ≥ 5, was recently obtained using bifurcation techniques [10].

By Remark 3.9, none of these periodic solutions on Sm \ Sk are isometric to the
trivial solution. We conjecture that, furthermore, they are pairwise nonisometric.
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4. Multiplicity of solutions via collapse of flat manifolds

In this section, we employ another method to obtain multiplicity of solutions to
the Yamabe problem on noncompact product manifolds using bifurcation theory.
This technique provides further information on the local structure of the space of
solutions, and has been previously applied to the Yamabe problem in [8, 9, 10, 35].

4.1. Flat manifolds. Let (F,h) be a closed flat manifold. It is well-known that
(F,h) is isometric to the orbit space Rd/π of a free isometric action on Rd of a
discrete cocompact group π, the fundamental group of F . Often, such groups are
called Bieberbach groups, and, accordingly, F is called a Bieberbach manifold. In
what follows, for the convenience of the reader, we provide an overview of basic
facts regarding such groups and manifolds; for more details see [7, 13, 16, 40, 42].

Let Aff(Rd) = GL(d) n Rd be the group of affine transformations of Rd, and
Iso(Rd) = O(d) n Rd be the subgroup of rigid motions. Elements of Aff(Rd) and
Iso(Rd) are denoted by (A, v), with A ∈ GL(d) or O(d) and v ∈ Rd; the group
operation is (A, v) (B,w) = (AB,Aw + v). The natural action of these groups on
Rd is given by (A, v) · w = Aw + v. We denote by

r : Aff(Rd) −→ GL(d), r(A, v) = A,

the projection homomorphism. Furthermore, given a subgroup π ⊂ Iso(Rd), we
denote by t(π) the normal subgroup of pure translations in π, defined as:

t(π) = π ∩ ker(r).

Note that there is a short exact sequence

(4.1) 1 −→ t(π) −→ π −→ r(π) −→ 1.

A discrete subgroup π ⊂ Iso(Rd) is called crystallographic if it has compact funda-
mental domain in Rd, so that Rd/π is a compact flat orbifold. A crystallographic
group π acts freely in Rd if and only if it is torsion-free, in which case Rd/π is a
closed flat manifold, and π is called a Bieberbach group.

The most important facts about such groups are summarized by the following
results of Bieberbach, which provided an answer to Hilbert’s 18th problem:

Bieberbach Theorems (Algebraic version). The following hold:

I. If π ⊂ Iso(Rd) is a crystallographic group, then r(π) is finite and t(π) is a
lattice that spans Rd.

II. Let π, π′ ⊂ Iso(Rd) be crystallographic subgroups. If there exists an iso-
morphism f : π → π′, then f is a conjugation in Aff(Rd), i.e., there exists
α ∈ Aff(Rd) such that f(β) = αβα−1 for all β ∈ π.

III. For all d, there are only finitely many isomorphism classes of crystallographic
subgroups of Iso(Rd).

The geometric interpretation of these statements in terms of Bieberbach mani-
folds F = Rd/π is as follows:

Bieberbach Theorems (Geometric version). The following hold:

I. If (F,h) is a closed flat manifold with dimF = d, then (F,h) is covered by a
flat torus of dimension d, and the covering map is a local isometry.

II. If F and F ′ are closed flat manifolds of the same dimension with isomorphic
fundamental groups, then F and F ′ are affinely equivalent.
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III. For all d, there are only finitely many affine equivalence classes of closed flat
manifolds of dimension d.

The torus covering F = Rd/π is given by T d = Rd/t(π), and r(π) ⊂ O(d) is the
holonomy group of (F,h). Since the holonomy of a Riemannian manifold depends
only on its affine structure, it follows that any two flat metrics on a closed manifold
F have isomorphic holonomy groups.

4.2. Moduli space of flat metrics. The moduli space Mflat(F ) of flat metrics
on a closed manifold F = Rd/π can be determined from the algebraic data in π,
see [7, 42] for details.

In what follows, given groups H ⊂ G, we denote by NG(H) and ZG(H) the
normalizer and centralizer of H in G, respectively.

