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1. INTRODUCTION

Let H be the upper half plane, r be the modular group r = PSL(2, Z) and
1-l = Lz(r\H) be the standard Hilbert space of automorphic functions. The goal of
this paper is to prove that any even function f E 1i is represented by some special
senes

00

j(z, z) = L an(k, m)Wn(z, z; k)Wn(z, z; m) + Go
n=2

Here an are some constants and

y = Imz

E, (z) are the analytic Eisenstein series 1= 2,4,6; k = (k1, kz, k3 ) , m = (mI, mz 1 m3)
E ~, n = 6k] + 4k2 + 2k3 = 6m] +4m2 + 2m3. .

The dash means the complex conjugation. For the precise assertion see the Main
Theorem. This theorem is utmost improvement of the main result of the paper [1].

The important ingredients of the proof are the spectral theory of the Schroedinger
operator with automorphic potentials, the Ramanujan's formulae for the derivatives
of the Eisenstein series and Phillips-Sarnak approach to investigate a disappearance
of the Maass cusp forms under perturbations.

2. THE MAIN PART

Let H be the hyperbolic plane with Poincare metric ds 2 and the corresponding
Laplacian L, r be the modular group r = PSL(2, Z).

We consider H as the upper half plane

H = {z E C, z = x + iy Iy > O}

and
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The differential operator -L generates the nonnegative selfadjoint operator A(r)
= A in the Hilbert space 1l = L 2 (P; dJ.l) in the natural way. A is called the
automorphic Laplacian.

We introduce some notation. F is a fundanlental dOluain of the group r on H .
dJ.l is the Riemann 111easure which generated by the metric ds2 • The norm II/H of a
function / E 1l is defined by the integral

/ is a function of the two variables x, y or z, z where z = x + iy, z = x - iy. For
analytic function 1 of the variable z we write f(z) and omit Z.

The following spectral decomposition of the Hilbert space 1l is very weH known

(1) 1l = 1lo 0 ([09 e

1lo is the space of cusp forms (functions, for to be luore precise). In the same
time 1lo is the closed subspace of 1l spanned by all of the eigenfunctions of the
cliscrete spectrum Aj of the operator A and Aj E [1/4, 00).

e is the space of the continuous spectrulu of A.
For any function 1 E H we have related to (1) the expansion in eigenfunctions

of the operator A

(2)

00 11 11/(z, z) = ~(I, vn)vn(z, z) +-IPI I(z, z)dJ.l(z, z) +-. (I, Es)Es(z, z)ds
n=l F 47f'l Res=1/2

Here (.,.) means the standard scalar product in 1l and {vn}~=l is a basis of
eigenfunction in Ho

(Vj, Vk) = Ojk, AVk = Akvk

1/4 < Al ~ A2 ~ ... IPI is the dfl volume of F. For PSL(2, Z)jFI = 1r/3.Es 

E (z, z; s) is the Eisenstein-Maass series or the non-analytic Eisenstein series.
For Res> 1 we define the Eisenstein-11aass series by thc absolutely convergent

Pointeare series

E (z, z; s) = ~ Im s Cfz )
,Er 00 \r

where Irn lneans the imaginary part of a cOlnplex number. r 00 c r is the subgroup
generated by the transformation of H : z -t z + 1.
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The Inain property of a continuous function f E Ho is the vanishing of the zero
coefficient of the Fourier series expansion which is defined by thc action of the group
r 00 in H

[ f(z, z)dx = 0

for all y > 0, z = x +i y.
The following decomposition is iIllportant also

By definition

HCl) = {f E HI- f(z,z) = f(-z,-z)}

HCZ) = {f E Hlf(z, z) = f( -z, -z)}

are the subspaces of odd and even functions correspondingly. vVe remark that the
map z --+ -z, H -+ H, comlnutes with Laplacian Land transfer an automorphic
(modular)function to automorphic (modular) one. It is not hard to see that

because the Eisenstein-Maass series is the even function. This observation follows
from the Fourier decomposi tion of E (z, z; s). All these result s related to the spectral
theory of the operator A are contained in the papers [2], [3], [4], [5].

