The basic structure of polylogarithmic
functional equations.

by

Zdzistaw Wojtkowiak

This preprint is a preliminary version of
a chapter under the same title in the
book "Properties of Polylogarithms".

Max—Planck—Institut

fiir Mathematik
Gottfried—Claren—Strafle 26
5300 Bonn 3

Federal Republic of Germany

MPI/90 - 88






Non-Archimedean L-Functions

Associated with Siegel and Hilbert Modular Forms

by
A .A.Panchishkin
Max-Planck-Institut uﬁd Moskauer Staatsuniversitat

fiir Mathematik
Gottfried-Claren-Strafle 26
D-5300 Bonn 3

Mechanisch-Mathematische
Fakultit
119899 Moskau



The basic structure of polylogarithmic
functional equations.

Zdzistaw Wojtkowiak

1. Introduction.
The function log z satisfies the functional equation

logx + logy =log(x-y).

z
The dilogarithm Liy(z) : = J ﬁg_(;_:_z_l dz satisfies the following functional equation
3 A

Li, [1 fx . 1—__Ly] = Li, [1—;-'—)(] + Li, [1f—] — Lig(x) — Liy(y) —log(1 —x) log(1 — y)

y
(see [A]).
v . . ' F Lin_]_(z)
Let us set Liy(z) : =—og z , Li(z) : = og(1 —z) and Li(z):= I ~—dz for
0

n > 1. It was expected that functions Li n(z) will satisfy functional equations similar to
functional equations of log z and Liy(z) . In fact various functional equations of functions
Li (z) for small n were found. The basic reference is Lewin’s book (see [L]).

Our aim is to find some new functional equations satisfied by these functions and to give
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some general results about structures of these equations.

Before we shall formulate our results we shall make one observation concering polyloga-
rithms. The functions Li (z) are special case of Chen iterated intergrals. We recall their
definition. Let Wy Wy be one—forms on a smooth manifold M and let 4 be a smooth

path from x to z. Then we define by a recursive formula:

P P P

11
7 7 5

where 7t denotes the restriction 7| [0,t] .

Z Z
(Instead J we shall write also f or J J)
b X,7 X

Z
. . _ dz dz dz
It is clear that Lln(z) = J_z =g g
0

A rational function f: PY(€C) — PL(€) we shall usually write in the form

n n. m m,
f(z)=a.!_r(z—ai) v/ ]_r(z—bj) J

i=1 j=1

where a € C, n, and mj are positive integers and a b.i are complex numbers.

Definition 1.1. We say that f(z) is in an irreducible form if aia': bj for i=1,..,n and

=1..m.
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Definition 1.2. Let a € C . If f{z)—aza*'[ir(z—ck)rk/ ]Lr(z—bj)pj i3 an irre-

k=1 i=1
r
ducible form then we define a divisor f_I(a) by the formuls f_I(a) P = z e " Cp -
k=1

Now we shall formulate our main results.

n n, m m,
Theorem A. Let f(z)=al [ (z-a) v/ -I.—E(z_bj) 7 be ¢ map from PI{(E) to
i=1 1=
r

Pl((B) and let f_I(I) = 2 T Cp-
k=1

We have the following formula

1.8, Liy(f(z)) - Lig(f(z)) + log(1 - flz)) (log(f(z)) - log (f(z)) =

R NN B L
Eni.rk (L;e[ﬁ] —ng[ﬁ] +IOgai — cklogz_ai)+

1,k

' z - b. _ z - b, zZ- z—bj
_kaj-rk(Lze[——g-ck — J _Lz?‘[ﬂk — J +£0gbj — cklogz_bj)+
2,

[ 2 8y (% 6 T — bj z - e
_Z_ni'mj(mx?[_b_-“j ~ aJ —Lzz[—b———_ — ai] + log —— bjlogz—ai)+
1,7

z-b z2-by z2-bn2
- . 1 1| -1 2 ]

j<i’
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The following summation convention is used in the formula 1.3 and it will be used through

the whole chapter.

n r m—l m m r

L= 200 =2 2 =) =)

i,k i=lk=1 j<j’ j=1j'=j+1 j j=1i<i’}k i<i’ k=1
and so on for three or more indices.

One of the difficulties to deal with the formula 1.3 in Theorem A is that the functions
Lig(z) and logz are multivalued. For example for some values of Liy(z) the formula can
be satisfied while for others not. It is not clear at all which values of Liy(z) the reader can

choose.
However Theorem A is derived from the following formula which has no ambiguity at all.

First we formulate assumptions.

n n. m m,
1.4 Let f(z) =a] [(z- a,) I T T(z- bj) I be in an irreducible form and let
i=1 j=1

r

f_I(I) = 2 T - Let  X= PI{{D)\ {ai’”"an’bl’""bm’cl""cr‘m} and let
k=1 ’

Y= PI((B}\ {0,1,0} . Let 7y be a smooth pathin X from z to z. We asume that z

and z are different from ai,...,an,bl,...,bm,cj...,cﬂm .

Theorem A’. (integral form of the functional equation) Let us assume that 1.4 holds. Then

we have



y J J
z—a. zZ—a, z—b,

To get the expression from Theorem A we must calculate an integral J% , ;g where ¢
@

is a path from a to b. We have

=z dz _ J-— (log(1—2z)—log(1—a)) ;E = Li,(b)-Li,(a) + log(1~a)(log b-og a) .

-1’7z
‘4 4
Observe that log(l—-a) we could choose arbitrary, but when we fixed log(l—a) then

log(1 —z) is determined uniquely. Lin(a) can be chosen arbitrary, but Lig(b) is deter-
mined uniquely by Li,(a) and log(1-z) .

Now it is clear which values of Li, and log we must choose in the formula 1.1 to have an

equality.

Suppose that we have chosen such values of Li2 and log that we have no equality any
more. Then we can always add some expression containing logarithms and constants to the

right hand side so that once more we have an equality. This is due to the fact that different
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branches of Liz(z) and log z are given by Liy(z) + 2 xik log z and log z + 2 ik

where k €z.
This suggests a new formulation of Theorem A.

Theorem A’’. Let f(z) and f -1(1) be as in Theorem A. Then we have

L7 Liglfls) - Liglhte) = ] n- i (Liglfyle) - Liglfy(s))) +
LI

_ kaj. re [Lie(h 2)) - Liz(hjk(z))] - z nem; [Liz{gij{z)) - Lig(y, ](z))]
j, i3]
+ 1.d.t.(2)

where 1.d.t.(2) is a polynomial in logarithms and constants.

We shall show that from the formuia 1.3 one can get all functional eqﬁa.tions of the diloga-
rithm in one variable. Also we shall show that most known functional equations of the

dilogarithm one can get from 1.3 choosing suitably the function f(z) .

We have a similar formula for Li3(z) . In the introduction we state only a special case

when the function f(z) is a polynomial function.

r
n n,
Theorem B. Let f(z) =a | | (z-a) ' and let f“1(1)=2 Ty € - We have the
i=1 k=1
following formula



where Cor(a;) = —Liy(b)log(a/b) - é log(1 —b)(log(a/b))g.