Lemma 4.1. Two compact flat d-manifolds F = Rd/π and F ′ = Rd/π′ are isomet-
ric if and only if there is (B,w) ∈ Iso(Rd) such that (B,w)π (B,w)−1 = π′. More-
over, if π, π′ ⊂ Iso(Rd) are isomorphic Bieberbach groups, i.e., (A, v)π (A, v)−1 =
π′ for some (A, v) ∈ Aff(Rd), then F = Rd/π and F ′ = Rd/π′ are isometric if and
only if A = BC, with B ∈ O(d) and C ∈ Nπ := r

(
NAff(Rd)(π)

)
⊂ GL(d,R).

Proof. The first statement follows from lifting an isometry between F and F ′ to an
isometry of Rd. Thus, if π and π′ are isomorphic, then F and F ′ are isometric if and
only if there exists (B,w) ∈ Iso(Rd) such that (B,w)π (B,w)−1 = (A, v)π (A, v)−1,
i.e., (C, z) := (B,w)−1(A, v) ∈ NAff(Rd)(π). If F and F ′ are isometric, then clearly
A = BC, with B ∈ O(d) and C ∈ Nπ. Conversely, assume A = BC, with B ∈ O(d)
and C ∈ Nπ. By definition, there exists z ∈ Rd such that (C, z) ∈ NAff(Rd)(π). Set

w = v − Bz, so that (A, v) = (B,w) (C, z). Clearly, (B,w)−1(A, v) ∈ NAff(Rd)(π),
so F and F ′ are isometric. �

We associate to each closed flat manifold F = Rd/π the closed cone

(4.2)
CF : =

{
A ∈ GL(d,R) : ABA−1 ∈ O(d) for all B ∈ r(π)

}
=
{
A ∈ GL(d,R) : AtA ∈ ZGL(d,R)

(
r(π)

)}
,

where At is the transpose of A. It is easy to verify that CF contains NGL(d,R)

(
r(π)

)
,

and if A ∈ CF , then (At)−1 ∈ CF . Moreover, left-multiplication defines an O(d)-
action on CF , and right-multiplication defines a NGL(d,R)

(
r(π)

)
-action on CF .

Given a Bieberbach group π ⊂ Iso(Rd), denote by hπ the flat metric on F =
Rd/π for which the covering map Rd → Rd/π is Riemannian, i.e., a local isometry.
The following characterization of the moduli spaceMflat(F ) can be found in [7, 42].

Proposition 4.2. For any flat metric h on F , there exists A ∈ CF and v ∈ Rd such
that h is isometric to hπ′ , where π′ = (A, v)π (A, v)−1 ⊂ Iso(Rd). Furthermore, hπ
is isometric to hπ′ if and only if A = BC, with B ∈ O(d) and C ∈ Nπ. Thus, the
moduli space of flat metrics on F is the double coset spaceMflat(F ) ∼= O(d)\CF /Nπ.

Proof. The flat metric h must be of the form hπ′ for some Bieberbach group π′ ⊂
Iso(Rd). Since Rd/π and Rd/π′ are both diffeomorphic to F , π and π′ must be
isomorphic. By the Bieberbach Theorems II, there exists A ∈ CF and v ∈ Rd such
that π′ = (A, v)π (A, v)−1. By Lemma 4.1, the metrics hπ and hπ′ are isometric if
and only if A = BC, with B ∈ O(d) and C ∈ Nπ, concluding the proof. �
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4.3. Collapse of flat manifolds. Given a Bieberbach group π ⊂ Iso(Rd), A ∈ CF
and v ∈ Rd, if π′ = (A, v)π (A, v)−1, then clearly Vol(F,hπ′) = det(A) Vol(F,hπ).
We exploit this fact together with the above facts aboutMflat(F ) to show that every
closed flat manifold (of dimension ≥ 2) admits a 1-parameter family of collapsing
flat metrics; which implies it can be squeezed just as the square torus R2/Z2 ∼=
S1(1)× S1(1) can be squeezed through the family of flat tori S1(t)× S1(1/t), t > 0.

