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Abstract

We construct quadratic finite-dimensional Poisson algebras and their quantum versions
related to rank N and degree one vector bundles over elliptic curves with n marked points.
The algebras are parameterized by the moduli of curves. For N=2 and n=1 they coincide
with the Sklyanin algebras. We prove that the Poisson structure is compatible with the
Lie-Poisson structure on the direct sum of n copies of sl(N). The derivation is based on the
Poisson reduction from the canonical brackets on the affine space over the cotangent bundle
to the groups of automorphisms of vector bundles.
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1 Introduction

In this article we construct quadratic Poisson algebras (the classical Sklyanin-Feigin-Odesskii
algebras) based on the exchange relations with the Belavin-Drinfeld elliptic sl(/V,C) r-matrix
[2] and their quantum version related to the vertex elliptic matrix [1]. These algebras are
parameterized by the moduli space of complex structures of elliptic curves with n marked points
and the Planck constant living on curves in the quantum case. For SLs and n = 1 we come
to the original Sklyanin algebra [8]. The constructed algebras are particular case of general
construction [5], but in contrast of the generic case they are finitely generated. We describe
explicitly the Poisson brackets between the generators and the corresponding quadratic relations
in the quantum case in terms of quasi-periodic functions on the moduli space. In the classical
case the Poisson algebras have a form of quadratic algebras on the direct product of n copies
of GL(N,C) with a nontrivial mixing of the components. On the other hand, there exists the
standard linear Lie-Poisson structure on direct sum @7_; Lie(GL(N,C)). We prove that the
both Poisson structures are compatible.

The classical algebras define symmetries of the elliptic generalization of the Schlesinger and
the Garnier systems [9, 4].

In Section 2 we derive the classical vertex r-matrix and the GL(N, C)-valued Lax matrix
with n simple poles from the canonical brackets on some generalization of the cotangent bundle
of the GL(V, C) two-loop group by the Poisson reduction. In section 3 we present the explicit
form of the brackets and prove that they are compatible with the Lie-Poisson brackets. The
section 4 is devoted to the quantum case.
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06-01-92054-KE. The work of A.Z. was also supported by the ”"Dynasty” fund. A.L and A.Z.
are grateful to the Max Planck Institute of Mathematics at Bonn for the hospitality where this
work was prepared.



2 Classical exchange relations from GL(N,C) two-loop group

2.1 Degree one vector bundles over elliptic curves

Let ¥, = C/(Z + 7Z) be an elliptic curve, with the modular parameter 7, (Im7 > 0). Consider
a vector bundle Fy of a rank N over Y. It is described by its sections
s=(s1(z,2),...,8n(z,2)) with monodromies

sT(z+1,241)=Qs"(2,2), s (z+7,2+7)=As"(2,2),

where )
Q = diag(1,ep,... ,e%_l) , eN = exp %Z , A= e]_\[(z+§)

where Ej i1 is a matrix with a unity on the (j,j 4+ 1) place. Since det @ = %1 and det A=

A, A= (Ej,j+1) ,

iel_(z+§) the determinants of the transition matrices have the same quasi-periods as the Jacobi
theta-functions. The theta-functions have simple poles in the fundamental domain Y. Thereby,
the vector bundle En has degree one.

One can choose a holomorphic section (9s = 0) in the form

s(z):(ﬁ[ § ] (2 N7),....0 [ (1) } (2 N7)).

Define the transformations s” — f(z,%)s” by smooth maps f : ¥, — GL(N,C)
(f € QQ;S)(ET, GL(N,C))), with monodromies

flz+1,241)=Q 7 f(2,)Q, fz+1,2+7) =A"1f(z,2)A.

They preserve the degree of Ex and therefore generate the gauge group G = {f(z,2)} of En.
In general, the operators

di=0+A4A: Q00 Ey)— Q0. Ey)

define a complex structure of Ey. A section is holomorphic if d 4(s7) = 0. Here we assume that
A has the same monodromies as the sections of Ey

A+ 1,241)=Q 'A(2,5)Q, A(z+17+7) =A 1Az, 2)A. (2.1)

Two complex structures, defined by A and Af, are called equivalent if they are related by the
gauge transform

A = fYAf+ 191, feg. (2.2)

The quotient of the space of generic connections A = {A} with respect to the G-action is the
moduli space of holomorphic bundles Bun(Ey) = A/G.

Consider the two-loop group LL(GL(N,C)) represented by the space of sections
{9(2,2)} = Q(C?;g)(ZT, GL(N,C)) with the monodromies

gz+1,z+41) = Q_lg(z,i)Q, g(z+T1,Z24+7) = A_lg(z7 Z)A. (2.3)

The two-loop group LL(GL(N,C)) with these quasi-periodicity conditions is the group AutE y
of automorphisms of the degree 1 vector bundle E .



2.2 The Poisson structure on R

The space R = A x Q(O 0)(ET, GL(N,C)) = {(0 + A, g)} can be endowed with the symplectic
form )

w= | K(dAg~")Adg)+5 | Klg~'dg (g~ dg)), (2.4)

= o
where (, ) is the trace in the vector representation, and K is a section of the canonical bundle
over ¥, (K € Q10(%,)). We choose K = dz. The space R is the affine space over the cotangent
bundle to the two-loop group T*(LL(GL(N,C))).
The transformations (2.2) along with

g— fgf (2.5)

are canonical with respect to the symplectic form (2.4). The Hamiltonian vector fields V&,
(e € Lie(G)) on R (Vew = du™) are generated by the Hamiltonian

pr(e; A, g) = g K(e(gAg™ — dgg~' — A)). (2.6)

Remark 2.1 Let ® € Qg;g)(ZT, EndEy) be the Higgs field and g = exp(hK ~1®), where h € C.
In the limit h — 0
g~ K Y Id+hd+...). (2.7)

The form (2.4) in the first order becomes the canonical form on the Higgs bundle {(d 5, ®)}. The
symmetries defines the Hamiltonian pu*(e; A, ®) fz (0P +[A, @])). Thus, R is a deformation
of the Higgs bundle.

