APPROXIMATIONS OF THE
MAASS FORMS BY MEANS OF
ANALYTIC MODULAR FORMS

Alexei B. Venkov

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Strale 26
53225 Bonn

Germany

MPT / 94-33



e i AL




ot

APPROXIMATIONS OF THE MAASS FORMS
BY MEANS OF ANALYTIC MODULAR FORMS

ALEXEI B. VENKOV
To Ralph Phillips on the occasion of his 80th birthday

1. INTRODUCTION

. Let H be the upper half plane, T’ be the modular group I' = PSL(2,7Z) and
H = L,(T'\H) be the standard Hilbert space of automorphic functions. The goal of
this paper is to prove that any even function f € H is represented by some special
series

flz,z) = Z an(k,m)Wy(z,Z; k)W,(2,Z;m) + ao
n=2

Here a, are some constants and

Wa(z,%;k) = y" R* (2)Q*2(2) 5% (2, %)

R(z) = B(2),Q(2) = Ea(2),5(2,9) = Bale) = =, = Ioms

Ei(z) are the analytic Eisenstein series | = 2,4, 6;k = (ki, k2, k3) , m = (m1, ma, m3)
€ Z3., n = 6ky + 4ky + 2ks = 6my + 4my + 2ms. ‘

The dash means the complex conjugation. For the precise assertion see the Main
Theorem. This theorem is utmost improvement of the main result of the paper [1].

The important ingredients of the proof are the spectral theory of the Schroedinger
operator with automorphic potentials, the Ramanujan’s formulae for the derivatives
of the Eisenstein series and Phillips-Sarnak approach to investigate a disappearance
of the Maass cusp forms under perturbations.

2. THE MAIN PART

Let H be the hyperbolic plane with Poincaré metric ds? and the corresponding
Laplacian L,T" be the modular group I' = PSL(2,7Z).
We consider H as the upper half plane

H={:eCz=z+iy|y >0}
and
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0? d?
L=y =+
(5 7)

The differential operator — L generates the nonnegative selfadjoint operator A(T")
= A in the Hilbert space H = Lo(F;du) in the natural way. A is called the
automorphic Laplacian.

We introduce some notation. F is a fundamental domain of the group I" on H .

dp is the Riemann measure which generated by the metric ds?. The norm || f)| of a
function f € H is defined by the integral

1l = ]F |F(2,2) Pdu(z, %)

f is a function of the two variables z,y or 2,7 where z = ¢ +1y,z = z — ty. For
analytic function f of the variable z we write f(z) and omit .
The following spectral decomposition of the Hilbert space H is very well known

(1) H=H®@C®O

Ho is the space of cusp forms (functions, for to be more precise). In the same
time Ho is the closed subspace of H spanned by all of the eigenfunctions of the
discrete spectrum A; of the operator A and A; € [1/4, 00).

© is the space of the continuous spectrum of A.

For any function f € H we have related to (1) the expansion in eigenfunctions
of the operator A

__°° vsz—l— 2,z 2,Z)+ — z,Z)as
o7 = Lo D)4y [ Dt g [ (BB

Here (.,.) means the standard scalar product in H and {v,}3%, is a basis of
eigenfunction in H,

(’Uj,vk) = ij,A'Uk = )\kvk

1/4 < A\ € Ay € ...|F| is the du volume of F. For PSL(2,Z)|F| = ©/3.E, =
E(z,%;3) is the Eisenstein-Maass series or the non-analytic Eisenstein series.

For Res > 1 we define the Eisenstein-Maass series by the absolutely convergent
Pointcaré series

E(z,7;8) = Z Im?®(~yz)

YET o\

where Im means the imaginary part of a complex number. I'o C I is the subgroup
generated by the transformation of H : z —» z 4+ 1.
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The main property of a continuous function f € Hg is the vanishing of the zero

coefficient of the Fourier series expansion which is defined by the action of the group
e in H

