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The basic structure ofpolylogarithmic

functional equations.

Zdzislaw Wojtkowiak

1. Introdnction.

The function log z satisfies the functional equation

log x + log y = log (x . y) .

z

T e dJogmum Li Iz): = jog (~- z) dz satisfies the following functional equation
o

(see [A]).

. jZ Li _l(z)
Let us set LiO(z): = -log Z I Li l (z) : = -log(l- z) and Lin(z): = n z dz for

o
n > 1 . It was expected that functions Lin(z) will satisfy functional equations similar to

functional equations of log z and Li2(z). In fact variOUB functional equations of functions

Lin(z) for small n were found. The basic reference is Lewin's book (see [L]).

Gur aim is to find same new functional equations satisfied by these functions and to give
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some general resu1ts about structures of these equationB.

Before we shall formulate our results we shall make one observation concering polyloga­

rithms. The functions Lin(z) are special case of ehen iterated intergrals. We recall their

definition. Let w1"",wn be one-forms on a smooth manifold M and let ; be a smooth

path from x to z. Then we define by a recursive fonnula:

where ;t denotes the restrietion 11 [O,t] .

(Instead f
;

z

we shall write also f
x,;

z

or f.)
x

z

It is clear that Lin(z) = f - Zd~ 1 ' ~Z , ... , ~z .

o

A rational function f: pl(<D) ----+ pl(<v) we shall usually writein the fonn

n n. m m.
f(z) = a TI (z - ai) I/TI (z - bj ) J

i=l j=l

where er E CD , n. and m. are positive integers and a· I b. are complex numbers.
1 J 1 J

Definition 1.1. We say that f(z) is in an ifTedu.cihle form if ai =1= bj for i = l, ... ,n and

j= 1, ... ,m .
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* r rk -l!-.- p.
Definition 1.2. Let a E~ . If f(z) - a =a TI (z - cJi / I I (z - bJ J is an ifTe-

k=l j=l
r

ducible form then we define a divisor f -1 (a) by tJu formula f -1 (a) : = l rk • ck .

~1

Now we shall fonnulate our main results.

n n· m m.
TheoremA. Let f(z)=aTl(z-aJ '/ D(z-bJ J beamapfrom p1(~) to

i=l J=l
r

pl((V) and let! -1 (1) = 1: rk · ck"

k==1

We have the foUowing formula

1.9. Li2(!(z)) - Li2(f(x)) + log(l - f(x)) (log(f(z)) - log (f(x)) =

[
z - b.~ [ x - b.~ x - ck Z - b.-l mj · rk (Li2 c - b. - Li2 c - t. + log b. - clogri) +

'k k k J k JJJ
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The following summation convention is used in the formula 1.3 and it will be used through

the whole chapter.

rmm-l m

l l Jl=l1l =}: l
j=lj'=j+l j j=l i<i/Jk i<i ' k=l

n r

l-l lJl
i ,k i=l k=l j<j I

and so on for three or more indices.

One of the difficulties to dea1 with the formula 1.3 in Theorem A is that the functions

Li2(z) and log z are multivalued. ,For example for some values of Li2(z) the formula can

be satisfied while for others not. It is not clear at all which values of Li2(z) the reader cau

choose.

However Theorem A is derived from the following formula which has no ambiguity at alle

First we formulate assumptions.

n n· m m·
1.4 Let f(z) = Q n(z - a~ ; / n (z - bj J be in an irreducible form and let

i=l j=l
r

f -1 (1) = l rk · ck . Let

k=l
y = p1 (CC) \ {O,l l lD} . Let i

and let

be a smooth path in X /rom x to z. We asume that z

Theorem A'. (integral form of the functional equation) Let us assume that 1.4 hold.s. Then

we haue
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1.9/ J ~~~, ~ =}: niork J ~~i, ~ -}: mr rk J ~~i, ~ -
f(1) i, k ~k(i) j, k hjk(7)

1\ m 2J dz dz
~ L j z-b . J z-b .

j 7 J J

z-a· z-a· z-b.
where fiJ;(z) = Ck-a~} 9iJ(Z) = b.-a~ and hik(Z) = Ck-bJ~ .

I J . I

To get the expression from Theorem A we must calculate an integral J:i ,~ where '{J

cp

is a path from a to b. We have

J:~ I ~z = J- (log(l-z)-1og(l-a)) ~ = Li2(b)-Li2(a) + log(l-a)(log b-1og a) .

cp cp

Observe thai log(l-a) we could choose arbitrary, but when we fixed log(l-a) then

log(1 - z) ia determined uniquely. Li2(a) can be chosen arbitrary J but Li2(b) ia deter­

mined uniquely by Li2(a) and 10g(1-z) .

Now it is dear which values of Li2 and log we must choose in the fonnula 1.1 to have an

equality.

Suppose that we have chosen such values of Li2 and log that we have no equality any

more. Then we can always add same expression containing logarithms and constants to the

right hand side so that once more we have an equality. This ia due to the fact that different
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branches of Li2(z) and log z are given by Li2(z) + 2 rik log z and log z + 2 rik

where k Ez .

This suggests a new fonnulation of Theorem A.

Theorem A" . Let f(z) and f -1 (1) be as in Theorem A. Then we haue

1.9" Liif(z}} - Liif(z}} = }: ß i ' rk [Liifillz} - Liifik(z}}] +
i, j

-}: mj · rk [Liihji/z}} - Liihji/z}}]-l: ß i ' mj [Lii9i/z)) - Lii9i/z))]
j,k i,;

+ l.d.t.(f)

where l.d.t.(f) is a polynomial in logarithms and constams.

We shall show that from the formula 1.3 one can get a.ll functional equations of the diloga­

rithm in one variable. Also we shall show that most known functional equations of the

dilogarithm one can get from 1.3 choosing suitably the function f(z) .

We have a similar fonnula ~or Li3(z). In the introduction we state only a special case

when the function f(z) is a polynomial function.

r
n n·

Theorem B. Let f(z) = er n (z - aJ' and let f -1 (1) = 1: rk' ck . We have the

i=l k=l

foUowing formula
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LiS[an (z - all] - Lis[an (x - all] +
i=l i=l

cor[a n (z - a/i
1 a n (X - all] -

i =1 i =1

[ [
z-a. Ck-a"J

- \ \ n· . n·, . rk Li
S

--'_. --'L L l , z-a·, ck-a.
i<i' k "

[
z-a· ck-a"J

L
· , ,- , ._-
9 z-ai' ck-ai

[ [
z-a'J [ z-a'J- 1: ni · ni , . rk Li9 C -~. - Li9 C -a~

., . k k , k ,
, J %,

[z-a· z -a'J]+ Gor --'.--'ck-ai J ck-ai

[
x-a· J

- Li --' +
9 z-ai'

[
z-a. z-a· J]Gor __' .__l
z-ai , J x-ai'

where Gor(ajb) = -Li2(b)log(ajb) - ~ log(l-b)(log(a/b))2 .