The inversion of (2.4) defines the Poisson structure on R. In terms of coordinates in the
basis (B.4)
A= zaeiﬁ) AaTy and g = Eaezg\%) gaTy it takes the form

K{Au(2,2), Ag(w,0)} = CoygAnipd(z —w, 2 — W) + 06(2 — w, 2 — 0)d0,—g, (2.8)
K{ga(22), Ag(w, @)} = eV gy 5(2,2)0(2 —w, 2 — ), (2.9)
{94(2,2), gp(w, w)} = 0. (2.10)

The brackets define the Poisson algebra O(R) with the symmetry group G.
Define a Poisson subalgebra Py, of O(R). It satisfies the following conditions:

1. The connection A takes values in the subalgebra sl(N,C), while the field g is still takes
value in GL(N, C);

2. Py is generated by holomorphic functionals over R with the test functions vanishing at
z=0.

The subalgebra Py_ has a center Z generated by det g(z,z). The symmetry group G° C G
of Py is generated by the smooth maps f : £, — SL(V,C).



2.3 The Poisson reduction

Our goal is calculating the reduced Poisson structure with respect to the G*-action. The standard
Poisson reduction P’id of Py, is described as follows. Let P%i is the invariant Poisson subalgebra
and

19" = {y*(e)F(A, ) | F(A,g) € Py, }
is the ideal in P%i generated by the functional p*(e) (2.6), where € € Lie(G®). The reduced
Poisson algebra P’”id is the factor algebra

Pyl =P /19 =Py //G". (2.11)

In our construction we use another ideal in Pgs It will be defined below.

First, calculate the brackets in the invariant subalgebra Pg Due to the monodromy condi-
tions (2. 1) the generic field A is gauge equivalent to the tr1v1a1 f~YAf + f~'0f = 0. Therefore

A= -af A A, (2.12)

Again, the monodromies of the gauge matrices (2.3) prevent to have nontrivial residual gauge
symmetries. Let f[A](z, Z) be a solution of (2.12). Consider the transformation of g by solutions
of (2.12)

L[Aa g](Z, 5) = f[A](Z7 2)9(27 E)f_l[A](z7 2) : (2'13)

The gauge invariant subalgebra Pgi is generated by the matrices L
Py = {U(4,9) = ¥(0,L)}
Proposition 2.1 The brackets on P%i take the form of the classical exchange relations
{L1(z,2), La(w,w)} = [r(z — w), L1(z,2) ® La(w,w)], (2.14)

where L1(z,z) = L(z,2) ® Id, Lo(w,w) = Id ® L(w,w), and r(z,w) is the classical Belavin-
Drinfeld elliptic r-matriz [2].

Proof.

The calculation of brackets in P%T is reduced to the calculation on shell (A = 0, f = Id) of
the Poisson brackets between the matrix elements of (2.13) by (2.8) - (2.10). In doing these
calculations we need only the expression

0falz,2)

Sl (2.15)

rap(z, 2,2, 2) =

The straightforward calculations of the brackets {L, L} performed in [3] lead to the desired
r-matrix form (2.14). )
Let us find the r-matrix. Due to (2.12) r is the Green function of the operator 0

Orap(z,2;2 ) = 6pyp00(2 — 2/, 2 = 7)), (2.16)
having the following quasi-periodicities
r(z+ 1,24+ 1) =(Q @ Id)r(z,2) (Q® Id),

r(z+7,2+7) =A@ Id)r(z2) (A®Id).



It follows from (2.16) that r, g is a meromorphic and singular on the diagonal

1
lim ro5(z,2") = ——To @ T0n+5.0 - (2.17)

zl—z z—z

Due to (A.9 ), (B.12 ), and (B.14 )

r(z,w) =r(z—w) = nga(z—w)Ta®T_a. (2.18)
It is the Belavin-Drinfeld classical r-matrix [2]. This r-matrix satisfies the classical Yang-Baxter
equation providing the Jacoby identity for the brackets (2.14). O
Remark 2.2 In the limit (2.7) the only non-trivial brackets (2.9) assume the form

{®n(2,2), Ag(w, w)} = 64,—d(2 — w,z — W)
and (2.14) is replaced by the linear brackets

{L1(z,2), Lo(w,w)} = [r(z —w),L(2,2) ® Id+ Id ® IdLa(w,w)] .
Let us fix a divisor of non-coincident points on .-
Dy, = (z1,...,2n), T # 2, T; € Xr.
Define the subalgebra Lie(D,,)(G*®) C Lie(G*)
Lie(D,)(G%) = {€ € Lie(G®) |e(x;,Z;) =0, xj € Dy} .