/01 f(z,2)dz =0

forally > 0,2 =z +1y.
The following decomposition is important also

H=HD qH®
By definition

7‘[(1) = {f € %l - f(z,E) = f(-—f, _z)}
1P = {f e H|f(2,7)

it
o
I
[
w
e
—

are the subspaces of odd and even functions correspondingly. We remark that the
map z — —z,H — H, commutes with Laplacian L and transfer an automorphic
(modular)function to automorphic (modular) one. It is not hard to see that

0 c H®

because the Eisenstein-Maass series is the even function. This observation follows
from the Fourier decomposition of E(z,z;s). All these results related to the spectral
theory of the operator A are contained in the papers [2], [3], [4], [5]-

Let Hgi) = Ho NH be the spaces of cusp forms j = 1,2. We recall now some
properties of analytic modular forms. A function f: H — Cis said to be analytic
modular form of weight k for T if 1) f is analytic on H, 2) f(v2) = (cz + d)* f(2)
for any

v = (3 3) € SL(2,Z)

and any z € H , 3) f is analytic at infinity, i.e. it has the Fourier series expansion

o0

(3) f(z) = Z a, exp 2rinz

n=0

Let R,Q, P be the analytic Eisenstein series of weights 6,4,2 correspondingly.
We have well known Fourier series expansions

R(z) = Es(z) =1 - 504 Z gs(n) exp 2rinz

n=1

Q(z) = E4(z) =1+ 240 i o3(n)exp 2rinz

n=1

P(z) = Ey(2)=1—- 24 Z o1(n)exp 27inz

n=1



where o (n) is the sum of k degrees of the devisors of n.

The functions R, ) generate the algebra of all analytic modular forms of positive
even weights. Any modular form of the weight k is represented as a complex linear
combination of the monomials (see [6])

Rkl QkQ’le + 4k2 =k

We come back to the subspaces H{/) now and we consider one well known way
of constructing some elements of the subspace ’H(()l) using analytic modular forms
(see §3,7 [7] for the similar idea). Let gq,g2 be two analytic modular forms of the
weight k& with real Fourier coefficients (see (3)), then it is simple to see that

(4) £(2,7) = v*(91(2)02(z) — 91 (2)g2(2)) € HLY,

y = Imz, dash means the complex conjugation, of course.

The interesting question is the following one. What are the elements of ’HE,])
which are approximated by linear combinations of the functions (4) when g; run
through the whole algebra B? We can not answer this question now but we an-
swer the similar question for the space H(?) and it is just the subject of the Main
Theorem.

Let S(z,%) = P(z) —3my,y = Imz, and let M, be the C-linear space generated
by the system of all functions ej, where k runs all nonnegative even integers. By
definition

er = ykRk’Qk’Sk“R’—”lQm?—S”“f, eo =1
k= 6k1 +4k2 + 21’:3 = 6m1 "‘}".4m2 -+ 21113,
kj,mj € Z,kj Z 0,771]' 20,7=1,2,3.

The dash is the complex conjugation. One remark is important here. We add
mentally that e depends on the numbers k;, m; mentioned above but we not write
it in the denotation of ey.
We define now the linear space M as the intersection
M = M., ND(4),

where D(A) is the domain of definition of the selfadjoint unbounded operator A in
H. We recall that D(A) is the dense set in H. We define after all the linear space

MM as the closure of M% in H.
We formulate now the main theorem of this paper

Theorem (Main Theorem). The following equality holds

ME =H®
We devide the proof of this theorem for several parts.

Firstly we prove



Lemma 1.
LMy C M,

Proof. We remark that any function e is an automorphicone, i.e. forally € T,z €
H the equality holds

ek(jz,vf) = ex(z,?)

It is well known that the function P(z) is not a modular form. For example, we
have

P(=1/2) = 2*P(2) + E’i

i

One can proves that S(z,%) is the modular form of the weight 2 but not analytic
form. Therefore the monomial

Rkl ka Ska
is the modular form of the weight k if 6k; + 4k2 + 2k; = k and the function ex(z,7)

is the modular one.

We want to compute now the action of the Laplacian L on the function ex(z,Z).