Let 1i~i) = Ho n HCi) be the spaces of cusp forms j = 1,2. We recall now some
properties of analytic lllodular forms. A function f : H --+ Cis said to be analytic
Illodular form of weight k for r if 1) f is analytic on H, 2) f(,z) = (cz + d)k f(z)
for any

I = (~ ~) E 5L(2, Z)

and any zEH, 3) f is analytic at infinity, i.e. it has the Fourier series expansion

(3)
00

f(z) = L an exp 21T"inz
n=O

Let R, Q, P be the analytic Eisenstein series of weights 6,4,2 correspondingly.
We have weil known Fourier series expansions

co

R(z) = E6 (z) = 1 - 504 L O"s(n) exp 21finz
n=l

00

n=l
00

P(z) = Ez(z) = 1 - 24 L 0"1 (n) exp 21rinz
n=l
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where 0 k (n) is the sum of k degrees of the devisors of n.
The functions R, Q generate the algebra of all analytic 1110dular forms of positive

even weights. Any lnodular form of the weight k is represented as a complex linear
comb,ination of the lnonomials (see [6])

Rkl Qk2 ,6k1 +4k
2

= k

V.,Te come back to the subspaces 'HJj) now and we consider one weH known way

of constructing some elements of the subspace 1-l~1) using analytic rnodular forms
(see §3,7 [7] for the similar idea). Let 91,92 be two analytic modular forms of the
weight k with real Fourier coefficients (see (3)), then it is simple to see that

(4)

y = Imz, dash means the cOlnplex conjugation, of course.

The interesting question is the foHowing one. \'Vhat are the elements of 1l~1)
which are approximated by linear combinations of the functions (4) when gj run
through the whole algebra B? We can not answer this question now hut we an
swer the similar question for the space 1l(2) and it is .lust the subject of the Main
Theorem.

Let S(z, z) = P(z) - 37fy, Y = Imz, and let j\.tt oo be the C -linear space generated
by the system of all functions ek, where k runs all nonnegative even integers. By
definition

ek = yk Rkl Qk2 Sk3 Rml Qm 2 Sm 3 , eo = 1

k = 6k1 +4k 2 + 2k 3 = 6m1 +" 4m2 +2m3 ,

k j , m j E Z, k j ): 0, 711 j ): 0, j = 1, 2, 3.

The dash is the complex conjugation. One remark is inlportant here. We add
mentally that ek depends on thc numbers kj, 717j mentioned above but we not write
it in the denotation of ek.

We define now the linear space M~ as the intersection

li;f~ = M oo n V(A),

where D(A) is the domain of definition of the selfadjoint unbounded operator A in
1l. We recall that D(A) is the dense set in 'H. We define after all the linear space

M~ as the closure of lvI~ in 'H.
We formulate now the main theorem of this paper

Theorem (Main Theorem). Tbe following equality holds

We devide tbe proof of tbis tbeorem for several parts.

Firstly we prove
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Lemnla 1.
LMoo C M oo

Proof. We renlark that any function ek is an automorphic one, i.e. for aU/ E r, Z E
H the equali ty holels

ek( ,Z, TZ) = ek(z, z)

It is weH known that the function P(z) is not a Inodular form. For example, we
have

6z
P( -1/z) = Z2 P(z) + -.

1rt

One can proves that S(z, z) is the modular fonn of the weight 2 but not analytic
form. Therefore the monomial

Rkl Qk 2 Sk3

is the Inodular form of the weight k if 6k1 +4k2 +2k3 == k and the function ek(z, z)
is the modular one.