We left to the reader the formulation of the integral form of Theorem B. Then one can also

fix values of Lig, Li2 and log for which one has an equality.

n n, m m.
Definition 1.5. Let f(z) =a] |(z—af-) 1T |(z—bj) I be a rational function in an
_ 1=1 j=1
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n m
irreducible form. We set deg f := maz( 2 n 2 m J) and we call this number the degree
i=1 j=1

of f.

Definition 1.6. Let n be a natural number.
ld.t.(n)(resp. Tdl.(n)) := p(cI,...,cr,LitI(gl(z)),...,Lit (gs(z)))
s

where P(Zg.., Ty qeens 9) i3 a polynomial with rational coefficients, ¢;= 2xi or Lik(aj)
where ajE C and k<n (resp. k<n) for j=1,.,r; gi(z} are rational functions on

PI(C) and t,<n for i=1,.3.

Observe that in Theorem A we expressed Lin(f(z) as a sum of Liy(g(z))’s where g(z)
are rational functions of degree one, of logarithmic terms and constants. The same holds for

Li3(f(z)) . This is not a general phenomena as we shall see in the next theorem.

Theorem €. Let f(z) be a rational function of degree k greater than 1. Let us assume that
f(z) is not a k—th power. Let n be a natural number greater than 3. Then there is no

functional equation of the form

N
Lig(f(z) =} m; Lig(fi(2)) +TdL[m)

1=1
where fi(z) are rational functions of degree 1 and n; (i = 1,...,N) are rational numbers.

While proving Theorems A and B we met the problem of expressing iterated integrals of



z

the form | 42 dz

—_— e
4 Z—&l z—an

gshows that this is usually impossible.

by classical polylogarithms. The next result related to Theorem €

Theorem D. Let a,, a, 6 o y be four different points in C .

z
a) The function N(z) = zfi ) zf: ) zfz
1 2 3

z

can be expressed by classical polyloga-

rithms.

b) Let L(z) = Jz =y zfzz zfzs zdfu There is no polynomial p(s,tl,...,tr) such

that R

P(2), iy (1 ()L (1)) = 0

where Link are classical polylogarithms (and logarithms) and f;(z) are rational functions.

The principal tools in our investigations are two observations.

1. Functions of the type of polylogarithms are horizontal sections of the canonical
unipotent connection on P (C)\{al, 3}

2. The functional equations of functions of the type of polylogarithms are consequences
of relations between maps induced by regular functions from PI(C)\several points

to PI(C)\several points on Lie algebras of fundamental groups.

We illustrate the second principal with few examples.
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Example 1. The maps f(;:) =x and g(x)=1-x from X = Pl(dl)\{O,l,m} into itself
induce opposite maps on Pzarl(x,x)/ P31rl(x,x) , therefore we have a functional equation

Liy(x) + Lig(1-x) = TdT(2) .

Example 2. The maps f(x) = x2, g(x) =x and h(x)=-—x from X = PI(C)\{O,I,—I,m}
to PI(C)\{O,I,m} satisfies

f* —2g* ""211* =0
on I'? :1-1()(,x)/1‘3 7,(X,x) , therefore there is a functional equation

Lig(x?) — 2 Liy(x) — 2 Liy(~x) = [T1.(2).
Example 3. Let f,(x)=x, fy(x)= li_x' , y(x) = % y T4(x) =% be maps from
X = PYE€)\{0,1,0} into itself. In
Hom [P3wl(X,x)/F4xi(X,x);P3xl(X,x)./IArl(X,x) + [V [U,V]]] , where U is a loop

around 0 and V is aloop around 1 we have

f1*=f4* and f1*+{2*+f3¢=0 .

Hence there are functional equations

Lig(x) = Lig(3) + [d%(3)

3

and
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Lig(x) + Lis(1=) + Lla(x—fl-) =[d1.(3) .
Example 4. Let X =PYC\{0,,0}, f(x)=x and g(x)=1/x.Let U be a loop
around 0 andlet V be a loop around 1. On the quotient T™x (X,x)/T" !z (Xx) + L,

where L is a subgroup of I‘nxl(X,x) generated by all these commutators which contain

V at least twice, we have
o= ()" g .
Therefore we have a functional equation
Li_(z) = (-1)*Li 1"(1 /z) + IdT.(n).
All these examples follow easily from the following theorem:
Theorem E. Let X = PI((E)\ {a1,...,a7,m} and Y=P1((D)\ {0,1,0} . Let U (resp.

V) be a loop around 0 (resp. 1)in Y . Let fpeakyy : X—— Y be regular maps from X

to Y andlet Ry be integers. There 13 a functional equation
nLi (f,(z)) + ... + nyli (Fa(z)) + Tdi(n)=0
if and only if

"Ifl' + ..+ anN* =0

in the Z—module Hom(I‘an(X,z)/I‘n+17rI(X,z) ) I‘nvrl{}’,y)/l‘""'jrl(}’,y) +L,) where

L, 13 o subgroup of T"x 1'(Y,y)/l"n+1 T (Y,y) generated by all commutators which contain
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V at least tuice and f‘ , 18 the map induced by j; on fundamental groups.
Theorem E has the following generalization.

Theorem F. Let X be a smooth quasi—projecive algebraic variety over C . Let f1,... fN be
regular maps from X to Y=P1((B)\{0,1,m} and let n,. 05 be integers. There i3 a
functional equation

n Li (f,(2) + ... + nylLi (fu(2) + TTL(n) = 0
if and only if
nfi, ot nd iy, =0
in the Z-module Hom(T"x (X,2)/T™ x (X,2); T™x (V) /f™ x (V) + L ).

Observe that the defintion of I.d.t.(n) should be modified in Theorem F. One requieries
that gi(z) in Definition 1.5 are regular functions from X to Y . This theorem gives an
interpretation of functional equations in several variables as well as functional equations of
polylogaﬁthms whose arguments are arbitrary algebraic functions. We shall not prove

Theorem E in this chapter. Its proof appears elsewhere.

Theorem E is our pricipal result. From this theorem we derived all our results about

functional equations of polylogarithms.

In this moment we should point out that D. Zagier obtained a very short and elegant proof

of the related result for higher Bloch—Wigner functions using a version of generalized Bloch
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homomorphisms (see [Z3] ).

This chapter is based on ideas in our preprint "A note on functional equations of the dilo-
garithm" (see[W1] and also [W2]). We would like to thank very much P. Deligne for his
comments on our manuscript under the same title, where he reinterpreted our results in
terms of Lie algebras of fundamental groups. He also showed us the connection from section
1in the special case of 03\{0,1} . We acknowledge the influence of the lecture of D. Zagier
(Bonn, April 1989, see also [Z1] and [Z2]). We acknowledge the influence of papers of
L.J. Rogers (see [Ro]), H.F. Sandham (see [S] ) and R.F. Coleman (see[C]). We would
like to thank very much J.L. Loday and Ch. Soulé who told us about functional equations
of polylogarithms. Whilst writing this chapter we were a visitor at Max—Planck—Institut
fir Mathematik in Bonn. We would like to thank very much to Prof. F. Hirzebruch for an
opportunity to visit Bonn. We would like to thank Y. André and H. Gangl for several use-

ful discussions and L. Lewin for correspondence.
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Canonical unipotent connection on Pl((D)\{al,...,an_I_l}.
Horizontal sections.

