Moduli spaces of polarised symplectic O'Grady varieties and Borcherds products

V. Gritsenko, K. Hulek and G.K. Sankaran

Abstract

We study moduli spaces of O'Grady's ten-dimensional irreducible symplectic manifolds. These moduli spaces are covers of modular varieties of dimension 21, namely quotients of hermitian symmetric domains by a suitable arithmetic group. The interesting and new aspect of this case is that the group in question is strictly bigger than the stable orthogonal group. This makes it different from both the K3 and the $\mathrm{K} 3{ }^{[n]}$ case, which are of dimension 19 and 20 respectively.

0 Introduction

Irreducible symplectic manifolds are simply connected compact Kähler manifolds which have a (up to scalar) unique 2 -form, which is non-degenerate. In dimension two these are the K3 surfaces. In higher dimension there are, so far, four known classes of examples. These are deformations of degree n Hilbert schemes of K3 surfaces (the K3 ${ }^{[n]}$ case), deformations of generalised Kummer varieties, and two examples of dimensions 6 and 10 due to O'Grady ([OG2], [OG1]).

From the point of view of the Beauville lattice these examples fall into two series. The first consists of K3 surfaces, the K3 ${ }^{[n]}$ case and O'Grady's example of dimension 10. The Beauville lattices are the unimodular K3lattice $L_{\mathrm{K} 3}=3 U \oplus 2 E_{8}(-1)$, the lattice $L_{\mathrm{K} 3} \oplus\langle-2(n-1)\rangle$ and $L_{\mathrm{K} 3} \oplus$ $A_{2}(-1)$. The moduli spaces of polarised irreducible symplectic manifolds of these classes are of dimensions 19,20 and 21 . The second series consists of generalised Kummer varieties and O'Grady's 6 -dimensional variety with Beauville lattices $3 U \oplus\langle-2\rangle$ and $3 U \oplus\langle-2\rangle \oplus\langle-2\rangle$ respectively. Here the dimensions of the moduli spaces of polarised varieties are 4 and 5 .

In order to describe moduli spaces of irreducible symplectic manifolds one must first classify the possible types of the polarisation. We do this in Section 3 for O'Grady's 10 -dimensional example. As in the $\mathrm{K} 3^{[n]}$ case we find that we have a split and a non-split type. In this paper we shall mostly concentrate on the split case, when the modular group is maximal possible, but we shall also comment on the low degree non-split cases.

In the non-split case we expect Kodaira dimension $-\infty$ for the three cases of lowest Beauville degree, namely $2 d=12,30,48$. For the next case of Beauville degree $2 d=66$ we prove general type: see Corollary 4.3. The arguments used also suggest that $2 d=12,30,48$ might be the only degrees of non-split polarisations giving unirational moduli spaces.

We should like to comment that there is a natural series consisting of moduli of K3 surfaces of degree 2 (double planes branched along a sextic curve), the non-split $\mathrm{K} 3^{[2]}$ case of Beauville degree $2 d=6$ (corresponding to cubic fourfolds and treated by Voisin in [Vo]) and O'Grady's example of dimension 10 with a non-split polarisation of degree 12. The lattices which are orthogonal to the polarisation vector in this series are $2 U \oplus 2 E_{8}(-1) \oplus A_{n}(-1)$ for $n=1,2,3$. It would be very interesting to find a projective geometric realisation of O'Grady's 10-dimensional irreducible symplectic manifolds with non-split Beauville degree 12 .

In the split case we prove that the modular variety is of general type for most degrees using the method of constructing low weight cusp forms, as in the case of K3 surfaces. The existence of such a modular form proves that the modular variety is of general type, provided the form vanishes along the branch divisors. We construct these modular forms by using quasi-pullbacks of Borcherds' form Φ_{12}. There is, however, one important difference between the split case for O'Grady varieties and the previous cases of K3 surfaces [GHS1] and the irreducible symplectic manifolds of K3 ${ }^{[n]}$-type [GHS2]. The modular group is now no longer a subgroup of the stable orthogonal group: in fact it is a degree 2 extension related to the root system G_{2} (see Theorem 3.1 and (4) below). This fact changes considerably the geometry of the corresponding modular varieties. It makes the case of the O'Grady varieties with a split polarisation very interesting. We modify the original method of [GHS1] and [GHS2] by considering involutions of the Dynkin diagrams and use this to prove results for the split polarisation case (Sections 4-5). Here we make strong use of the classification of lattices of small rank and determinant (see Conway-Sloane [CS]).

The case of Beauville degree $2 d=2^{n}$ is exceptional because of very special relations between the root systems E_{6} and F_{4}. We cannot obtain any results about the birational type of these modular varieties. However, if we take the double cover given by the stable orthogonal group, we can prove general type with the only exceptions the split polarisations $2 d=2,4,8$.

The geometry of roots is very special in this case and quite different from the K3 and the K3 ${ }^{[n]}$ case. Because of some very special coincidences we require no explicit Siegel type formulae for the representation of an integer by a lattice, nor do we have to enlist the help of a computer.
Acknowledgements: We should like to thank Eyal Markman for informative conversations on monodromy groups. We are grateful for financial support under grants DFG Hu/337-6 and ANR-09-BLAN-0104-01. The au-
thors would like to thank Max-Planck-Institut für Mathematik in Bonn for support and for providing excellent working conditions.

1 Irreducible symplectic manifolds and moduli

We first recall the following.
Definition 1.1 A complex manifold X is called an irreducible symplectic manifold or hyperkähler manifold if the following conditions are fulfilled:
(i) X is a compact Kähler manifold;
(ii) X is simply-connected;
(iii) $H^{0}\left(X, \Omega_{X}^{2}\right) \cong \mathbb{C} \sigma$ where σ is an everywhere nondegenerate holomorphic 2-form.

It follows from the definition that X has even complex dimension, $\operatorname{dim}_{\mathbb{C}}(X)=$ $2 n$, and that the canonical bundle ω_{X} is trivial (a trivializing section is given by $\left.\sigma^{n}\right)$. Moreover, the irregularity $q(X)=h^{1}\left(X, \mathcal{O}_{X}\right)=0$. Irreducible symplectic manifolds are, together with Calabi-Yau manifolds and abelian varieties, one of the building blocks of compact Kähler manifolds with trivial canonical bundle (complex Ricci flat manifolds). In dimension 2 the irreducible symplectic manifolds are the K3 surfaces. So far only four deformation types of such manifolds have been found. These are (deformations of) Hilbert schemes of points on K3 surfaces (also called irreducible symplectic manifolds of $\mathrm{K} 3{ }^{[n]}$-type), (deformations of) generalised Kummer varieties and two types of examples constructed by O'Grady (see [OG1], [OG2]).

For a K3 surface S the intersection form defines a non-degenerate, symmetric bilinear form on the second cohomology $H^{2}(S, \mathbb{Z})$, giving this cohomology group the structure of a lattice. More precisely

$$
H^{2}(S, \mathbb{Z}) \cong 3 U \oplus 2 E_{8}(-1)=L_{\mathrm{K} 3}
$$

where U is the hyperbolic plane and $E_{8}(-1)$ is the unique even, negative definite unimodular lattice of rank 8. Similarly, one can also define a lattice structure on $H^{2}(X, \mathbb{Z})$ for all irreducible symplectic manifolds X, called the Beauville lattice. The easiest way to define this is the following. There exists a positive constant c, the Fujiki constant, such that the quadratic form q on $H^{2}(X, \mathbb{Z})$ defined by $(\alpha)^{2 n}=c q(\alpha)^{n}$ is the quadratic form of a primitive non-degenerate symmetric bilinear form. This form has signature $\left(3, b_{2}(X)-3\right)$.

Let L be an abstract lattice isomorphic to the Beauville lattice of an irreducible symplectic manifold. This defines a period domain

$$
\Omega=\{[x] \in \mathbb{P}(L \otimes \mathbb{C}) \mid(x, x)=0,(x, \bar{x})>0\}
$$

Given a marking on an irreducible symplectic manifold, i.e. an isometry $\phi: H^{2}(X, \mathbb{Z}) \xrightarrow{\sim} L$, one can define the period point of X as the point in Ω defined by the line $\phi_{\mathbb{C}}\left(H^{2,0}(X)\right)$. As in the K3 case, irreducible symplectic manifolds are unobstructed and local Torelli holds: that is, the period map of the Kuranishi family is a local isomorphism (see [Be]). Moreover Huybrechts [Huy] proved surjectivity of the period map.

We are interested in moduli of polarised irreducible symplectic manifolds. By a polarisation we mean a primitive ample line bundle \mathcal{L} on X and we call $h=c_{1}(\mathcal{L}) \in H^{2}(X, \mathbb{Z})$ the polarisation vector. Since \mathcal{L} is ample, the Beauville degree $q(h)$ is strictly positive. Note that the geometric degree of the polarisation is $c q(h)^{n}$.

In order to discuss moduli spaces of polarised irreducible symplectic varieties, one has to fix discrete data. These are firstly the Beauville lattice and the Fujiki invariant (which together determine the so-called numerical type of an irreducible symplectic manifold) and secondly the type of the polarisation. Since the Beauville lattice L of an irreducible symplectic manifold is, in general, not unimodular, we cannot expect that any two polarisation vectors of the same degree are equivalent under the orthogonal group $\mathrm{O}(L)$. (The case of K3 surfaces is an exception, since the K3-lattice is unimodular.) In general there will be several, but finitely many, $\mathrm{O}(L)$-orbits of such vectors. We call the choice of such an orbit the choice of a polarisation type. Given a polarisation type we fix a representative $h \in L$ of it and consider the lattice $L_{h}=h_{L}^{\perp}$, which has signature $\left(2, b_{2}(X)-3\right)$, and defines a homogeneous domain

$$
\Omega_{h}=\Omega\left(L_{h}\right)=\left\{[x] \in \mathbb{P}\left(L_{h} \otimes \mathbb{C}\right) \mid(x, x)=0,(x, \bar{x})>0\right\}
$$

This is a type IV bounded symmetric hermitian domain. It is of dimension $b_{2}(X)-3$ and has two connected components

$$
\Omega\left(L_{h}\right)=\mathcal{D}\left(L_{h}\right) \coprod \mathcal{D}\left(L_{h}\right)^{\prime} .
$$

The orthogonal group $\mathrm{O}\left(L_{h}\right)$ of the lattice L_{h} has an index 2 subgroup $\mathrm{O}^{+}\left(L_{h}\right)$ that fixes the components $\mathcal{D}\left(L_{h}\right)$ and $\mathcal{D}\left(L_{h}\right)^{\prime}$. We also need the group

$$
\begin{equation*}
\mathrm{O}(L, h)=\{g \in \mathrm{O}(L) \mid g(h)=h\} \tag{1}
\end{equation*}
$$

Since this group maps the orthogonal complement L_{h} to itself, we can consider it as a subgroup of $\mathrm{O}\left(L_{h}\right)$. Let $\mathrm{O}^{+}(L, h)=\mathrm{O}(L, h) \cap \mathrm{O}^{+}\left(L_{h}\right)$.