We left to the reader the formulation of the integral form of Theorem B. Then one can also

fix values of Li3, Li2 and log for which one has an equality.

n n· m m·
Definition 1.5. Let f(z) = a 1J(z-a~ I / P(Z-bJ J be a rational function in an
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n m

irreducible fonn. We set deg 1:= max( l ni, 2mJ and we caU this number the degree

i=l j=l

01 I·

Definition 1.6. Let n be a natural number.

l.d.t.(n)(resp. l.d.i.(n)) := p(c1,... ,cr Lit (gl(z)), ... ,Lit (g (z)))
1 s s

where p(xl' ...,xrYl' ... ,Yal is a polynomial with rational coefficients, cj = ~1ri or Lik(aJ

where aj E 4: and k < n (resp. k ~ n) for j = l, ... ,r,. gi(z) are rational functions on

p1 (f.) and ti < n lor i = l, ... ,s .

Observe that in Theorem A we expressed Li2(f(z) as a sum of Li2(g(z))'s where g(z)

are rational functions of degree one, of logarithmic terms and constants. The same holds for

Li3(f(z)) . This is not a general phenomena as we shall see in the next theorem.

Theorem (. Let f(z) be a rational function 01 degree k greater than 1. Let 1L3 assume that

f(z) is not a k-th power. Let n be a natural number greater than 9. Then there is no

functional equation 0f the form

N

Lin(I(z)) = l ni Lin(fi(z)) + l.d.t.(n) ,
i=l

where fi(z) are rational functions 01 degree 1 and ni (i = l, .."N) are rational numbers.

While proving Theorems A and B we met the problem of expressing iterated integrals cf
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z

the form f Z~ll""Z~n by classical polylogarithms. The nen result related to Theorem (

x

shows that this is usually impossible.

Theorem D. Let al , a2' a3, a.f. be Jour different poinLt in ( .
z

a) The function N(z) = f z~~ , z~~ 'z~~ can be erpressed by classical polylogar
% 1 2 3

rithms.

b)

that

z

Let L(z) = f~, ~, ~, ~. There is flO polynomial p(s,tr",trY such
x z-a1 z-a2 ~-a3 z-a.f.

11

P(L(Z), Li (!l(z)), ... ,Li (/. /z))) == 0n1 nr r'

where Li are classical polylogarithms (and logarithms) and I.(z) are rational functions.nk ..

The principal tools in our investigations are two observations.

1. FUßctiens of the type ef polylogarithms are horizontal sections ef the canenical

unipotent connection on pl(()\{ap... ,an} .

2. The functional equations of functions of the type of polylogarithms are consequences

of relations between maps induced by regular functions from pI( ce) \several points

to pl(()\several points on Lie algebras of fundamental groups.

We illustrate the second principal with few examples.
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Example 1. The maps fex) = x and g(x) =I-x from X = pl(()\{O,I,m} into itself

induce opposite maps on r2~I(X,x)/r3~1(X,x), therefore we have a functional equation

Example 2. The maps f(x) = x2, g(x) = x and h(x) = -x from X = pI(()\{O,l,-l,m}

to pl(()\{O,I,m} satisfies

on r 2
11"1(X,x)/r31r'I (X,x) , therefore there is a functional equation

Example 3. Let fi (x) = x, ~(x) = I:'x' f3(x) = x=I' f4(x) = ~

X = pl(()\{O,l,oo} ioto itself. In

[
3 4' 3 4 ]Horn r 1r'l(X,x)/r r 1(X,x);r ""l(X,x)/r r 1(X,x) + [V[U,V]] , where

around 0 and V is a loop around 1 we have

Hence there are functiooal equations

and

be maps from

U is a loop
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Example 4. Let X = p1(()\{b,l,m}, f(x) = x and g(x) = l/x. Let U be a loop

around 0 and let V be a loop around 1. On the quotient rnrl(X,x)/rn+lrl(X,x) + L ,

where L is a subgroup of r n ,.1(X,x) generated by all these commutators which contain

V at least twice, we have

( )n-l
f* = -1 g*.

Therefore we have a functional eqo~tion

All these examples follow easily flom the following theorem:

Theorem E. Let X = p1(tI;) \ {al' ... ,arm} and Y = p1(tI;) \ {O,1,m} . Let U (resp.

V) be a loop around 0 (reap. 1) in Y. Let /1""'/N: X ----+ Y be regular maps /rom X

to Y and let nl' ... ,nN beintegers. There is a junctional equation

i/ and o~y i/

in the Z-module Hom(rn.,.1(X,x);rn+1 ,.1(X, x) , r n-,;1(Y,y;/fn+l1r1(Y,y) + Lnl where

Ln is a subgroup 0/ rnrl(y,y;;rn+l.,.1(Y,y) generated by all commutators which contain
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V at least twice and /;,. is tJu map induced by li on fundamental groups.

Theorem E has the following generalization.

Theorem F. Let X be a smooth qu.a.si-projecive algebraic variet1l over CC . Let 11' ···1N be

regular maps /rom X to y= pl(CCJ\{O,l,m} and let nl'",nN be integers. There is a

functional equation

il and only il

Observe that the defintion of [([[(n) should be modified in Theorem F. One requieries

that ~(z) in Definition 1.5 are regular functioDB from X to Y. This theorem gives an

interpretation of functional equations in several variables as well as functional equations of

polylogarithms whose arguments are arbitrary algebraic functions. We shall not prove

Theorem E in this chapter. Hs proof appea.rs elsewhere.

Theorem E is our pricipal result. From this theorem we derived all our results about

functional equations of polylogarithms.

In this moment we should point out that D. Zagier obtained a very short and elegant proof

of the related result for higher Bloch-Wigner functions using aversion of generalized Bloch
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homomorphisIDB (see [Z3]).
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Plan of Chapter:

1. Introduction.

2. Canonical unipotent connection on p l (];)\{&l'... ,an+l }.

3. Horizontal sections.

4. Easy lemmas about monodromy.

5. Functional equations.

6. Functional equations of polylogarithms.

7. Functional equations of lower-degree polylogarithms
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8. Generalized Bloch groups.

1 \ * *Let X = P (an {&l'.oo'&n+l}' Let A (X) ·be a differential, graded subalgebra of n (X)

generated by linear combinations with complex coefficients of one-forms .J!!..z-a.
1

i = l,oo.n + 1 . It is a trivial observation that (A l(X))* =H1(X,~) . The isomorphism is

given by the bilinear form

given by (w, 1) -----> Jw.

1

Let L( 1"1(X,x)) : = 1 i m [ ~ rn~1(X,x)/rn+l~1(X,x)) ~ 0::) be a Lie algebra associated
f-- n=l

N

with the lower central series of 1"1(X,x) . We equipped L( 1"1(X,x)) with a group law

given by the Baker-Hausdorff formula and a topology given by the inverse limite of finite

dimens~onal complex vector spaces. This topological group we denote by ~X). The Lie

algebra of Il"{X) is L( 1"1 (X,x)) .