We want to compute now the action of the Laplacian L on the function ek(z, z).
It is weH known (see [6]) that albebra B is not closed relative to a differentiation
but the algebra generated by R, Q, P has this property and this result is proved by
Ineans of remarkable Rarnanujan's formulae

Pz = 1ri (P2 _ Q) Qz = 27ri (PQ _ R) R z = 1ri(PR _ Q2),
6 3

where fz == M. The lnodified Ramanujan's formulae for R, Q, Stake the form

(5)
7fi 2 6 3i

Sz = -(S + -S - Q), S-z = -
6 1ry 2rry2

27ri 3
Qz = -(SQ + -Q - R),

3 7ry

Using (5) we have
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It is not hard to see from this equality that Lek is the linear combinations of
the flll1ctions ek-2, ek, ek+2. It is clear when k3 ~ 2, m3 ~ 2, k1 ~ 1, rnl ~ 1, k2 ~

1, m2 ~ 1. If ka = 1 (01' 1113 = 1) then the dangerous terms to diminish. \"'hen
some of k j (01' n~ j) is equal to zero then the corresponding dangerous tenn is equal
to zero too, 1 ::; j ::; 3. Vve name dangerotls all terms with nontrivial denominators.
The proof of Lemlna 1 is cOluplete

Using Lemma 1 the proof of the following lemma is standard in the theory of
selfadjoint operators in Hilbert spaces and we shall not give this proof here.

Lelnma 2.

1) Let h (A) !Je 8J1Y COll tin uous bounded fun C tion of the au tomorphiC Laplaciall
A. Then we have

h(A)M~ c JVf~

2) Let Pe, PM be ortogonal projectors in 1i Oll the subspaces G, M~ corre
spondingly, thell the equality holds

Lelnma 3. There is the indusion

Proof. Let f ~ (z, z) be the function

~(z) = C2Q rr (1 - Qn?4,
n=l

Q = exp 2rriz

Cl, C2 are some constants. It is clear that f~ E A?r!);, because 6. (z) is the analytic
modular cusp-fonll of weight 12.

Let Po be the orthogonal projector in 1i to 8 like in Lellllna 2. We consider
standard Hilbert space L 2 (Rt) of functions 1J : ll4 --7 C with the scalar procluct

1 f(X)
< e, 1] >= 2rr 10 e(t)1J(t)dt

As we know froln the theorenl of eigenfunctions expansion for the automorphic
Laplacian (see [7]) the lnap

U : e -t L2 (!14)

(U f)(t) = t E(z, z; 1/2 - it)f( z, z)df'(z, z)
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is isol11etric. The operator Uh(A)U* is the operator of lllultiplication by the func
tion h. Vve recall that h is an bounelecl anel continuous function. The star means
the conjugation of an operator in 1l.

We consieler now the function (UPofCl. )(t). It is continuous, and even analytic
function for t E (0,00) as the Rankin-Selberg convolution. It has 110 poles anel it
has only a discrete set of zeroes. Therefore the set of functions Uh(A)Pof D. fill in a
dense subset in L 2 (!Rt) when h run through the set of aH continuous anel bounelecl
functions. Thus the space containing aH functions h(A)PofD. after the closing in 1l
coincides to e. Leml11a 3 foH.ows from Lemma 2. The proof is complete.

Lemnla 4. The fo11owing inc1usion holds

Ce M1l
00

Proof. Because eo = 1.

The idea of the proof of the Maill Theorem now is the foHowillg. Tagether
with the spectral problem AI = Af we consider the spectral problems for the
automorphic Schroedinger operators Aq in ti, Aqf = Af.

The corresponding differential equation is

(6) -L/ + qf =: AI, q E A1~

We will prove that there exists a potential qoo and the operator A qoo which
satisfy

1) A qoo is the selfadjoint nonnegative operator in 1l
2) Aqoo is weIl defined on the dense set V(A qOQ ) in 1l.

In D(Aqoo ) n H(2) it has one dimensional absolutely continuous spectrum
A E [1/4,(0) and the discrete spectrun1 which is outside of the continuous
one A E [0,1/4) as a finite set of eigenvalues of a finite multiplicity, and it
has no other spectrum.

3) There is inclusion

where the function h is defined in Lemma 2.

After that we will prove that i1~ coincides to H,(2) up to the finite dinlensional
subspace which is in the space of the discrete spectnllll of the operator A qOQ in
1l(2). In the last step of the proof of the Main Theorel11 we will prove that this
finite dimensional subspace is trivial.