Consider the ideal I(D,,) generated by the functional

i, (&5 A g) = i, (& 1) = / (eDL(z.2)) (2.19)

T

where € belongs to Lie(G*(Dy,)). Since up, depends only on L, I(D;) C Pgi

Consider the quotient Poisson algebra P%i /I(Dy,)
Proposition 2.2 The reduced Poisson algebra
Pyl =Py /I(Dy), (2.20)
18 finitely generated
dim P4, =nN?.
The matriz L(z) in the classical exchange relations (the Lax matrix) takes the form
n . ~ ~ .
L= S()To + Z(S(J)El (Z — l‘j)T() + Lj) s Lj = Z Sgégpa(z — l‘j)Ta s (2.21)
j=1 o

where

> si=0, (2.22)

Yoz — xj) are defined by (B.12), and E1(z — x;) is the first Fisenstein series (A.2).



Proof
To prove it we analyze solutions of (2.19):

,u*Dn(s;L):/ (e0L(z,2)) =0. (2.23)

T

The solutions are meromorphic quasi-periodic maps having simple poles at the marked points.
Let L(z) =), La(2)T, be the expansion of L in the basis T,, of GL(N,C). It follows from (2.3)
that

Lo(z4+1) =€ La(2), Lo(z4+7)=ey"La(2), a=(a1,a2).

The functions ¢, (2 — ;) (B.12) have these monodromies (B.14) and simple poles at ;. They
form a n-dimensional basis in the space of quasi-periodic functions (B.24) with the poles at ;.
If a = (0,0) then Lo(z) is a double-periodic function with simple poles at x;. The basis in this
space is 1 and the Eisenstein functions E;(z — x;) with vanishing sum of their residues. Thus,
the space has dimension n. In this way we come to (2.21) and (2.22). O

As we mentioned above det g generates the Casimir functionals in P’”id. Thereby, the brackets

on P’;ff p, are degenerate. The function det L(2) is the generating function for the Casimir
elements C*(j). Since det L(z) is a double periodic function it can be expanded in the basis of
elliptic functions (A.6)

det L(z) = C° + Z CY(H)Er(z — 2) + C*(j)Ba(z — zj) + ... + ON(H)En(z — ;). (2.24)

Due to the condition
> (i) =0, (2.25)
the number of the independent Casimir is Nn. The generic symplectic leaf
Ri,N = Prer,Dn/{(Cu(]) = C(]),{O)) y M= ]-7 s 7N Jj = 17 s 7N} .

has dimension
dim(P? ) =nN(N —1). (2.26)

Note that it coincides with the sum of dimensions of n generic GL(N, C) coadjoint orbits.

3 The structure of the reduced Poisson space

3.1 Explicit form of quadratic brackets

Proposition 1.2 provides the reduced Poisson algebra Pgeg p, with the generators
{So, (55,8 ={S4} ,i=1,....,n)| > _S; =0} (3.1)
j=1

The brackets between generators were calculated in [4].



Proposition 3.1 The Poisson brackets on the space C™N? in terms of the generators (3.1) take
the form

{S0, S3}Y2 = {53, S5 }2 = {54, S}2=0," (3.2)
{SO) 52}2 = Z C(Oé,’}/) a ’yS’];E2 Z SJ-«,SQH wj) ) (33)
YF#o J#k
{6 Y2 = Cle. B)SoSeys + D, Clr.a—B)SE Sk fapy (3.4)
V#e,—h

+C(a, B)S§ Sk 5(Er(ct + B) — B1(a) — Ea(5))
—C(, 8) Y _[S5S?, pasp(an — ;) — SJSE, s By (g, — )]}

J#k

=2 C(v,a = B)S§—,Sh9p+ @k — 7))}
J#k

where £, g, Ea(&), E1(c) are defined by (B.23) and (B.10). For j # k
{8485 = D Clv.a—B)SiShiyey(z) —an) (3.5)
V;AOQ_IB
~C(a, B) (S5 spa s — a1) = SESL, o -slon — 25))

and '
SJ gk, — 22 C(v, ﬁ)‘s’] Sﬁ+ 907(3316 ) J#k, ‘
1% 55}z {—2Zm¢kz R o= SIS M S L

This algebra is an explicit particular form of general construction of quadratic Poisson alge-
bras [5]. For n =1 this algebra was calculated in [6] and for n = 1 and N = 2 it is the classical
Sklyanin algebra [8].

3.2 Twisting bundles

We need another but equivalent form of this algebra on C™V *. Consider the twisted bundle
EY = Aut(En)® L, where L is a trivial line bundle over X . The sections of E' are the sections
of Exn multiplied by 9(z +1)/9(z), (n € £;). Therefore, the transition functions of E’, are

ad(Q) for z — 241, exp(—2mm) - ad(A) for z — 2+ 7.
It follows from (B.13), (B.15) that solutions of (2.19) with these monodromies and simple poles
at the divisor
is

LnDn Z SOQOU(Z - 1:] TO + Z Sagoa 77(2 - x])T ? (37)
7=1

!The subscript index {, }» means the quadratic brackets.



where ¢, = ¢g,. The corresponding algebra P’;Td b, is defined, as above, by the classical

exchange relations
(L7 5 (&) L1 ()} = [r(z—w), L ; () ® LY (w)]. (3.8)
with the set of nIN? generators
ST = {8}, (a=(ar,a2) €ZQ, j=1,...,n).