We shall define a one-form "'X on X with values in L( 1"1(X,x)) in the following way.

We have natural isomorphisms
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Definition 2.2. Wx E A1(X) • H1(X/~) is the one-form which corresponds to ~lri· id

under the isomorphisms ~.1. (see wo [D]' 12.5.5).

We consider Wx as an element of AI(X) • L( t'I (X,x)) because of the identification

BI(X,an ~ (IrI(x,x)/r
2

1r1(X,x)) • ~ .

Let Ai be a loop Mound ai in X and let Xi be the image of Ai in H1(X,~) .

Let us assume that an+I = CD then

2.2.1.

If ai =F CD for i = 1,... ,n +1 then

n

Wx = \ dz ~X..L z-a. 1
. 1 11=

2.2.2.

n

W = \ [ .J!!. - dz ] 8 X
X L z-a. z-a +1 i .

. 1 1 n
1=

Let a:: [[BI(X,Q;)]] be an algebra of non-rommutative, formal power series on

BI(X,d':) . We shall denote it shortly by ~ [[X]] . Let I be an augmentation ideal of

a; [[X]] . Then C [[X]] IIn is a finite dimensional, complex vector space,

0:: [[X]] = 1im C [[X]] IIn and we equipped C [[X]] with a topology of an inverse
- +--

*limite offinite dimensional, complex vector spaces. Let C [[X]] be a group of invertible

*elements in C [[X]] . From the discussion given above if follows that C [[X]] ia a

topological group, an inverse limit of finite dimensional, complex Lie groups. We shall

*denote the group C [[X]] by P(X) .
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The Lie algebra of Lie elements, pos~ibly of infinite length, in et [[X]] is naturally iden­

tified wi th L( Ir1(X,x)) . After tbis identification the exponential map

exp : r(X) -----+ P(X)

w w w2
exp(w) = e = 1 + TI + TI + ...

is defined. The exponential map ia a continous monomorphism of topological groups, whose

image is a closed snbgroup of P(X). The inverse of exp ia defined on the subgroup

exp( r(X)) CP(X) and we denote it by log.

Let Lie P(X) be a Lie algebra of P(X) . We identify T EH1(Xjet) CL( Ir1(X,X)) with

the tangent vector to P(X) in 1 given by t -----+ 1 + tT . After tbis identification the

one-form "'X we shall consider as a one-form with values in Lie P(X). We shall denote

it by "" X . The homomorphism exp mapa "'X into ""X'

Let us consider a principal ,,-{X)-bundle

x )( r(X) -----+ X

equipped with the integrable connection given by a one-form ""X' and a principal

P(X)-bundle.

X )( P(X) -----+ X

equipped with the integrable connection given by a one-form ""X'
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Lemma 2.3. The morphism id )( up : X)( r(X) ---+ X)( P(X) otler idX maps

horizontal section with respect to WX into horizontal section with respect to WA

Proof. This is clear !rom the fact that exp maps "'x into wx .

It is clear that there is no need to distinguish between "X and Wx J hence from now on

we shall denote both forms by wx .

3. Horizontal sections.

Let X = pl(~)\{xl""xn+1} . Let 7 be a smooth path in X from x to z. We shall

denote by (z,IX(zjX;i)) (resp. (z,.AX(Z;X,7))) or shortly by (z,IX(z;x)) (resp.

(z,.AX(z;x))) the value at z of the horizontal section of the bundle X)( r(X) ----+ X

(resp. X)( P(X) ----+ X) equipped with the connection form Wx along the path 7 with

the initial condition IX(xjXj1) = 0 (resp. AX(X;X,1) = 1) .

Let us set

w. : = - [.J!!.. - dz J i = 1,.",n
1 z-Xi z-xn+1

if Xi *mi = 1, ... ,n + 1 .

Hone Xi = (I) then we assume that xn+1 = m and we set

w. := -dz i = 1,. ",n .
1 z-x·

1



-18-

Let us define

z
n1 nk f

A (cl "",ck )(z):= w ,... ,w ,... ,w ""I W
x ck Ek cl EI

x,1

where ci E{l,... ,n} and Wc repeats nl-times ,... , w
E

repeats nk-times.
1 k

Lemma 3.1 The application

n1 nk n1 nkX3 z---. (z,1 + \ A (ct "",ck ) (z) X ..... X ) E Xx P(X)L x E1 ck

n

is horizontal with respect to the connection wX = l - Wi ~ Xi anti hence it coincides with

. i=1

the map z ----+ (z,J. X(z;x)) . (The summation is over all noncommutative monomials in

variables Xl'",Xn where Xi is the class in H1(X,a;) 0/ a loop around ai .)

Proof. This is a straightforward calculation of horizontal liftings.

Let X = pl(OJ)\{xl""'xn+ l } and let Y = pl(OJ)\{Yl'''''Ym+l} . Let
n n. m m.

f(z) = 0 n (z-ai) 1 / n (z-bj ) J be a rational function. Let us &Ssume that f

i=l j=l

restriets to a regular map f: X ----+ Y . The map f induces

* * *f : A (Y) ----+ A (X) ,
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and

f# : r 1(X,x) ---t r 1(Y,f(x)) .

The maps H1(f) and C# induce the following three maps

f. : L( r 1(X,x)) ---t L( r 1(Y,f(x))) ,

f. : ",x) ---t r(Y) J

f. : P(X) ---t P(Y) .

In the next proposition G(X) is r(X) (resp. P(X)) and G(Y) ia r(Y) (resp. ,,-{Y)) .

Proposition 3.2. The map (f,f)( f j 0 f principal /ibre bundles

f )( f.
X )( G(X) ---+ Y )( G(Y)

(1)1 (2)1
X __f~_-+I Y

sati3fies

•(id ~ f.) Wx = (f ~ id) Wy .

Prcof. This is a direct verification for which one can use explicite formulas 2.2.1 and 2.2.2

for Wx and Wy'
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Corollary 3.3. The map f)( f. maps horizontal sections of the bundle (1) into horizont"al

section of the bundle (2). This implies that we have the following equalities

3.3.1.

and

3.3.2.

Proof. The corollary ia an immedia.te consequence of Proposition 3.2.

4. Easy lemmas about monodromy.

Let X = p1(CC)\{xl""xn+1} . Let 0 be a loop i~ X based at x E X and let 1 be a

path from x to z. The function IX(z;x): p1(~)\{xl'."xn+1} --+ ~X) is a multi­

valued function. This means that in general lX(zjX,10 0) ia different !rom lX(z;X,1).

Let us set 1~(z;X,1):= IX(z;X,1 0 0) . The action of Q on IX(zjx) we denote in the

following way

and we shall call this action of 0 , the monodromy of the function IX(z;x) along o ..

We recall that if{X) = L(X1,···Xn) where Xk ia the class of the loop Ak aronnd ak .