Let \mathcal{M}_{h} be the moduli space of polarised irreducible symplectic manifolds (X, \mathcal{L}) where X has numerical data as chosen above and where \mathcal{L} is a primitive ample line bundle such that $c_{1}(\mathcal{L})$ is of the given polarisation type. This moduli space exists by Viehweg's general theory as a quasi-projective variety. We do not know how many components \mathcal{M}_{h} has, but Propostion 1.2 below allows us to work with each component separately.

Proposition 1.2 Every component \mathcal{M}_{h}^{0} of the moduli space \mathcal{M}_{h} admits a dominant finite-to-one morphism

$$
\varphi: \mathcal{M}_{h}^{0} \rightarrow \mathrm{O}^{+}(L, h) \backslash \mathcal{D}\left(L_{h}\right)
$$

Proof. See [GHS2, Theorem 1.5].

This is the starting point of our investigations. The importance of this result is that if the quotient $\mathrm{O}^{+}(L, h) \backslash \mathcal{D}\left(L_{h}\right)$ is of general type, then so is \mathcal{M}_{h}^{0}. We shall use this in Sections 4 and 5 to prove the main result of this paper.

For some irreducible symplectic manifolds, such as irreducible symplectic manifolds of $\mathrm{K} 3^{[n]}$-type, the situation can be improved by introducing the group $\operatorname{Mon}^{2}(X) \subset \mathrm{O}\left(H^{2}(X, \mathbb{Z})\right)$, which is the group generated by the monodromy group operators acting on the second cohomology. This group was studied intensively by Markman ([Mar1], [Mar2], [Mar3]). If it is a normal subgroup, then it defines a subgroup $\operatorname{Mon}^{2}(L) \subset \mathrm{O}(L)$. One can then show (the proof of [GHS2, Theorem 2.3] for the K3 ${ }^{[n]}$-type goes through unchanged) that one can factor the map φ from Proposition 1.2 as follows:

2 O'Grady's 10-dimensional example

O'Grady constructed his 10-dimensional irreducible symplectic manifolds using moduli spaces of sheaves on K3 surfaces. More precisely, let S be an algebraic K3 surface and consider the rank 2 sheaves \mathcal{F} on S with trivial first Chern class $c_{1}(\mathcal{F})=0$ and second Chern class $c_{2}(\mathcal{F})=4$. Let H be a sufficiently general polarisation, i.e. a polarisation such that there is no non-trivial divisor class C with $C . H=0$ and $C^{2} \geq-4$. It is easy to find examples: in particular every projective K3 surface with Picard number 1 has such a polarisation. Let \mathcal{M}_{4} be the moduli space of H-semistable sheaves. This is a singular variety whose smooth part carries a symplectic structure. The singularities occur at the semi-stable sheaves and these are sums of ideal sheaves $\mathcal{I}_{Z} \oplus \mathcal{I}_{W}$ where Z and W are 0-dimensional subschemes of S of length 2. O'Grady then considers Kirwan's desingularisation $\widehat{\mathcal{M}}_{4}$ which has a canonical form vanishing on an irreducible divisor. He shows that this divisor is a \mathbb{P}^{2}-bundle whose normal bundle has degree -1 on each \mathbb{P}^{2}. Hence it can be contracted and the resulting 4 -fold $\widetilde{\mathcal{M}}_{4}$ is O'Grady's irreducible symplectic manifold of dimension 10. It has second Betti number $b_{2}=24$. This also shows that these varieties have 22 deformation parameters and
hence there are deformations of $\widetilde{\mathcal{M}}_{4}$ which do not arise from deformations of the underlying K3 surface.

In the case of O'Grady's 10-dimensional examples the Beauville lattice is (as an abstract lattice) of the form:

$$
L=3 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1)
$$

where $A_{2}(-1)$ is the negative definite root lattice associated to A_{2}. The Fujiki invariant of O'Grady's 10-dimensional example is $c=945$. This was shown by Rapagnetta [Ra]. Since the second cohomology of K3 surfaces is of the form $L=3 U \oplus 2 E_{8}(-1)$ and the Beauville lattices of irreducible symplectic manifolds of $\mathrm{K} 3^{[n]}$-type are of the form $L=3 U \oplus 2 E_{8}(-1) \oplus$ $\langle-2(n-1)\rangle$, one can see O'Grady's 10-dimensional example as the third type in a series. We previously treated the case of K3 surfaces in [GHS1] and the case of polarised varieties of $\mathrm{K} 3{ }^{[n]}$-type in [GHS2], where we restricted ourselves to the case of split polarisations (see [GHS1, Example 3.8] for a definition and details).

In the 10-dimensional case the situation with respect to the monodromy group is as follows. Let $\mathrm{O}^{\text {or }}(L)$ be the group of oriented orthogonal transformations of L (see [Mar1, Section 4.1] and in particular Remark 4.3 for a definition of oriented orthogonal transformations). By a result of Markman (unpublished) it is known that $\operatorname{Mon}^{2}(L)=\mathrm{O}^{\text {or }}(L)$.

Since $\mathrm{O}(L, h) \cap \mathrm{O}^{\text {or }}(L)=\mathrm{O}^{+}(L, h)$ the factorisation (2) does not, unlike in some cases of $\mathrm{K} 3^{[n]}$-type, improve the situation. In view of Verbitsky's results [Ve] we conjecture that the map $\varphi: \mathcal{M}_{h}^{0} \rightarrow \mathrm{O}^{+}(L, h) \backslash \mathcal{D}\left(L_{h}\right)$ from Proposition 1.2 is indeed an open embedding.

There are two differences between the cases treated previously and this case. Firstly, the arithmetic group in question is no longer necessarily a subgroup of the stable orthogonal group (see Section 3). Secondly, the discriminant group of the lattices orthogonal to a polarisation vector is no longer cyclic. This requires new considerations concerning the quasi-pullbacks of the Borcherds form. We would also like to point out that the lattice theoretic part of this case is very different from the previous papers. The geometry of roots is very special here, and as a result we need neither arguments from analytic number theory nor any kind of Siegel formulae. The root geometry arguments in this paper are all elementary, but they are far from trivial.

3 The modular orthogonal group and the root system G_{2}

In this section we determine the modular group associated to the moduli spaces of polarised O'Grady varieties (see Theorem 3.1 below). A polarisation corresponds to a primitive vector h with $h^{2}=2 d>0$ in

$$
\begin{equation*}
L_{A}=3 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1) \tag{3}
\end{equation*}
$$

For any even lattice L we denote the discriminant group of L by $D(L)=$ L^{\vee} / L where L^{\vee} is the dual lattice of L. The discriminant group carries a discriminant quadratic form q_{L} (if L is even) with values in $\mathbb{Q} / 2 \mathbb{Z}$. The orthogonal group of the finite discriminant form is denoted by $\mathrm{O}(D(L))$. If $g \in \mathrm{O}(L)$ we denote by \bar{g} its image in $\mathrm{O}(D(L))$. The stable orthogonal group $\widetilde{\mathrm{O}}(L)$ is defined by

$$
\widetilde{\mathrm{O}}(L)=\operatorname{ker}(\mathrm{O}(L) \rightarrow \mathrm{O}(D(L)))
$$

If $h \in L$ its divisor $\operatorname{div}(h)$ is the positive generator of the ideal $(h, L) \subset \mathbb{Z}$. Therefore $h^{*}=h / \operatorname{div}(h)$ is a primitive element of the dual lattice L^{\vee} and $\operatorname{div}(h)$ is a divisor of $\operatorname{det}(L)$.

For the lattice L_{A} of $(3), D\left(L_{A}\right) \cong D\left(A_{2}(-1)\right)=\langle\bar{c}\rangle$ is the cyclic group of order 3 and $q_{L_{A}}(\bar{c})=\frac{2}{3} \bmod 2 \mathbb{Z}$.

For any $h \in L_{A}$ with $h^{2}>0$ and $L_{h}=h_{L_{A}}^{\perp}$ we determine the structure of the modular group $\mathrm{O}^{+}\left(L_{A}, h\right)=\mathrm{O}\left(L_{A}, h\right) \cap \mathrm{O}^{+}\left(L_{h}\right)$ (see (1) and (2)). We have $\operatorname{det}\left(L_{A}\right)=3$, so $\operatorname{div}(h)$ divides $(2 d, 3)$.

Theorem 3.1 Let $h \in L_{A}$ be a primitive vector of length $h^{2}=2 d>0$. The orthogonal complement $L_{h}=h_{L_{A}}^{\perp}$ is of signature $(2,21)$. If $\operatorname{div}(h)=3$ then

$$
L_{h} \cong L_{Q}=2 U \oplus 2 E_{8}(-1) \oplus Q(-1)
$$

where $Q(-1)$ is a negative definite even integral ternary quadratic form of determinant $-2 d / 3$. Its discriminant group $D(Q(-1)) \cong D\left(L_{h}\right)$ is cyclic of order $2 d / 3$ and

$$
\mathrm{O}^{+}\left(L_{A}, h\right) \cong \widetilde{\mathrm{O}}^{+}\left(L_{h}\right)
$$

If $\operatorname{div}(h)=1$, then $L_{h} \cong L_{A, 2 d}$ where

$$
\begin{gathered}
L_{A, 2 d}=2 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1) \oplus\langle-2 d\rangle, \\
D\left(L_{h}\right) \cong D\left(A_{2}(-1)\right) \oplus D(\langle-2 d\rangle),
\end{gathered}
$$

and

$$
\mathrm{O}^{+}\left(L_{A}, h\right) \cong \mathrm{O}_{G}\left(L_{A, 2 d}\right)=\left\{g \in \mathrm{O}^{+}\left(L_{A, 2 d}\right)|\bar{g}|_{D(\langle-2 d\rangle)}=\mathrm{id}\right\}
$$

Any totally isotropic subgroup of $D\left(A_{2}(-1)\right) \oplus D(\langle-2 d\rangle)$ is cyclic.
A polarisation determined by a primitive vector h_{d} with $\operatorname{div}\left(h_{d}\right)=1$ is called split. We note that if $(3, d)=1$ then the polarisation is always split. If $3 \mid d$ then the polarisation $h=2 d$ is split if and only if the discriminant group of L_{h} is not cyclic. In the split case the modular group $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$ is larger than the stable orthogonal group $\widetilde{\mathrm{O}}^{+}\left(L_{h}\right)$ because the elements of $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$ induce trivial action only on the second component of the discriminant group $D\left(L_{h}\right) \cong D\left(A_{2}(-1)\right) \oplus D(\langle-2 d\rangle)$.