It is well known (see [6]) that albebra B is not closed relative to a differentiation

but the algebra generated by R, @}, P has this property and this result is proved by
means of remarkable Ramanujan’s formulae

T

271
Pzzg(Pg_Q) Qz 3

where f, = EL The modified Ramanujan’s formulae for R, @, S take the form

—(PQ - R) R, =rmi(PR - Q%),

_ Tl _6_ _ R
(6) 5.=%(s*+=5-0), sz_%y
2 3
Q. = m( Q+—Q R),  R.=mi(SR+ —R-Q
Using (5) we have
326,(-
.__.2 —
SRR W= B
€ k+ (k - kg)kg + (k - m3)m3 —k'3 -~ ms3 -+ kg—Q— + m3— Q leng—z
5% 5 ‘RS
_2 —_
R Q
— 4k2k35§ - kg% - 6m1m3§—§ - 477127’7’1.3—Q_'§ - ?T’L%?
361831’713 2 k— ks Q2 2k, E EQ
7r2(z—2')2|5|2_7r(z_z) ( S MR TF 0 65

62 2m2 TTL;; Q k—-m3—
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It 1s not hard to see from this equality that Lej is the linear combinations of
the functions ex_g,er, €x4o. It 1s clear when k3 > 2,m3 > 2,k > 1,my 2 1,k >
1,me > 1. If k3 = 1 {or mg = 1) then the dangerous terms to diminish. When
some of k; (or m;) is equal to zero then the corresponding dangerous term is equal
to zero too, 1 < 3 < 3. We name dangerous all terms with nontrivial denominators.
The proof of Lemma 1 is complete

Using Lemma 1 the proof of the following lemma is standard in the theory of
selfadjoint operators in Hilbert spaces and we shall not give this proof here.

Lemma 2.

1) Let h(A) be any continuous bounded function of the automorphic Laplacian
A. Then we have

h(A)ME c Mm%

2) Let Py, Py be ortogonal projectors in ‘H on the subspaces @,MZC‘, corre-
spondingly, then the equality holds '

PyPprr = Py P
Lemma 3. There is the inclusion
0c M

Proof. Let fa(z,%Z) be the function

fa(z,z) = ¥y ?|A(2)]%, A(z) = e1(@%(2) — R*(2))

oo
A(z) = cag H(l —q")*, q = exp 2miz
n=1

c1,cz are some constants. It is clear that fa € A?[Zi, because A(z) is the analytic
modular cusp-form of weight 12.

Let Py be the orthogonal projector in H to © like in Lemma 2. We consider
standard Hilbert space Lo(IR}) of functions n: Ry — C with the scalar product

<&n>= o ] (D)t

As we know from the theorem of eigenfunctions expansion for the automorphic
Laplacian (see {7]) the map

U:0— L‘Z(RF)
(UH)t) = /F B(2,71/2 — it)f(,2)du(z, %)
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is isometric. The operator Uh(A)U* is the operator of multiplication by the func-
tion h. We recall that h 1s an bounded and continuous function. The star means
the conjugation of an operator in H.

We consider now the function (UPyfa)(t). It is continuous, and even analytic
function for ¢t € (0,00) as the Rankin-Selberg convolution. It has no poles and it
has only a discrete set of zeroes. Therefore the set of functions Uh(A)Pg fa fill in a
dense subset in Ly(IRy) when A run through the set of all continuous and bounded
functions. Thus the space containing all functions h(A)Pp fa after the closing in ‘H
coincides to ©. Lemma 3 follows from Lemma 2. The proof is complete.

Lemma 4. The following inclusion holds
Cc Mm%
Proof. Because eg = 1.

The idea of the proof of the Main Theorem now is the following. Together
with the spectral problem Af = Af we consider the spectral problems for the
automorphic Schroedinger operators A, in H, A, f = Af.

The corresponding differential equation is

(6) —Lf+af =\f, qeMX

We will prove that there exists a potential ge, and the operator A, which
satisfy

1) Aq,, is the selfadjoint nonnegative operator in ‘H
2) A, is well defined on the dense set D(4,.,) in H.
In D(4,,,)NH? it has one dimensional absolutely continuous spectrum
X € [1/4,00) and the discrete spectrum which is outside of the continuous
one A € [0,1/4) as a finite set of eigenvalues of a finite multiplicity, and it
has no other spectrum.
3) There is inclusion

where the function A is defined in Lemma 2.
After that we will prove that ]\Aio?i coincides to H?) up to the finite dimensional
subspace which is in the space of the discrete spectrum of the operator A4, in

H(2) . In the last step of the proof of the Main Theorem we will prove that this
finite dimensional subspace is trivial.