Lemma 4.1. The monodromy 0/ the function lX(z;x) along the loop Ak is given by f.JJ,e
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foUowing jonnula

Proof. The function IX(zjx) is the horizontal section of the principal iT{X)-bundle.

Hence its monodromy along any loop a E 'Xl(X~) is given by the following formula

Observe that

n

IX(zjx) = l (-log(z-ak) + log(x-ak))Xk + terms of degree ~ 2

k=l

if xn+1 = CD and

n

IX(z;x) = l (-log(z-ak) + log(z-an+1) + log(x-ax) -log(x-an+ 1))Xk + terms of

k=l

degree ~ 2 if xk f CD for k = 1,2,oo.,n+1 . This implies

that lX(x;x,Ak) = - 2riXk + terms of degree ~ 2 .

Let. L be a free Lie algebra on generators xl, ... ,xn' Then for any fixed ordering of ele­

ments xl,,,,,xn there is a base of L consisting of basic Lie elements corresponding to this

ordering (see [MCS]).
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*given by basie Lie elements corresponding to the ordering Xl'X2t...Xn · Let ei be a

*linear funetional dual to ei with respect to the base Bm . We shall consider ei aB a

*polynomial funetion on r(X). We are interested in the monodromy of E1. (1X(Zjx)) .

Corollary 4.2. Let ei and ej belong to Bm . The monodromy 0f ei*(lxfz;z)) is trivial on

rd
1r1(X,x) for d> m . The monodromy of ei*(lxfz;z.)) on rm-x(X,x);rm+l1r(X,x) is

given by the foUowing formula

Proaf. It follows from Lemma 4.1 that the monodromy of IX(zjx) on ei is given by

ei : lX(z;x) --+ lX(zjx) + (- 2ri)m.ei + terms of degree ~ m . This implies the corollary.

Corollary 4.3. The image of the homomorphism 1r1(X, x) --+ 1r(X);rnr (X) given b1l

1rl(X~x) 3 a --+ lX(x;z,a) E 1r(X)/fnr(X) is Zariski dense in r(X);rn'l'(X) for each

n~ 2.

Proof. Lemma 4.1 implies that the image of the composite homomorphism

2
1r1(X,x) --+ r(X) --+ r(X)/r r(X)

ia Zariak:i dense in 1f{X)/r2'l'{X) . Hence it follows that for each n the image of the com-

posite homomorphism

1r1(X,x) --+ r(X) --+ r(X)/rn'l'{X)
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is Zariski dense in r(X)/rn~X).

5. Functional equations.

In this section we shall present general results about functional equations. Let X be a

complex projective line minus several points. Let G(X) be r(X) or P(X). Dbserve that

G(X) is an affine prcr-a.lgebraic group. Let Alg(G(X)) be an algebra of po1ynomial, com­

plex valued functions on G(X) .

Now we set X = p1(~)\{xl'.ooxn+ 1} and y = p1(~)\{Yl'oo'Ym+1} . Let f: X ------t Y

be a regular map. Let x EX and z EX and let "1 be a path in X from x to z. Dur

principal tool to derive functional-equations are equalities

3.3.1 .

and

f.1X(z;X,i) = ly(f(z);f(x),f(y))

In fact these equalities are special cases of functional equations.

Theorem 5.1. Let f1'oo.,fN : X ------t Y be regular functions. Let ~1"" ~N belong to

Alg(G(Y)) and let p(t1' ... ,tn) be a polynomial in 1Jarißblu t1' ... ,tn .

i) Let G() = 11"{ ) • There is a functional equation
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jf and only jf

ii) Let G() = P( ) . If

then

Proof. Let UB assume that we have (2). Corollary 3.3 implies that

Replacing 'Gi(fi*(IX(z;xj))) by ~i(ly{fi(z);fi(x),fi( i))) in the formula (2) we get the

functional equation (1). The same arguments show also the part ii).

Let us assume that we have a functional equation (1). It follows from Lemma 4.3 thai the

set of values IX(x;x, i) for all closed loops i is Zariski dense in r(X)/rD"r(X) for all n.

Vanishing of a regular function p( ~1 0 f1*,... , ~n 0 fn*) on a Zariski dense subset im­

plies that this regular function is the zero function.

Now we shall construct some elements of Alg(~Y)) which will be particularly interesting
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for USo We recall that Lie( ~1(Y,Y)) ia a Iree Lie algebra on generators Yl'".Ym where

each Yi ia a class in it"1(Y,y)/ r2~1(Y,Y) of a loop around Yi . Let us choose a base of

Lie( it"1(Y,y)) given by basic Lie elements corresponding to the ordering Y1'... ,Yn . Let

*v E Lie( it"1(Y,y)) be a basic Lie element and let v be a linear functional on

Lie( it"1(Y,y)) dual to v with respect to the base of basic Lie elements i.e.

* *v E Hom(Lie(it"l (Y,y));Z) . The linear functional v we consider as an element of

Alg~Y) .

We set

We shall also write$ (z;x) instead cf $ (ZiX,1) .v v

Corollary 5.2. Let fl''''lfN : X ----+ Y be regular functwna, let n1,.",nN be intergers and

let v1,.",vN in Lie('I:1(Y,y)) be ba.sic Lie elements 0/ degree n not neCe3sary different.

There is a junctional equation

if and only if

N

l ni(vi*o (f~ j = 0
i=l
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in Hom(f'n r 1(X, x);rn+1r 1(X,x)jZ) where

(fJ* : rnr1(X, x)/f'n+1'K1(X, x) -.... rn'Kl(y,y)/f'n+l r1(Y,y) is induced by !;, .

Proof. The corollary follows immediately from Theorem 5.1 if one observes that the

N
*condition l ni(vi 0 (fi ).) = 0 in Algr(X) is equivalent to the condition

i=l
N

l ni(vi* 0 (fi)*) = 0 in Hom(rn'K1(X,x)/rD-+1r 1(X,x);Z) because of the identification

i=l

- (rnrl (X,x)/rn+ 1
1r

I
(X,x)) 8 (C ~ rnIT{X)jrn+1r(X) .

Corollary 5.3. Let b(X) be a base 01 Lie('K1(X, X)) given by basic Lie elementg. The

functions {~v(ZjxoJ Iv E b(X)} are algebraically independent on X .

Proof. Let vl'""vn be different elements cf b(X) . Let p(tl' ... ,tn) be a polynomial with

complex coefficients such that

p( $ (z;xO)"", $ (z;xo)) =0 .
VI vn

* •It follows from Theorem 4.1 that p(v1 ,oo"vn ) = 0 in Alg('X"(X)). The functions

* *VI "",vn are linearly independent generators of the algebra Alg(If{X)). Hence the poly-

nomial p(x1,.OO,Xn) is equal to 0 .

Corollary 5.4. The functions {$v(ZjxoJ Iv E b(x)} are algebraically independent an any

open disc around xo.

Proof. Assume thai we have an identity p(~ (ZjXO)'OO" ~ (z;xO)) =0 on a small disc
VI vn
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around xo . Then by the analytic continuaiion we have BUch an equaliiy along any path.