The brackets between the generators can be extracted from (3.8) as before. We do not need
their explicit form because we prove immediately the equivalence of these two algebras. The
only thing we need in next Section is the brackets containing S¥ in the rhs (compare with (3.4)
and (3.5))

BES = Y Clna- M8 8,0, 39)
’Y;éOl,—/B

+C(a, B)SESE 5(Br( + B +1) — Er(&) — Ev(8) — Ei(n))
—C(a, ﬁ) Z[S(])Cgi_,_g@a-i—ﬁ,n(mk - 33]‘) - 58534-59077(3316 - 33])]}

7k
—2 Z C(v,a - ﬂ)gz—vglﬂg—m@@r%n(mk —z;)},
ik
where .
£ 5, =E1(7) — Bi(a — 6 —3) + Ei(@—5+n) — Ei(B+5+n), (3.10)
{ggn 315} = Z C(7> a — ﬂ)ggz—vglﬁf-l—'ygp%ﬁ(*rj - $k) (3-11)

’Y#av_ﬁ
~C(a, 8) (3554 ppan(as = w1) = S50, go-palan — ;) -

To prove the equivalence we choose for simplicity ; = 0 for some 3.

Proposition 3.2 Fiz two indices 1 < i,k < n (i # k). Define x, = —n and x; = &; for
j # k. Then Poisson algebras P’;fl’ p, and f”;d P are isomorphic. The corresponding canonical
transformations are o
SO_SO+Z El (Z;) + E1(n))S},
J#Z
5 SZ gp (z;
Sp=-) —2%-, Sk= +Z ] (3.12)
iz en() i © 77)
SIFk — 75(]1 , SiFk = 7551 :
on(Z5) “ ©n(T;)

Proof
The Lax operator L77 (3.7) after dividing on ¢, (z) acquires the same monodromies as L (2.21).
Consider the re31dues and the constant terms of these operators. First, we have:

LY [ion(z) = SpTo + En: §g%% +3° <§g pan(z —3j) | %’”(z)> T.| . (3.13)

j#i n 9077(*2) 9077( )




Applying (B.16), (B.17), and (B.18) we get

LY [ion(z) = SO+Z F(B1(E) + Ealn NS | - To
J#Z
Ei(z+n) znj S T+ZE S T
— L] : 0 1 c40
= en(T) por son(wj)

5 @)% S
+nga 7~Ta+zgpa(z+n)<gp~($‘]) + < )Ta

a,j i n(Z;) i en(@;)eal(n)  eal(n)
Note that there is a new pole at x;, = —n. Comparing with (2.21) we come to (3.12). O

3.3 Bihamiltonian structure

Introduce on the space C™V * the linear (Lie-Poisson) brackets. To this end consider the direct
sum of n copies of gl(N,C): g* =gl(N,C) & ... @ gl(N,C) with the brackets

{55, S5} = C(a, B)S,, 507 2 (3.14)
Remark 3.1 The Lie-Poisson brackets have the r-matriz form

{L1(2), La(w)} = [r(z = w), L1(2) + La(w)] ,
where T is same as for the quadratic brackets (2.18), and L = P Li(2) (2.21).

Two Poisson structures are called compatible (or, form Poisson pazr) if their linear combi-
nations are Poisson structures as well.

Proposition 3.3 The linear (3.14) and quadratic (3.2) - (3.6) Poisson brackets on the space
CnN* gre compatible.

Proof.

Choose a point zj € D,, and replace the variable 5’6“ by 5’6“ + A, where A € C is a number and
therefore it Poisson commutes with all elements of the quadratic Poisson algebra. Substitute
the new variable in (3.9) and (3.11). The change of variables does not spoil the Jacobi identity
and therefore we come to the following Poisson structure

{5,858} :={5,5}, + A\{S,5};.
Consider the linear brackets term.

{32’ ~,3}1 FlS 5+F2Sa+ﬁ7
(.55 = o5,
{S(])n Sé}l H2Sa+57
where up to the common multiplier C'(«, 3) the coefficients have the form

Py =parpn(zr), Fe=—-Ei(a)— El(ﬁu) — E1(n) + E1(6+ B+ ),

G = —pa(rj), G2 = —g(zL;), (3.16)
Hy = po,—p (k) s

where z; = x;, — x; The following Lemma completes the proof.

2The subscript index 1 means the linear brackets.



Lemma 3.1 The linear Poisson algebra (3.15) is equivalent to the direct sum of Lie-Poisson
algebras on ®]_,gl(N,C)
{th,t5} = Cla, )], 567F . (3.17)

Proof
Define . - '
SE = anth + batd, S) = Hot),

The brackets (3.15) are equivalent to (3.17) if

Qo3 = aa+5F2,
b = G, (3.18)
babﬂ = F1H2 + ba+5F2.

Let us solve these equations. The solution of the first equation can be found from (A.22). It
takes the form aq = —pq(n). Next prove that by, = G2 = —pq(xy;) satisfies the last relation.
With b, = —pa () it takes the form

@a(xkj)@ﬁ(xkj) = 90a+6,n(33kj)900,—n(33kj)+

+arp(@ry) (Er(@) + Bu(B) + Ex(m) = By (6 + G +1)) -

It follows from (A.20) that

PatB.n(Tki)P0,—n(Tkj) = Pats(Tkj) (El(& +B+n) + Er(—n) + Ey(wh;) — Er(a+ B+ »Tkj)) ;

so the last relation in (3.18) is an identity and thereby we come from (3.15) to (3.17). O

4 Quantum algebra

4.1 General case

In this section we consider quantization of quadratic Poisson algebra for the case n > 1. Let us
consider quantum R-matrix, having the following form:

R(z,w) = Z =T, @T ., (4.1)
aEZg\?)

where we put ¢(2) = pn.(2). Note, that in contrast with the classical r-matrix, there is an
additional term
Oh(z — w)oy ® op.

