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Abstract. The aim of this paper is to gain explicit information about the multiplicative
structure of `∗`, where ` is the connective Adams summand. Our approach differs from Kane’s
or Lellmann’s because our main technical tool is the MU -based Künneth spectral sequence.
We prove that the algebra structure on `∗` is inherited from the multiplication on a Koszul
resolution of `∗BP .

Introduction

Our goal in these notes is to shed light on the structure, in particular on the multiplicative
structure, of `∗`, where we work at an odd prime p and ` is the Adams summand of the p-
localization of the connective K-theory spectrum ku. This was investigated by Kane [5] and
Lellmann [9] using Brown-Gitler spectra. Our approach is different and exploits the fact that
MU is a commutative S-algebra in the sense of Elmendorf, Kriz, Mandell and May [4] and ` is
a MU -ring spectrum (in fact it is even an MU -algebra). As a calculational tool, we make use
of a Künneth spectral sequence (2.2) converging to `∗` where we work with a concrete Koszul
resolution. Our approach bears some similarities to old work of Landweber [8], who worked
without the benefit of the modern development of structured ring spectra. The multiplicative
structure on the Koszul resolution gives us control over the convergence of the spectral sequence
and the multiplicative structure of `∗`. In particular, it sheds light on the torsion.

The outline of the paper is as follows. We recall some basic facts about complex cobordism,
MU , in Section 1 and describe the Künneth spectral sequence in Section 2. Some background
on the Bockstein spectral sequence is given in Section 3. The multiplicative structure on the
E2-term of this spectral sequence is made precise in section 4 where we introduce the Koszul
resolution we will use later in terms of its multiplicative generators. We study the torsion part
in `∗` and the torsion-free part separately. The investigation of ordinary and L-homology of ` in
Section 5 leads to the identification of the p-torsion in `∗` with the u-torsion where `∗ = Z(p)[u]
with u being in degree 2p− 2. In Section 6 we show how to exploit the cofibre sequence

`
p
−→ ` −→ `/p

to analyse the Künneth spectral sequence and relate the simpler spectral sequence for `/p to
that for `. To that end we prove an auxiliary result on connecting homomorphisms in the
Künneth spectral sequence, which is analogous to the well-known geometric boundary theorem
(see for instance [14, chapter 2, §3]). We summarize our calculation of `∗` at the end of that
section.

In Section 7 we use classical tools from the Adams spectral sequence in order to study
torsion phenomena in `∗`. We use the fact that the p and u-torsion is all simple to show that
the Künneth spectral sequence for `∗` collapses at the E2-term and that there are no extension
issues. We can describe the torsion in `∗` in terms of familiar elements which are certain
coaction-primitives in the Fp-homology of `.
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We summarize our results on the multiplicative structure on `∗` at the end of Section 8 where
we establish congruence relations in the zero line of the Künneth spectral sequence and describe
the map from the torsion-free part of `∗` to `∗` ⊗ Q. Taking this together with the explicit
formulæ of the multiplication in the torsion part in `∗` gives a rather comprehensive, though
not complete, description of the multiplicative structure of `∗`.

1. Recollections on MU and `

Throughout, we will assume all spectra are localized at p for some odd prime p.
Let ku denote connective complex K-theory and let ` be the Adams summand, also known

as BP 〈1〉, so that

ku(p) ∼
∨

06i6p−2

Σ2i`.

We have `∗ = π∗` = Z(p)[u] with u ∈ `2(p−1). We will denote the Adams summand of KU(p) by

L; then L∗ = `∗[u
−1].

Let us recall some standard facts for which convenient sources are [1, 15]. Since ` is complex
oriented,

`∗MU = `∗[m
′
n : n > 1],

where m′
n ∈ `2nMU agrees with the m`

n of Adams [1]. By the Hattori-Stong theorem, the
Hurewicz homomorphism MU∗ −→ `∗MU is a split monomorphism, so we will view MU∗ as a
subring of `∗MU . Now

MU∗ = Z(p)[xn : n > 1],

where xn ∈MU2n and using Milnor’s criterion for polynomial generators ofMU∗ we can arrange
that

xn ≡

{
pm′

pk−1
mod decomposables if n = pk − 1 for some k,

m′
n mod decomposables otherwise.

In fact, we can take xpk−1 = vk to be the Hazewinkel generator which lies in BP∗ ⊆MU∗. The
following formula recursively determines the Hurewicz image of vk in H∗MU = Z(p)[mk : k > 1]:

(1.1) vk = pmpk−1 −
∑

16j6k−1

mpj−1v
pj

k−j.

In H∗BP with `k = mpk−1, this corresponds to the familiar formula

(1.2) vk = p`k −
∑

16j6k−1

`jv
pj

k−j.

We note that

(1.3) `∗MU/(xn : n 6= pk − 1 for any k) = `∗[tk : k > 1] = `∗BP,

where tk ∈ `2pk−2BP is the image of the standard polynomial generator tk ∈ BP∗BP of [1].
Now recall that the natural complex orientation of ` factors as

σ : MU −→ BP −→ `

and we can choose the generators xn so that

σ∗(xn) =

{
u if n = p− 1,

0 otherwise.

In particular, the kernel of the map BP∗ −→ `∗ is the ideal generated by the Hazewinkel
generators v2, v3, . . ..

We can also find useful expressions for the vn. Using standard formulæ for the right unit
ηR : BP∗ −→ BP∗BP which can be found in [15], we have for n > 2,

(1.4) vn = ptn + utpn−1 − up
n−1

tn−1 + ps′n + us′′n,

where s′n, s
′′
n ∈ Z(p)[u, t1, . . . , tn−1]. We also have v1 = pt1 + u.
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We now make some useful deductions. To ease notation we write vn for the image e(vn) ∈
E∗BP of vn under the Hurewicz homorphism e: BP∗ −→ E∗BP .

Proposition 1.1. In the ring Q ⊗ `∗BP , the sequence v2, v3, . . . , vn, . . . is regular and

Q ⊗ `∗BP/(vn : n > 2) = Q ⊗ `∗[t1] = Q ⊗ `∗[v1].

Proof. For each n > 1, ptn is a polynomial generator for Q ⊗ `∗BP = Q ⊗ `∗[ti : i > 1] over
Q ⊗ `∗. �

Proposition 1.2. In the ring L∗BP , the sequence v2, v3, . . . , vn, . . . is regular and

L∗BP/(vn : n > 2) = L∗[tk : k > 1]/(tpn − up
n−1tn + pu−1s′n+1 + s′′n+1 + pu−1tn+1 : n > 1).