Hence Corollary 5.3 implies that the polynomial p(xl'""xn) is identically equal to zero.

6. Functional equations of polylogarithmse

Now we shall restriet our attention to polylogarithms. The following aBsumptions will be

used through the whole section so we extract them at very beginning.

6.1. Let ·X = p 1((V)\ {xl' ".xn+1} q.nd let Y = pl((v)\{O,l,lD} . Let

/1' ...,/N : X -----+ Y be regular functions anti let nl' ... ,nN be integer!. Let x and z

belong to X anti let ; be a smooth path in X /rom x to z.

6.2. Let U and V be loops in Y in a clock-wise direction around points 0 anti 1

respectively. We consider U and V as elements o/the Lie algebra Lie(1fl(Y,y)) . Let u.s

set e0 := U, e1 := V 1 e2 := [V, UJ , en := [en-l' U] /or n ~ 2 . Let en* be a linear

functional on Lie(1f1(Y,y)) dual to en with respect to the base 0/ Lie(1r1(Y,y)) given by

basic Lie el~ments corresponding to the ordering U, V. We consider en* as an element 0/

AIg1f(Y) .

*Definition 6.3. Let ~ n : P(Y) = e[ [U, V]] -----+ OJ associates to an element 0/ P(Y)

its coe/ftcients at anV. We set

We shall write also Li (z;x) when we do not specify the path i.n
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z z
. ( ) ( )n-1 J-dz -dz -dz J-dz dz dz -dzObserve that Lln ZjX,1 = -1 z-1 ' -z-""'-z- = z-1 ' z''''''z' where z

x,1 x,1
appears n -1 times.

Immediate consequence of the results from section 5 is the following theorem.

Theorem 6.4. (fu,nctional equation 01 polylogarithrnsj integral form and abstract form)

Assume 6.1 and 6.2. Then we have:

i) There is a functional equation

if and only if one of the foUowing equivalent conditions is satisfied.

N

1: ni en* 0 (/~* = 0 in the group Hom(rn'K1(X, x);rn+l 'K1(X l x);Z) ;

i=l

N

\ n· e * 0 (J..) = 0 in the groupL ~ n t'.
i=l

N

(* sJ Lni(f~. = 0 in the gro'Up
i=l
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dw"e Ln i3 a subgroup 0/ r n",l(Y'Y) gentrated by all commutators which contain V at

!ea.st twice.

N

ii) /1 (*4) 1: ni ~n 0 (/~* = 0 in Alg(P(X)) then there is a junctional equ.ation
i=l

N

(- sJ 1: ni Lin (Ii(z) ; fi(z) , /i(1)) = 0 .
i=l

The formulas (*0) and (*4) are integral forms of functional equations whilst the formu­

las (*1)' (*2) J (*3) and (*5) are abstract forms of functional equations.

Proof. It follows from Corollary 5.2 that (*0) is equivalent to (*1) . Conditions (*1) ,

(*~) and (*3) are evidently equivalent. Theorem 5.1 implies that the condition (*4)

implies the condition (*5) .

Now we shall show that the function ~e (Zjx) can be expressed by classical polyloga­
n

rithms.

Lemma 6.5. We have

i)

ii)

Li (ZiX) = Li (z) - L'n(z) + l.d.t.(n) .n n
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Proof. The point i) ia a direct calculation. Hence it rests to show ii). We recall that a hori­

zontal section of the bundle Y)( P(Y) --+ Y ia Ay{Z;X) while a horizontal section of

the bundle Y)( r(Y) --+ Y is ly{z;x). It follows from Lemma 2.6 that

exp ly(z;x) = Ay(Z;X) . The coefficient of exp ly{z;x) at Uny is equal to

f
n z

1 (_l)n+l [ JdzJ k-l
(_l)n+ $e (z;x) + 1: T- z ~e (z;x) +

n+l , k=2 x, n-k+2

~ [JZ dzJn [JZ -dzJ
(ii=FIT! z z-l

x x·

On the other aide the coefficient of Ay(Z;X) at Uny is equal to (_l)n Lin+1(z;x) . Com­

paring these two coefficients it follows by induction and Lemma 6.5 that

~en(z;x) - Lin(z,x) = l.d.t.(n) .

Now we can show the following corollary of Theorem 6.4.

CoroIlary 6.6. Assume 6.1 anti 6.2. Then the following conditions are equivalent:

i) there is a functional equation

N

, n.(Li (J..(z) - Li (J..(x))) + l.d.t.(n) = 0 ;L t n t n-t
i=l

ii) there is a functional equatwn

N

l ni Lin(!i(z)) + riIT(n) = 0 ;
i=l
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N

iii) 1: ni(f~ * = 0
i=l

Proof. 1t follows from Lemma 6.5 that $ (f.(z);f.(x),f.( 7)) = Li (f.(z)) - Li (f.(x))en 1 1 1 ' n 1 n 1

+ l.d.t.(n) . Substituting these expressionB for ~ (f.(z);~(x),f.( 7)) in the formula (*0)en 1 1

from Theorem 6.4 we get

N

1: nj(Lin(fi(z) - Lin(fi(x))) + l.d.~.(n) = 0 . Hence ili) implies ii). Observe that
i=l

Lin(fi(x)) + l.d.t.(n) = I.d.t.(n) . Hence i) implies ii).

Assume that ii) is satisfied. Then it follows from Lemma 6.5 and Proposition 6.6 that
N

1: ni( $e (fi(z)jfi(x),fj(7)) + UJT(n) = 0 for some choice of UJT(n). Let
. 1 n1=

; E rnJ"1(X,x)/rn+ 1
r 1(X,x) . Observe that the monodromy of l.d.t.(n) on fllJ"l(Y'y)

is trivial. This follows immediately from Corollary 4.2 and Lemma 6.5. Hence the value

N

1: ni(.2'e (fi(x);fj(x),fi(1)) = c where c is a constant which does not depend on 1. Let
. 1 n1=

N
*~ = 1: ni en 0 (fi)* . Then ~(1X(x;X,1)) -c = 0 for each 7 Er nJ"l(x,x) . Hence

i=l

~:.... c vanishes on a Zariski dense subste of rU'K(X)/rn+1r(X). This implies that

~- c = 0 . Evaluating ~- c on a constant loop at x we get c = 0 . Hence '6=:: 0 .

Observe that we have just proved Theorem E.
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Now we shall prove same general results about funetional equations of polylogarithms. In

functional equations from Theorem 6.4 and Corollary 6.6 coefficients ni were integers.

One can ask whether they cannot be arbitrary complex numbers. We have the following

result in this direction.