Lemma 5.
There exists a set of potentials N C © & C which satisfy

1) Any q € NV is a continuous nonnegative modular function, i.e. ¢ € C(H),
q >0, g(yz,77) = q(#,%Z) forally €T, z € H.
2) C -linear space generated by all elements of N is a dense sct in © @ C

7
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Proof. It is well known that the space © @ CAill in by incomplete theta series (see
[4], [5], for example)

6o(2,7) = D ¢(Imyz)

VEFoo\P

where ¢ run through the set of all continuous functions ¢ : (0,00) — C with
compact supports. For the proof of Lemma 5 it is enough to choose A as the set
of all 8, with nonnegative ¢. The proof is complete.

Remark. We further suppose that A is the set defined in the proof of Lemma 5.

The following lemma comes from the spectral theory of the Schroedinger operator
with automorphic potentials (see §2 [9} and [10] for more general theory). We
formulate now slightly simplified version, more advanced one will be important in
the proof of Lemma 8.

We introduce some notation relating to this spectral theory. Let 74(z,%;2'Z'; 5) be
the kernel of the resolvent (A, —A)~ 1 of the operator A, in H, A = s(1—3s),Res > 1.
Let 14(z,%;s) be the generalized eigenfunction of the continous spectrum of A,
with ”eigenvalue” A = s(1 — s),Res = 1/2, and S,(s) be the corresponding one
dimensional scattering matrix (see §2 [9]).

Lemma 6. Let ¢ € N be a potential from the Remark to Lemma 5 then we have

the following assertions

1) The left hand side of equality (6) defines the selfadjoint nonnegative operator
A, in H (the Friedrichs extension)

2) Ay has one dimensional absolutely continuous spectrum for A € [1/4,00) and a
discrete one of eigenvalues of a finite multiplicity A; € [0, 00) and it has no other
spectrum.

3) The functions T(.,.,.,+,8),¥e(- -, 3), S¢(8) are meromorphic for s € C and they
satisfy the functional equations

a)

1
T4(2,%; 2,75 8) —14(2,7;2, 71— 5) = 5 lt,bq(z,i; s)pe (2,251 —s)

b)
Ye(2,%;8) = (2,251 — 5)S¢(s)

c)
Sq(8)Sq(1 —s) =1

The proof of this lemma is given in above mentioned papers. The method of this
proof is essentially the same as Faddeev’s one for the theorem on eigenfunctions
expansion for the automorphic Laplacian (see [8]). It is important for this theorem
that a potential is sufficiently decreasing in the cusp of the fundamental domain.

We are interested now in a special potential goo € Mgg or, more precisely, in a
family of such potentials which satify
1) For Ay, Lemma 6 holds
2) Ag, in H(2) has only a finite spectrum besides a continuous one.

8



We know from the paper of Colin de Verdiere (see [11] and [10]) that a generic
potential ¢ has this property. But the question is in the important restriction
g€ Mgg and we have to prove the existence of such potentials. Here we use some
idea from the paper [12] on a condition to destroy cusp forms. We modify the
Phillips-Sarnak method for the automorphic Schroedinger operator.

We fix some potential ¢ from the Remark to Lemma 5 and we consider the
Schroedinger operator Aeq where ¢ is a small positive parameter.

Let A, > 0 be an arbitrary fixed eigenvalue of the operator A for the corre-
sponding even eigenfunction v,, Av, = A,v,. We know that A, is embedded in
the continuous spectrum of A,1/4 < A, = sp(1 — s,), Res,, = 1/2. Using the same
arguments as in §2 [12] we obtain that the pair s,,v, is included in the analytic
family of the solutions of the differential equation

(7) —Lvn(z,7Z,;€) + €q(z,Z)vn(z,Z;€) = Ap(€)vn(z,Z;€)

in the neighbourhood of the € = 0. Here v,(2,%;0) = va(2,7), An(0) = An, An(e) =
sn(£)(1 — sp{€)). Besides we have

va(2, 7€) = ca(e)y” ) + ca(e)y' T+ O (exp — ay)
y—00

for some a > 0. For the analytic functions c¢;j(e) there is the condition ¢;(0) =
c2(0) = 0 . For the analytic functions s,(€) there is the alternative 1) To have
Res, () = 1/2 for all ¢ > 0 small enough, or 2) To have Res,(¢) < 1/2for alle >0
small enough.