Lemlna 5.
There exists a set oE potentials N e 8 EB C which satisfy

1) Any q E N is a continuous nonnegative modular function, i.e. q E C(H),
q 2:: 0, q(,z"z) = q(z,z) for a1l, E r, zEH.

2) C -linear space generated by 8011 elements oE N is a dense set in e EB C
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Proof. It is weH known that the space e EB C fiH in by inconlplete theta series (see
[4], [5], for exanlple)

8\p(z, z) = L <p(Im,z)
..,.Er 00 \r

where <p run thraugh the set of all continuous functions <.p : (O, 00) ---+ C with
compact supports. For the proof of Len1ma 5 it is enough to chaose N as the set
of all B\p with nonnegative <.p. The proof is complete.

Remark. We further suppose that N is the set defined in the proof of Lemlua 5.

The following lemma COllles fro1l1 the spectral theory of the Schroedinger operator
with automorphic potentials (see §2 [9) and [10] for more general theory). We
formulate now slightly simplified version, luore advancecl one will be important in
the proof of Lemma 8.

'Ve introduce some notation relating to this spectral theory. Let T q(z, z; z'z'; s) be
the kernel of the resolvent (A q -.\) -1 of the operator A q in 1-l, .\ = s(1-s), Res > 1.
Let 7/Jq (z, Zj s) be the generalized eigenfunction of the continous spectrUlTI of A q

with "eigenvalue" .\ = s(1 - s), Res = 1/2, and Sq(s) be the corresponding one
dimensional scattering n1atrix (see §2 [9]).

Lelnnla 6. Let q E N be a potential from the Renlark to Lemlna 5 then we llave
tbe following assertions
1) The left hand side of equality (6) defines tl1e selfadjoint nonnegative operator

Aq in 1-l (the Friedrichs extension)
2) A q has one dimensional absolu tely contin llOUS spectrtun for .\ E [1/4, 00) and a

discrete one oE eigenvalues of a finite multiplicity Aj E [0,00) anel it has no other
spectruln.

3) Tbe functions T(.,.,.,., 8), 'ljJq(""" S), Sq(S) are meromorphic for 8 E C and they
satisfy tlle fUllctional equations
a)

1
T q ( Z, Z j z' ,z' j s) - T q ( Z, z; z' ,z' j 1 - 8) = 2 7/Jq ( Z, Z j S ) 7/J q ( z' ,z' j 1 - 8)

8-1

b)

c)

The proof of this lellllna is given in above mentioned papers. The method of this
proof is essentially the same as Faddeev's oue for the theorem on eigenfunctions
expansion for the automorphic Laplacian (see [8]). It is important for this theorem
that a potential is sufficiently decreasing in the cusp of the fundaInental domain.

We are interested now in a special potential qoo E M~ 01', more precisely, in a
family of such potentials which satify
1) For A qoo Lemma 6 holds
2) Aqoo in 1-l(2) has only a finite spectrum besides a continuous aue.
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We knüw früm the paper of Colin de Verdiere (see [11] and [10]) that a generic
potential q has this property. But the question is in the important restriction
q E M7}; and we have to prove the existence of such potentials. Here we use some
idea from the paper [12] on a condition to destroy cusp fonns. We Inodify the
Phillips-Sarnak method for the autolnorphic Schroedinger operator.

We fix some potential q frolll the Remark to Lelnma 5 and we consider the
Schroedinger operator Aeq where e is a slnall positive parameter.

Let An > 0 be an arbitrary fixed eigenvalue of the operator A for the corre
sponding even eigenfunction V n , AVn = Anvn . \Ve know that An is embedded in
the continuous spectrum of A, 1/4 < An = 8 71 (1 - 8 71 ), Res n = 1/2. Using the same
arguments as in §2 [12] we obtain that the pair Sn, Vn is included in the analytic
farnily of the solutions of the differential equation

(7)

in the neighbourhood of the 6 = O. Here Vn(Z, z; 0) = Vn(Z, z), An (0) = An, An (e) =
8 n (e)(1 - 8 n (6)). Besides we have

for some a > O. For the analytic functions Cj (e) there is the condition Cl (0)
C2(O) = O. For the analytic functiolls Sn(e) there is the alternative 1) To have
Resn(c) = 1/2 for all e 2: 0 srllall enough, or 2) To have Resn(c) < 1/2 für all c > 0
small enough.