In the ring L∗BP/(p), the sequence v2, v3, . . . , vn, . . . is regular and

L∗BP/(p, vn : n > 2) = L∗/(p)[tk : k > 1]/(tpn − up
n−1tn + s′′n+1 : n > 1).

Proof. The case of L∗BP follows from Proposition 2.2, but here is a direct proof.
By induction, for each m > 2 there is a monomorphism of L∗-algebras

L∗BP/(vn : m > n > 2) −→ Q ⊗ L∗[t1, tk : k > m+ 1]

under which the image of vm+1 is clearly not a zero-divisor. This shows that the vn form a
regular sequence in L∗BP . �

2. A Künneth spectral sequence for `∗`

We will describe a calculation of `∗` = π∗(` ∧ `) that makes use of the Künneth spectral
sequence of [4] for MU -modules. This is different from the approach taken by Kane [5], and
we feel it offers some insight into the form of answer, especially with regard to multiplicative
structure.

For any ring spectrum E and MU -ring spectrum F , there is a homologically graded spectral
sequence

(2.1) E2
s,t = TorMU∗

s,t (π∗(E ∧MU), π∗F ) =⇒ π∗((E ∧MU) ∧MU F ) ∼= π∗(E ∧ F ) = E∗F.

Note that this spectral sequence is actually multiplicative [3]. Taking E = F = ` we obtain a
multiplicative spectral sequence

(2.2) E2
s,t = TorMU∗

s,t (π∗(` ∧MU), π∗`) =⇒ `∗`.

Now consider the MU∗-module `∗. We can assume that the complex orientation gives rise to
a ring isomorphism

MU∗/(xn : n 6= p− 1)
∼=
−−→ `∗.

There is a Koszul resolution of `∗ as a module over MU∗,

ΛMU∗
(er : 0 < r 6= p− 1) −→ `∗ → 0,

where ΛMU∗
(er : 0 < r 6= p − 1) is the exterior algebra generated by elements er of bidegree

(1, 2r) whose differential d is the derivation which satisfies d(er) = xr.
For arbitrary E and F = `, the E2-term of the spectral sequence (2.1) is the homology of the

complex

E∗MU ⊗MU∗
ΛMU∗

(er : 0 < r 6= p− 1) ∼= ΛE∗MU(er : 0 < r 6= p− 1)

with differential id⊗d which corresponds to the differential d taking values in the latter complex.
From (1.3) we find that the homology of this complex is

(2.3) H∗(ΛE∗MU (er : 0 < r 6= p− 1), d) = H∗(ΛE∗BP (εr : r > 2), d),

where εr has bidegree (1, 2pr − 2) and d(εr) = vr.
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Proposition 2.1. Suppose that the E-theory Hurewicz images of the vk in E∗BP with k > 2
form a regular sequence. Then the complex

ΛE∗BP (εr : r > 2) −→ E∗BP/(vr : r > 2) → 0

is acyclic and

(2.4) TorMU∗

s,∗ (E∗MU, `∗) =

{
E∗BP/(vr : r > 2) if s = 0,

0 otherwise.

Therefore the Künneth spectral sequence of (2.1) degenerates to give an isomorphism

E∗BP/(vr : r > 2)
∼=
−−→ E∗`.

The regularity condition of this result occurs for the cases E = `Q, L/p by Propositions 1.2
and 1.1. We do not have a proof that it holds for the case E = L, however the following provides
a substitute.

Proposition 2.2. Suppose that E is a p-local Landweber exact spectrum. Then the complex

ΛE∗BP (εr : r > 2) −→ E∗BP/(vr : r > 2) → 0

is acyclic and the conclusion of Proposition 2.1 is valid.

Proof. The hypothesis means that the functor E∗ ⊗MU∗
( ) is exact on the category of left

MU∗MU -comodules. Then

E∗MU ⊗MU∗
ΛMU∗

(er : r > 2) ∼= E∗ ⊗MU∗
MU∗MU ⊗MU∗

ΛMU∗
(er : r > 2)

∼= E∗ ⊗MU∗
ΛMU∗MU (er : r > 2)

∼= E∗ ⊗MU∗
ΛMU∗BP (εr : r > 2).

But now it is easy to see that the sequence ηR(v2), ηR(v3), . . . is regular in MU∗BP since

ηR(vk) = vk mod (ti : i > 1)

and v2, v3, . . . is a regular sequence in MU∗. Therefore

ΛMU∗BP (εr : r > 2) −→MU∗BP/(ηR(vr) : r > 2) → 0

is exact and so is

E∗ ⊗MU∗
ΛMU∗BP (εr : r > 2) −→ E∗ ⊗MU∗

MU∗BP/(ηR(vr) : r > 2) → 0,

since in each homological degree, ΛMU∗BP (εr : r > 2) is a free MU∗BP -module and therefore
an MU∗MU -comodule. From this we obtain the result. �

Of course, this result applies when E = L. Later we will also consider some cases where these
regularity conditions do not hold.

3. Bockstein spectral sequences

We follow [16, p158] in this account. Let R be a graded commutative ring and suppose that
we have an exact couple of graded R-modules

A0
∗

x· // A0
∗

j0~~~~
~~

~~
~

B0
∗

δ0

``@@@@@@@
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where δ0 is a map of degree |x|−1 and x· is multiplication by x ∈ R. Then there are inductively
defined exact couples

Ar∗
x· // Ar∗

jr
~~}}

}}
}}

}}

Br
∗

δr

``AAAAAAAA

and an associated spectral sequence (Br, dr) with Br+1
∗ = H(Br

∗ , d
r). For each r > 1, there are

exact sequences

(3.1) 0 → A0
n/(xA

0
n−|x| + xrA0

n)
j̄r

−→ Br
n

δr

−→ xA
0
n+|x|+r−1 ∩ x

rA0
n+|x|+r−r|x|−1 → 0,

where

xrA0
n = ker(xr : A0

n −→ A0
n+r|x|), x∞A

0
n =

⋃

r>1

xrA0
n.