Proposition 4.3. Any closed flat manifold (F,h) has a real-analytic family ht of
flat metrics with h1 = h, Vol(F,ht) = Vol(F,h) and diam(F,ht)↗ +∞ as t↘ 0.

Proof. By a result of Hiss and Szczepański [26], the holonomy representation of any
closed flat manifold F = Rd/π is reducible. Let E ⊂ Rd be a nontrivial invariant
subspace and let E⊥ be its orthogonal complement, which is also invariant as the
representation is orthogonal. Denote by P and P⊥ the orthogonal projections of
Rd onto E and E⊥ respectively. It is easy to see that, for all t > 0, the linear maps

(4.3) At := tdimE−d · P + tdimE · P⊥ ∈ GL(d,R)

satisfy At ∈ CF and det(At) = 1. Thus, the metrics ht := hπt where πt =
(At, 0)π (At, 0)−1, i.e., the metrics ht ∈Mflat(F ) corresponding to the double coset
of At, have fixed volume and arbitrarily large diameter as t↘ 0 (or t↗ +∞). �

4.4. Eigenvalues of the Laplacian. All nonzero eigenvalues λj(F,ht) of the
Laplacian of the above collapsing family (F,ht) of flat manifolds are nonconstant
real-analytic functions of t. Indeed, there is a Riemannian covering Rd/t(πt) →
Rd/πt, where t(πt) = At(t(π)), and the spectrum of ∆ht is contained in the spec-
trum of the Laplacian of the flat torus Rd/t(πt). The dual lattice to t(πt) is given

by t(πt)
∗ =

(
(At)

t
)−1

(t(π)∗), and by [5, p. 146] the eigenvalues of the Laplacian of

Rd/t(πt) are 4π‖x‖2, with x ∈ t(πt)
∗, which are nonconstant polynomials in t and

1
t , proving the above claim.

Proposition 4.4. For any closed flat manifold F and for all ε > 0 and j ∈ N,
there exists a unit volume flat metric h on F such that λj(F,h) < ε.

Proof. By a classical estimate of Cheng [17, Cor. 2.2], since (F,h) has Ric ≥ 0 and
dimF = d, then

(4.4) λj(F,h) ≤ 2j2 d(d+ 4)

diam(F,h)2
.

By Proposition 4.3, there are unit volume flat metrics h on F for which the right-
hand side of the above is arbitrarily small, which concludes the proof. �

4.5. Bifurcation of solutions. Let M be a closed manifold and gt be a 1-parame-
ter family of unit volume constant scalar curvature metrics on M . We say that t∗
is a bifurcation instant for gt if there exist sequences {tq}q∈N converging to t∗ and
{φq}q∈N of smooth nonconstant positive functions on M such that:

(i) φq → 1 in the C2,α-topology;
(ii) gq := φq · gtq is a unit volume constant scalar curvature metric on M .

Applying standard variational bifurcation results to the Hilbert-Einstein func-
tional on conformal classes of metrics, one obtains the following criterion for bifur-
cation of solutions to the Yamabe problem, see for instance [18].
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Theorem 4.5. Let M be a closed manifold of dimension n ≥ 3 with a 1-parameter
family gt of unit volume metrics with constant scalar curvature scalgt . Let i(M, gt)

be the number of eigenvalues of ∆gt
, counted with multiplicity, that are <

scalgt
n−1 .

Assume:

(a)
scalgt
n−1 6∈ Spec(∆gt

) \ {0} for all t 6= t∗;

(b) i(M, gt∗−ε) 6= i(M, gt∗+ε) for some small ε > 0.

Then t∗ is a bifurcation instant for the family gt.