Quantum R-matrix satisfies the quantum Yang-Baxter equation:

R12(Z — w)ng(Z)Rgg (w) = Rgg(w)ng(Z)ng(Z — w) . (4.2)

The quantum Yang-Baxter equation allows us to define the associative algebra by the rela-
tion:

R(z — w)L}(2) L (w) = Ly(w)LY(2)R(z —w), (4.3)

The Lax operator in (4.3) has the following monodromies with respect to &

10



L7 (2) =en(—2)L"(z), L"(2)=L"z). (4.4)

So, we have to suppose that the variables S depend on A and z;. The new variables and the
Lax operator in (4.3) takes the following form:

Shew = 5300 (5)

LMz) =" (Sgsooh(wj)sog(z —2))To+ > Sioh()h(z — wj)Ta) = (4.5)

Jj=1 e

- Z Z Qoa ‘T] 90a j)Ta’

1 @)
7= aez}

Proposition 5.1: The relations in the associative algebra assume the form

A~ o cx (a— b
Z fh(a7 b7 C) . SZ+CSCJL—C<)0?+C($])@g—c('x])eN(—{_#) _I_

2
+ Z Z Pa— C SOb-l—c(m])SOa c(mk) (46)
¢ k#j
—b . _b
<Sg+cSk (+%) — 855, en(— %)) 0,
and:
P R cx(a—10 AL A cx(a—20
ZQOC —Tk Sob—i-c(mk)spa c(x]) <S£_CS§+CGN(—¥) - S{L_CS(JL_CGN(—F#)) =0
(4.7)
k#7,
where

fa,b,¢c) = Ey(c+h) — Ei(la—b—c+h)+Ey(a—c+h)— E(b+c+h)
and a,b,c € ZS\?).

Proof.
Let us consider the certain matrix element T, ® T},. For this put (4.5) and (4.1) in (4.3), we
get the following expressions:

Z Z gp?(z - w)‘PZ(z - xj)gof(w —xy) - S]Sb Pb (517k)80a(33j) IT, T 1y = (4.8)
7.k c,a,b

=D oz —w)pl(z — ) ef (w — ) - SESIop(ar) Pl () - TuTe @ TyT - .
7,k c,a,b

11



3 3 ehlemuw)ela e w—a) S8 el en (- LY

Gk cab

) Teta ®T—c—i—b = (4-9)

A A cx(a—10
= 3 3 e~ whel(z — a)elw — m) - Sl anehaen(+ =) 1o
7,k c,a,b

The functions of 1.h.s and r.h.s. are equal because their poles and quasi-periods coincide.
After changing the variables a — a — ¢, b — b+ ¢, we get for the coefficients in front of the
matrix element T, ® Tp:

Z SOC z = Qpa c( - wj)sol;}—l—c(w - mk)¢?+c(xk)902—c(xj)‘ (410)
(8 Shon (-G -5 8 en(+ G )

We have to consider two types of these expressions:
n I R
k 7& J: Z 900 Z = Qoa c( - mj)90b+c(w - wk)@b—i—c(xk)soa—c(xj)'

Ai oA cx(a—0> Al oA cx(a—0>
: <SCJL—CS§+CGN(_%) - SII)C—I—CS(JI—CeN(_'—#)) = 07

k=j: (4.11)
S (e — el o — )b ow — 25) — Gy oz = w)P (2 = 23)ehow — 2))

C
¢ X (a—0b)
2
We get second expression after changing ¢ — a — b — ¢. Taking the limits (z — z;, w — z;)
and (z — xj,w — ), as it has been already done in section three, we get the coefficients which
must be equal to zero. So we come to (4.6) and (4.7). O

'Sg—cgf+c§0?+c(xk)¢2—c(mj)eN(_ ) =0.

4.2 Quadratic algebra in GL(2,C) case

Let us consider the case N = 2 in more detail. In this case quantum R-matrix take the following
form:

3
= Z oMz — w)o, @ oq, (4.12)

where instead of T, we use the basis of sigma-matrices.

Proposition 5.2: The relations in the associative algebra assume the form
[Sngj]— = isaﬁwc%(jaﬁ aaﬂa’}’)[g']y'a Sé]-i—"‘ (4.13)

3 izagn e (W) G ks, 0,0) (85, 821+ — ehlasn) . ks, IS 8E)-)
k#j
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S
2o
~—~
=

. =
N
S
oot
—
<
S—

ci(j js . 8,7) = =
o

o . Js—Jo i
(99, 53] = ieapy 50, 5; . B, )95, S+ (4.14)

Ja

+ZZ€aﬂ7m ' <c%(j7kaavﬂav)D(avﬁ)[S'%?Sg]'f‘ - C%(],]{?,O[,IB,’Y)D(Q,"}/)[S,I;,Sé]+> )

Py
h h h h h I
L @), _ylxg)eslek) _py(mr)ep(;)
62(.77.770[7/677) - 902(33])908'(17]) ) 02(.77]%047/677) - 902(117])903(33] ) 02(.77]%047/677) - @Z(vf])@g’(vf]) )
R,
D) = (Falks = by = ' dhlaz) + i 2525 0, — 1) ) )
©0 (k)

e Oulgh@)
neu®) = = hta

)

and for k # j:

[Sé’gg]— = Z.EO‘IB'Y% (@g(x]k)cé(j,k,a,ﬂ,v)[ﬁ%,g(’fh - Soa(x]k)cg(‘%k7a7ﬂ,7)[§5,§é]+> s