In particular, if B1
n = B∞

n = 0 for some n, we obtain the following:

x∞An = xAn,(3.2)

ker δ0 = ker d0 = im j0.(3.3)

4. Generalized Koszul complexes and Bockstein spectral sequences

Let R be a commutative ring and x ∈ R a non-zero divisor which is also not a unit. Let
w1, w2, w3, . . . be a (possibly finite) regular sequence in R which reduces to a regular sequence
in R/(x).

The Koszul complex (ΛR(er : r > 1), d) whose differential is the R-derivation determined by
d(er) = wr provides a resolution

ΛR(er : r > 1) −→ R/(wr : r > 1) → 0

of R/(wr : r > 1) by R-modules.
Now consider the sequence xw1, xw2, xw3, . . . which is not regular in R since for s > r,

wr(xws) = ws(xwr).

The Koszul complex (ΛR(e′r : r > 1), d′) with differential satisfying d′(e′r) = xwr is no longer
exact but does augment onto R/(xwr : r > 1). Notice that there is a monomorphism of R-dga’s

j : ΛR(e′r : r > 1) −→ ΛR(er : r > 1); j(e′r) = xer,

and this covers the reduction map R/(xwr : r > 1) −→ R/(wr : r > 1). Using this, we will
view ΛR(e′r : r > 1) as a subcomplex of ΛR(er : r > 1). We want to determine the homology of
(ΛR(e′r : r > 1), d′).

Suppose that z ∈ ΛR(e′r : r > 1)n with n > 0 and d′(z) = 0. Then working in ΛR(er : r > 1)
we have d(j(z)) = 0, so by exactness of the latter complex, there is an element

y =
∑

16i1<i2<···<in+1

yi1,i2,...,in+1
ei1ei2 · · · ein+1

∈ ΛR(er : r > 1)n+1

for which d(y) = j(z). But

d(y) =
∑

16i1<i2<···<in+1

16k6n+1

(−1)kwikyi1,i2,...,in+1
ei1ei2 · · · êik · · · ein+1

.

Since we have

j(z) =
∑

16i1<i2<···<in

xnzi1,i2,...,inei1ei2 · · · ein ,

using the regularity assumption we find that each yi1,i2,...,in+1
has the form

yi1,i2,...,in+1
= xny′i1,i2,...,in+1
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for some y′i1,i2,...,in+1
∈ R and therefore

z =
∑

16i1<i2<···<in+1

16k6n+1

(−1)kwiky
′
i1,i2,...,in+1

e′i1e
′
i2 · · · ê

′
ik · · · e

′
in+1

.

Notice that

xz = d′


 ∑

16i1<i2<···<in+1

y′i1,i2,...,in+1
e′i1e

′
i2 · · · e

′
in+1


 ,

hence x annihilates the n-th homology of ΛR(e′r : r > 1), hence it is an R/(x)-module spanned
by the elements

(4.1) ∆x(i1, i2, . . . , in+1) =
∑

16k6n+1

(−1)kwike
′
i1e

′
i2 · · · ê

′
ik · · · e

′
in+1

for collections of distinct integers i1, i2, . . . , in+1 > 1. Clearly for a permutation σ ∈ Sn+1,

∆x(iσ(1), iσ(2), . . . , iσ(n+1)) = sign σ∆x(i1, i2, . . . , in+1).

Thus we will often restrict attention to indexing sequences satisfying

1 6 i1 < i2 < · · · < in+1.

These elements satisfy some further additive and multiplicative relations.

Proposition 4.1. Let r, s > 2 and suppose that i1, i2, . . . , ir > 1 and j1, j2, . . . , js > 1 are

sequences of distinct integers. Let

t = #{i1, i2, . . . , ir} ∪ {j1, j2, . . . , js}

and write

{k1, k2, . . . , kt} = {i1, i2, . . . , ir} ∪ {j1, j2, . . . , js}

with 1 6 k1 < k2 < · · · < kt. Then the following identities are satisfied in each of ΛR(e′r : r > 1)
and H∗(ΛR(e′r : r > 1), d′).

(4.2a) ∆x(i1, i2, . . . , ir)∆x(j1, j2, . . . , js) =




0 if t 6 r + s− 2,

(−1)awkm
∆x(k1, k2, . . . , kt) if t = r + s− 1 & km = ia = jb,

r∑

j=1

(−1)j+s+1wij ∆x(i1, i2, . . . , îj , . . . ir, j1, j2, . . . , js) if t = r + s,

(4.2b)
r∑

j=1

(−1)jwij ∆x(i1, i2, . . . , îj , . . . ir) = 0.

Theorem 4.2. The homology of (ΛR(e′r : r > 1), d′) is given by

Hn(ΛR(e′r : r > 1), d′) =

{
R/(xwr : r > 1) if n = 0,

R/(x){∆x(i1, i2, . . . , in+1) : 1 6 i1 < i2 < · · · < in+1} if n > 0

where in the second case, the R/(x)-module is generated by the ∆x(i1, i2, . . . , in+1) indicated,

subject to relations given in (4.2b).

Proof. Consider the long exact sequence obtained by taking homology of the exact sequence

0 → R⊗R ΛR(e′r : r > 1) −→ R⊗R ΛR(e′r : r > 1) −→ R/(x) ⊗R ΛR(e′r : r > 1) → 0.

The associated exact couple has

A0
∗ = H∗(ΛR(e′r : r > 1), d′),

B0
∗ = H∗(ΛR/(x)(e

′
r : r > 1), d′) = ΛR/(x)(e

′
r : r > 1).
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Making use of the formula d0e′r = wr we find that

B1
∗ = R/(x,w1, w2, . . .),

and therefore the x-torsion in A0
∗ is all simple. �

Notice that the quotient R-module R/(xwr : r > 1) has x-torsion, as does the higher homol-
ogy, at least if the sequence of wr’s has at least two terms.

5. Ordinary and L-homology of `

We can compute H∗` using the spectral sequence (Er∗,∗(H), dr) obtained from (2.1) by taking
E = H = HZ(p) and F = `. This can be compared with the spectral sequence (Er

∗,∗(HQ), dr)
for HQ∗` making use of the morphism of spectral sequences

Er∗,∗(H) −→ Er∗,∗(HQ)

induced by the natural mapH −→ HQ. We will also consider the spectral sequence (Er
∗,∗(H̄), dr)

associated with H̄ = HFp.
By (1.2), the sequence v2, v3, . . . , vn, . . . in the polynomial ring HQ∗BP = Q[`i : i > 1] is

regular. So by Proposition 2.1 we have

(5.1) E2
s,∗(HQ) =

{
Q[`i : i > 1]/(vk : k > 2) if s = 0,

0 otherwise.