Corollary 6.7. If there is a functional equation of the form

N

(*) l QiLin(fi(z)) + [([[rn) = 0
i=l

then there are rational numbers cl"."cN not all equal zero such that

N

1: ciLin(!i(z)) + [([[(n) = 0

i=l

N
•PIoof. The equation (*) is equivalent to the relation \ Q. e 0 (f.). = 0 inL 1 n 1

i=l
n ~+1 •Hom(r 'XI(X,x)11 'X1(X,x)i~) . The functionals en 0 (fi)* belongto the fQ-vector

space Hom(rD- 'XI (X,x)Im+1
'X1(X,x); (Q) . Therefore if there is a non-trivial relation of the

N
*form \ 0. e 0 (f.). = 0 with 01' E ~ , then there is also a non-trivialL 1 n 1

i=l
N

relation \ c. e * 0 (f.)* = 0 with Cl' E~ . Hence the corollary. follows from Theorem 6.4.i.. 1 n 1

i=1

Compare this reault with a result in [B]. In our corollary one would like to replace

function.s f1(z),oo.,fN(z) by algebraic numbers ap ...aN and to take 0i in «2.
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One wouId like to get new functional equations !rom the old one. This is possible as we see

from the next result, though unfortunately from functional equations of Lin(z) we only

get functional equations of Lin- 1(z) . We do not know any method which allows to pass

from Li~(z) to Lin+1(z) .

Definition 6.8. Let I(z) be a rational function. We denote by vz-a(f(z)) the valuation 0/

j(z) at (z - a) .

11 -a(f(z)) ,
Observe that f(z) = n (z - a) z .

aEG::

Lemma 6.9. Let 11""/N : X --+ Y be regular functions. Assume that
N

1: ni en* 0 (/~* = 0 in Homrrn
7:l(X,z);rn+l'K1(X,x);Z) . Let a1,oo.,4k be complex

i=l

numbers and let n - k ~ 2 .

Then

N

l ni · (vz-a (Ii(z)). vz-a (~(z)) . .... vz-a (jj(z)) . en- k 0 (Iv*= 0
i=l 1 2 k .

. rrn- k ( );rn-k+l ( )')In Hom 1r1 X,x 1r1 X,x ;ZJ .

Proof. This ia an easy observation if one writes a map (fi ). in terms of a base given by

basic Lie elements.

Observe that Lemma 6.9 allows to get functional equatioDB of Lik (2 ~ k < n) if we have
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a functional equation of Lin . This follows from Theorem 6.4 or Corollary 6.7. Observe

that the number of functional equations of Lik grows when k becomes smaller.

Now we shall show that certain functional equations are impossible.

n n. m m.
Proof of Theorem CC. Let f(z) = °n (z - ai) 1 / n (z - bj ) J

i=l j=l

It follows from Example 4 in section 1 that we can &Ssume that a1 f ~ . Let c E CC be

such that f(c) = 1 with the multiplicity r. We consider f as a regular map

f: X = pl(CC)\{f-I (O) Uf-l(l) Uf-l(m) Um} --+ Y = pl(CC)\{O,I,m} . (Warning:

here f-1(*) is the inverse image of *.) We choose a base of H1(X) given by loops around

missing points except m. Let Ai be a loop around ai and let CC be a loop around c.

Let us set °2 ;= [C,AI ] ,on := [on_l,A2] and Pg := [[C,Al ] Al] ,ßn :=

[Pn-l'A2] . The only maps of degree one which induce samething non-trivial on an and

z-a2 c-al z-al c-~

ßn are g(z) = z-a
1

. c-a
2

and h(z) = z~ . c-a
l

. For these maps we have

and

in the group
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Observe that

Hence the relation of the form

N

f. = 1: qi(fi).
i=l

where qi E ~ and deg fi = 1 is impossible in the group (*). Therefore Corollary 6.6 im­

plies the theorem.

Closely re1ated to Theorem <V is the following result.

Theorem 6.10. Let 41'4f .004n be n different points 0/ <V • Let

z
L(z) :=I ---4.L I dZa '00'1 zdz . If n > 9 then there is no polynomial p(s,t1,...,t ) whichz-a1 z- 2 -an . r'

x

depends essentially on s such that p(L(z), Li (f1(z)) '00" Li (/. (z))) == 0 where Lin1 nr r' nk

are classical polylogarithms and logarithms and ~(z) are rational function.

r -1 .
Proof. Let T = {O,l,m} and let S = U f. (T) U{a1,.oo,a ,oo} . Observe that slngnla-

. 11 n
1=

rities of the functions p(z):= p(L(z) ,Li (f1(z)) JOO" Li (f (z))) ,L(z) and Li (f.(z))nl n r n. 1r 1

are contained in the set S. On X = pl(<t)\S these functions are analytic and multi-

valued. Let Ai be a loop around ai in X. The monodromy of

z,I~ ~ ~ ~ on the commutator a = [[A1JA2]] , [A3,A4]] ia equal toz-a1 ' z~ , Z-&3 ' z-anx
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(2'ri)4 up to sign. Hence the monodromy of t(z) on Cl is also non-trivial.

Now we must calculate the monodromy of Li (fk(z)) on Cl. We consider the group Gnk
m

of power series eaX + 1: bnXny with a multiplication given by

n=O

m m
(eaX + l bnXnY)(ea'X + 1: b~Xny) = e(a+a')X +

n=O n=O

m , m k

L(bn+b~+ [ L rr bn-kJ Xny.
n=O n=O

The monodromy of polylogarlthms was calculated in [R] and it can be described in the

following way.

m

Let Li(z) = e(-logz)X + l (-1)n-1Li(z) Xny .

n=O

The monodromy of Li(z) along the loop around 0 is giv.en by the multiplication on the

right hand aide by e(-2n)X and the monodromy along the loop around 1 ia given by the

multiplication on the right hand aide by 1 - 2nY . Observe that for any four elements

a,b,c,d in G we have [[a,b] , [c,d]] = 1 . Hence the monodromy of Li (fk(z)) on Clnk

ia trivial. Trus implies p(z) f 0 .

Observe that Theorem D point b is a particular case of Theorem 6.10. We left to the reader

to show point a of Theorem D.
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7. Functional equations of lower degree polylogarithms.

In this section we shall prove Theorem A. We shall give also several exam.ples of functional

equations of lower-degree polylogarithms.

7.1. Functional equations of the dilogarithm.

n n. m m.
Proof of Theorem A'. Let f(z) = an (z - ai) 1 / n (z - bj) J and let

i=l j=l,
r

f-l(l)= l ck·rk . Let X=pl(CC)\{al' ...an,bl' ... ,bm,cl'oo.,cr ,m} and let

k=l

1 \ •Y = P (<C) {O,l,m} . Let P(X) = ~ [[Al'... ,An,Bl' ... ,Bm,Cl' ..Crl] where Ai (resp.

Bj , resp. Ck ) is the class in H1(X,an of a loop Mound ~ (resp. bj , resp. ck ). Let

*P(Y) = C [[U,V]] . Let 1 be a smooth path in X from x to z.

Wehave

f.(A.. B.) = n· m· U·V , f.(B.· B.) = -m·m· U·V
1 J 1 J J J JJ

We need maps of degree one from X to Y which induce the same maps on these pro­

ducts. Here there are three families of such maps:

z-a.
fik(z) = c

k
~i •



Z-&.
E..(Z)=~,""lJ U .-a.