In the case 1) we have cI(e) = O,c2(e) = O. The function vn(z,z;c) and the
value An (c) are correspondingly the eigenfunction and the eigenvalue of the discrete
spectrurll of A~q.

In the case 2) the eigenvalue An of the discrete spectrulll of A disappears nnder
the deformation of eq.

We find now the sufficiellt cOlldition for the case 2). It is the silnilar condition,
of course, as Phillips-Samak's one for the deformation in the Theichmueller space
(see [12]). We have

Vn(Z, z; e) = vn(z, z) + C:wn(z, z) + CJ (e 2
)

~--+o

/\n(e) = An + eVn + CJ (e2)
~--+o

From the equation (7) it follows

(8)

We multiply (8) by the Eisenstein series anel we integrate it over the fundarnental
dornain F. More'precisely we have
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(10)

(9) l q(z, z)v,,(z, z)E(z, z; s,,)df1(z, z) =

lirn (r [Anwn(z, z)E(z, z; Sn) + (Lwn(z, z))E(z, z; sn)]dJ1(z, z))
1'-"00 JFy

Here F y is some compact part of the fundamental dornain F

F ~ {z = x + iy E Hllxl < 1/2, Izl > I}

Fy = {z E Fly ~ Y}, y" is fixed and Y > 0 (big enough), ~ rneans the equality up
to the points on the boundary F. VVe remember also in (9) that

(v n , E8rJ = O.
Let j(z, z), g(z, z) be arbitrary srllooth autolllorphic functions then the following

Green fonnula is wen known (see [2]. [5])

1 11 8g 8f
(/6.g - g6.J)dx 1\ dy = (f . -8 - g-8 )dxly=y

~ 0 Y Y

where 6. = ::'J + ;y2'J. The integral in the right hand side of (9) is equal to

Then we have

Wn(z, z) = c~(0)y8n + c~(0)yl-8n + 0 (exp -ay)
y--+oo

E(z, z; sn) = y8n + r.p(Sn)yl-8n + 0 (exp -ay)
y--+oo

for some a > O. We obtain fronl (10)

{ (E8n 6.wn - 'W n6.E8n )dx A dy = (1 - 2s)(c~(0) - r.p(Sn)c; (0)) + 0(1)
J~, 1'--+00

Using (9) we obtain at last

l q(z, z)v,,(z, z)E(z, z; s,,)df1(z, z) =

(1- 2sn)(c~(0) - r.p(Sn)c~(O))

Therefore if the inequality holds

(11 )

then oue of c~ (0), c~(O) at least is not equal to the zero, and we have the case 2),
i.e. the eigenvalue An disappears under the deformation Eq.
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Lemllla 7. For any eigenvalue An =1= 0 for the even eigenfunction V n (z, z) of tbe
operator A there exists a potential q(z, z) = qn(z, z), qn E N (see Rem81'k to Lemma
5) such that (11) holds.

Proof. We assurne the contrary, Then for some fixed Sn the following equality holds

(12) Lq(z, z)vn(z, z)E(z, z; sn)dp(z, z) = 0

for all q E N (see Remark to Lemma 5). Therefore the function vnEsn is orthogonal
to the whole subspace e in 1i. and as a result we have

(13)

for all y > O. We Inultiply (13) by yS, Res> 1 and we obtain

The last integral is not equal to zero identicaly, because it is SOlne special Rankin
Selberg convolution (see [13], for example). We have the contradiction to (12) and
it proves Lemma 7.