Hence this spectral sequence collapses at E2 and we have

HQ∗` = Q[`1] = Q[v1],

where v1 = p`1. The image of `n in HQ∗` can be recursively computed with the aid of the
following formula derived from (1.2):

(5.2) `n =
vp

n−1

1 `n−1

p
.

So we have

(5.3) `n =
v
(pn−1)/(p−1)
1

pn
= pp

n−1+pn−2+···+p+1−n `
(pn−1)/(p−1)
1 .

Notice that for a monomial in the `j’s in HQ2m(p−1)`, we have

`r11 · · · `rnn =
vm1

pr1+2r2+···+nrn
,

for which

r1 + 2r2 + · · · + nrn 6 r1 + r2
p2 − 1

p− 1
+ · · · + rn

pn − 1

p− 1
= m.

This calculation shows that the images of the monomials in the `j’s inHQ2m(p−1)` are contained
in the cyclic Z(p)-module generated by `m1 = vm1 /p

m. Turning to the spectral sequence Er∗,∗(H),
we see that

E2
0,∗(H) = H∗BP/(vj : j > 2)

and the natural map

H2m(p−1)BP/(vj : j > 2) −→ HQ2m(p−1)BP/(vj : j > 2)

has image equal Z(p)`
m
1 . In [1], the analogous result for ku was obtained using the Adams

spectral sequence.
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Proposition 5.1. For m > 0,

im[H2m(p−1)` −→ HQ2m(p−1)`] = Z(p)`
m
1 = Z(p)

vm1
pm

.

Hence,

im[H∗` −→ HQ∗`] = Z(p)[`1] = Z(p)[v1/p].

The spectral sequence (Er∗,∗(H̄), dr) is easy to determine. As vk = 0 in H̄∗BP , we find that

E∞
∗,∗(H̄) = E2

∗,∗(H̄) = ΛH̄∗BP (εr : r > 2).

Thus we recover the well-known result that

H̄∗` = Fp[tk : k > 1] ⊗Fp ΛFp(εr : r > 2),

where tk has degree 2pk − 2 and εr has degree 2pr − 1.
From Propositions 1.2 and 2.1 we have

TorMU∗

∗,∗ (L∗MU, `∗) = L∗BP/(vr : r > 2),

TorMU∗

∗,∗ (L̄∗MU, `∗) = L̄∗BP/(vr : r > 2),

where L̄ = L/p denotes the spectrum L smashed with the mod p Moore spectrum. As a
consequence, the Künneth spectral sequences for L∗` and L̄∗` degenerate to give

L∗BP/(vr : r > 2) ∼= L∗`, L̄∗BP/(vr : r > 2) ∼= L̄∗`.

Since L∗MU is a free Z(p)-module, multiplication by p gives an exact sequence of right MU∗-
modules

0 → L∗MU
p
−→ L∗MU −→ L̄∗MU → 0

which in turn induces a long exact sequence on the homological functor TorMU∗

∗ ( , `∗) which
collapses to the short exact sequence

0 → TorMU∗

0,∗ (L∗MU, `∗)
p
−→ TorMU∗

0,∗ (L∗MU, `∗) −→ TorMU∗

0,∗ (L̄∗MU, `∗) → 0.

From this we see that there is a short exact sequence

0 → L∗`
p
−→ L∗` −→ L̄∗`→ 0.

On tensoring with Q we easily see that Q ⊗ `∗` −→ Q ⊗ L∗` is a monomorphism. Hence we
have

Proposition 5.2. L∗` has no p-torsion and the natural map `∗` −→ L∗` induces an exact

sequence

0 → p∞(`∗`) −→ `∗` −→ L∗`.

Corollary 5.3. We have

p∞(`∗`) = u∞(`∗`).

Proof. Since `∗ −→ L∗ = `∗[u
−1] is a localization, we have L∗` = `∗`[u

−1] and

ker(`∗` −→ L∗`) = u∞(`∗`),

hence u∞(`∗`) = p∞(`∗`). �
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6. Connecting homomorphisms in the Künneth spectral sequence

In order to gain control over the p-torsion in TorMU∗

∗,∗ (`∗MU, `∗), we will exploit the cofibre
sequence

(6.1) `
p
−→ `

%
−→ ¯̀ δ

−→ Σ`,

where ¯̀ = `/p. To this end we will relate the geometric connecting morphisms of cofibre
sequences to morphisms of Künneth spectral sequences. The method of proof we use in this
part is analogous to that of the geometric boundary theorem in [14, II.3].

Let W be a cofibrant R-module which we fix from now on. Then for any R-module Z there
is a Künneth spectral sequence with

E2
s,t(Z) = TorR∗

s,t (Z∗,W∗) =⇒ π∗(Z ∧RW ).

Lemma 6.1. Let

X
f
−→ Y

g
−→ Z

h
−→ ΣX

be a cofibre sequence of R-modules with X '
∨m
i=1 ΣniR and π∗f surjective. Then there is a

map of Künneth spectral sequences

Ers,t(Y )
ψr

−→ Ers−1,t(Σ
−1Z) (r > 2),

such that ψ2 is the connecting homomorphism

TorR∗

s,t (Y∗,W∗)
∼=
−−→ TorR∗

s−1,t((Σ
−1Z)∗,W∗).

Proof. Since π∗f is surjective, there is a short exact sequence

0 → (Σ−1Z)∗ −→

m⊕

i=1

ΣniR∗ −→ Y∗ → 0.

This induces a long exact sequence of Tor-groups, in which every third term is trivial, because⊕m
i=1 ΣniR∗ is R∗-free. Therefore we have an isomorphism

TorR∗

s,t (Y∗,W∗)
∼=
−−→ TorR∗

s−1,t((Σ
−1Z)∗,W∗).

On the level of projective resolutions, we can splice a resolution P•,∗ for Y∗ together with a
resolution Q•,∗ of (Σ−1Z)∗ to obtain a trivial split resolution for

⊕m
i=1 ΣniR∗. Thus we obtain

a map between exact couples and so obtain the desired map of spectral sequences. �

Theorem 6.2. Let

X
f
−→ Y

g
−→ Z

h
−→ ΣX

be a cofibre sequence with π∗f surjective. Then there is an induced map of Künneth spectral

sequences

Ers,t(Y )
ϕr

−→ Ers−1,t(Σ
−1Z) (r > 2)

such that ϕ2 is the connecting homomorphism

TorR∗

s,t (Y∗,W∗)
∼=
−−→ TorR∗

s−1,t((Σ
−1Z)∗,W∗).