Easy lemmas about monodromy.

Functional equations.

Functional equations of polylogarithms.

N e T e W ®

Functional equations of lower—degree polylogarithms
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8. Generalized Bloch groups.

2. Canonical unipotent connection on Pl(ﬂ:)\{al,...,an +1} .

* *
Let X = Pl(tlJ)\{al,...,an +1} . Let A (X) be a differential, graded subalgebra of 0 (X)

generated by linear combinations with complex coefficients of one—forms z%:—-
1

*
i=1..n+1.1tis a trivial observation that (A'(X))" = H,(X,C) . The isomorphism is

given by the bilinear form
1
I : AL(X) ® H (X,0) — C

given by (w,”r)—’JW-
7

N
Let L(ry(X,x)):=1 im[ ® Ir (Xx)/M" 7 (Xx)) @ a:] be a Lie algebra associated
—‘n=1

N
with the lower central series of :rI(X,x) . We equipped L(:rl(X,x)) with a group law

given by the Baker—Hausdorff formula and a topology given by the inverse limite of finite
dimensional complex vector spaces. This topological group we denote by =(X). The Lie
algebra of x(X) is L(x,(Xx)).

We shall define a one—form wy on X with values in L(x,(X,x)) in the following way.

We have natural isomorphisms

2.1 Al(x) @ H, (x,€) » Al(X) ® (A1(X))" » Hom(A1(X) , A’(X))
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Definition 2.2. wy € AI(X) ® HI(X,C) i3 the one-form which corresponds to 2ri- id
under the isomorphisms 2.1. (see also [ D] 12.5.5).

We consider wy as an element of AI(X) ® L(r(X,x)) because of the identification
H,(X,0) # (ry(Xx)/T2x; (X,x)) 8 C.

Let A; bealoop around a; in X andlet X; betheimageof A; in H,(X,C).

Let us assume that an_}_1 = o then
n
_\ _dz
2.2.1. wy _z = ®X,
i=1
If 3 #o for i=1,..,n+1 then
n
dz dz
2.2.2. Wy = [ - ] @X..
X Z z—a; z—~an+1 1

Let 'C[[HI(X,CD)]] be an algebra of non—commutative, formal power series on

Hl(X,tD) . We shall denote it shortly by C[[X]] . Let I be an augmentation ideal of

C[[X]] . Then C[[X]] /I® is a finite dimensional, complex vector space,

C[{X]] = lim C[[X]]/I" and we equipped C[[X]] with a topology of an inverse
.

limite of finite dimensional, complex vector spaces. Let C[[X]] " bea group of invertible

elements in C[[X]] . From the discussion given above if follows that C[[X]]* is a

topological group, an inverse limit of finite dimensional, complex Lie groups. We shall

*
denote the group C[[X]] by P(X).
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The Lie algebra of Lie elements, possibly of infinite length, in C[[X]] is naturally iden-
tified with L(x (X,x)) . After this identification the exponential map

exp : 1{X) — P(X)

exp(w)=e" =1+ J1+ 57+ -

is defined. The exponential map is a continous monomorphism of topological groups, whose
image is a closed subgroup of P(X) . The inverse of exp is defined on the subgroup
exp{x(X)) C P(X) and we denote it by log .

Let Lie P(X) be a Lie algebra of P(X) . We identify T € H,(X;C) C L(x (X,X)) with
the tangent vector to P(X) in 1 given by t —— 1 + tT . After this identification the
one—form wy we shall consider as a one—form with values in Lie P(X) . We shall denote
it by BX . The homomorphism exp maps wy into Ex.

Let us consider a principal x{X)-bundle

X x #(X) — X

equipped with the integrable connection given by a one—form Wy and a principal

P(X)—bundle.
X x P(X) — X

equipped with the integrable connection given by a one—form Ux .
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Lemma 2.3. The morphism idx exp:Xx x(X)— Xx P(X) over idy maps
horizontal section with respect to w X into horizontal section with respect to w X

Proof. This is clear from the fact that exp maps wy into wy

It is clear that there is no need to distinguish between wy and wy , hence from now on

we shall denote both forms by wy -

3. Horizontal sections.

Let X =PY(®)\{x;,.x_ ;}.Let 7 beasmooth pathin X from x to z. We shall

Tn+1
denote by (z)ly(zix;7)) (resp. (z,Ax(zix,7))) or shortly by (z,1x(zx)) (resp.
(2,Ax(z;x))) the value at z of the horizontal section of the bundle X x r(X)— X
(resp. X x P(X) —— X) equipped with the connection form wy along the path 7 with

the initial condition lx(x;x;7) =0 (resp. ,\x(x;x, 7)=1).

Let us set

Wi =— I:ZE: _z-?:z ] i=1,..,n
i n+l

if ;,#oi=1..n+1.

If one ;=0 then we assume that X 41 =0 and we set
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Let us define

1

1 ™ z
Ax(el )"'sek )(Z) = J wski'"Jwekr",welr-':wsl
X, 7

where ¢; € {1,...,n} and w, Tepeats m,—times ,.., w_ Tepeats n —times.
1

k

Lemma 3.1 The application

T ™ s "k
X3 z— (21 +2Az(51 ylp ) (2) XEI Xek ) € X x P(X)

n

is horizontal with respect to the connection w Y= E - w; ® X'- and hence it coincides with
- i=1

the map z—— (2,A X(z;z)) . (The summation i3 over all noncommutative monomials in

variables XI,...X71 where Xi i3 the class in HI[X,(D) of a loop around o .)

Proof. Thisis a straightforward calculation of horizontal liftings.

Let X = Pl(d})\{xl,...,xn +1)} andlet Y= Pl(ﬂl)\{yl,-.-,ym+1} . Let

n n. m m. _
f(z) =a ] (z—ai) 1y [ ] (z—bj) J be a rational function. Let us assume that f
i=1 j=1
restricts to a regular map f: X —— Y . The map { induces

£ A ) — A" X,

Hl(f) : HI(X) - Hl(Y)
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and
fy 7 (Xx) — my(Y.{(x))
The maps H,(f) and f,, induce the following three maps
fo L(my(X,x)) — L{ry (Y1)
fe: n(x) — =(Y),
| ﬂ : P(X) — P(Y)..
In the next proposition G(X) is #(X) (resp. P(X)) and G(Y) is x(Y) (resp. 7(Y)).

Proposition 3.2. The map (ffx f J of principal fibre bundles

X x G(X)fif—*» Y x G(Y)
(1] (2)]
f ‘

X v Y

satisfies
- * -
(id @ fy) wy = (f ®id) wy, .

Proof. This is a direct verification for which one can use explicite formulas 2.2.1 and 2.2.2

for wy and Wy -
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Corollary 3.3. The map f x f, maps horizontal sections of the bundle (1) into horizontal
section of the bundle (2). This implies that we have the following equalities

3.3.1. fe(lx(zx,7)) = Ly({(2)f(x),{(7)
and
3.3.2. fe(Ax(zx,7)) = Ay (f(z):1(x),(7)) -

Proof. The corollary is an immediate consequence of Proposition 3.2.