A discussion on the convergence of bifurcating branches of constant scalar curva-
ture metrics φq → 1 can be found in [35, Sec. 3]. As a consequence of Theorem 4.5,
we have the following criterion for bifurcation of products with flat manifolds:

Corollary 4.6. Let (M, g) be a closed unit volume Riemannian manifold with
positive constant scalar curvature scalg. Let F be a closed flat manifold and ht,
t ∈ [t∗ − ε, t∗ + ε], be a 1-parameter family of flat unit volume metrics on F . Set

(4.5) it := #
{

(j1, j2) : j1, j2 ≥ 0, λj1(M, g) + λj2(F,ht) <
scalg

dimM + dimF − 1

}
,

and assume:

(a) for all t 6= t∗ and all 0 ≤ j ≤ i(M, g)− 1,

(4.6)
scalg

dimM + dimF − 1
− λj(M, g) 6∈ Spec(∆ht);

(b) it∗−ε 6= it∗+ε for some small ε > 0.

Then t∗ is a bifurcation instant for the family of metrics g ⊕ ht on M × F .

Remark 4.7. Note that the bifurcating branch in Corollary 4.6 issuing from the
family of product metrics g⊕ht does not contain any other product metrics. Indeed,
two product metrics are conformal if and only if they are homothetic.

We are now establish the bifurcation result on closed product manifolds M × F
which lies in the core of the multiplicity result for M ×Rd in Theorem D.

Theorem 4.8. Let (F,h) be a closed flat manifold with unit volume. There exists a
real-analytic family ht, t ∈ (0,+∞), of unit volume flat metrics on F , with h1 = h,
such that, if (M, g) is a unit volume closed Riemannian manifold with constant
positive scalar curvature, there is a discrete countable set of bifurcation instants for
the family of metrics g ⊕ ht, on M × F .

Proof. The desired sequence of bifurcation instants is obtained by repeatedly ap-
plying Corollary 4.6. Let ht be the family of metrics on F given by Proposition 4.3.

First, we claim that for all % > 0, the only possible accumulation points of

D% =
{
t ∈ (0,+∞) : % ∈ Spec

(
∆g⊕ht

)}
are 0 and +∞. Indeed, the spectrum Spec

(
∆g⊕ht

)
is the set of eigenvalues

λj1(M, g) + λj2(F,ht), j1, j2 ≥ 0,

and the functions t 7→ λj(F,ht) are polynomials in t and 1
t . Thus, for all fixed %,

j1, and j2, the set of t’s for which λj1(M, g) +λj2(F,ht) = % is finite. Moreover, for
each compact interval [a, b] ⊂ (0,+∞), there are only finitely many pairs (j1, j2)
such that λj1(M, g)+λj2(F,ht) = % for some t ∈ [a, b]. Therefore, D%∩[a, b] is finite,



INFINITELY MANY SOLUTIONS TO THE NONCOMPACT YAMABE PROBLEM 13

proving the claim. Setting % =
scalg

dimM+dimF−1 , it follows that (4.6) in assumption

(a) of Corollary 4.6 holds for all t ∈ (0,+∞) outside a locally finite set.
Second, we claim that it ↗ +∞ as t↘ 0, where it is defined in (4.5). Setting

N0 := max
{
j ≥ 0 : λj(M, g) <

scalg
dimM + dimF − 1

}
,

it is easy to see that

(4.7) it ≥ #
{
j ≥ 0 : λj(F,ht) <

scalg
dimM + dimF − 1

− λN0(M, g)
}
.

Since diam(F,ht) becomes arbitrarily large as t↘ 0, we also have that

lim
t↘0

diam
(
M × F, g ⊕ ht

)
= lim
t↘0

√
diam(M, g)2 + diam(F,ht)2 = +∞.

Thus, by Cheng’s eigenvalue estimate (4.4), see Proposition 4.4, we find that the
right-hand side of (4.7) becomes unbounded as t↘ 0.

Therefore, Corollary 4.6 can be applied to an infinite sequence of sufficiently
small t∗ ∈ (0,+∞), yielding the desired sequence of bifurcation instants. �

Finally, Theorem D in the Introduction follows from Theorem 4.8 applied to the
closed manifold M × F , where F = Rd/π, which can be assumed to have unit
volume by to rescaling. Note that the pull-back to M × Rd of metrics on M × F
with constant scalar curvature that are conformal to g⊕ht are π-periodic solutions
to the Yamabe problem on

(
M ×Rd, g ⊕ gflat

)
.
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