(4.15)
h h A I
LG ks _ AEmeoln) o0 _ Aan)eb(a;)
03(]7 7a7ﬂ77) @Z(vf])@g(lﬁg)’ CS(]? 7047/677) @Z(l‘])gpg‘(ajk)7

(58, 881 = izapm it (wo(@m)cd (G, ks 8,185, S5+ — palwin) 3G ks @ B,)ISE, S5 )

(4.16)
N e () P () el (25)
(ki) = ERDIBED) s gy = @)
AEDED = et AR = G e

where
ky = E1(7 + h) — Er(5) — Ev(h),

J, = Ex(% + h) — Ea(h)

(see Appendix B),
.’L‘jk = ZEj — Tk

Proof.
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Put (4.5) in (4.3) in the case N = 2, check the balance in front of two type fixed matrix
elements 0, ® 0g and 0, ® 0 in left hand side (lhs) and right hand side (rhs). We fix these ele-
ments and compare the coefficients at the corresponding poles. We get the following expressions
for brackets:

50 G ey PIEO) o o
B Sl = oo el SO
Pi(asm)  ea@)eh@n) i o oh(n)  Pal@R)eBE) s g
+§ Flat0) ohienoita) oo B~ Pila 5,00 ahoyghiy oo S+ @17

Piasm) P @)eb@r) o o

h h
. 0 &j Gk . 0 k &g
+ig, S7. S5+ — igqa ST, 8204,
N 0 5,0) hlay)ghay) O T R 5 0] (el (ay) O
o ai o Ja—dy hE)eh(a) L
[S7, 52— =ieq . (8%, 57)++
0 I TP T e R
Y eb(zjk) ¢g(wk)[§j $ 4 pa(zin)  enlwr) Sk, §9]+ (4.18)
= Jo el Jo ph(xy) 0
—iEag 902(:17]'16) ) @g(mk%@g(%)[sﬂ Sk]+ +itag SOg(l’jk) ] SOP,(%)SOZ(M) [S,] Sk]+
R Ch . T Ja ekl T
and for k # j:
TN P QDZ o)) . .
[S(])nslﬁg]— - 90?1( ]k) ’ ;—L( k) g( ])[Sz"s%]—_‘_ (4'19)
vo(@jk) (@) eg(Tr)
h h h h . h h
. ol (zjk) oy (@R)en(@5)  an &j ) Spg(l“gk) o (@) 00 (Th) 5 ak
+igq . [S5,S7]+ — ieq . [S2,56])+ ,
Teh @) @@ T T Gl ) b)) T
o (o R Blw ) o

eb(zie)  Ph(z)ef (@)

ey Pl (@) @l (a5l () 0 64, — icus ol (k) . ol ()l ()

Yo eh(x)el(ay) Tob(aie) o)l (@)

It is possible to express all commutators by the anti-commutators. In fact for the brackets

[S%, S’g]_, (5%, SK]_ we have two additional equations (permutation j < k). Solving the system
of six equations we get (4.13)-(4.16). O

[3157 S'Jy]'i‘ :

4.3 Quantum Determinant

In this section we prove for GL(2,C) that the quantum determinant generates central elements
of the exchange algebra

A A A A

R12(Z1, Z2)L1 (Zl)LQ(ZQ) = LQ(ZQ)Ll(Zl)RlQ(Zl, 22) (4.21)

for R and L defined in (4.12) and (4.5).
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Let us start from the classical algebra (3.1)-(3.6). To prove in GL(N, C) case that det L(z)
generates the Casimir functions of the Poisson structure (3.1)-(3.6) consider each side of the
equality

{L1(2)...Ln(2),Lnt1(w)} = [L1(2) ... Ln(2)Lyy1(w), 71 n41 (2, w) + ...+ v vgi (2, w)]
N+1
as a linear operator acting on @ V;, where V; = CN are vector spaces, L; € EndV; and
i=1
N
ri € End(V;®Vy). The determinant det L(z) obviously appears on the subspace [ A VZ} QVNi1-
i=1
The r.h.s. on this subspace reduces to the following:

[det L(z) - Lyy1(w), Triri,N+1(z,w) + Tryry v (2, w)].

Here traces T'r; are taken over EndV; components. All of them vanish for the r-matrix (2.18).
End of the proof for the classical case.
In quantum case the determinant is replaced by the quantum determinant:

dgt = tr(P~L(z,h) ® L(z + 2h, b)),
where P~ is the projection into skewsymmetric part of the tensor product:
P‘a®b:%(a®b—b®a) .
Here we discuss only 2 x 2 case. The R-matrix

Ris(z,w) = ZS%Z— w)o, ® oq

satisfies the following important condition:

¥ (0)
2h) =4 P
Ri2(2, 2 + 2h) san’
and
1 3
P :Z<1®1—;aa®aa> .