4. Easy lemmas about monodromy.
Let X = PI(GJ)\{xl,...xn+1} .Let a bealoopin X based at x € X andlet 7 bea

. 1 . .
path from x to z . The function ly(zx):P (ﬂ?)\{xl,...xn+l} — 7(X) is a multi-
valued function. This means that in general ly(z;x,7 0 a) is different from Iy (zx,7) .
Let us set li(z;x,'y) = Ix(z;x,7 o a) . The action of a on lx(z;x) we denote in the
following way

a

a: lx(z;x) — lx(z;x)

and we shall call this action of a , the monodromy of the function lx(z;x) along a . .

We recall that x(X) = L(X,,..X ) where X, is the class of theloop A, around a, .

Lemma 4.1. The monodromy of the function IX(z;z) along the loop A, is given by the
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Jollowing formula
Ag
Iy (z3) = lX(z;z) - (- &ni X, + terms of degree 22).

Proof. The function ly(z;x) is the horizontal section of the principal x(X)-—bundle.
Hence its monodromy along any loop a € 7,(X,x) is given by the following formula
1@

x(@x) = Ix(2ix) - Iy (x;x,a) .

Observe that

n
Ix(zx) = 2 (—log(z—a, ) + log(x—a,))X, + terms of degree 2 2
k=1
if X1 =0 and
n
Iy (zx) = 2 (—log(z—a,) + log(z—a, +1) + log(x—a, ) — log(x—a +1))Xk + terms of
k=1

degree 2 2 if x; # o for k =1,2,...,n4+1 . This implies
that 1y (x;x,A, ) = — 27iX, -+ terms of degree 2 2.

Let. L be a free Lie algebra on generators XXy Then for any fixed ordering of ele-
ments x;,...,X, thereis a base of L consisting of basic Lie elements corresponding to this

ordering (see [MCS] ).

Let B = {e}; ¢ bea base of I™a(X)/I™x(X) =(r™r (Xx)/T™H 7 (Xx)) @ C
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*
given by basic Lie elements corresponding to the ordering X,,X,,..X . Let e bea
*
linear functional dual to g with respect to the base B _ . We shall consider e asa

*
polynomial function on #(X) . We are interested in the monodromy of ¢ (lx(z;x)) .
Corollary 4.2. Let e, ond € belong to B, . The monodromy of ei*(lx(z;z)) is trivial on

l"dvrl(X,:c) for d > m . The monodromy of ei'(IX(z,f)) on I‘mr(X,z)/l"m+11r(X,z) i3

given by the following formula

e;: e, (ly(zz) — ¢ (Iy(zz)) + (- 2xi)"6].
Proof. It follows from Lemma 4.1 that the monodromy of ly(z;x) on e, is given by
e : Iy (zix) — Iy (zx) + (- 21ri)m‘ei + terms of degree 2 m . This implies the corollary.
Corollary 4.3. The image of the homomorphism 7 ,(X,z) — x(X)/T"x(X) given by
T(Xz)3a—> IX(:c;z,a) € x(X)/T"x(X) is Zariski dense in T(X)/T"x(X) for each
n2 2.
Proof. Lemma 4.1 implies that the image of the composite homomorphism

7, (X,x) — #(X) — #(X)/T*x(X)

is Zariski dense in 11()'[)/1"2 x(X) . Hence it follows that for each n the image of the com-

posite homomorphism

71 (X;x) — #(X) — #(X)/T"x(X)
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is Zariski dense in #(X)/T"x(X) .

5. Functional equations.

In this section we shall present general results about functional equations. Let X be a
complex projective line minus several points. Let G(X) be x(X) or P(X) . Observe that
G(X) is an affine pro—algebraic group. Let Alg(G(X)) be an algebra of polynomial, com-
plex valued functions on G(X) .

Now we set X = PY(€)\{x},.x, |} and Y =P (O\{y}r ¥y, }-Let :X— Y
be a regular map. Let x € X and z € X andlet 4 beapathin X from x to z.0ur

principal tool to derive functional equations are equalities

3.31 - faly (7%, 7) = 1y (£(z);1(x),£(y))
and
3.3.2 ft/‘x(Z;X:')') = AY(f(z);f(x),f( 7) -

In fact these equalities are special cases of functional equations.

Theorem 5.1. Let fI""'fN :X—— Y be regular functions. Let 8’1,...8’N belong to
Alg(G(Y)) and let p(tl""’tn) be a polynomial in variables Loty -

i) Let G( )= (). There is a functional equation
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(1) p( & (A8 (2)if; (), (7))o B (g (£ ()i ()£ (1)) = 0
if and only if
(2) p( €, 0104, 6 0 fn,.) =0.

i) Let G()=P().I
p( ‘31 ° fl*v"’ gn ° fn*) =0

then

(o=}

B €L (gl (2)ify (R, (1)), 8 (Al (N (R0 (1)) =
Proof. Let us assume that we have (2). Corollary 3.3 implies that
ﬁ’i(fi,,(lx(z;x'y))) = ‘b’i(IY(fi(z);fi(x),fi(7))) .

Replacing ¥, (£«(1x(zx7))) by #,(Iy{f(2)if;(x),f;(7))) in the formula (2) we get t'he

functional equation (1). The same arguments show also the part ii).

Let us assume that we have a functional equation (1). It follows from Lemma 4.3 that the
set of values ly(x;x,7) for all closed loops 7 is Zariski dense in r(X)/T"x(X) forall n.
Vanishing of a regular function p(#¥ 1° fl"""" €,° fn,..) on a Zariski dense subset im-

plies that this regular function is the zero function.

Now we shall construct some elements of Alg(x(Y)) which will be particularly interesting
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for us. We recall that Lie(«,(Y,y)) is a free Lie algebra on generators Y,,..Y ~ where
each Y, is a class in xl(Y,y)/I‘zrl(Y,y) of a loop around y; . Let us choose a base of
Lie(r;(Y,y)) given by basic Lie elements corresponding to the ordering YooY, - Let
v € Lie(r,(Y,y)) be a basic Lic clement and let v  be a linear functional on

Lie( z-l(Y,y)) dual to v with respect to the base of basic Lie elements i.e.

* *
v € Hom(Lie(xl(Y,y));Z) . The linear functional v  we consider as an element of

Algx(Y) .
We set

*
£ (zxy) == v (ly(zx,7)) -
We shall also write % (z;x) instead of % (zx,7).

Corollary 5.2. Let fI""’fN" X —— Y be regqular functions, let Ry e intergers and
let Uy Uy B0 Lie(xI(Y,y}) be basic Lie elements of degree n not necessary different.

There 1s o functional equation

N
L 2, G50 =0

i=1
if and only if
N

2wy (1)) =0

1=1
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in Hom(l"narI(X,z}/[‘onI(X,z);Z) where
(1), : T (X2)/" x (X,2) — TP (V) /S (V) is induced by f,.