J 1

z-b.
hjk(z) =) ,
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(e:..)*(A.. B.) = U . v ;
~J 1 J

Let ~: P(Y) ---+ a:: be aB in Definition 6.3. Let ,pjj' : P(X) ----+ a:: be a coefficient at

B .. B.' . We have the following identity
J J

(*) ~ 0 f* = 1: nirk ~ 0 (fik)* -l nimj ~ 0 (~j)* -l mlk ~ 0 (hjk)* + 1: tPjj"
i,k i,k i,k ,j,j'

We shall calculate the expression l tPjj,(AX(ZiX,j)).
. .,
J,J

It follows hom the formula

(see [eh] 1.5.1) that l tPjj,PX(ZjX,7)) =i l IDj' IDj' [f tb.][ Jtb., ] .Evalu-
j,j' j,j' j J 7 J

ating the identity (*) on AX(ZiX,,) and applying the equality 3.3.1 we get

JIJJ = l njrk JIJJ - l nj IDj JIJJ - l IDl k JIJJ

{( 7) i ,k {ik ( 7) i , j ~j ( 7) j , k hjk ( 7)
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where tU = dz1 ' dz . Theorem A' follows immediaiely from ibis equaiion.z- z

Observe that Theorems A and A" are immediate corollaries of Theorem A'. This was

already 0 bserved in section 1.

Now we shall give an absiract from of the functional equation 1.3. We shall keep ihe no­

tation from 7.1.

Theorem 7.1.1. We have

Now we shall show that from the functional equation 1.3 choosing suitably a function f(z)

and a point x we can get functional equations known before.

Examples: Let f(z) = zn and x = 0 . Then we get

n

7.1.3. Li2(zn) = l Li2(ekz)

k=l

2n
n

where ~ = e .

Let f(z) = (y-l}(Z-l) and x = 0 . Then we have
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Let f(z) = (l-Y~Z and x = 0 . Then we havez-

1 2-log(l-y) log(z-l) - 2 log (l-z) .

Observe that the Abel equation from Section 1 follows from 7.1.4.

n n. m m.
Let f(z) = a n (z - ai) 1 / n (z - bj ) J. Then we have

i =1 j = 1

(*)

n m

log f(z) = log a + \' n· log(z-a.) - \' m.log(z-b.).L 1 1 L J J
i=l i=l

N

Observe that any functional equation of log of the form 1: ni log fi(z) = 0 where fi(z)

i=l

are rational functions is a linear combination with rational coefficients of equations (*). Für

the dilogarithm we have a similar situation. We shall formulate a theorem only for abstract

functional equations.

N

Theorem 7.1.6. Assume 6.1 and 6.2. Then any relation 0/ the form 1: ni (f~* = 0 in
i=t

Hom(f'21rt(X,z);r91r1(X, x) ,. rf'K'1(y,y);r91r1(Y,x)) is a linear combination 0/ the re-
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lations 7.1.~ for functions ~.

Proof. The theorem is an easy observation in linear algebra.

7.2. Functional equations of the trilogarithm.

Theorem 7.2.1. (integral form 0/ a functional equation). Let U6 assume that the con,dition 1.1

holds. Then we hatJe

7.2.2. ~(f(zjx,r)) = 1: llini,rk [~(df (ZjX,r)) - ~(e~~(Zjx,r))J
1<i',k .

+ 1: nini , rk [~(fik(ZjX,r))J + 1: nim{k [ ~(giik(Zjx,r)) - ~(~(Zjx,r)) +
i,i' ,k i,;,k

- ~(liJ/zjx,r)) - ~(Pj;/Zjx,r))) + 1: mrlrk [ ~(~' (ZjX,r)) - ~(~~(Zjxlr))J +
;<;' ,k

1: mrl rk [ ~(tj;/Zjx,r))J + 1: nini , mj [-~(uf (ZjX,r)) + ~(V~~(Zjx,r))J +
j,j' ,k i<i' ,;

where
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i l z-ai i l z-ai ck-ai' z- a i . z-ai ck-b .
d. (.z) = e·k(.z) = . I.'.,z) = ~L(.Z) =-::-r'~

t z-a.,' 1 z-a., ck-a. ' ~. ck-a.' y~ Z-o· ck-a.'
1 1 1 1 J 1

. z-a· z- a . z- b . ., z-b. ., z-b. ck-b .,
h/z) = z 6.'4zJ = - } p /z = c

k
-b. 1 ~ (z) = z-r, 1 ~k(Z) = z-r' .ck-r. I

J J J J J J

Z- b . ., z-a· ., z-a· b.-8,o, z- a . .,(.) cl J (.) 1 t (.) 1 ~ () J ~ (.)t Z = u· Z = 11·. Z =-- . . = ..;"k C - .' J z-a., 1 IJ z-a'l .-8,0' w1J z b .-a. ' }I z
k J 1 1 J 1 J J

z-b. a.-b ·1 '1 z-b. z- b .
= z-I, .H I 711 (z) = z-b~1 and Xji(z) = d ..

J I J J J }

Proof. One checks that in Hom(r 'K1(X,x)/r4
'K1(X,x) ; r 3 ,,;1(Y,y)/r4

'K1(Y,y) + L3)

there is the identity (abstract form of a functional equation)

[

'1 '1 ]
\ m.m·in. (~.)* - (~ )* - \ m.m.,n. (x .. )* .L J J 1 Jl J L J J, 1 J1. .,. . ., .

J<J ,I J,J ,1

The theorem follows from Theorem 6.1 i).

We shall not prove Theorem B. We indicate only a general scheme of a proof. First one

proves an analog B 1 of Theorem B in the same way as we proved Theorem A '. Then one
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deduces Theorem B from B'.

Observe that the abstract form of the functional equaüon from Theorem B is a particular .

case of 7.2.3.

For the trilogarithm we have an analog of Theorem 7.1.6.

N

Theorem 7..2..4. Assume 6.1 and 6.2. Then any relation 0/ the form l ni (/V* = 0 In

i=1

Hom(r9'K1(X,x);r4 1r1(X, x) ,. r 9
1fl(Y,l1);r~r1(Y,lI) + LsJ is a linear combinations 0/ the

relations 7.2.9 /or functions fi .

Proof. The theorem ia once more an easy observation in.linear algebra.

7.3. The fourth-order polylogarithm.

We shall give an example of a functional equatioD: of the fourth-order polylogarithm which

seems not to be reported in the literature.

Let f1(z) =- 1 2 (z--a)(z--b) and ~(z) = (dj~lb) . Let cl' c2 be roots of the
(b-a)

equation f1(z) - 1 = 0 . Observe that Cl and c2 are also roots of the equation

~(Z) - 1 = 0 . Let us set

'. -

r-.-b
() z-a -~

~z =z-b'~ a



() z-b
k1 Z = c:=o

1

() z-a
11 Z = z=o
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~(z) = ~~
2

()
z-b .