We recall that

$$
\left[\mathrm{O}\left(A_{2}\right): W\left(A_{2}\right)\right]=2
$$

where $\mathrm{O}\left(A_{2}\right)$ is the orthogonal group of the lattice A_{2} and $W\left(A_{2}\right)$ is the Weyl group generated by reflections with respect to the roots of A_{2}. The group $O\left(A_{2}\right)$ contains also reflections with respect to the vectors of square 6. The 2 - and 6 -roots of the lattice A_{2} form together the root system G_{2} and $\mathrm{O}\left(A_{2}\right)=W\left(G_{2}\right)$ (see [Bou]).

For any vector $l \in L_{h}$ with $l^{2}<0$ the reflection σ_{l} with respect to l belongs to $\mathrm{O}^{+}\left(L_{h} \otimes \mathbb{R}\right)$. In particular, $O\left(A_{2}(-1)\right)=W\left(G_{2}(-1)\right)$ is a subgroup of $\mathrm{O}^{+}(L, h)$. Therefore

$$
\begin{equation*}
\mathrm{O}_{G}\left(L_{A, 2 d}\right) / \widetilde{\mathrm{O}}^{+}\left(L_{h}\right) \cong W\left(G_{2}(-1)\right) / W\left(A_{2}(-1)\right) \cong \mathbb{Z} / 2 \mathbb{Z} \tag{4}
\end{equation*}
$$

We note that in the case of polarised K3 surfaces or of polarised symplectic manifolds of $\mathrm{K} 3^{[n]}$-type the modular group of the corresponding modular varieties is identical to a stable orthogonal group (see [GHS2]). The degree 2 extension of the stable orthogonal group changes the geometry of the modular varieties considerably. This can be compared to the case of the moduli spaces of $(1, p)$-polarised abelian and Kummer surfaces (see [GH]).

Theorem 3.1 shows the difference between split and non-split polarisations. To prove it we study the orbits of vectors in L. Using the standard discriminant group arguments (see [Nik] and the proof of Proposition 3.6 in [GHS1]) we get

Lemma 3.2 Let L be any non-degenerate even integral lattice and let $h \in$ L_{A} be a primitive vector with $h^{2}=2 d$. If L_{h} is the orthogonal complement of h in L_{A} then

$$
\operatorname{det} L_{h}=\frac{(2 d) \cdot \operatorname{det} L_{A}}{\operatorname{div}(h)^{2}} .
$$

A proof of the following classical result, known as the Eichler criterion, is given in [GHS4, Proposition 3.3].

Lemma 3.3 Let L be a lattice containing two orthogonal isotropic planes. Then the $\widetilde{\mathrm{O}}(L)$-orbit of a primitive vector $l \in L$ is determined by two invariants: its length $l^{2}=(l, l)$, and its image $l^{*}+L$ in the discriminant group $D(L)$.

According to this Lemma 3.3, all primitive $2 d$-vectors $l \in L_{A}$ with $\operatorname{div}(l)=1$ belong to the same $\widetilde{\mathrm{O}}\left(L_{A}\right)$-orbit. If $\operatorname{div}(l)=3$ then $l^{*}+L_{A}$ is a generator of $D\left(L_{A}\right)=D\left(A_{2}(-1)\right)$. Therefore there are two $\widetilde{\widetilde{O}}\left(L_{A}\right)$-orbits of such vectors. An element of $W\left(G_{2}(-1)\right)$ makes these two $\widetilde{\mathrm{O}}\left(L_{A}\right)$-orbits into one $\mathrm{O}\left(L_{A}\right)$-orbit.

Lemma 3.4 If $h_{2 d}$ is a vector of a non-split polarisation then $2 d \equiv 12$ mod 18. For any positive even integer $2 d$ satisfying this congruence there exists a primitive $h_{2 d} \in L_{A}$ with $\operatorname{div}\left(h_{2 d}\right)=3$.

Proof. We put $h_{2 d}=u+x a+y b \in L_{A}$, where $u \in 3 U \oplus 2 E_{8}(-1)$ and $x a+y b \in A_{2}(-1)=\langle a, b\rangle$, where a, b are simple roots of $A_{2}(-1)$. Any primitive vector of a unimodular lattice has divisor 1. Therefore $u=3 v$ with $v \in 3 U \oplus 2 E_{8}(-1)$. A straightforward calculation shows that $\operatorname{div}(x a+y b)$ is divisible by 3 if and only if $x+y \equiv 0 \bmod 3$. We have $x \equiv \pm 1 \bmod 3$ and $y \equiv \mp 1 \bmod 3$ since $h_{2 d}$ is primitive. Therefore

$$
h_{2 d}^{2}=9 v^{2}-2(x+y)^{2}+6 x y \equiv 12 \bmod 18
$$

To construct a polarisation vector of degree $18 n-6$ we take a vector $h=$ $3 n u_{1}+3 u_{2}+(2 a+b)$ where $U=\left\langle u_{1}, u_{2}\right\rangle$ is the first hyperbolic plane in L_{A}.

Now we can calculate L_{h}. If the polarisation is non-split we take the vector $h_{2 d} \in U \oplus A_{2}(-1)$ indicated above. We denote by $Q(-1)$ the orthogonal complement of $h_{2 d}$ in $U \oplus A_{2}(-1)$. According to Lemma 3.2 it is an even integral negative definite lattice of rank 3 and of determinant $-2 d / 3$, i.e.

$$
L_{h} \cong 2 U \oplus 2 E_{8}(-1) \oplus Q(-1), \quad \operatorname{det} Q(-1)=-\frac{2 d}{3}
$$

To prove that $D(Q)$ is cyclic we consider

$$
\langle h\rangle \oplus L_{h} \subset L_{A} \subset L_{A}^{\vee} \subset\left\langle\frac{1}{2 d} h\right\rangle \oplus L_{h}^{\vee}
$$

The lattice L defines the finite subgroup

$$
H=L_{A} /\left(\langle h\rangle \oplus L_{h}\right)<D(\langle h\rangle) \oplus D\left(L_{h}\right)
$$

We have $|H|=\operatorname{det} L_{h}=2 d / 3$ because $H \cong\left(\left\langle\frac{1}{2 d} h\right\rangle \oplus L_{h}^{\vee}\right) / L_{A}^{\vee}$. The projections

$$
\begin{equation*}
p_{h}: H \rightarrow D(\langle h\rangle), \quad p_{L_{h}}: H \rightarrow D\left(L_{h}\right) \tag{5}
\end{equation*}
$$

are injective because $\langle h\rangle$ and L_{h} are primitive in L_{A} (see [Nik, Prop. 1.5.1]). Therefore $H \cong D\left(L_{h}\right)$ and H is isomorphic to a subgroup of the cyclic group $D(\langle h\rangle)$.

To determine $\mathrm{O}\left(L_{A}, h\right)$ we consider the action of elements of this group on the discriminant group. Any $g \in \mathrm{O}\left(L_{A}, h\right)$ acts on $\langle h\rangle^{\vee} \oplus L_{h}^{\vee}$ and induces an element $\bar{g} \in \mathrm{O}\left(D\left(L_{A}\right)\right)$. Moreover \bar{g} acts on the subgroup H. For any $\bar{a} \in p_{h}(H)$ there exists a unique $\bar{b} \in p_{L_{h}}(H)$ such that $\bar{a}+\bar{b} \in H$. The action of \bar{g} on $D(\langle h\rangle)$ is trivial. Therefore it is also trivial on the second
component $\bar{b} \in p_{L_{h}}(H)$. But $p_{L_{h}}(H)$ is isomorphic to the whole group $D\left(L_{h}\right)$ if $\operatorname{div}(h)=3$. Therefore $\mathrm{O}\left(L_{A}, h\right) \cong \widetilde{\mathrm{O}}\left(L_{A h}\right)$. This proves the statement of Theorem 3.1 in the non-split case.

For a split polarisation we can take $h_{2 d}=d u_{1}+u_{2} \in U$. Then $\left(h_{2 d}\right)_{U}^{\perp} \cong$ $\langle-2 d\rangle$ and

$$
L_{h} \cong 2 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1) \oplus\langle-2 d\rangle
$$

Then $|H|=2 d, p_{L_{h}}(H) \cong D(\langle-2 d\rangle)$ and \bar{g} acts trivially on $D(\langle-2 d\rangle)$.
To finish the proof of Theorem 3.1 we analyse the isotropic elements of the discriminant group $D\left(A_{2}(-1)\right) \oplus D(\langle-2 d\rangle)$ of the lattice L_{h} in the split case. If $(3, d)=1$, then the latter group is cyclic. So we assume that $3 \mid d$.

Let $\bar{l}=\left(\pm \bar{c}, \frac{x}{2 d} \bar{h}\right)$ where \bar{c} is a generator of $D\left(A_{2}(-1)\right)$ and x is taken modulo $2 d$. We put $d=3 d_{0}=3 e f^{2}$ where e is square free. It is easy to see that \bar{l} is isotropic if and only if $x=2 y e f$, where y is taken modulo $3 f$, and $1+e y^{2} \equiv 0 \bmod 3$. The element \bar{l} is isotropic if and only if

$$
\frac{2}{3}+\frac{x^{2}}{2 d} \equiv 0 \quad \bmod 2 d
$$

Then

$$
4 d+3 x^{2} \equiv 0 \quad \bmod 12 d \quad \text { or } \quad 12 e f^{2}+3 x^{2} \equiv 0 \quad \bmod 36 e f^{2}
$$

We see that $x=2 x_{0}$ and $e f^{2}+x_{0}^{2} \equiv 0 \bmod 3 e f^{2}$. Therefore $x_{0} \equiv 0 \bmod e f$ and $x=2 x_{0}=2 e f y$ where y is taken modulo $3 f$ and

$$
1+e y^{2} \equiv 0 \quad \bmod 3
$$

The last congruence is true if and only if

$$
e \equiv 2 \quad \bmod 3 \quad \text { and } \quad y \not \equiv 0 \quad \bmod 3
$$

We proved that for $d=3 e f^{2}$ the isotropic elements with non trivial first component are $\left(\pm \bar{c}, \frac{y}{3 f} \bar{h}\right)$. All these elements belong to the union of two totally isotropic cyclic groups generated by $(\bar{c},(\bar{h} / 3 f))$ and by $(\bar{c},-(\bar{h} / 3 f))$. If a subgroup of the discriminant group contains two isotropic elements $\left(\bar{c}, y_{i}(\bar{h} / 3 f)\right)$, where $y_{1} \not \equiv y_{2} \bmod 3$, then $\left(\overline{0},\left(y_{1}-y_{2}\right)(\bar{h} / 3 f)\right)$ is not isotropic because

$$
\frac{6 e f^{2}\left(y_{1}-y_{2}\right)^{2}}{9 f^{2}}=\frac{2 e\left(y_{1}-y_{2}\right)^{2}}{3} \not \equiv 0 \quad \bmod 2 \mathbb{Z}
$$

Thus Theorem 3.1 is proved.
Example 1. The smallest non-split polarisations 12, 30, 48, 66. In the nonsplit case the isomorphism class of the lattice L_{h} with $h^{2}=2 d$ is uniquely defined by the genus of the ternary form Q of determinant $2 d / 3$. For the small polarisations of this example the genus of Q contains only one class.