Consider the product Li(z1)La(22)L3(w) € V&3,
It follows from the Yang-Baxter equation that

RisRi3Ro3L1LoLy = LyLoLy RisRi3Ros
Put 2z = 21 + 2h. Then
P,Ri3Ry3L1LoLy = LyLoLy PiyRi3Ras
The next statement is the most important one:
PyR13Ry3 ~ P, ® 13

It follows from direct calculations. For the simplicity one can use the following identity for
a, 3,7 ~1,2,3 up to the cyclic permutations:

—00(@)ps (& — 21) + P (x)po(x — 20) + (@) palz — 20) + @l (2)pp(z — 20) =0 (4.22)

A

Using also a simple fact T2 (Pﬁ[:ll:g) Tris ( Lo L L ) we come to the final result:

(Tr1s (Pali(z = 2m)La(2)) , Ly

15



4.4 Nonhomogeneous algebra and Reflection Equation

Consider the rank two case (N = 2) with four marked points n = 4. As an initial data we put
the marked points on z = 0 and the half-periods of >,

_ 0 T _1—1—7‘_ n _1_
o = ,$1—2—WQ,.ZU2— 2 = w1 WQ,$3—2—UJ1,
and assume that ‘ '
S)=080., (1=1,2,3), (4.23)

while SO = S, are arbitrary. This choice appears as a consequence of the reduction L(z)L(—z) =
1 x det L(z).

Let R~ be the quantum vertex R-matrix, that arises in the XYZ model. We introduce also
the matrix R™

3
RE(z,w) = Z 02 (z+w)o, ® oy . (4.24)
Define the quantum Lax operator
L(z) = S0¢"(2)o0 + Y (Saph(2) + Vaph(z — wa))oa .- (4.25)
Proposition 4.1 The Lax operator satisfies the quantum reflection equation
R™(z,w)L1(2)R* (z,w) Lo (w) = Ly(w)R (z,w) L1 ()R (2, w), (4.26)

if its components S, generate the associative algebra with relations:

[ﬁav 77ﬁ] = 07 [ﬁa, Sa] = 0, (4.27)
Z.[51075101]4- = [Sﬂag’yL (4.28)
54 Kg— Ky 5 4 I
[Sy,S0] = zﬁT[Sa, Sa)4 — 2ZF(VapaSg — U3p3Sa) 5 (4.29)
v 2l

where
Ky, =FEi(h+ &) — E1(h) — E1(a), pa=—exp(—2mad;a)p(a + h, —a).

The proof is based on the direct check. Details can be found in [7].
If all v, = 0 (4.27) — (4.29) the algebra coincides with the Sklyanin algebra. Therefore, the
algebra (4.27) — (4.29) is a three parametric deformation of the Sklyanin algebra.

Two elements X X
Cr=5+Y 52,
(7
Coy =Y S2Ku(Ko—Kp— K,) + 200pakeSa
(e}

belong to the center of the generalized Sklyanin algebra (4.27), (4.28). They are the coefficients
of the expansion of the quantum determinant
det = tr(P~L(z,h) ® L(z + 2k, h)) .
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5 Appendix

5.1 Appendix A. Elliptic functions.

We assume that ¢ = exp 27i7, where 7 is the modular parameter of the elliptic curve E.

The basic element is the theta function:

9(z|7) = g5 Z(—l)”e(%n(n +1)7T4nz) = (e=exp2m)
neZ

The Fisenstein functions
1
Ei(z|T) = 0, log 9(z|T), E1(z|T) ~ P 2m z,

where

is the Dedekind function.

1
Es(z|1) = —0.Eq(2|7) = 63 log¥(z|T), Ea(z|T) ~ 2 + 211 .

Relation to the Weierstrass functions
C(z,7) = E1(z,7) + 2m(7)z, (2, 7) = Ea(z,7) — 2m(7) .

The highest Eisenstein functions

Bi(e) = {00 E(e), (5>2),

The next important function is

I(u + 2)9'(0)

o0 2) = =5

¢(U, Z) = ¢(Z,U) ) ¢(—U,, _Z) = —¢(U, Z) :
It has a pole at z = 0 and

B(u,2) = 1+ Buw) + 2(BY ) — p(w) + ...

Oug(u,z) = d(u, 2)(E1(u + z) — Er(u)).
0.0(u,z) = d(u, z)(E1(u+ z) — Eq1(2)) .

limO In0,¢(u, z) = —Ea(u).
Heat equation
1
Orp(u, w) — %8u8w¢(u,w) =0.
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Quasi-periodicity

Iz+1)=—0(z), (z+7)=—q Te 2Y(2),
Ei(2+1)=FEi(z2), Ei(2+7)=E(2)—2mi,
Ey(z+1) = Ey(2), Ex(z+7)=Es(2),
d(u,z +1) = d(u,2), ¢u,z+71) =e 2™p(u, z).
Dud(u, 2z +1) = 0yo(u, 2),  Oud(u,z + 1) = e ™9y d(u, 2) — 2m(u, 2) .

The Fay three-section formula:

d(ur, 21)p(u2, 22) — G(u1 + ug, 21)P(u2, 22 — 21) — G(u1 + u2, 22)P(u1, 21 — 22) = 0.

From (A.11) and (A.19) we have:

(;5(11,1, Z)¢(UQ, Z) = <Z>(u1 + ug, Z)(El (ul) + El(u2) — El(ul + (75 + Z) + El (Z)) .
Particular cases of this formula are the functional equations
¢(U, Z)av(b(vv Z) - (,ZS(’U, Z)au(b(u? Z) = (E2(U) - E2('LL))¢(U + v, Z) )

P(u, 21)d(—u, 22) = ¢(u, 21 — 22)(=FE1(21) + E1(22) — Er(u) + Er(u+ 21 — 22)) =
= d(u, 21 — 22)(—E1(21) + E1(22) + Oudb(u, 22 — 21)),
¢(u7 2’)¢(—U7 Z) = EQ(Z) - E2(u) .