13 z = a-b .

Let X = p1(a;)\{a,b,cl'~'CD} and Y = p1(CV)\{O,l,CD} . Each of the rational functions

described above determines a regular map from X to Y.

Theorem 7.3.1. (Abstract lorm 01 a functwnal equation) We have

(11). + (lsJ. = 9(91). + 9(9sJ. + 6(h1). + 6(h~. + 9(k1). + 9(k~.

- 2(11). - ~ (l~. - ~(lsJ•

Notice that tbis functional equation has less quadric terms then the Kummer functional

equation of the fourth-order polylogarithm.

8. Genera1ized Bloch groups.

Definition 8.1. Let K be a field. We set

B(K):= U Z

fEK\ {O,l}
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The group B(K) is by definition a free abelian group on elements of K\{O,l} . The

generator of B(K) corresponding to fE K\{O,l} , we shall denote by [t] .

We recall the Abel functional equation

S. Bloch observed that the Plement

[l~x' G] - [ix] - [~] + [x] + [y] E B(C(x,y))

belongs to the kerne! of the homomorphism

* *~ : B(C(x,y)) --+ C (x,y) " C (x,y)

* * *where A( [f]) = f " (1- f) and C (x,y) " C (x,y) is an exterior product of C (x,y)

with itself considered as an abelian group (see [DS]).

The aim of this section is to generalize the phenomena observed by S. Bloch and to put in

in the picture described in the previous sections.

Let A be an abelian group and let L(A) be a free Lie algebra on A. Let

LI (A) = [L(A),L(A)] and let L II (A) =" [LI (A),L I (A)] . We set

Li(A) := L(A)/L I I (A) .

* *Let K be a function field and let k be its field of constants. Let K and k be respec-
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* * *tively ita multiplicative gronps. Let I(K : k} be a Lie ideal in L(K} generated by

*brackets [... [f1.. .fi], [fi+1,...] .. .In] .:.] where at least ane ~ is in k .

Let us set

* * * *.t'i(K ) := Li(K }/I(K : k } .

For any n ~ 2 we define a homomorphism

*Bn : B(K} --+ $i(K }

by the following formula

Bn([f]) = [ ... [f-l,f]f] ...]f] ... ] .

The main resul t of this section is the following theorem.

Theorem 8.2. Let X~pl(ct)\{al, ...am,(J)} and y~p1(a::)\{O,1,(J)}. Let

fl' ...,fN E C(z)* be regular functions /rom X to Y and let k1, ...kN be integers. The

foUowing conditions are equivalent:

N

i) the element 1: ki[.!i] E B(C(z)) belangs to the kernel ofthe map
i~l

Bn : B(C(z)) --+ $i(C(z)-) ,.
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N

ii) 1: ki(!~* = 0 in the group
i=l

iii) there is a functiona1 equation

N

l kiLin(!i(z)) + fiII(n) = 0 .

i=l

Proof. *Let f E <t(z) and let

n m

f-1(O) = \ m·· 0. I f-1(m) = \ m +.0 +~ and
Lll L nJ nJ

i=l j=l
r

f -1(1) = 1: rkck . Observe that f defines a regular function !rom

k=1

S = p1(<C)\{01'."On+mlcl'".cr,m} to Y. Let Ai (resp. Ck ) be a loop in S around

0i (resp. ck )· Then Lie '1'1 (5,s) = L(Al' ... ,An+
ID

,cl''''cr) ia a free Lie algebra on

Al'""Cr . We choose a base of Lie 'l'1(5,s) given by basic Lie elements corresponding to

the ordering Al'""An+m'Cl""'Cr , In the group Hom(rn~1(S,s)/rD-+
1

""1(5,s) , Z) we

have en* 0 f* = l 1: rkmimi ·...mi (...(Ck,Ai)Ai )...Ai )... )* +
. > >. >. k 1. n-2 1 n-2
1 2 ... 11 1n- - - -

\ \ m.+ . rn.m..... m. (... (A.+ IA.)A. )...A. )... )* .
. L .. ~ J n 1 11 In- 2 J n 1 11 In- 2
In_2~···~11~1 J

i5n

On the other side after the identification (z -~) (resp. (z - ck)) with Ai (resp. Ck )

*in the Lie algebra .ti(C(z) ) we have
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(...(Ck,A.)A. )...A. )... ) - 6(k,i,i1,···,i -2) (... (A. ,A.)A. )...A. )Ck)···)) +
1 11 1n- 2 n 11 1 12 1n- 2

'\ '\ m.+ rn.m..... m. t4'(j+n,i~l"'~ 2)(... (A.+ ,A.)A. )...A. )...) +L ~ J n 1 11 1n- 2 n- J n 1 11 1n- 2
in-2~" .!i1~i J
i~n

'\ m.m.... m. 'l/-(i,i1,... ,i l)(... (A. ,A. )A. )... A. )...) .L 1 11 1 1 n- 1 11 12 1 1. ) ). n- n-
1n-1_· .._11

n!i~i1

*ThiB folloWB from the Jacobi identity and the fact that in the Lie algebra .ti (C(z) ) we

have (... (A,B)A1)...An)...) = (...(A,B)Aq (l)) ...)Aq (n))"') where (J is any permutation

of n elements. The coefficients ?'(... ), 6(... ), ~( ...) and 1/1.. ... ) do not depend on f. For

ex~ple if in- 2 > ... > i1 > i

~(k . . . ) - 1. . ( - 1)1
(J ,1,11,···ln_2 - 2 n ..

then and

*Now from the formulas for en 0 f* and Bn( [f]) and from Theorem 6.4 ((*1) and (*2)

are equivalent) it follows that the conditions i) and ii) are equivalent. By Corollary 6.6 ii)

and iii) are also equivalent.

* *Remark. The graups Li(K ) and .z'i(K) are graded. The component in degree n we

* -*
denote by Lin(K ) and .z'in(K ) respectively. They are generated additively by brackets

n-2 * * *of length n. D. Zagier in [Z3] considered the group (Sym (K) ~ (K A K )) ~ (Q .

He found a condition to have a functional equation of higher Bloch-Wigner functions in

terms of this group.
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Observe that there is an epimorphism with non-trivial kernel from

(Symn- 2(K*) ~ (K* A K*)) ~ d) onto (Lin(K*)) GD 4Q and hence also onto

* * *(.tin(K )) 4D (Q . This follows from the fa.ct that in Lin(K) and .rtn(K) we have

(...(A,B)A1)···An_2)···) = (...A,B)Au(1))···Au(n_2))···) for any u E ln-2 .

Let Ln(z) be the higher Bloch-Wigner function considered in [W3] and in [Z2], [Z3].

N

We would like to show that Bn [ l kj [fj(z)]] = 0 jf and only if

i=1
N

\' k. [L (f.(z)) - L (f.(x))] = 0 .LI nl nl .
i=1
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