The corresponding classes can be found in [CS, Table I]. We give a modified description of them using the language of root lattices, indicating the maximal root subsystem in the lattices Q and $Q \frac{\perp}{E_{8}}$:

$$
\begin{array}{rll}
\operatorname{det} Q=4, & Q=A_{3}, & Q_{E_{8}}^{\perp} \cong D_{5} \\
\operatorname{det} Q=10, & Q=\left(A_{1}\right) \frac{\perp}{A_{4}}, & Q_{E_{8}}^{\perp} \cong A_{1} \oplus A_{4} \\
\operatorname{det} Q=16, & Q \supset A_{2} \oplus\langle 48\rangle, & Q_{E_{8}}^{\perp} \supset A_{4} \oplus\langle 48\rangle \\
\operatorname{det} Q=22, & Q \supset A_{2} \oplus\langle 66\rangle, & Q_{E_{8}}^{\perp} \supset A_{3} \oplus A_{1} \oplus\langle 44\rangle .
\end{array}
$$

4 Cusp forms of small weight and the Borcherds form Φ_{12}

Now we can formulate the main theorem of the paper.
Theorem 4.1 Let d be a positive integer not equal to 2^{n} with $n \geq 0$. Then the modular variety

$$
M_{A, 2 d}=\mathrm{O}_{G}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right)
$$

is of general type. Every component \mathcal{M}_{h}^{0} of the moduli space \mathcal{M}_{h} of ten-dimensional polarised O'Grady varieties with split polarisation h of Beauville degree $h^{2}=2 d \neq 2^{n+1}$ is of general type.

Remark. In Corollary 4.3 below we prove general type of the moduli spaces \mathcal{M}_{h}^{0} for the fourth non-split polarisation, of Beauville degree 66 (see Example 1 of $\S 3$).

According to Proposition 1.2 it is enough to prove the main Theorem 4.1 for the modular varieties

$$
M_{A, 2 d}=\mathrm{O}_{G}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right) \quad \text { or } \quad M_{Q}^{(2 d)}=\widetilde{\mathrm{O}}^{+}\left(L_{Q}\right) \backslash \mathcal{D}\left(L_{Q}\right)
$$

(see notations of Theorem 3.1). The dimension of the modular variety $M_{A, 2 d}$ is 21 , which is larger than 8 . Therefore we can use the low weight cusp form trick from [GHS1].

Let L be an even integral lattice of signature $(2, n)$ with $n \geq 3$. A modular form of weight k and character det with respect to a subgroup $\Gamma<\mathrm{O}^{+}(L)$ of finite index is a holomorphic function $F: \mathcal{D}(L)^{\bullet} \rightarrow \mathbb{C}$ on the affine cone $\mathcal{D}(L)^{\bullet}$ over $\mathcal{D}(L)$ such that

$$
F(t Z)=t^{-k} F(Z) \quad \forall t \in \mathbb{C}^{*} \quad \text { and } \quad F(g Z)=\operatorname{det}(g) F(Z) \quad \forall g \in \Gamma
$$

A modular form is a cusp form if it vanishes at every cusp. Cusp forms of character det vanish to integral order at any cusp (see [GHS4]). We denote the linear spaces of modular and cusp forms of weight k and character det for Γ by $M_{k}(\Gamma, \operatorname{det})$ and $S_{k}(\Gamma, \operatorname{det})$ respectively.

Theorem 4.2 The modular variety $M_{A, 2 d}$ (or the modular variety $M_{Q}^{(2 d)}$) is of general type if there exists a cusp form $F \in S_{k}\left(\mathrm{O}_{G}\left(L_{A, 2 d}\right)\right.$, det), (or $F \in S_{k}\left(\widetilde{\mathrm{O}}^{+}\left(L_{Q}\right)\right.$, det $)$) of weight $k<21$ that vanishes of order at least one along the branch divisor of the modular projection

$$
\pi: \mathcal{D}\left(L_{A, 2 d}\right) \rightarrow \mathrm{O}_{G}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right)
$$

(or the analogous projection for $\widetilde{\mathrm{O}}^{+}\left(L_{Q}\right)$).
This is a particular case of Theorem 1.1 in [GHS1].
The dimension of the modular variety is smaller than 26 . Then we can use the quasi pull-back (see [Bo], [BKPS], [Ko], [GHS1] and equation (6) below) of the Borcherds modular form

$$
\Phi_{12} \in M_{12}\left(\mathrm{O}^{+}\left(I I_{2,26}\right), \text { det }\right) \quad \text { where } \quad I I_{2,26} \cong 2 U \oplus 3 E_{8}(-1)
$$

We note that $\Phi_{12}(Z)=0$ if and only if there exists $r \in I I_{2,26}$ with $r^{2}=-2$ such that $(r, Z)=0$. Moreover, the multiplicity of the divisor of zeroes of Φ_{12} is 1 (see $\left.[\mathrm{Bo}]\right)$. We used the quasi pull-back of Φ_{12} in order to construct cusp forms of small weight on the moduli spaces of polarised K3 surfaces (see [GHS1]) and on moduli spaces of split-polarised symplectic manifolds of K3 ${ }^{[2]}$-type (see [GHS2]), which have dimension 19 and 20 respectively. The present case is of dimension 21. The non-split case is similar to the cases considered in [GHS1]-[GHS2] (see also the example at the end of this section) but the split case is different from the previous ones because we need a cusp form with respect to the modular group $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$, which is strictly larger than the stable orthogonal group $\widetilde{\mathrm{O}}^{+}\left(L_{A, 2 d}\right)$. For this reason we will concentrate in this paper on the split case.

Let $S \subset E_{8}(-1)$ be a sublattice (primitive or not) of rank 3 . For our present purpose we take the sublattice of polarisations $S=A_{2}(-1) \oplus\langle-2 d\rangle$ or $S=Q(-1)$ from Theorem 3.1. The choice of S in $E_{8}(-1)$ determines an embedding of $L_{S}=2 U \oplus 2 E_{8}(-1) \oplus S$ into $I I_{2,26}$. The embedding of the lattice also gives us an embedding of the domain $\mathcal{D}\left(L_{S}\right) \subset \mathbb{P}\left(L_{S} \otimes \mathbb{C}\right)$ into $\mathcal{D}\left(I I_{2,26}\right) \subset \mathbb{P}\left(I I_{2,26} \otimes \mathbb{C}\right)$.

We put $R_{S}=\left\{r \in E_{8}(-1) \mid r^{2}=-2,(r, S)=0\right\}$, and $N_{S}=\# R_{S}$. Then the quasi pull-back of Φ_{12} is given by the following formula:

$$
\begin{equation*}
F_{S}=\left.\frac{\Phi_{12}(Z)}{\prod_{\left\{r \in R_{S}, r>0\right\}}(Z, r)}\right|_{\mathcal{D}\left(L_{S}\right)} \in M_{12+\frac{N_{S}}{2}}\left(\widetilde{\mathrm{O}}^{+}\left(L_{S}\right), \text { det }\right) . \tag{6}
\end{equation*}
$$

We fix a system of simple positive roots in $E_{8}(-1)$ and the notation $r>0$ in the above formula means that we take the positive roots in R_{S}, i.e. we pick only one root in any $A_{1} \subset R_{S}$. (The particular choice of a system of the simple roots is not important.) The form F_{S} is a non-zero modular form
of weight $12+\frac{N_{S}}{2}$. By [GHS1, Theorems 6.2 and 4.2] it is a cusp form if $N_{S} \neq 0$, since any isotropic subgroup of the discriminant form of the lattice L_{S} is cyclic, by Theorem 3.1.
Example 2. The smallest non-split polarisations. We illustrate the method of Theorem 4.2 together with the quasi pull-back construction for the polarisations from Example 1 of $\S 3$. For the first three polarisations the cusp form F_{Q} is of weight 32,23 and 22 respectively. But for the lattice Q of determinant $22\left(h^{2}=66\right)$ we have a cusp form of small weight $19<21$

$$
F_{Q}^{(22)} \in S_{19}\left(\widetilde{\mathrm{O}}^{+}\left(L_{Q}\right), \operatorname{det}\right) .
$$

To apply Theorem 4.2 we need a cusp form of small weight with zero along the ramification divisor of the modular projection. According to [GHS1, Corollary 2.13] this divisor is determined by plus or minus reflections $\pm \sigma_{r}$ in the corresponding modular group. If σ_{r} is a reflection in this group then $F_{Q}^{(22)}\left(\sigma_{r}(Z)\right)=-F_{Q}^{(22)}(Z)$ and $F^{(22)}(Z)=0$ if $(Z, r)=0$. If $-\sigma_{r} \in \widetilde{\mathrm{O}}^{+}\left(L_{Q}\right)$ then $\operatorname{det}\left(-\sigma_{r}\right)=1$ because the dimension is odd. The weight of $F_{Q}^{(22)}$ is also odd, i.e. $F_{Q}^{(22)}(-Z)=-F_{Q}^{(22)}(Z)$. Therefore

$$
-F_{Q}^{(22)}\left(\sigma_{r}(Z)\right)=F_{Q}^{(22)}\left(-\sigma_{r}(Z)\right)=\operatorname{det}\left(-\sigma_{r}\right) F_{Q}^{(22)}(Z)=F_{Q}^{(22)}(Z)
$$

and $F_{Q}^{(22)}$ vanishes along the divisor defined by r. Applying Theorem 4.2 we obtain

Corollary 4.3 The modular variety $M_{Q}^{(66)}$ is of general type. Every component \mathcal{M}_{h}^{0} of the moduli space \mathcal{M}_{h} of 10-dimensional polarised O'Grady varieties with non-split polarisation h of Beauville degree $h^{2}=66$ is of general type.