Proof. The corollary follows immediately from Theorem 5.1 if one observes that the
N *
condition 2 n(v; o(£)«) =0 in  Alga(X) s equivalent to the condition

i=1

N
Y n(v, o (£)) =0 in Hom(I (X,x)/I™+1x (Xx);Z) because of the identification
i=1

(T (X, /T r (X,%)) ® € ¥ TRr(X) /T () .

Corollary 5.3. Let b(X) be o base of Lie(x (X,z)) given by basic Lie elements. The
functions {.Zv(z;zo)| v € b(X)} are algebraically independent on X .

Proof. Let v v, Dbe different elements of b(X) . Let p(tl,...,tn) be a polynomial with

1
complex coefficients such that

( .Zvl(z;xo),...,.fvn(z;xo)) =0.

* *
It follows from Theorem 4.1 that p(v; ,.,v, ) =0 in Alg(x(X)) . The functions

* *
vy »-V, are linearly independent generators of the algebra Alg(x(X)) . Hence the poly-

nomial p(xl,...,xn) isequal to 0 .

Corollary 5.4. The functions {.Zv(z;zo)l v€ b(z)} are algebraically independent an any

open disc around Zg -

Proof. Assume that we have an identity p( .L/v (z;xo),...,.fv (z;xo)) =0 on a small disc
1 n .



around Xq - Then by the analytic continuation we have such an equality along any path.
Hence Corollary 5.3 implies that the polynomial p(xl,...,xn) is identically equal to zero.

6. Functional equations of polylogarithms.

Now we shall restrict our attention to polylogarithms. The following assumptions will be
used through the whole section 8o we extract them at very beginning.

6.1. Let X =P'(C)\{z,,.. andlet Y =P C)\{0,1,0} . Let

zn+1}
fj""’fN"X__' Y be regular functions and let Ny By be integers. Let z aend z

belong to X and let 7 be a smooth pathin X from z to 2.

6.2. Let U and V beloopsin Y in a clock—wise direction around points 0 and I
respectively. We consider U and V as elements of the Lie algebra Lie(rI(Y,y)) . Let us
set ep:=U, e :=V, eg:=[VU] , e :=[e, U] for n22. Let eﬂ'i be a linear
functional on Lie(rI(Y,y)) dual to e, with respect to the base of Lie(arl(Y,y)) given by
basic Lie elements corresponding to the ordering U, V. We consider e:ﬂ'k as an element of

Algx(Y) .

#
Definition 6.3. Let € :P(Y)=C[[UV]] —— C associates to an element of P(Y)
its coefficients at UMV . We set

Li (53,7) := (~)" 1€ _(A yfz3,7)) .

We shall write also Li_(z;x) when we do not specify the path 7.
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z z

. n-l1 [ dz —dz —dz ~dz dz dz —dz

Observe that Lln(z;x,7) = (—1) z—i’ 5 g = J ST g g ) Where —=
x’7 x’7

appears n —1 times.
Immediate consequence of the results from section 5 is the following theorem.

Theorem 6.4. (functional equaiion of polylogarithms; integral form and abstract form)

Assume 6.1 and 6.2. Then we have:

i) There is a functional equation

N
(g Y M2, (it (1) =0
i=1

if and only if one of the following equivalent conditions is satisfied.
N .

* - n n+1
("I) z n.e. © (f,')* =0 in the group Hom(T'"x (X,z)/I xI{X,x);Z) ;
i=1

N
*
(“2) z n e, o(f,.)*,—.o in the group
i=1

Hom(Tx (X,2)/0"  x (X,2) + [P¥x (X,2) PP (X2)] N7 (X,2);2);

N
(*y z ni(f), = 0 in the group

1=1
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Hom(T"x (X,2)/0" ' (X.2) ; D (V) O™ x (V) + L)

waere L isa subgroup of I"nJrI( Y,y) generated by all commutators which contain V at

lcast twice.
N
HoIf (+) Y n;8,0(f), =0 in Alg(P(X)) then there is o functional equation
i=1
_ N
(¢5) Y n Li (f(z); fi(z), f(1) = 0.
=1 -

The formulas (*;) and (*4) are integral forms of functional equations whilst the formu-

las (*1), (%), (*3) and (*s) are abstract forms of functional equations.
Proof. It follows from Corollary 5.2 that (*p) is equivalent to (*,) . Conditions (*,),
(*.) and (*j) are evidently equivalent. Theorem 5.1 implies that the condition (*,)

implies the condition (*;) .

Now we shall show that the function .7, (z;x) can be expressed by classical polyloga-
n

rithms.
Lemma 6.5. We have
i) Li (zz) = Li, (2) - Li (z) +l.d.t.(n).

i), (53) - Li (n3) = Ld.t.(n).
n
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Proof. The point i) is a direct calculation. Hence it rests to show ii). We recall that a hori-
zoutal section of the bundle Y P(Y)— Y is Ay{zx) while a horizontal section of
the bundle Y x x(Y) — Y is ly{z;x) . It follows from Lemma 2.6 that

exp lY(z;x) = AY(z;x) . The coefficient of exp lY(z;x) at UMV is equal to

§

141 _1o+l zdz k—l
(1)t .2’ (zx) +k§2(—k-’— [l?] <, _k+2(zx)+

d

L

b ([ (]

On the other side the coefficient of Ay/(z;x) at U™V is equal to (-1)" Li, +1(z;x) . Com-
paring these two coefficients it follows by induction and Lemma 6.5 that
.i’en(z;x) —Li (z,x) =1d.t.(n).

Now we can show the following corollary of Theorem 6.4.
Corollary 6.6. Assume 6.1 and 6.2. Then the following conditions are equivalent:

i) there is a functional equation
N
Y ni(Li (f(z) - Li, (fi(z)) + Ldt.(n) = 0;

i=1

i) there is a functional equation
N
Y n Li (f(z) +TdE(n) = 0;

1=]
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N
i) ) nf), =0

1=1
in the group Ham(["ner(X,z)/l"n"'IarI(X,z) ; Hom(l"n:'J(Y,y)/l"n"'Ixi(Y,y) +L).

Proof. It follows from Lemma 6.5 that % e, (§(z):f(x).5(7)) = Li (f;(2)) — Li_(£(x))
+ 1.d.t.(n) . Substituting these expressions for %, (f L(2)if;(x),£(7)) in the formula *o)

from Theorem 6.4 we get

N
2 (Li (£(z) —Li (£(x))) + Ld.t.(n) =0 . Hence iii) implies ii). Observe that
i=1

Li_(f(x)) + 1.d-t.(n) = [[d:t:(n) . Hence i) implies ii).

Assume that ii) is satisfied. Then it follows from Lemma 6.5 and Proposition 6.6 that
N

Y 0, (E(@)if(x)E(7) +[dE(n) =0 for some choice of Idt(n)

i=1 1

7€ Fnarl(X,x)/I‘n'l'lrl(X,x) . Observe that the monodromy of 1.d.t.(n) on f‘nxl(Y,y)

is trivial. This follows immediately from Corollary 4.2 and Lemma 6.5. Hence the value

z .Z (f (x),fi('r)) = ¢ where ¢ i a constant which does not depend on 7. Let

N
*
4 =2 n;e, ©(f)« . Then #(ly(xx,7))—c=0 for each 7€ I"n:rl(x,x) . Hence
i=1
#—c vanishes on a Zariski dense subste of l"nr(X)/l"n"'lr(X) . This implies that

#—c = 0. Evaluating #—c on a constant loop at x weget ¢ =0. Hence ¥=0.