Proof. Choose a map f ′ :
∨m
i=1 ΣniR −→ Y with π∗f

′ surjective and consider the cofibre se-
quence

m∨

i=1

ΣniR
f ′
−→ Y

j
−→ cone(f ′).

By Lemma 6.1 there is a map of Künneth spectral sequences

Ers,t(Y )
ψr

−→ Ers−1,t(Σ
−1 cone(f ′)).

9



As π∗f is surjective, the composition g ◦ f ′ is trivial and there is a factorization g = ξ ◦ j.

cone(f ′)
ξ

$$
X

f // Y
g //

j

OO

Z
h // ΣX

∨m
i=1 ΣniR

f ′

OO

Now we may define ϕr to be (Σ−1ξ)∗ ◦ ψ
r. �

For the connective Adams summand `, we will consider the cofibre sequence

`
%
−→ ¯̀ δ

−→ Σ`
Σp
−→ Σ`

obtained from (6.1). The reduction map % is surjective in homotopy and therefore we can apply
Theorem 6.2 to obtain a map of Künneth spectral sequences

Ers,t(
¯̀∧MU)

ϕr

−→ Ers−1,t(` ∧MU) (r > 2).

In particular, this yields a connecting homomorphism

ϕ2 : TorMU∗

s,t (¯̀∗MU, `∗) −→ TorMU∗

s−1,t(`∗MU, `∗).

Theorem 6.3. Each p-torsion element of TorMU∗

∗,∗ (`∗MU, `∗) is the image of an element of

TorMU∗

∗+1,∗(
¯̀
∗MU, `∗) under the connecting homomorphism and is an infinite cycle.

Proof. Making use of the long exact sequence on Tor-groups associated to the short exact
sequence

0 → `∗
p
−→ `∗

%∗
−→ ¯̀

∗ → 0,

the claim about the p-torsion in TorMU∗

∗,∗ (`∗MU, `∗) follows.
We will prove that the elements ∆u(i1, . . . , in) are infinite cycles in the Künneth spectral

sequence for ¯̀
∗`. Our proof is by induction on n > 2. For n = 2 the elements ∆u(i1, i2) are

infinite cycles for degree reasons. Now suppose that for all n 6 k, the ∆u(i1, . . . , in) are infinite
cycles. From Proposition 4.1 we know that

wi2∆u(i1, . . . , ik+1) = ∆u(i1, i2)∆u(i2, . . . , ik+1).

By assumption, the two factors are infinite cycles and therefore their product is an infinite cycle
as well. The scalar factor wi2 acts as a regular element on the R/(u)-module generated by the
∆u elements, so we can conclude that ∆u(i1, . . . , ik+1) has to be an infinite cycle as well.

So the Künneth spectral sequence for ¯̀
∗` collapses at the E2-page and as the connecting

homomorphism induces a map of spectral sequences, every p-torsion class in TorMU∗

∗,∗ (`∗MU, `∗)
has to be an infinite cycle. �

Theorem 6.3 gives an explicit description of the p-torsion classes in TorMU∗

∗,∗ (`∗MU, `∗) as the

image of the elements ∆u(i1, . . . , in) in TorMU∗

∗,∗ (¯̀∗MU, `∗) under the boundary homorphism.

Corollary 6.4. Since the ∆u(i1, . . . , in) generate the Künneth spectral sequence for ¯̀
∗` ad-

ditively, this spectral sequence collapses at the E2-page. For the same reasons, the Künneth

spectral sequence for `∗` collapses as well.

Remark 6.5. To summarize, the calculation of the rational homology of ` in (5.1) tells us
that the torsion-free part of `∗` has to have its origin in the zero-line of the Künneth spectral
sequence. The torsion part is imported from the Künneth spectral sequence for ¯̀

∗` via the
geometric boundary result. The Künneth spectral sequence for `∗` collapses at the E2-page.
Furthermore, Corollary 7.4 implies that there are no extension problems.
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7. Detecting homotopy in the Adams spectral sequence

In this section we recall some results about the classical Adams spectral sequence for `∗`.
We make heavy use of standard facts about Hopf algebras and the Steenrod algebra [13, 12].
In the following we generically write I for identity morphisms, ϕ for products and actions, ψ
for coproducts and coactions, η for units and ε for counits and we use x̄ for the antipode on an
element x. Undecorated tensor products are taken over the ground field.

We write H̄∗( ) for H∗( ; Fp) and A∗ for the dual Steenrod algebra,

A∗ = Fp[ζn : n > 1] ⊗ Λ(τ̄n : n > 0),

where the coaction is given by

ψ(ζn) =
n∑

i=0

ζi ⊗ ζp
i

n−i, ψ(τ̄n) = 1 ⊗ τ̄n +
n∑

i=0

τ̄i ⊗ ζp
i

n−i.

The sub-comodule algebra

B∗ = Fp[ζn : n > 1] ⊗ Λ(τ̄n : n > 2)

gives rise to a quotient Hopf algebra

E∗ = A∗//B∗ = Λ(α, β),

where α, β are the residue classes of τ̄0, τ̄1 respectively. Then

B∗ = A∗�E∗
Fp.

Now the natural map ` −→ H̄ induces an isomorphism

H̄∗(`)
∼=
−−→ B∗ ⊆ A∗

and there are isomorphisms of A∗-comodule algebras

(7.1) H̄∗(` ∧ `)
∼=
−−→ H̄∗(`) ⊗ H̄∗(`)

∼=
−−→ B∗ ⊗ B∗

∼=
−−→ A∗�E∗

B∗.

The E2-term of the Adams spectral sequence converging to π∗(` ∧ `) = `∗` has the form

E2
s,t = CotorA∗

s,t (Fp, H̄∗(` ∧ `)) ∼= CotorA∗

s,t (Fp,A∗�E∗
B∗)

and so by making use of a standard change of rings result, we have

(7.2) E2
s,t

∼= CotorE∗

s,t(Fp,B∗).