Any vector l of length 12,30 or 48 with $\operatorname{div}(l)=3$ is orthogonal to at least 20 roots in E_{6}. Hence we cannot apply the low weight cusp form trick. We conjecture that for the three lowest non-split polarisations, of Beauville degrees $2 d=12,30$ and 48 , the corresponding moduli spaces are unirational. Using the arithmetic and analytic methods developed in [GHS1]-[GHS2] we hope to prove that for other non-split polarisations the moduli spaces are of general type. In this paper we study the split polarisation because this case is very different and has new phenomena appearing.

The Weyl group of E_{8} acts transitively on the sublattices A_{2}. Let us fix a copy of $A_{2}(-1)$ in $E_{8}(-1)$. Then $\left(A_{2}(-1)\right)_{E_{8}(-1)}^{\perp} \cong E_{6}(-1)$. Let $l \in E_{6}(-1)$ satisfy $l^{2}=-2 d$. We denote the quasi pull-back F_{S} for $S=A_{2}(-1) \oplus\langle l\rangle$ by F_{l}. The problem is to find such a vector l in $E_{6}(-1)$ that yields a modular form with respect to the larger group $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$.

Lemma 4.4 Let us assume that $l \in E_{6}(-1), l^{2}=-2 d$, is invariant with respect to the involution of the Dynkin diagram of $E_{6}(-1)$. Then the quasi pull-back F_{l} is modular with respect to $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$.

Proof. We see that $\mathrm{O}_{G}\left(L_{A, 2 d}\right)=\left\langle\widetilde{\mathrm{O}}^{+}\left(L_{A, 2 d}\right), \sigma_{6}\right\rangle$ where σ_{6} is a reflection with respect to any -6 -vector in $A_{2}(-1)$ (see (4)). The involution $\sigma_{6} \in W\left(G_{2}(-1)\right)$ induces -id on the first component $D\left(A_{2}(-2)\right)$ of the discriminant group $D\left(L_{A, 2 d}\right)$. The Weyl group $W\left(E_{6}\right)$ is a subgroup of index 2 in $\mathrm{O}\left(E_{6}\right)$. The involution J of the Dynkin diagram of the fixed system of simple roots of $E_{6}(-1)$ induces - id on $D\left(E_{6}(-1)\right)$, which is also cyclic of order 3. Using the fact that $\left(A_{2}\right)_{E_{8}}^{\perp} \cong E_{6}$ we can extend the element $J_{6}=\left(\sigma_{6}, J\right)$ to an element in $\mathrm{O}\left(E_{8}\right)<\mathrm{O}^{+}\left(I I_{2,26}\right)$ where we consider σ_{6} as an element in $\mathrm{O}^{+}\left(2 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1)\right)$. Let us introduce the coordinates $\left(Z_{1}, z_{2}, Z_{3}\right) \in \mathcal{D}\left(I I_{2,26}\right)$ corresponding to the sublattice

$$
\left(2 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1)\right) \oplus\langle l\rangle \oplus l_{E_{6}(-1)}^{\perp} \subset I I_{2,26}
$$

where $z_{2} \in l \otimes \mathbb{C}$ and $Z_{3} \in l_{E_{6}(-1)}^{\perp} \otimes \mathbb{C}$. We calculate the function

$$
\left.\frac{\Phi_{12}\left(J_{6}\left(Z_{1}, z_{2}, Z_{3}\right)\right)}{\prod_{\left\{r \in R_{l}, r>0\right\}}\left(J_{6}\left(Z_{1}, z_{2}, Z_{3}\right), r\right)}\right|_{\mathcal{D}\left(L_{A, 2 d}\right)}
$$

where $R_{l}=\left\{r \in E_{6}(-1) \mid r^{2}=-2,(r, l)=0\right\}$ is the set of roots in $E_{8}(-1)$ orthogonal to $S=A_{2}(-1) \oplus\langle l\rangle$. First, we find that it is equal to

$$
\left.\frac{\Phi_{12}\left(\left(\sigma_{6} Z_{1}, z_{2}, J\left(Z_{3}\right)\right)\right)}{\prod_{\left\{r \in R_{l}, r>0\right\}}\left(\left(\sigma_{6} Z_{1}, z_{2}, J\left(Z_{3}\right)\right), r\right)}\right|_{\mathcal{D}\left(L_{A, 2 d}\right)}=F_{l}\left(\sigma_{6}\left(Z_{1}, z_{2}\right)\right)
$$

because $J(l)=l$ and $J_{6}\left(z_{2}\right)=z_{2}$. Second, using the fact that Φ_{12} has character det we find that the same function is equal to

$$
\left.\frac{\left(\operatorname{det} J_{6}\right) \Phi_{12}\left(Z_{1}, z_{2}, Z_{3}\right)}{\prod_{\left\{r \in R_{l}, r>0\right\}}\left(\left(Z_{1}, z_{2}, Z_{3}\right), J(r)\right)}\right|_{\mathcal{D}\left(L_{A, 2 d}\right)}=-F_{l}\left(\left(Z_{1}, z_{2}\right)\right)
$$

because $\operatorname{det} J=1$, $\operatorname{det} \sigma_{6}=-1$, $\operatorname{det} J_{6}=-1$ and the involution J permutes the positive roots in $l \stackrel{L}{E}_{6}$. We note also that $\left(\sigma_{6} Z_{1}, z_{2}, J\left(Z_{3}\right), r\right)=$ $\left(J\left(Z_{3}\right), r\right)_{E_{6}}=\left(Z_{3}, J(r)\right)_{E_{6}}$. Therefore

$$
\begin{equation*}
F_{l} \in S_{12+\frac{N_{l}}{2}}\left(\mathrm{O}_{G}\left(L_{A, 2 d}\right), \operatorname{det}\right) \tag{7}
\end{equation*}
$$

where $N_{l}=\#\left\{r \in E_{6}(-1) \mid r^{2}=-2,(r, l)=0\right\}$.
The weight of F_{l} is smaller than 21 if $N_{l}<18$. In Section 4 we determine all d for which there exists a $(-2 d)$-vector in $E_{6}(-1)$ invariant with respect
to the automorphism of the Dynkin diagram. In the next lemma we study the ramification divisor of the modular projection of $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$. We studied this divisor for the modular groups $\widetilde{\mathrm{O}}^{+}(L)$ in [GHS1, Proposition 3.2] but the ramification divisor of $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$ is much larger.

Lemma 4.5 If $-\sigma_{r} \in \mathrm{O}_{G}\left(L_{A, 2 d}\right)$, then $r^{2}=-2 d$ and $\operatorname{div}(r)=2 d$, or $r^{2}=-6 d$ and $\operatorname{div}(r)=3 d$, or $r^{2}=-2 d$ and $\operatorname{div}(r)=d$.

Proof. Let $r \in L_{A, 2 d}$ be a primitive vector and $r^{2}=-2 e$. If $\sigma_{r}: v \mapsto$ $v-\frac{2(v, r)}{(r, r)} r \in \mathrm{O}^{+}\left(L_{A}\right)$ then

$$
\operatorname{div}(r)\left|r^{2}\right| 2 \operatorname{div}(r) \quad \text { and } \quad \operatorname{div}(r) \mid \operatorname{lcm}(3,2 d)
$$

We assume that $-\sigma_{r} \in \mathrm{O}^{+}\left(L_{A, 2 d}\right)$. Then $\left.\sigma_{r}\right|_{D(\langle-2 d\rangle)}=-\mathrm{id}$ and for any $v \in L_{A, 2 d}^{\vee}$ we have

$$
\sigma_{r}(v)+v=2 v-\frac{2(v, r)}{(r, r)} r=2 v-(v, r) \frac{r}{e} \in A_{2}(-1)^{\vee}+L_{A, 2 d}
$$

where $(v, r) \in \mathbb{Z}$. This is true because we have no $D(\langle-2 d\rangle)$-part in the sum $\sigma_{r}(v)+v$. In particular, there are the following relations between abelian groups

$$
2 \cdot D\left(L_{A, 2 d}\right) \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / d \mathbb{Z}<\mathbb{Z} / 3 \mathbb{Z}+\mathbb{Z} / e \mathbb{Z}
$$

where the sum of the subgroup is taken in the discriminant group. Therefore $d \mid e$. We have

$$
d|e| \operatorname{div}(r) \mid 2 e \quad \text { and } \quad \operatorname{div}(r) \mid \operatorname{lcm}(3,2 d)
$$

Our aim is to calculate the two lattices

$$
\begin{equation*}
L_{A, 2 d}^{(r)}=r_{L_{A, 2 d}}^{\perp} \text { and } T_{r, d}=\left(L_{A, 2 d}^{(r)}\right)_{I I_{2,26}}^{\perp} \tag{8}
\end{equation*}
$$

According to Lemma 3.2 we have

$$
\operatorname{det} T_{r, d}=\operatorname{det} L_{A, 2 d}^{(r)}=\frac{12 d e}{(\operatorname{div}(r))^{2}}
$$

Analysing all possible e and $\operatorname{div}(r)$ we see that $\operatorname{det} T_{r, d}$ is a divisor of 12 . The possible cases are

$$
\begin{aligned}
& e=d, \quad r^{2}=2 d, \quad \operatorname{div}(r)=d, \quad \operatorname{det} T_{r, d}=12 ; \\
& e=d, \quad r^{2}=2 d, \quad \operatorname{div}(r)=2 d, \quad \operatorname{det} T_{r, d}=3 ; \\
& e=2 d, \quad r^{2}=4 d, \quad \operatorname{div}(r)=2 d, \quad \operatorname{det} T_{r, d}=6 ; \\
& e=3 d, \quad r^{2}=6 d, \quad \operatorname{div}(r)=3 d, \quad \operatorname{det} T_{r, d}=4 ; \\
& e=3 d, \quad r^{2}=6 d, \quad \operatorname{div}(r)=6 d, \quad \operatorname{det} T_{r, d}=1 ; \\
& e=6 d, \quad r^{2}=12 d, \quad \operatorname{div}(r)=6 d, \quad \operatorname{det} T_{r, d}=2 .
\end{aligned}
$$

In [CS, Table I] one can find all indecomposable lattices of small rank and determinant. Analysing all lattices of determinant det | 12 and of rank $n \leq 6$ we find the five classes

$$
\operatorname{det}=3, E_{6} ; \quad \operatorname{det}=4, D_{6} ; \quad \operatorname{det}=12, A_{5} \oplus A_{1}, D_{4} \oplus A_{2},\left[D_{5} \oplus\langle 12\rangle\right]_{2}
$$

where $\left[D_{5} \oplus\langle 12\rangle\right]_{2}$ denotes an overlattice of order 2 of $D_{5} \oplus\langle 12\rangle$. The root system of $\left[D_{5} \oplus\langle 12\rangle\right]$ is D_{5}. The formula for $\operatorname{det} T_{r, d}$ given above shows that only the cases mentioned in the lemma are possible.