Observe that we have just proved Theorem E.
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Now we shall prove some general results about functional equations of polylogarithms. In
functional equations from Theorem 6.4 and Corollary 6.6 coefficients n, were integers.
One can ask whether they cannot be arbitrary complex numbers. We have the following

result in this direction.

Corollary 6.7. Ifthere is a functional equation of the form

N
(+) Y aLi (f(z) + TdE(n) = 0

i=1

then there are rational numbers ¢ Oy not all equal zero such that

N
Y eLi (fi(z) +TdE(n) =0
1=]
N *
Proof. The equation (*) is equivalent to the relation 2 a;e o(f)e=0 in
' i=1

x
Hom(I‘nrl(X,x)/Fn+1xl(X,x);(Il) - The functionals e o (f)+ belong to the Q-vector
space Hom([‘nrl(X,x) /Fn+11rl(X,x);Q) . Therefore if there is a non—trivial relation of the

N
form 2 a en* ° (fi)* =0 with o, €C , then there is also a non—trivial
i=l1
N . _
relation 2 c;e, ©(f)x =0 with ¢, € Q. Hence the corollary follows from Theorem 6.4.
i=1 '

Compare this result with a result in [B]. In our corollary one would like to replace

functions f,(z),...,fy(z) by algebraic numbers ay,...ap andto take a; in Q.



—-33 -

One would like to get new functional equations from the old one. This is possible as we see
from the next result, though unfortunately from functional equations of Lin(z) we only
get functional equations of Lin—l(z) . We do not know any method which allows to pass
from Li () to Lin+1(z) .

Definition 6.8. Let f(z) be a rational function. We denote by Vz_a( f(z)) the valuation of
f(z) at (z-4a).

(f(z)

v
Observe that f(z) =T | (z—a) 28
ael

Lemma 6.9. Let f1,... fN : X—— Y be regular functions. Assume that

N

2 n.e "o (f) =0 in HomT"x (Xz)/l"n+11r (X,z);Z) . Let a e, be complez
in i)at ) A F A 1%k P

1=1

~numbersand let n —k2 2.

Then
N
,21"1" (Vz-ai(]:i(z))' Vz-az(fi(z)) Tt Vz—ak{fi(z))' €p—k° (fg)* = 0
1=

in Hom@T™ *x (X,2) 0" ¥ 7 (x2):2) .

Proof. This is an easy observation if one writes a map (f,)« in terms of a base given by

basic Lie elements.

Observe that Lemma 6.9 allows to get functional equations of Li, (2 <k <n) if we have
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a functional equation of Li11 . This follows from Theorem 6.4 or Corollary 6.7. Observe

that the number of functional equations of Li, grows when k becomes smaller.

Now we shall show that certain functional equations are impossible.

n n, _m m.
Proof of Theorem €. Let f(z) =a ] | (z— a;) 1T T(- bj) 1.
i=1 j=1

It follows from Example 4 in section 1 that we can assume that a, # 2, .Let c€EC be
such that f(c) =1 with the multiplicity r. We consider { as a regular map

£:X =P\ V)Vt (o) Uo} — Y = PLC)\{0,1,0} . (Warning:
here f _1(*) is the inverse image of *.) We choose a base of HI(X) given by loops around
missing points except o . Let Ai be a loop around a, and let € be a loop around ¢ .
Let us set ay:= [CA(] ,a :=[a _;,A.] and By:=[[CA[]A] ., B =

(8 n—l'A2] . The only maps of degree one which induce something non—trivial on a  and

5 @) 28, C—d; 4 b(z) z—a; C—d, For th .
are g(z) = -—= and h(z) = - —=_ For these maps we have
n z—3; C—aq 21—, C-a;

Belay) =—e g#(Bn) =€

and

he(a,) = (-1)" e, hu(B) = (-1)" e,
in the group

(*) Hom(PHarl(X,x)/Fn+1rl(X,x);Z) ; l"n:rl(Y,y)/I‘n+lrl(Y,y) +L).
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Observe that

N
fe = z qi(fi)*

where q, € Q and deg f =1 is impossible in the group (*). Therefore Corollary 6.6 im-

plies the theorem.
Closely related to Theorem C is the following result.

Theorem 6.10. Let ¢,a,..a, be n different points of C . Let

Zz

L(z) := zf;j , Zfzg reeey zfz . If n> 8 then there is no polynomial p(s'ti"“’tr) which

n

I

depends essentially on s such that p(L(z), Li, (fI(z)) ey Lip (£(2))) = 0 where Li,
1 r k

are classical polylogarithms and logarithms and j;(z} are rational function.

I

Proof. Let T = {0,l,w} andlet S=U fi_l(T) U {a;,....a ,w} . Observe that singula-
i=1

rities of the functions p(z) := p(E(z), Linl(fl(z)) yeees Linr(fr(z))) , L(z) and Lini(fi(z))

are contained in the set S. On X = Pl(ﬂl)\S these functions are analytic and multi-

valued. Let A, bea loop around a, in X . The monodromy of

Z
dz dz dz dz
Jl:z--al ’z-a.,z ? z—as’z—an

on the commutator a = [[A;,A,]], [A;,A,]] is equal to
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(21:1')4 up to sign. Hence the monodromy of L(z) on a is also non—trivial.

Now we must calculate the monodromy of Li_ (f (z)) on a . We consider the group G
k

®
of power series X + 2 annY with a multiplication given by

n=0

[+ [+)
4 4
(eax + z annY)(ea' X, z bl’IXnY) = (atal)X
n=0 n=0

] @®

' k
/ a n
T (b +b’+ [ y & bn_k] X0y .
n=0 ‘n=0

The monodromy of polylogarithms was calculated in [R] and it can be described in the
following way. '

Let Li(z) = el %82 X 1 ¥ (1) Li(z) X2y .
n=0

The monodromy of Li(z) along the loop around 0 is given by the multiplication on the

right hand side by e(_zﬁ)x and the monodromy along the loop around 1 is given by the
multiplication on the right hand side by 1—2aiY . Observe that for any four elements

a,bc,d in G wehave [[a,b] , [c,d]] =1. Hence the monodromy of Li_ (f,(z)) on a
k

is trivial. This implies p(z) #0 .

Observe that Theorem D point b is a particular case of Theorem 6.10. We left to the reader

to show point a of Theorem D.
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7. Functional equations of lower degree polylogarithms.

In this section we shall prove Theorem A. We shall give also several examples of functional

equations of lower—degree polylogarithms.