Lellllna 8. There exists a potential (a set of potentials) qoo with properties 1)
For the corresponding operator AqC"C the assertions of Lell11na 6 are valid. 2) The
discrete spectrum of A qoo of even eigenfunctions is a finite set of eigenvalues of a
finite multiplicity An E [0,1/4),

Proof. We consider the following series

(14)
00

q(z, z) = 'E dnqn(z, z),
n=l

where qn run through the set of a11 potentials froln Lemlna 7 for a11 eigenvalues

An of A in the space 1i.~2) dn ~ °are sonle constants which wc define now. We
remark that the potential qn from Lelnma 7 is definecl up to the lnultiplication by
a positive constant at least. Therefore we can suppose that

nlax qn (z, z)
zEF

decreases as fast as we want. We write here "max" instead of "sup" because qn

has a compact support. Thus for the absolute convergence of the series (14) it is
enough to consider bounded sequences {dn }.
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We prove now that there exists a bounded sequences {dn }, dn ~ 0, such that
for the corresponding potential q(z, z) froln (14) the inequality (11) helds for all n
from Lemma 7.

We assurne the contrary. That means there exists an eigenvalue An and an even
eigenfunction V n of A with the equality (12) which helds for any potential (14)
constructed for all bounded sequences {d k }. But there is the contraditien. Namely, .
for the sequences

k=n

otherwise

we have q = qn and the inequality (11) from the definition of qn' Therefore we
proved the existence of adesired bounded sequences dn. We fix it and we define
the corresponding potential q. We remark that froln the decreasing property of

max qn(z, z)
F

lnentioned above and ldnI ~ c, for some c > 0 and for all n, if follows that we can
suppose the estimate

q(z, z) = O(e-ay ), z E F, y = Imz

Cl: > 0 is some constarrt.
Therefore the potential q satisfies the conditions of Theorenl 4 froln §2 [9] and

for the corresponding operator Aq the assertions of Lemlna 6 of this paper are valid.
The salne result is true for any potential cq where c > 0 is some constaut.

vVe consider now c from 0 ~ c ~ cO where co > 0 is some small constant and we
investigate the eigenvalues An(c) of A.!q for even eigenfunctions, An(C:) ~ 1/4. We
watch these eigenvalues when c varies from 0 to co.

Let sn(c) be the new variable sn(e)(l - Sn(e)) = '\n(C). We suppose Imsn(c) ~

1/2. From the principle of analiticity it follows that sn(e) COlnes 01' from S~l\O)
01' from S~2) (0). Here '\n = s~) (0) (1 - s~i) (0)) is the eigenvalue of the operator

A and s~2)(0) = S~2) is the pole of the automorphic scattering matrix <p(s) (oue
dinlensional)

E(z,s) = Ya +<p(S)yl-s + 0(1)
y----:,.oo

In both cases for any fixed n there exists only a finite number of values c, say ej
we name them as "bad" values, for which the equality Resn(cj) = 1/2 holds. Vo.,Te

define the set
n = UUcj(n)

n j

of all "bad" values for all An (c: ). It is clear !1 is thc countable set. Therefore there
exists a sequences of" good" values {Ok}, Ok E {(O, co) -!1} such that Ok -t 0 when
k -t 00 and for any okq the corresponding A Ok q has no discrete spectrum enlbeclded
in continuous one ( in the space 1{J2) ). The proof of Lelnula 8 is cOlnplete.
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Proof of the Main Theoreln Using Lelnnlas 1-8 the proof is almost conlp1ete.
We consider the set of operators AÖkq from Lemma 8 in the space H.J 2 ). Let 8(ÖkQ)
be tbe subspace of tbe continuous spectrum of AOk q. By ana10gy we can see

tor a11 k. For any k we have the spectra1 decolnposition

where Dk is a finite dimensional subspace of tbe discrete spectrum of AÖkq ' We
remark

H(2) = 1\1:;; EI? D

D=nDk
k

vVe know also that in the limit Ok --+ 0 the operator A has no any discrete spectruln
in the interval A E (0,1/4]. Therefore V is a triviallinear space V = {O} anel the
proof of the Main Theorem is complete.
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