Corollary 4.6 Let l be as in Lemma 4.4. We assume that $N_{l}<18$. Then the quasi pull-back F_{l} vanishes along the ramification divisor of the modular projection

$$
\pi: \mathcal{D}\left(L_{A, 2 d}\right) \rightarrow \mathrm{O}_{G}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right)
$$

Proof. The components of the branch divisor are

$$
\mathcal{D}_{r}=\left\{[Z] \in \mathcal{D}\left(L_{A, 2 d}\right) \mid(r, Z)=0\right\}
$$

where $r \in L_{A, 2 d}$ and σ_{r} or $-\sigma_{r}$ is in $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$ (see [GHS1, Corollary 2.13]). If $\sigma_{r} \in \mathcal{D}\left(L_{A, 2 d}\right)$, then F_{l} vanishes along \mathcal{D}_{r} because F_{l} is modular with character det. Let $-\sigma_{r} \in \mathrm{O}^{+}\left(L_{A, 2 d}\right)$. The divisor \mathcal{D}_{r} coincides with the homogeneous domain $\mathcal{D}\left(L_{A, 2 d}^{(r)}\right)$. The Borcherds modular form Φ_{12} vanishes of order $N / 2$ where $N \geq\left|R\left(D_{4} \oplus A_{2}\right)\right|=30$ is the number of roots in the lattice $\operatorname{det} T_{r, d}$. Since $N_{l}<18$ then the form F_{l} vanishes along \mathcal{D}_{r} with order at least 7 .

5 The $2 d$-vectors in E_{6} and the root system F_{4}

In this section we finish the proof of Theorem 4.1. To prove it we use Theorem 4.2, Lemma 4.4 and Lemma 4.6. We want to know for which $2 d>0$ there exists a vector $l \in E_{6}$ of length $l^{2}=2 d$, invariant with respect to the involution J of the Dynkin diagram of E_{6} and orthogonal to at least 2 and at most 16 roots in E_{6}. The answer is given in the next theorem.

Theorem 5.1 A-invariant vector l of length $l^{2}=2 d$ that is orthogonal to at least 2 and at most 16 roots in E_{6} exists if d is not equal to 2^{n} where $n \geq 0$.

We give the proof of the theorem in Lemmas $5.2-5.5$ below. We use the notation A_{n}, D_{n} or E_{n} both for a lattice and for its root system because it is always clear from the context which is meant. We consider the Coxeter basis of simple roots in the lattice $E_{6}=\left\langle\alpha_{1}, \ldots, \alpha_{6}\right\rangle$ (see [Bou, Table V])

where

$$
\begin{gathered}
\alpha_{1}=\frac{1}{2}\left(e_{1}+e_{8}\right)-\frac{1}{2}\left(e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+e_{7}\right) \\
\alpha_{2}=e_{1}+e_{2}, \quad \alpha_{k}=e_{k-1}-e_{k-2} \quad(3 \leq k \leq 6)
\end{gathered}
$$

and $\left(e_{1}, \ldots, e_{8}\right)$ is a Euclidean basis in \mathbb{Z}^{8}. To get the extended Dynkin diagram one has to add the maximal root

$$
\begin{aligned}
\tilde{\alpha}= & \frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}+e_{5}-e_{6}-e_{7}+e_{8}\right) \\
& =\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}
\end{aligned}
$$

Then $\left(-\tilde{\alpha}, \alpha_{2}\right)=-1$ and $-\tilde{\alpha}$ is orthogonal to all other simple roots.
In the Euclidean basis $\left(e_{i}\right)$ we have the following representation of E_{6}

$$
\begin{gather*}
E_{6}=\left\{l=x_{1} e_{1}+\cdots+x_{5} e_{5}+x_{6}\left(e_{6}+e_{7}-e_{8}\right)\right\} \tag{10}\\
l^{2}=x_{1}^{2}+\cdots+x_{5}^{2}+3 x_{6}^{3}
\end{gather*}
$$

where the x_{i} are either all integral or all half-integral, and in both cases $x_{1}+\cdots+x_{6}$ is an even integer. We recall that

$$
\operatorname{Aut}\left(E_{6}\right)=W\left(E_{6}\right) \times \operatorname{Aut}\left(\text { Dynkin diagram of } E_{6}\right)
$$

where the second factor is the cyclic group of order 2 generated by the involution J given by $J\left(\alpha_{1}\right)=\alpha_{6}, J\left(\alpha_{3}\right)=\alpha_{5}, J\left(\alpha_{4}\right)=\alpha_{4}, J\left(\alpha_{2}\right)=\alpha_{2}$.

Lemma 5.2 The involution J defines sublattices $E_{6}^{J,+} \oplus E_{6}^{J,-} \subset E_{6}$ of index 4 in E_{6}, where

$$
\begin{gathered}
E_{6}^{J,+}=\left\{l \in E_{6} \mid J(l)=l\right\} \cong D_{4}, \\
E_{6}^{J,-}=\left\{l \in E_{6} \mid J(l)=-l\right\} \cong A_{2}(2)
\end{gathered}
$$

and $A_{2}(2)$ is the lattice with the quadratic form $\left(\begin{array}{cc}4 & -2 \\ -2 & 4\end{array}\right)$ (the renormalisation of the lattice A_{2} by 2).

Proof. From the definition of J we have $E_{6}^{J,+}=\left\langle\alpha_{2}, \alpha_{4}, \alpha_{1}+\alpha_{6}, \alpha_{3}+\alpha_{5}\right\rangle$. This has another basis, namely

$$
\begin{gathered}
E_{6}^{J,+}=\left\langle\alpha_{2}, \alpha_{4}, \alpha_{3}+\alpha_{4}+\alpha_{5},\left(\alpha_{1}+\alpha_{6}\right)+2\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right)+2 \alpha_{2}+\alpha_{4}\right\rangle \\
=\left\langle\alpha_{2}, \alpha_{4}, \alpha_{3}+\alpha_{4}+\alpha_{5},-\tilde{\alpha}\right\rangle \cong D_{4}
\end{gathered}
$$

where α_{2} is the central root of the Dynkin diagram of D_{4}. We denote $E_{6}^{J,+}$ by D_{4}^{+}.

If $J(u)=u$ and $J(v)=-v$ then $(u, v)=-(u, v)=0$. Therefore

$$
E_{6}^{J,-}=\left(D_{4}^{+}\right)_{E_{6}}^{\perp} \supseteq\left\langle\alpha_{1}-\alpha_{6}, \alpha_{3}-\alpha_{5}\right\rangle \cong A_{2}(2)=\left(\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right)
$$

A direct calculation shows that we have equality in the above inclusion of lattices. Then we have $\operatorname{det} D_{4}=4$ and $\operatorname{det} A_{2}(2)=12$, so $\left[E_{6}, D_{4}^{+} \oplus A_{2}(2)\right]=$ 4.

In what follows we need some properties of the root systems D_{4} and F_{4}. The lattice D_{n} is a sublattice of the Euclidean lattice \mathbb{Z}^{n}

$$
D_{n}=\left\{l=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid x_{1}+\cdots+x_{n} \in 2 \mathbb{Z}\right\}
$$

The lattice D_{4} contains the twenty-four 2-roots

$$
R_{2}\left(D_{4}\right)=\left\{ \pm\left(e_{i} \pm e_{j}\right), 1 \leq i<j \leq 4\right\}
$$

which form the root system D_{4}. But the lattice D_{4} contains also the twentyfour 4-roots

$$
R_{4}\left(D_{4}\right)=\left\{ \pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}, \pm 2 e_{i}, 1 \leq i \leq 4\right\}
$$

By definition of the root system F_{4} equals

$$
F_{4}=R_{2}\left(D_{4}\right) \cup R_{4}\left(D_{4}\right)
$$

The Weyl group of F_{4} coincides with the orthogonal group of the lattice D_{4} :
$\mathrm{O}\left(D_{4}\right)=W(F), \quad W\left(F_{4}\right) / W\left(D_{4}\right) \cong$ Aut $\left(\right.$ Dynkin diagram of $\left.D_{4}\right) \cong S_{3}$.
Lemma 5.3 Let J be the involution of the Dynkin diagram of E_{6}.

1) For any root $r \in R_{2}\left(E_{6}\right)$ we have

$$
J(r) \neq r \Leftrightarrow(J(r), r)=0
$$

2) For $D_{4}^{+}=E_{6}^{J,+}$ we have

$$
R_{4}\left(D_{4}^{+}\right)=\left\{r+J(r) \mid r \in R_{2}\left(E_{6}\right), r \neq J(r)\right\}
$$

3) Let $l \in D_{4}^{+}$be orthogonal to a vector $l_{4} \in R_{4}\left(D_{4}^{+}\right)$. Then l is orthogonal to the roots r and $J(r)$ from E_{6} such that $l_{4}=r+J(r)$ and $r \neq J(r)$.