7.1.  Functional equations of the dilogarithm.

n B, m m,
Proof of Theorem A’. Let f(z)=a] |(z—a.i)l /T |(z—bj) J and let
i=1 j=1
I

-1 1
) = z ¢ ‘T - Let X=P (03)\{al,...an,bl,...,bm,cl,...,cr,m} and let
k=1 '

1 *
Y =P (C)\{0,1,0} . Let P(X)=C[[A;,.,A ,By,,B,C;--C]] where A, (resp.
Bj,resp. Ck) is the class in HI(X,CB) of a loop around a, (resp. bj,resp. €y ). Let
P(Y) = C[[U,V]] . Let 7 beasmooth pathin X fromx to z.

We have
fu(A; - C) =01, UV, f,.‘(Bj -Gy =- mry uv,
fa(A; - Bj) =1; m, Uv , f,..(B‘i . Bj) =—mm; Uv

We need maps of degree one from X to Y which induce the same maps on these pro-

ducts. Here there are three families of such maps:

f.

ik(z) = ck_-; y (fik)*(Ai ’ Ck) =U-V;
1
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z-a,
Bij{%) = by (g;)+(A; - B) =TV - V;
hjk(z) = é;ﬂ}: (hjk)*(Bj ’ Ck) =U-V;

Let 4, :P(Y) —— C be as in Definition 6.3. Let "bjj' : P(X) —— C be a coefficient at
B.i : Bj’ . We have the following identity

(*)ﬁzof*—an (fye — ) mym; % © (g - Zmrm (bgde+) Wy -

l,k : J)J

We shall calculate the expression 2 'quj;(,\x(z;x,'y)) .

7

3]

It follows from the formula

(see [Ch] 1.5.1) that z ¢ (Ax(z:x,7)) —:2-2 m; - m;y [ z—-_B-] [J%ﬁ—, ] . Evalu-
i’ K y !
ating the identity (*) on Ax(z;x,'y) and applying the equality 3.3.1 we get

J'w=2nirk Jw-—zn Jw—Zmrk J

f(r) i,k fik(ﬂ i,] 51] (7) ik Jk (7)

dz dz
+ 3 mmy ([ 25)(]5%7]
JsJ 7 7
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where w= dzl Sz Theorem A’ follows immediately from this equation.

Observe that Theorems A and A’’ are immediate corollaries of Theorem A’. This was

already observed in section 1.

Now we shall give an abstract from of the functional equation 1.3. We shall keep the no-

tation from 7.1.

Theorem 7.1.1. We have

7.1.2. f,= 2 nT (f,;k)¢ En m,. (gv) 2 mrk(
ik
in the group Hom(T’x ,(X,2)/M°x I(X,z), r%r Imy)/r‘%,(w).

Now we shall show that from the functional equation 1.3 choosing suitably a function f(z)

and a point x we can get functional equations known before.

Examples: Let f(z) = z" and x = 0. Then we get

7.13. Liy(z") = ¥ Liy(¢¥s
k=1

27

where £ =e n

Let f(z) = mﬁz@ and x = 0. Then we have
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-

114 Lip[e—fis ] = Li, [ﬁ-y] — Li [IT‘”] + 1.12[%] — Lig(z) -

~

Y;l] log(1-2) — 5 [103(1-5)] 2

logb 7

Let f(z) = (1—2-}3 and x = 0. Then we have
. = . . - . -1 .
715 L, [ Ly z] = Liy(y2) - Li, [Yy—l (l—z)] + Liy [Yy—] ~ Lig(2)

— log(1y) log(z-1) — 5 log?(1-2) .

Observe that the Abel equation from Section 1 follows from 7.1.4.

n ni m m.
Let f(z) =aT [(z—3) /T ] (z—bj) J . Then we have

i=1 j=1
n m
*) log f(z) = log a +.E' n, log(z—a,) —.2 m,; log(z—bj) .
i=1 i=1
N
Observe that any functional equation of log of the form z n, log fi(z) =0 where {(z)
i=1

are rational functions is a linear combination with rational coefficients of equations (*). For
the dilogarithm we have a similar situation. We shall formulate a theorem only for abstract

functional equations.

N
Theorem 7.1.6. Assume 6.1 and 6.2. Then any relation of the form 2 n; (ft-) ,=0 in
1=1
Hom(l"zwl(X,z)/l"S:rI(X,z) ; l"gzrl( Y,y)/f‘ng( Y,z)) is a linear combination of the re-
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' lgtions 7.1.2 for functions fz .
Proof. The theorem is an easy observation in linear algebra.
7.2. Functional equations of the trildga.rithm.

Theorem 7.2.1. (integral form of a functional equation). Let us assume that the condition 1.1
holds. Then we have |

ren i) ] (4 Giz) - (el amm))
1<i’,

+ Y ey [ HlgEn)) + Y nm [ HhEnn) - Hea) +
¢k 6,7,k _

- 4llglm1)) - Hlopamn)) + ;kmjmjf e [ B(@ Gm1) - G ma) +
<1,

-, 4,
| kajmj' % [.%{tjk(z;z,'y))] + | Z .ninif m; [-.%(u:. (z;2,7)) + .?l?(v:j(z;z,fy})] +
VY < ,)

3wy [~ Stofem )] + Ly (4l 5am) - 405 Gam)) -
L) J<) st



—492 -

z—6; z-6; c¢—a z—e, ¢.—b,;
i/ | i kg
4 (2) =37 i e:h(z) z—ay ck—-a ’f:kz) - c -a ! -'f:k{z) 5- ¢’

~b. b/
Wi(z) = —F t,k(z)—;_—a,p,,() —} (2) = —j; o) = :b%f:_],

z-a, b.-a., —-a.

(z) z—a v bj—a; ’ wu(z) T——; g ‘pjjz(z)

/ Z—a

ik (2) = _i_

. 4 3 4
Proof. One checks that in Hom(l"srl(x,x)/l" 7 (Xx) ; Tox (Y5)/T7x, (Y,y) + L)

there is the identity (abstract form of a functional equation)

7.2.3. fy = 2 nm, /1 [(d%,)* "'(e:],;)*] + z e L [( k) ]

1<i’ k ii’k

) mmyTy [(ggk)* ()« = (e +— () ] 2 ™5 Tk [(qi:’)*‘(‘j:;)*] +
i,jk j<i’ k

z mm; /1y [(jk ]+ z n.n /m, [—-(u )*+(v”)*] z-nlnlfm [(WIJ)*]

i’k i<i’,j "

Eme;n [‘p" -(W] )*] zmm/n (X e -

J
i<ji’ i 3’

The theorem follows from Theorem 6.1 i).

We shall not prove Theorem B. We indicate only a general scheme of a proof. First one

proves an analog B’ of Theorem B in the same way as we proved Theorem A’. Then one
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deduces Theorem B from B’ .

s e

Observe that the abstract form of the functional equation from Theorem B is a particular -

case oi_‘ 7.2.3.

For the trilogarithm we have an analog of Theorem 7.1.6.

N
Theorem 7.2.4. Assume 6.1 and 6.2. Then any relation of the form 2 n ( f'-) ,=0 in
1=1
Hom(I“SII(X,z)/F“xI(X,z} ; I"SarI(Y,y)/f‘JrI(Y,y) + LS) is a linear combinations of the
relations 7.2.8 for functions j; .

Proof. The theorem is once more an easy observation in linear algebra.