In the case 1) we have ci(¢) = 0,¢cz(¢) = 0. The function v,(2,7;¢) and the
value A, (€) are correspondingly the eigenfunction and the eigenvalue of the discrete
spectrum of A.q.

In the case 2) the eigenvalue A, of the discrete spectrum of A disappears under
the deformation of eq.

We find now the sufficient condition for the case 2). It is the similar condition,
of course, as Phillips-Sarnak’s one for the deformation in the Theichmueller space
(see [12]). We have

va(2,Z;€) = vn(2,Z) + ewn(2,2) + O (%)

£—0

An(€) = An +€vn + 5(20(82)

From the equation (7) it follows

(8) —Lwn(z,2) + q(2,2)vn(2,Z) = va(2,Z) + Anwn(2,%)

We multiply (8) by the Eisenstein series and we integrate it over the fundamental
domain F'. More precisely we have



- g

(9) LQ(zaE)Url(z,E)E(Z,E; .s,,)dp(z,E) =
lim (]F Aawn(2,2)E(2,Z; 8n) + (Lwa(2,2))E(2,7; Sn)]d,u(z,f))

Y00

Here F, is some compact part of the fundamental domain F

F={z=z+1y€ H|z| <1/2,|z] > 1}

F,={z€ Fly <Y}, Y is fixed and Y > 0 (big enough), = means the equality up
to the points on the boundary F. We remember also in (9) that

(vn, By, ) = 0.

Let f(z,%),g(z,%) be arbitrary smooth automorphic functions then the following
Green formula is well known (see [2]. (5])

1
g9  Of
(10) (F89 = g8f)de Ny = [ (752 = g5 ydelymr
Fy 0 Yy
where A = ai:g + 3%2;-. The integral in the right hand side of (9) is equal to

(Es, Aw, — w,AE, )dz A dy
Fy

Then we have
wa(2,2) = ¢1(0)y*" +c4(0)y' ™™ + O (exp —ay)
y—oo
=. — 490 -3, _
B(2,%i5) = 4 +plan)y™ + O (exp—ay)
for some a > 0. We obtain from (10)

/F’(EsnAwn —waAE,, )dz A dy = (1 — 25)(c5(0) — ¢(s4)c1(0)) + o(1)

Y oo

Using (9) we obtain at last

f 0(2,7)on(2,3)E (2, % 50 )dps(2, 7) =
F

(1 = 25)(c3(0) = @(sn)c1(0))
Therefore if the inequality holds

(11) Lq(z,?)vn(z,E)E(z,E; Sn)dp(2,Z) #0

then one of ¢;(0),c5(0) at least is not equal to the zero, and we have the case 2),
i.e. the eigenvalue A, disappears under the deformation £q.

10



Lemma 7. For any eigenvalue A, # 0 for the even eigenfunction v,(z,%) of the
operator A there exists a potential ¢(z,z) = qn(z,z), gn € N (see Remark to Lemma
5) such that (11) holds.

Proof. We assume the contrary. Then for some fixed s, the following equality holds

(12) /F 4(2,F)om(2,2) (2,7 sn)dpu(2,7) = 0

for all ¢ € N (see Remark to Lemma 5). Therefore the function v, E,, is orthogonal
to the whole subspace © in ‘H and as a result we have

(13) /0 vn(2,2)E(2,Z;8,)dz =0

for all y > 0. We multiply (13) by y*,Res > 1 and we obtain

[ere) 1
0=/ y’%/ Va(2,2)E(2,Z;5,)dz =
0 ¥~ Jo
[ B Zisa)on(e, 2B 7))
F

The last integral is not equal to zero identicaly, because it is some special Rankin-
Selberg convolution (see [13], for example). We have the contradiction to (12) and
it proves Lemma 7.