Proof. 1) Lemma 5.2 gives us the following inclusion of lattices:

$$
\begin{equation*}
D_{4}^{+} \oplus A_{2}(2) \subset E_{6} \subset E_{6}^{\vee} \subset\left(D_{4}^{+}\right)^{\vee} \oplus A_{2}(2)^{\vee} \tag{11}
\end{equation*}
$$

We proved above that

$$
\left[E_{6}:\left(D_{4}^{+} \oplus A_{2}(2)\right)\right]=\left[D_{4}^{\vee}: D_{4}\right]=\operatorname{det} D_{4}=4
$$

It is easy to see that

$$
D_{4}^{\vee} / D_{4}=\left\{0, e_{1}+D_{4}, \frac{1}{2}\left(e_{1}+e_{2}+e_{3} \pm e_{4}\right)+D_{4}\right\} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

where

$$
q_{D_{4}}\left(e_{1}+D_{4}\right)=q_{D_{4}}\left(\frac{1}{2}\left(e_{1}+e_{2}+e_{3} \pm e_{4}\right)+D_{4}\right) \equiv 1 \quad \bmod 2 \mathbb{Z}
$$

Analysing the discriminant form $A_{2}(2)^{\vee} / A_{2}(2)$ we see that it contains only three classes $\frac{1}{2} a, \frac{1}{2} b$ and $\frac{1}{2}(a+b)$ modulo A_{2} (where a, b are simple roots in A_{2}) of square $1 \bmod 2 \mathbb{Z}$. Using (5) we see that the natural projection $E_{6} /\left(D_{4}^{+} \oplus A_{2}(2)\right)$ onto D_{4}^{\vee} / D_{4} is surjective. It follows that if

$$
l \in E_{6}, \quad l=l_{+}^{*}+l_{-}^{*}, \quad \text { where } \quad l_{+}^{*} \in\left(D_{4}^{+}\right)^{\vee}, l_{-}^{*} \in A_{2}(2)^{\vee}, l_{+}^{*} \notin D_{4}^{+}
$$

then $\left(l_{+}^{*}, l_{+}^{*}\right) \equiv 1 \bmod 2 \mathbb{Z}$.
Let consider this representation $r_{+}^{*}+r_{-}^{*}$ for a root r in E_{6}. Then $r^{2}=$ $\left(r_{+}^{*}\right)^{2}+\left(r_{-}^{*}\right)^{2}=2$ and the second component r_{-}^{*} is non-trivial if and only if $\left(r_{+}^{*}\right)^{2}=\left(r_{-}^{*}\right)^{2}=1$ according to the argument above. Then $J(r) \neq r$ if and only if $(r, J(r))=\left(r_{+}^{*}\right)^{2}-\left(r_{-}^{*}\right)^{2}=0$.
2) We showed in Lemma 5.2 that E_{6} contains exactly $24 J$-invariant roots of D_{4}^{+}. Therefore there are $72-24=48$ non-invariant roots. For any noninvariant root r we proved in 1) that $(r, J(r))=0$. This gives us 24 pairs $(r, J(r))$ of non-invariant roots satisfying $(r+J(r))^{2}=4$ and $r+J(r) \in D_{4}^{+}$. To show that there is a bijection between the J-pairs and 4-roots in D_{4}^{+}one can simply pick $\alpha_{1}+J\left(\alpha_{1}\right)$ and take into account the fact that the Weyl group of D_{4} acts transitively on the set of 4 -vectors in D_{4}.
3) If $l \in D_{4}^{+}$then $(l, r)=(l, J(r))$ for any root. Therefore $2(l, r)=$ $(l, r+J(r))=0$.

Lemma 5.4 For any positive integer d there exists a vector $l_{2 d} \in D_{4}^{+}=$ $E_{6}^{J,+}$ of square $2 d$ which is orthogonal to at least one root in E_{6}.

Proof. We denote by $N_{L}(2 d)$ the number of vectors of square $2 d$ in a positive definite lattice L. We consider two cases: a vector $l_{2 d}$ is orthogonal to a J-invariant root r_{J} or to a non- J-invariant root r_{n}. In the first case $l_{2 d} \in\left(r_{J}\right)_{D_{4}^{+}}^{\perp} \cong 3 A_{1}$. (See the fourth case in the proof of Lemma 5.5 below.) Then

$$
N_{3 A_{1}}(2 d)=r_{3}(d)
$$

where $r_{3}(d)$ is equal to the number of representations of d as a sum of three squares. It is classically known that

$$
\begin{equation*}
r_{3}\left(4^{m} d\right)=r_{3}(d) \quad \text { and } \quad r_{3}(d)>0 \quad \text { if } d \neq 2^{2 m}(8 n+7) \tag{12}
\end{equation*}
$$

If $\left(l_{2 d}, r_{n}\right)=0$ then $\left(l_{2 d}, r_{n}+J\left(r_{n}\right)\right)=0$ where $r_{n}+J\left(r_{n}\right)=l_{4} \in D_{4}^{+}$. But

$$
\left(l_{4}\right)_{D_{4}^{+}}^{\perp} \cong A_{3}
$$

This follows from the form of the extended Dynkin diagram of D_{4}. For l_{4} we can take the alternating sum of two orthogonal simple roots. Then the three other roots of the extended diagram form the orthogonal complement of l_{4}. We have $A_{3} \cong D_{3}$. According to the definition of D_{3} we have that $N_{A_{3}}(2 d)=r_{3}(2 d)$. The last number is not zero if $d \neq 2^{2 m-1}(8 n+7)$. This and formula (12) shows that for any d we have $N_{3 A_{1}}(2 d)+N_{A_{3}}(2 d)>0$. This proves the lemma.

Lemma 5.5 Let $l_{2 d}$ be a vector as in Lemma 5.4. Then the number of roots in E_{6} orthogonal to $l_{2 d}$ is smaller than 18 if and only if d is not equal to 2^{n} where $n \geq 0$.

Proof. Let us assume that $\left|R_{2}\left(\left(l_{2 d}\right) \perp_{E_{6}}\right)\right| \geq 18$. The root systems of rank at most 5 having at least 18 roots are

$$
A_{5}, D_{5}, A_{4} \oplus A_{1}, D_{4} \oplus A_{1}, A_{3} \oplus A_{2}, A_{4}, D_{4}
$$

1) The cases of $A_{3} \oplus A_{2}$ and $D_{4} \oplus A_{1}$ are not possible. $W\left(E_{6}\right)$ acts transitively on the roots and on the A_{2}-sublattices of E_{6}. We have $\left(A_{1}\right) \frac{\perp}{E_{6}} \cong$ A_{5} and $\left(A_{2}\right)_{E_{6}}^{\perp} \cong A_{2} \oplus A_{2}$. But A_{5} does not contain D_{4} and $A_{2} \oplus A_{2}$ does not contain A_{3}.
2) Let us assume that $R_{2}\left(\left(l_{2 d}\right) \stackrel{1}{E}_{6}\right)=A_{4}$ or $A_{4} \oplus A_{1}$. We show that neither case is possible. The vector $l_{2 d}$ is J-invariant. Therefore $J\left(A_{4}\right)=A_{4}$. The lattice A_{4} is generated by its simple roots a_{1}, a_{2}, a_{3} and a_{4} :

First we assume $a_{1} \neq J\left(a_{1}\right)$ and $J\left(a_{4}\right) \neq a_{4}$. Then $\left(a_{1}, J\left(a_{1}\right)\right)=$ $\left(a_{4}, J\left(a_{4}\right)\right)=0$ according to Lemma 5.3. Therefore we have $J\left(a_{4}\right) \in\left\langle a_{1}, a_{2}\right\rangle$ and $J\left(a_{1}\right) \in\left\langle a_{3}, a_{4}\right\rangle$. If $J\left(a_{1}\right) \neq \pm a_{4}$ then A_{4} contains two orthogonal sublattices $\left\langle a_{1}, J\left(a_{4}\right)\right\rangle$ and $\left\langle a_{4}, J\left(a_{1}\right)\right\rangle$ isomorphic to A_{2}, which is impossible.

If $J\left(a_{1}\right)= \pm a_{4}$ then $0=\left(J\left(a_{1}\right), J\left(a_{3}\right)\right)=\left(\pm a_{4}, J\left(a_{3}\right)\right)$ and $J\left(a_{3}\right) \in$ $\left\langle a_{1}, a_{2}\right\rangle$. But $J\left(a_{3}\right) \neq \pm a_{1}$ and we obtain that $J\left(a_{3}\right) \neq a_{3}$ and $\left(J\left(a_{3}\right), a_{3}\right) \neq$ 0 . This contradicts Lemma 5.3. Therefore we can assume that $a_{1}=J\left(a_{1}\right)$ or $a_{4}=J\left(a_{4}\right)$. If $a_{1}=J\left(a_{1}\right)$ then $\left(a_{1}, J\left(a_{4}\right)\right)=0$ and $J\left(a_{4}\right) \in\left\langle a_{3}, a_{4}\right\rangle$. It
follows that $J\left(a_{4}\right)=a_{4}$. An analogous argument shows that $J\left(a_{3}\right)=a_{3}$ and $J\left(a_{2}\right)=a_{2}$. Therefore J is the identity on A_{4} and we obtain that A_{4} is a sublattice of $D_{4}^{+}=E_{6}^{J,+}$, which is impossible. If $R_{2}\left(\left(l_{2 d}\right) \frac{{ }_{E}^{6}}{}\right)=A_{4} \oplus A_{1}$ then again we have that $J\left(A_{4}\right)=A_{4}$ and $\left.J\right|_{A_{4}}=\mathrm{id}$.
3) We have mentioned above that $\left(A_{1}\right)_{E_{6}}^{\perp} \cong A_{5}$ and that there is only one $W\left(E_{6}\right)$-orbit of A_{1} in E_{6}. Therefore $\left(A_{5}\right) \frac{\perp}{E_{6}} \cong A_{1}=\langle 2\rangle$. Any non-zero vector $l \in A_{1}\left(l^{2}=2 \mathrm{~m}^{2}\right)$ will have the same orthogonal complement. Let us take a J-invariant vector $l \in 3 A_{1}$ such that $l^{2}=2^{2 n+1} k^{2}$ where k is odd. Then $N_{3 A_{1}}(2)=r_{3}(1)=6$ and

$$
N_{3 A_{1}}\left(2^{2 n+1} k^{2}\right)=r_{3}\left(k^{2}\right)=\sum_{f \mid k} r_{3}^{p r}\left(k^{2} / f^{2}\right)=r_{3}^{p r}(1)+\cdots+r_{3}^{p r}\left(k^{2}\right),
$$

which is >6 if and only if $k>1$. Here we denote by $r_{3}^{p r}(n)$ the number of primitive representation of n by three squares. According to Gauss $r_{3}^{p r}(n)=$ 0 if and only if $n \equiv 0 \bmod 4$ or $n \equiv 7 \bmod 8$. Therefore if $2 d=2^{2 n+1}$ then any $2 d$-vector in $3 A_{1}$ is a multiple of a root. If $l_{2 d} \in A_{3}$ the situation is quite similar. We conclude that for $2 d=2^{2 n+1} k^{2}$ there is a $2 d$-vector which satisfies the conditions of the lemma if and only if $k>1$.
4) We can compare the case when $l_{E_{6}}^{\perp}=D_{5}$ with the case of A_{5}. We have $\left(D_{5}\right)_{E_{6}} \cong\langle 12\rangle$. To see this we consider $\left(D_{5}\right) \frac{\perp}{E_{8}}=A_{3}$ and $\left(A_{2}\right) \frac{{ }_{E}^{e}}{}=E_{6}$. There is only one $W\left(A_{3}\right)$-orbit of A_{2} in A_{3} and $\left(A_{2}\right)_{A_{3}}^{\perp} \cong\langle 12\rangle$. This gives us the sublattice $A_{2} \oplus D_{5} \oplus\langle 12\rangle$ in E_{8}. But we can find another orbit of 12 -vectors in E_{6} by taking a copy of A_{2} in D_{5}. In fact, the 12 -vector corresponding to the decomposition $\langle 12\rangle \oplus D_{5} \subset E_{6}$ is not J-invariant. To get a J-invariant vector we take