Note that by results of [5], the torsion in `∗` is detected by the edge homomorphism (which
is essentially the Hurewicz homomorphism) into the 0-line

E2
0,∗

∼= CotorE∗

0,∗(Fp,B∗) = Fp�E∗
B∗.

The map involved here is obtained by composing the following A∗-comodule algebra homomor-
phisms and suitably restricting the codomain:

π∗(` ∧ `) −→ H̄∗(`) ⊗ H̄∗(`)
∼=
−−→ B∗ ⊗ B∗

I⊗ψ
−−−→ B∗ ⊗ (A∗�E∗

B∗)

ϕ⊗I
−−→ A∗�E∗

B∗ −−→ E∗�E∗
B∗

∼=
−−→ B∗.

The final isomorphism is the composition

E∗�E∗
B∗

incl
−−−→ E∗ ⊗ B∗

ε⊗I
−−→ Fp ⊗ B∗

∼=
−−→ B∗.

A careful check of what the composition does on primitives shows that it can be expressed as

(7.3) π∗(` ∧ `) −→ H̄∗(` ∧ `)
(ν∧id)∗
−−−−→ H̄∗(`),

where ν : H̄ ∧ ` −→ H̄ is the natural pairing. In particular, this implies that the image of the
Hurewicz map for ` ∧ ` maps monomorphically into H̄∗(`).

It will be useful to know how to compute the inverse of the map

Fp�A∗
(B∗ ⊗ B∗) −→ Fp�E∗

B∗.
11



This is just

Fp�E∗
B∗

incl
−−→ Fp ⊗ B∗

I⊗ψ
−−−→ Fp ⊗ (A∗ ⊗ B∗),

whose image is in fact contained in Fp�A∗
(B∗ ⊗ B∗).

Given these results, we can use them to detect elements of `∗` in B∗, in particular we can
detect the torsion this way. To do this, we need to understand B∗ as an E∗-comodule, in
particular the non-trivial E∗-parallelograms of the form

(7.4) x
−β

ssgggggggggggggggggggggggggg

α��~~
~~

~~
~

x′′

α

}}||
||

||
||

x′

β
sshhhhhhhhhhhhhhhhhhhhhhhhhhh

x′′′

in which the E∗-coaction satisfies

(7.5) ψ(x) = 1⊗x+α⊗x′−β⊗x′′+βα⊗x′′′, ψ(x′) = 1⊗x′+β⊗x′′′, ψ(x′′) = 1⊗x′′+α⊗x′′′.

Then x′′′ is an element of Fp�E∗
B∗ which corresponds to an HFp wedge summand in ` ∧ ` and

a correponding torsion element. Of course, these elements can be expressed in terms of the
homology action of Q0 and Q1, i.e.,

x′ = Q0x, x′′ = −Q1x, x′′′ = Q1Q0x.

Now by Margolis [10, chapter 18 theorem 5] dualized to a homology version for E∗-comodules
tells us that B∗ uniquely decomposes into a coproduct of comodules isomorphic (up to grading)
to E∗, together with a comodule containing no free summand and isomorphic to a coproduct of
lightning flash comodules. The latter summand does not concern us for now since all the torsion
in `∗` comes from the HFp wedge summands as above corresponding to the free summand. In
fact, Adams and Priddy [2, proof of proposition 3.12] determine the stable type of the lightning
flash comodules, in particular, the stable class of the E∗-comodule B∗ is shown to be

(7.6)
⊗

r>0

(1 + Lr + L2
r + · · · + Lp−1

r ),

where

Lr = Σa(r)J b(r), a(r) + b(r) = 2(p− 1)pr, b(r) = pr−1 + · · · + p+ 1.

Here J = E∗/Fp is the coaugmentation coideal of E∗, represented by the following diagram

•
β

sshhhhhhhhhhhhhhhhhhhhhhhhhh

α
��~~

~~
~~

~

• •

and Σ is the trivial comodule Fp assigned degree 1. Furthermore, all products are tensor
products over Fp taken in the stable comodule category of E∗.

Now the most obvious candidates for the tops of E∗-parallelograms are the elements

τ̄i1 τ̄i2 · · · τ̄in+1
(1 < i1 < i2 < · · · < in+1, n > 1).

These can be multiplied by monomials in the ζj to obtain others.

Theorem 7.1. Consider the Fp-vector subspace V ⊆ Fp�E∗
B∗ spanned by Fp[ζi : i > 1]-scalar

multiples of the elements 1 and

(7.7) Q1Q0(τ̄i1 τ̄i2 · · · τ̄in+1
) (1 < i1 < i2 < · · · < in+1, n > 1).

Then V consists of all the elements in Fp�E∗
B∗ which are the images of torsion elements under

the composition of the Hurewicz homomorphism π∗(` ∧ `) −→ H̄∗(` ∧ `) and the identification

of the homology H̄∗(` ∧ `) with Fp�E∗
B∗.

12



Proof. Clearly Fp[ζi : i > 1] ⊆ Fp�E∗
B∗. Now we know that the Künneth spectral sequence for

`∗` collapses and there are no additive extension problems. We need to understand the mod p
Hurewicz images of elements represented by the elements arising from the ∆u(i1, . . . , is+2) in

TorMU∗

s+1,∗(
¯̀
∗MU, `∗), since these will give an additive basis for the p-torsion in `∗`.

TorMU∗

s+1,∗(
¯̀
∗MU, `∗)

δ
((

TorMU∗

s,∗ (`∗MU, `∗)

��

π∗(` ∧ `)

%%��
TorMU∗

s,∗ ((H̄ ∧ `)∗MU, `∗)

��

π∗(H̄ ∧ ` ∧ `)

��

Fp�A∗
H̄∗(` ∧ `)oo

��
TorMU∗

s,∗ (H̄∗MU, `∗) H̄∗(`) Fp�E∗
H̄∗(`)oo

The Künneth spectral sequence (2.1) for E∗` is natural for maps of ring spectra E −→ F .
Therefore the map (7.3) corresponds in the spectral sequence to the composition of the two
vertical maps in the left column in the diagram above. As the Hurewicz homomorphism has its
image in the primitives of H̄∗(` ∧ `), it follows that the elements ∆u(i1, . . . , is+2) up to a unit
map to

Q0Q1(τ̄i1 · · · τ̄is+2
) =

∑

1<t<r6s+2

(−1)r+t(ζirζ
p
it−1 − ζitζ

p
ir−1) τ̄i1 τ̄i2 · · · ̂̄τ it · · · ̂̄τ ir · · · τ̄is+2

. �

Remark 7.2. Since the torsion in π∗(` ∧ `) maps injectively into Fp�A∗
(B∗ ⊗ B∗) which in

turn is identified with Fp�E∗
B∗, Theorem 7.1 shows that the elements Q1Q0(τ̄i1 τ̄i2 · · · τ̄in) with

n > 3 correspond to nilpotent elements; only elements of the form Q1Q0(τ̄rτ̄s) are not nilpotent.