¢(Uv Z = w)¢(u1
¢(U1, Z)¢(U2, w)f(ula uz, ’U) )

where

f(u1,u2,v) = E1(v) — Ey(u1 —ug —v) + Ey(ug —v) — E1(ug + v).

One can rewrite the last function as

¥ (0)(ug ) ug)d(ug — ug + 2v)
Puy — v)¥(uz + v)P(ug — uy + v)d(v)

f(uy,ue,v) = —

—v,2)p(ug +v,w) — p(ug —ug — v,z — w)Pp(ug + v, 2)Pp(u; —v,w) =

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

Using (A.2), (A.4), (A.9) one can derive from (A.24) some important particular cases. One

d(v, 2 —w)Pp(—v, 2)p(u + v, w) — p(—u — v,z — w)p(u + v, 2)p(—v, w) =

¢(ur, 2)(Ez(u +v) — Ea(v)).

If ug — —v then (A.24) in the first non-trivial order take the form for u; = o, ugs = g3

¢(=0,z —w)Er(w)p(a + 6, 2) — ¢(a, z —w)E1(2)p(a + B, w) =
¢(a, 2)¢(0, w)(E1(a) + Er(B) — Er(a +0)) .
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of them corresponding to v = uy (or v = —us), is the Fay identity (A.19). Another particular
case comes from u; = 0 (or ug = u):

(A.27)

(A.28)



5.2 Appendix B. Lie algebra sl(N,C) and elliptic functions

Introduce the notation )
27

en(2) = exp(52)
and two matrices
Q = diag(en(1),...,en(m),..., 1) (B.1)
A:(5j7j+1, (jzl,,N,TH,OdN) (BQ)
Let B
) = (Z/NZo Z/NZ), 1)) =13\ (0,0) (B.3)

be the two-dimensional lattice of order N? and N2 — 1 correspondingly. The matrices Q% A%,
a = (a,az) € 25\2,) generate a basis in the group GL(N,C), while Q*A*?, a = (g, a9) € 25\2,)
generate a basis in the Lie algebra sl(IV,C). More exactly, we introduce the following basis in
GL(N,C). Consider the projective representation of 25\2,) in GL(N,C)

_N 4142\ ~ay pas
a—T, = 2m’eN( 5 QA (B.4)
N axb
TaTb = %GN(_T)TG‘Fb? (a X b= a1b2 — agbl) . (B5)

Here %eN(—“TXb) is a non-trivial two-cocycle in H2(Z§3),Z2N). The matrices T, o € 25\2,)

generate a basis in sl(N, C). It follows from (B.5) that
[TOHTﬁ] = C(O‘HB)Ta—i-ﬁ? (B.6)

where C(a, 8) = & sin £ (a x 3) are the structure constants of sl(N, C).
For N = 2 the basis T, is proportional to the basis of the Pauli matrices:

1
Tho = —03, Top = —01, Tiq) = —0s.
(1,0) 7T2037 (0,1) ﬂ_ZO-lJ (1,1) mUz
The Lie coalgebra g* = sl(/V, C) has the dual basis
* 2 y _ 2m B -
g :{SZE St} ot :WT‘”” (Tot?y =67 (B.7)

zQ
It follows from (B.6) that g* is a Poisson space with the linear brackets
{Sa, Sp} = C(a, B)Sa+p - (B.8)
The coadjoint action in these basises takes the form
ady, t7 = C(a, B)t°F (B.9)

Let ¥ = LN”T Then introduce the following constants on Z®):

o) =9 B = (), B = B, (B.10)
6r(2) = 9(3:2) (B.11)



0y (2) = en(122)d4(2)

Y1+ YoT

Prn(2) = en(122)(n + =57 2).

They have the following quasi-periodicities
py(z+1) =en(2)py(2), py(z+7)=en(=7)py(2),

Pyn(z+1) =en(12)pyn(2), ©yn(z+7)=en(=71 —n)pyy(2),

The important relations for these functions are

BB ) () + B ) + B 22) = e )
Paplzt —22) 1 R P—a(22) B
N Y R P A N e P A
Pan(z) _ Palz+1)
on(2) @a(n)

Another important relation in the case N = 2 is
k’yfh(’% a,O) = J’Y = E2(7 + h) - EQ(FL)7

where
ky = Ei(y+h) — E1(y) — E1(h),

We give a short comment of this formula. From (A.24),(A.25) we have:

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(Er(y+h) = E1(y) — E1(h)(Er(a+h) + E1 (=B +h) — Er(y+ h) — E1(h)) = Ea(y+h) — E2(h),

(B.20)

where we suppose a — 3 = «. The function at r.h.s. and the function at L.h.s. have the

coinciding poles (b = 0, = —7) and zeroes (h = —17v), so we come to the equality of these
functions.

Define the function
f1(2) = en(122)0udp(u, 2)lu=y = ©5(2)(E1(Y + 2) — E1(7)).-
It follows from (A.10) that
F1(2) = oy (2)(EL(T + 2) — E1(Y)) -

fop=E1(7) — E1(Gd— B —%) + Er(a —%) — B (6 — 7).

(see (A.25))
It follows from (A.7) that

oy(z+1) =en(2)py(2), @y(2+7)=en(—7)py(2).

fy(z+1) =en(12)fy(2), fy(z+7)=en(—7)fy(2) = 2mp,(2).
The modification of (A.24) is

(2 = 27)pr (2 — k) = oo — 2))(Ba(z — a4) — Bz — 7)) — ().
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(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)
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