7.3.  The fourth—order polylogarithm.

We shall give an example of a functional equation of the fourth—order polylogarithm which

seems not to be reported in the literature.

Let fl(z)=-—(7b—:a—)§(z—a)(z—b) and fz(z)=n;§22ﬂ'§}57. Let ¢, ,c, be roots of the

equation f;(z)—1=0 . Observe that ¢, and ¢, are also roots of the equation

f5(z) =1 =0. Let us set

—a &P —a &P
8@ =% ¢  BE=% ’



h(2) = %I%af , hy(z) = :21_3 ,
ho=% ky(z) = Q'EE ,
()= , L(z) == ;L =2R.

Let X= PI(CD)\{a,b,cl,c?,m} and Y = Pl(ﬂi)\{o,l,m} . Each of the rational functions

described above determines a regular map from X to Y.

Theorem 7.3.1. (Abstract form of a functional equation) We have

(f1)¢ + (fg)* = S{gj)‘ + 3(92)¢ + 6(h1)‘ + 6(”'2); + S(kl)& + .S(Ic‘?)‘k
- 2(11)1 - 4(12)4' B 2(18}1

in the growp Hom(Tx (X,2)/0%x (X,2) ; T (Y)W (Y) + L))

Notice that this functional equation has less quadric terms then the Kummer functional
equation of the fourth—order polylogarithm.

8. Generalized Bloch groups.

Definition 8.1. Let K be a field. We set

BK):= U 2
fek\ {0,1}
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The group B(K) is by definition a free abelian group on elements of K\{0,1} . The
generator of B(K) corresponding to f € K\{0,1} , we shall denote by [f] .

We recall the Abel functional equation
Li, [1f—x - T-Ly] ~ Li, [ﬂ;] ~ Li, [1{—] + Lig(x) + Lig(y) = log(1—x) log(1-y) .
S. Bloch observed that the element
[ 151 - [ - (550 + (3] + [7) € B(C(x.)
belongs to the kernel of the homomorphism
* *
A: B(C(X:Y)) —C (XJ) AC (X’Y)

where M[f])=fA(1—1) and C (xy)AC (xy) is an exterior product of C (xy)
with itself considered as an abelian group (see [DS]).

The aim of this section is to generalize the phenomena observed by S. Bloch and to put in

in the picture described in the previous sections.

Let A be an abelian group and let E(A) be a free Lie algebra on A . Let
L’(A) = [E(A),E(A)] andlet L//(A) = [L/(A),L/(A)] . We set

Li(A) := £(A)/E ’(A) .

* *
Let K be a function field and let k be its field of constants. Let K and k be respec-
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* * *
tively its multiplicative groups. Let I(K :k ) be a Lie ideal in L(K ) generated by
*
brackets [... [fl...fi],[fi +1,...]...fn].§.] where at least one f isin k .

Let us set
* * ¥ %
A(K ) :=Li(K )/I(K :k).
For any n 2 2 we define a homomorphism
*

B : B(K) — (K )

by the following formula
B ([f]) = [...[f-111]..11]...] .

The main result of this section is the following theorem.

Theorem 8.2. Let X =P!(C\{a,..0_o} and Y=PC\(010} . Let
fl""'fNE C(z)* be reqular functions from X to Y and let kI""kN be integers. The
following conditions are equivalent:

N
i) the element 2 k;[f;] € B(C(z)) belongs to the kernel of the map
1=1

B, : B(C(z)) — Li(C(2)*) ;
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i) 2 ki(fi)c = (0 in the group
1=1

Hom(@Tx (X,2)/0" x (X,2) ;TP (V) A x (Yy) + L );

i13)  there is a functional equation

N
Y kLi (f(z) +Tdt(n)=0.
1=1
. n m
Proof. Let f€ C(z) and let f 1 zm a,f l(m) Emnﬂ n+_| and
- i=1 i=1

.
f _1(1) = 2 1.Cy - Observe that { defines a regular function from

k=1
oo} to Y. Let A, (resp. C, ) bealoopin § around

A

1
G)\{al,...an+m,c1,...c

a; (resp. ¢, ). Then Lie x(S,s) =L(A c.) is a free Lie algebra on

1A p 4 miCrreCr
Al, "’Cr . We choose a base of Lie arl(S,s) given by basic Lie elements corresponding to

the ordering A,.,A_, .C,,..,.C, . In the group Hom(I"x(5,8)/T"*1x (Ss),2) we

n+m V1
* *

have e ofy= Yrmm .mo ((CLADA; )AL ).) 4
i ,2.21.21 k 1. 'n-2 1 n—2
n92--2112 *

. 2 N ij+n'mimi1"" min—2( (A TN A)A, ) An—z),,,) :

i 9221421 ]

in

On the other side after the identification (z —a,) (resp. (z—c,)) with A, (resp. C, )
*x
in the Lie algebra A(C(z) ) we have
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B([1)= ) Zrkmimil-...m. (Aig ey _o)
k

i
. . N: n—2
1n_22...21121

((CopAA )y o) = lhigin ) (- (A ADA)-A;  IC)-)) +

n—2
2 ij+nmimi1...- m, " g(j'*'n’i’i1""in—2)("'(Aj+n’Ai)Ail)'"Ai _2)...) +
i o200 ] n .
n-2 1
i<n

) mym; . _11J(i,i1,...,in_l)(...(Ai,Ail)Aiz)...Ai )...) .

. . n—1
1n_12. . .211

n2i2i 1

This follows from the Jacobi identity and the fact that in the Lie algebra A (C(z)*) we
have (...(A,B)A;)..A )..)= ("'(A’B)Aa(l))"')Aa(n))"') where ¢ is any permutation
of n elements. The coefficients 7(...), &(...), #€(...) and ¥(...) do not depend on {. For

exa.nflple if i o> > > then T(k’i'il""’in—2) =(n-1)! and

*
Now from the formulas for e of, and B ([f]) and from Theorem 6.4 ((*;) and (*,)
are equivalent) it follows that the conditions i) and ii) are equivalent. By Corollary 6.6 ii)

and iii) are also equivalent.

Remark. The groups Li(K*) and .ﬁ(K*) are graded. The component in degree n we
denote by Lin(K*) and A n(K*) respectively. They are generated additively by brackets
of length n . D. Zagier in [Z3] considered the group (Symn_z(K*) ® (K* A K*)) ®Q.
He found a condition to have a functional equation of higher Bloch—Wigner functions in

terms of this group.
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Observe that there is an epimorphism ﬁth non—trivial kernel from
o % * * *
(Sym™ %K )®(K AK))®Q omto (Li(K))®Q and hence also onto
* * *
(4 (K ))®Q . This follows from the fact that in Li (K') and 4 (K ) we have

(-(AB)A)-Ay o)) = (~AB)A, ) As o)) forany o € En_z.

Let L (z) be the higher Bloch—Wigner function considered in [W3] and in [Z2],[Z3].
N
We would like to show that Bn[z ki[fi(z)]] —0 if and only if

1=

k; [Ln(fi(z)) _ Ln(fi(x))] =0.

Il ™12

i=1
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