From Corollary 5.3 we know that the p-torsion and u-torsion in `∗` agree. We recall a fact
from [5, proposition 9.1].

Proposition 7.3. All torsion in `∗` is simple, i.e., for every torsion-class x ∈ `∗` we have

px = 0 which is equivalent to ux = 0.

Corollary 7.4. The Künneth spectral sequence for `∗` collapses at the E2-page and there are

no non-trivial extensions.

Example 7.5. For every prime p, the first torsion class in TorBP∗

∗,∗ (`∗BP, `∗) occurs in degree

2(p3 + p2 − p − 1) and this class survives to `∗`. The lowest degree element appearing as the
bottom of a parallelogram is

Q1Q0(τ̄2τ̄3) = ζp+1
2 − ζp1ζ3.

The coaction map ψ sends this element to the Hurewicz image of the corresponding torsion
element of `∗` in H̄∗(` ∧ `).

8. Multiplicative structure of `∗`

In this section we establish congruence relations in the zero line of the Künneth spectral
sequence. These are derived in BP∗BP and mapped under the natural map. In fact they are
first produced in Q ⊗BP∗BP then interpreted in the subring BP∗BP .

We describe the map from the torsion-free part of `∗` to `∗`⊗ Q and summarize our results
about the multiplicative structure of `∗` at the end of this section.

It will be useful to have the following generalization of a well-known result (which corresponds
to the case where t = 1).
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Lemma 8.1. Let R be a commutative ring, p a prime and t ∈ R. If x, y, z ∈ R satisfy

z ≡ px+ ty mod (pt), then for all k > 0,

zp
k

≡ pp
k

xp
k

+ tp
k

yp
k

mod (pk+1t).

Proof. We prove this by induction on k, the case k = 0 being known. Suppose it is true for
some k > 0. Choose a w ∈ R for which

zp
k

= pp
k

xp
k

+ tp
k

yp
k

+ pk+1tw.

Then working mod(pk+2t) we have

zp
k+1

= (pp
k

xp
k

+ tp
k

yp
k

)p + pk+2tpwp +
∑

16i6p−1

(
p

i

)
(pp

k

xp
k

+ tp
k

yp
k

)p−ipk+1+itiwi

≡ (pp
k

xp
k

+ tp
k

yp
k

)p

≡ pp
k+1

xp
k+1

+ tp
k+1

yp
k+1

+
∑

16i6p−1

(
p

i

)
pip

k

xip
k

t(p−i)p
k

y(p−i)pk

≡ pp
k+1

xp
k+1

+ tp
k+1

yp
k+1

.

Hence the result holds for k + 1. �

We will work with the Hazewinkel generators vn of (1.2). The following standard formula for
the right unit ηR : Q ⊗BP∗ −→ Q ⊗BP∗BP can be found in [15, p24]:

(8.1) ηR(`n) =
∑

06j6n

`jt
pj

n−j.

On combining this with (1.2) we obtain

ηR(vn) =
∑

06i6n

p`it
pi

n−i −
∑

16i6n−1
06j6i

`jt
pj

i−jηR(vn−i)
pi

and hence

(8.2) ηR(vn) =
∑

06i6n

p`it
pi

n−i −
∑

06i6n−1

`it
pi

n−1−iηR(v1)
pn−1

−
∑

16i6n−2
06j6i

`jt
pj

i−jηR(vn−i)
pi

.

Remark 8.2. The left hand side of equation (8.2) lies in BP∗BP ⊆ Q ⊗ BP∗BP , therefore
so does the right hand side. However, because of the presence of denominators in the terms
involving the `r, care needs to be exercised when using this equation. For example, since cpr =
pr`r ∈ BP∗ we can certainly deduce that in BP∗BP modulo the ideal (ηR(v2), . . . , ηR(vn−1)) /
BP∗BP ,

pn−1ηR(vn) ≡
∑

06i6n

pn−icpit
pi

n−i −
∑

06i6n−1

pn−1−i
cpit

pi

n−1−iηR(v1)
pn−1

mod (ηR(v2), . . . , ηR(vn−1)).

We will see later that similar phenomena in `∗BP give rise to congruences in `∗`.

We will now derive some formulæ in `∗BP . The natural map of ring spectra BP −→ ` is
determined on homotopy by

(8.3) vr 7−→

{
u if r = 1,

0 otherwise.

Recalling (5.3), we see that in im[H∗` −→ HQ∗`], the logarithm series for the factor of ` is

log` T =
∑

n>0

`nT
pn

=
∑

n>0

up
n−1+···+p+1

pn
T p

n

.
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We can project (8.2) into `∗BP , with ηR being replaced by the `-theory Hurewicz homomorph-
ism ` : BP∗ −→ `∗BP . This yields

`(vn) = ptn − tn−1`(v1)
pn−1

+
∑

16i6n

up
i−1+···+p+1tp

i

n−i

pi−1
−

∑

16i6n−1

up
i−1+···+p+1tp

i

n−1−i`(v1)
pn−1

pi

−
∑

16i6n−2

ti`(vn−i)
pi

−
∑

16i6n−2
16j6i

up
j−1+···+p+1tp

j

i−j`(vn−i)
pi

pj
.

and the equivalent formula

(8.4) `(vn) = ptn + (utpn−1 − `(v1)
pn−1

tn−1)

+
∑

16i6n−1

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − `(v1)
pn−1

tp
i

n−1−i)

pi

−
∑

16i6n−2

ti`(vn−i)
pi

−
∑

16i6n−2
16j6i

up
j−1+···+p+1tp

j

i−j`(vn−i)
pi

pj
.

Thus we have

`(v2) = pt2 + (utp1 − `(v1)
pt1) +

u(up − `(v1)
p)

p

= pt2 + (1 − pp−1)utp1 − `(v1)
pt1 −

∑

16i6p−1

(
p

i

)
pi−1up+1−iti1.