Lemma 8. There exists a potential (a set of potentials) qo with properties 1)
For the corresponding operator A, the assertions of Lemma 6 are valid. 2) The
discrete spectrum of A, of even eigenfunctions is a finite set of eigenvalues of a
finite multiplicity A, € [0,1/4).

Proof. We consider the following series

(14) q(z,7z) = Zdn‘i’n(zaz)’

where g, run through the set of all potentials from Lemma 7 for all eigenvalues
An of A in the space 'Héz) d, 2 0 are some constants which we define now. We
remark that the potential g, from Lemma 7 is defined up to the multiplication by
a positive constant at least. Therefore we can suppose that

maz g (2,%)

decreases as fast as we want. We write here "max” instead of ”"sup” because g,
has a compact support. Thus for the absolute convergence of the series (14) it is
enough to consider bounded sequences {d,,}.

11



We prove now that there exists a bounded sequences {d,}, d,, 2 0, such that
for the corresponding potential ¢(z,z) from (14) the inequality (11) holds for all n
from Lemma 7.

We assume the contrary. That means there exists an eigenvalue A,, and an even
eigenfunction v, of A with the equality (12) which holds for any potential (14)
constructed for all bounded sequences {d;}. But there is the contradition. Namely,
for the sequences

1 k=n
dk = {

0 otherwise

we have ¢ = ¢, and the inequality (11) from the definition of g,. Therefore we
proved the existence of a desired bounded sequences d,. We fix it and we define
the corresponding potential g. We remark that from the decreasing property of

mgs ga(z,%)

mentioned above and |d,| < ¢, for some ¢ > 0 and for all n, if follows that we can
suppose the estimate

q(2,2) = 0(e” ),z € Fy = Imz

a > 0 is some constant.

Therefore the potential g satisfies the conditions of Theorem 4 from §2 [9] and
for the corresponding operator A, the assertions of Lemma 6 of this paper are valid.
The same result is true for any potential ¢ where ¢ > 0 is some constant.

We consider now ¢ from 0 € € € g9 where g¢ > 0 is some small constant and we
investigate the eigenvalues A, () of A., for even eigenfunctions, A,(g) 2 1/4. We
watch these eigenvalues when ¢ varies from 0 to .

Let sn(€) be the new variable s,(e)(1 — s,(¢)) = An(€). We suppose Ims, () 2
1/2. From the principle of analiticity it follows that s,(g) comes or from sszl)(O)
or from 3512)(0). Here A\, = 53’ (0)(1 - s(ni)(())) is the eigenvalue of the operator
A and 3&2)(0) = 52 is the pole of the automorphic scattering matrix ¢(s) (one
dimensional)

B(z,5) = ys + p(s)y' ™ + O(1)
y—oo

In both cases for any fixed n there exists only a finite number of values ¢, say e;
we name them as "bad” values, for which the equality Res,(e;) = 1/2 holds. We

define the set
Q= JJes(w)

n j

of all ”bad” values for all A\,(e). Tt is clear € is the countable set. Therefore there
exists a sequences of "good” values {ér},d; € {(0,€0) — 2} such that é; — 0 when
k — oo and for any dq the corresponding 4s, ¢ has no discrete spectrum embedded
in continuous one ( in the space H(? ). The proof of Lemma 8 is complete.

12
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Proof of the Main Theorem Using Lemmas 1-8 the proof is almost complete.
We consider the set of operators As,q from Lemma 8 in the space H®). Let ©(8,q)
be the subspace of the continuous spectrum of As, q. By analogy we can see

O(brq) C ME
for all k. For any k we have the spectral decomposition
'H(z) = @(5;(]) & Dy

where Dy, is a finite dimensional subspace of the discrete spectrum of As, .. We
remark

HY =MD

D:ﬂm

k

We know also that in the limit §; — 0 the operator A has no any discrete spectrum
in the interval A € (0,1/4]. Therefore D is a trivial linear space D = {0} and the
proof of the Main Theorem is complete.
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