By the Hattori-Stong theorem, the element `(vn) ∈ `∗BP is not divisible by p, but notice
that on multiplying by pn−2 we have

pn−2`(vn) = pn−1tn + pn−2(utpn−1 − `(v1)
pn−1

tn−1)

+
∑

16i6n−1

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − `(v1)
pn−1

tp
i

n−1−i)

pi−n+2

−
∑

16i6n−2

pn−2ti`(vn−i)
pi

−
∑

16i6n−2
16j6i

pn−2−jup
j−1+···+p+1tp

j

i−j`(vn−i)
pi

.

and so

pn−1tn + pn−2(utpn−1 − `(v1)
pn−1

tn−1)

+
∑

16i6n−1

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − `(v1)
pn−1

tp
i

n−1−i)

pi−n+2
≡ 0 mod (`(v2), . . . , `(vn)).

Using the identity `(v1) = u+ pt1 and the resulting congruences (see Lemma 8.1),

`(v1)
pm

≡ up
m

mod (pm+1) (m > 1),
15



we deduce that when n > 2,

(8.5) `(vn) ≡ (ptn − pp
n−1

tp
n−1

1 tn−1) + (utpn−1 − up
n−1

tn−1)

+
∑

16i6n−2

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − up
n−1

tp
i

n−1−i)

pi

−
∑

16i6n−2

ti`(vn−i)
pi

−
∑

16i6n−2
16j6i

up
j−1+···+p+1tp

j

i−j`(vn−i)
pi

pj
mod (pu).

Thus when n = 2 we have

`(v2) ≡ (pt2 − pptp1t1) + (utp1 − upt1) mod (pu)

≡ utp1 − upt1 mod (p).

When working in the image of the rationalization map H∗(` ∧ `) −→ HQ∗(` ∧ `), we will
denote by u and v the images of u ∈ `2p−2 under the left and right units for ` ∧ `.

Now reinterpreting (8.2) in HQ∗(` ∧ `), for each n > 2 we have ηR(vn) 7−→ 0 and so

ptn + utpn−1 +
∑

16h6n−1

u(ph+ph−1+···+p+1)tp
h+1

n−h−1

ph

= tn−1v
pn−1

+
∑

16k6n−1

u(pk−1+pk−2+···+p+1)tp
k

n−1−kv
pn−1

pk
.

On rearranging this, we obtain

(8.6) ptn = vp
n−1

tn−1 − utpn−1 +
∑

16k6n−1

u(pk−1+pk−2+···+p+1)(vp
n−1

tp
k

n−1−k − up
k

tp
k+1

n−k−1)

pk
.

For small values of n = 1 we have

pt1 = v − u,

pt2 = vpt1 − utp1 +
u(vp − up)

p
,

pt3 = vp
2

t2 − utp2 +
u(vp

2

tp1 − uptp
2

1 )

p
+
up+1(vp

2

− up
2

)

p2
,

pt4 = vp
3

t3 − utp3 +
u(vp

3

tp2 − uptp
2

2 )

p
+
up+1(vp

3

tp
2

1 − up
2

tp
3

1 )

p2
+
up

2+p+1(vp
3

− up
3

)

p3
.

We want to draw some general conclusions about these expressions.

Lemma 8.3. In `∗`, for n > 1, we have the congruences

ptn ≡ vp
n−1

tn−1 − utpn−1 mod (pu),(8.7)

ptn − pp
n−1

tp
n−1

1 ≡ up
n−1

tn−1 − utpn−1 mod (pu).(8.8)

Proof. We will prove this by induction on n, the case n = 1 being noted above. So suppose that

ptk ≡ vp
k−1

tk−1 − utpk−1 mod (pu).

whenever 1 6 k < n for some n. Then for every such k we have

vp
k−1

tk−1 ≡ utpk−1 mod (p).

By Lemma 8.1, for every m > 1,

(vp
k−1

tk−1)
pm

≡ (utpk−1)
pm

mod (pm+1),
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i.e.,

vp
m+k−1

tp
m

k−1 ≡ up
m

tp
m+1

k−1 mod (pm+1).

Now when 1 6 k 6 n− 1,

vp
n−1

tp
k

n−1−k − up
k

tp
k+1

n−k−1 ≡ 0 mod (pk+1),

hence in the formula for ptn in (8.6), the summand

u(pk−1+pk−2+···+p+1)
(vp

n−1

tp
k

n−1−k − up
k

tp
k+1

n−k−1)

pk

must be divisible by pu. Therefore we have the congruence

ptn ≡ vp
n−1

tn−1 − utpn−1 mod (pu).

Using the expansion

vp
n−1

= up
n−1

+
∑

16j6pn−1

(
pn−1

j

)
up

n−1−jpjtj1

we obtain

ptn − pp
n−1

tp
n−1

1 ≡ up
n−1

tn−1 − utpn−1 mod (pu). �

Summary. Kane [5, (19:6:1)], using Adams’ criterion [1, III,17.6], worked out what the image
of the torsion-free part of `∗` is when we pass to `∗`⊗ Q. The generators for the image of `∗`
in `∗`⊗ Q are

tn,i =
uiv(v − (p− 1)u) · . . . · (v − (n− 1)(p− 1)u)

pi
, 0 6 i 6 νp(n!).

Obviously, the relation utn,i = ptn,i+1 holds and it is clear how to multiply elements like that.
To summarize our results on the multiplicative structure of `∗`, we have the following:

• When we start with two non-torsion elements in `∗`, we can take their image in `∗`⊗Q,
take their product there and interpret the result as a non-torsion element in `∗`.

• Any two elements coming from the zero-line of the Künneth spectral sequence multiply
according to the congruence relations we specified in (8.3) up to (8.3). These element
might be torsion or non-torsion, but there is no non-torsion in higher filtrations.

• Torsion elements in non-zero filtration have their origin in the generators ∆u and for
these we spelled out the multiplication in (4.2a).

• As the ∆u-expression allow coefficients from `∗BP , the multiplication of non-torsion
elements in the zero-line with torsion elements in higher filtration is determined as well.

We agree that the recursive nature of the congruences for `∗BP ⊗BP∗
`∗ might hamper the

calculation, but our approach leads to more information about the multiplication in `∗` than
the known sources (compare e.g., [5, page with wrong adams formula]).
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