$$
l_{12}^{+}=2 \alpha_{2}+\alpha_{4}=2 e_{1}+e_{2}+e_{3} \in E_{6}^{J,+}
$$

(see the diagram of E_{6} above). The roots of E_{6} are the vectors

$$
\pm e_{i} \pm e_{j}(1 \leq i<j \leq 5), \quad \pm \frac{1}{2}\left(e_{8}-e_{7}-e_{6} \pm e_{1} \pm \cdots \pm e_{5}\right)
$$

where the number of minus signs in the last case is even. We see that there are six integral and eight half-integral roots orthogonal to l_{12}^{+}. Up to sign they are

$$
\begin{gathered}
e_{3}-e_{2}, e_{4}-e_{5}, e_{4}+e_{5} ; \\
\frac{1}{2}\left(e_{8}-e_{7}-e_{6}+e_{1}-e_{2}-e_{3} \pm\left(e_{4}+e_{5}\right)\right), \frac{1}{2}\left(e_{8}-e_{7}-e_{6}-e_{1}+e_{2}+e_{3} \pm\left(e_{4}-e_{5}\right)\right) .
\end{gathered}
$$

These roots form a root system $A_{1} \oplus A_{3}$ where $A_{1}=\left\langle\alpha_{4}\right\rangle=\left\langle e_{3}-e_{2}\right\rangle$ and

$$
A_{3}=\left\langle e_{4}-e_{5}, e_{4}+e_{5}, \frac{1}{2}\left(e_{8}-e_{7}-e_{6}+e_{1}-e_{2}-e_{3}-e_{4}-e_{5}\right)\right\rangle .
$$

Therefore in the case $2 d=12$ a vector giving a low weight cusp form does exist.
5) Let us assume that $R_{2}\left(\left(l_{2 d}\right) \stackrel{\perp}{E_{6}}\right)=D_{4}$. Then $J\left(D_{4}\right)=D_{4}$. We can fix a system of simple roots $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ of D_{4} (a_{2} is the central root of the diagram).

First we prove that $J\left(a_{2}\right)=a_{2}$. Consideration of the extended Dynkin diagram of D_{4} shows that $\left(A_{1}\right)_{D_{4}}^{\perp} \cong 3 A_{1}$. The four pairwise orthogonal copies of A_{1} in D_{4} correspond to the vertices of the extended Dynkin diagram of $D_{4}: a_{1}, a_{3}, a_{4}$ and $-\tilde{a}$ where $\tilde{a}=a_{1}+2 a_{2}+a_{3}+a_{4}$ is the maximal root of D_{4} (see [Bou, Table IV]). If $J(b) \neq b$ for a root b then $J(b)$ is orthogonal to b (Lemma 5.3). Therefore J permutes the roots a_{1}, a_{3}, a_{4} and $-\tilde{a}$ with some possible changes of signs. Therefore

$$
J\left(2 a_{2}\right)=J\left(\tilde{a}-a_{1}-a_{3}-a_{4}\right)= \pm\left(a_{1}+2 a_{2}+a_{3}+a_{4} \pm a_{1} \pm a_{3} \pm a_{4}\right)
$$

where all \pm are independent. The maximal root \tilde{a} is the only root represented by a linear combination of the simple roots having a coefficient greater than 1 . That leaves only two possibilities: $J\left(2 a_{2}\right)= \pm 2\left(a_{1}+a_{2}+\right.$ $\left.a_{3}+a_{4}\right)$ or $J\left(2 a_{2}\right)= \pm 2 a_{2}$. The first of those two does not occur because the root $a_{1}+a_{2}+a_{3}+a_{4}$ is not orthogonal to a_{2}. Therefore $J\left(a_{2}\right)=a_{2}$.

Let us assume that J does not fix any of the four pairwise orthogonal copies A_{1} in D_{4}. Let $J\left(a_{1}\right) \neq \pm a_{3}$ (the other cases are similar). Then the root $J\left(a_{1}+a_{2}+a_{3}\right)=a_{2}+J\left(a_{1}\right)+J\left(a_{3}\right)$ is not equal to the root $a_{1}+a_{2}+a_{3}$ and it is not orthogonal to it. This contradicts Lemma 5.3-3). Therefore J fixes at least one A_{1} among the four copies of A_{1}. So J fixes at least two copies, which form together with a_{2} a root system A_{3} on which J acts trivially. Therefore we have proved that if $l_{2 d} \in E_{6}, J\left(l_{2 d}\right)=l_{2 d}$ and $R_{2}\left(\left(l_{2 d}\right) \stackrel{E}{E}^{\perp}\right)=D_{4}$, then the orthogonal complement of $l_{2 d}$ in $D_{4}^{+}=E_{6}^{J,+}$ contains A_{3}. But $\left(A_{3}\right)_{D_{4}} \cong\langle 4\rangle$. To see this one bears in mind two facts: $W\left(F_{4}\right)=\mathrm{O}\left(D_{4}\right)$ acts transitively on the set of 4 -vectors in D_{4} and

$$
\left\langle a_{3}-a_{4}\right\rangle \frac{\perp}{D_{4}}=\left\langle a_{1}, a_{2},-\tilde{a}\right\rangle \cong A_{3} .
$$

It follows that the vector $l_{2 d}$ is a multiple of a 4 -vector l_{4} in D_{4}^{+}

$$
l_{2 d}=m l_{4}, \quad l_{4} \in 3 A_{1} \subset D_{4}^{+} \text {or } l_{4} \in A_{3} \subset D_{4}^{+}
$$

(see Lemma 5.4).
If $2 d=4 m^{2}$ then any $2 d$-vector in $3 A_{1} \subset D_{4}^{+}$or in $A_{3} \subset D_{4}^{+}$is a multiple of a corresponding 4 -vector if and only if $2 d=4 \cdot 2^{2 n}$. We use an argument similar to the case $d=1$ (see part 3) of the proof above). If $2 d=4 \cdot 2^{2 n} k^{2}$, with k odd, then

$$
N_{3 A_{1}}\left(4 \cdot 2^{2 n} k^{2}\right)=r_{3}\left(2 k^{2}\right)=\sum_{f \mid k} r_{3}^{p r}\left(2 \frac{k^{2}}{f^{2}}\right)=r_{3}^{p r}(2)+\cdots+r_{3}^{p r}\left(k^{2}\right),
$$

which is $>r_{3}(2)=12$ if and only if $k>1$. This finishes the proof of Lemma 5.5 and of Theorem 5.1.

We note that by a remark of Freitag [Fr, Hilfssatz 2.1, Kap. 3] one can calculate the geometric genus of a modular variety using cusp forms of canonical weight. In particular we have

$$
p_{g}\left(M_{A, 2 d}\right)=\operatorname{dim} S_{21}\left(\mathrm{O}_{G}\left(L_{A, 2 d}\right), \operatorname{det}\right)
$$

In the cases of polarised K3 surfaces or polarised symplectic varieties of type $\mathrm{K} 3{ }^{[2]}$ we constructed canonical differential forms on the corresponding modular varieties using the quasi-pullback of Φ_{12}. In the case considered in this paper this is not possible. From the proof of Lemma 5.5 we obtain

Corollary 5.6 1. There are no J-invariant $2 d$-vectors in E_{6} which are orthogonal to exactly 18 roots in E_{6}.
2. There are no $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$-modular quasi-pullbacks of Φ_{12} of weight 21.

We think that cusp forms of canonical weight exist for $\mathrm{O}_{G}\left(L_{A, 2 d}\right)$, but we expect the Beauville degree of the polarisation to be rather large. To prove that the modular variety $M_{A, 2 d}$ with $d=2^{n}$ is of general type for n large we could use the explicit formula for the Mumford-Hirzebruch volume found in [GHS3]. We conjecture that this variety is not of general type for small n, for example, for $n=0,1,2$. An argument for this is given in Proposition 5.7 below.

The modular variety of symplectic 10-dimensional O'Grady varieties with a split polarisation is a $2: 1$ quotient of the modular variety

$$
\widetilde{\mathrm{O}}^{+}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right) \rightarrow \mathrm{O}_{G}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right)=M_{A, 2 d}
$$

because $\left[\mathrm{O}_{G}\left(L_{A, 2 d}\right): \widetilde{\mathrm{O}}^{+}\left(L_{A, 2 d}\right)\right]=2$.
Proposition 5.7 The modular variety $\widetilde{\mathrm{O}}^{+}\left(L_{A, 2 d}\right) \backslash \mathcal{D}\left(L_{A, 2 d}\right)$ is of general type if $d \notin\{1,2,4\}$.

Proof. We only have to consider the series $2 d=2^{n}$. If $2 d=2,4$ or 8 then any vector l of length $l^{2}=2 d$ is orthogonal to at least 20 roots. We have seen this for $2 d=2$ and $2 d=4$. The argument for $2 d=8$ is similar. Hence we cannot apply the low weight cusp form trick here.

The lattice $L_{A, 2 d}$ for $2 d=2^{n}$ with $n>5$ can be considered as a sublattice of $L_{A, 16}$, if n is even, or of $L_{A, 32}$, if n is odd. Therefore the corresponding modular variety is a covering of finite order of one of the two varieties for $2 d=16$ or 32 . Hence it is enough to prove that $\widetilde{\mathrm{O}}^{+}\left(L_{A, 16}\right) \backslash \mathcal{D}\left(L_{A, 16}\right)$ and $\widetilde{\mathrm{O}}^{+}\left(L_{A, 32}\right) \backslash \mathcal{D}\left(L_{A, 32}\right)$ are of general type.

1) Let $2 d=16$. Using the representation (10) of E_{6} we put $l_{16}=3 e_{1}+2 e_{2}+$ $e_{3}+e_{4}+e_{5} \in E_{6}$. Inspection shows that there are 12 orthogonal roots (6 copies of A_{1}). Three "integral" copies are

$$
e_{3}-e_{4}, e_{4}-e_{5}, e_{3}-e_{5}
$$

Three "half-integral" copies are $\frac{1}{2}\left(-e_{1}+e_{2} \pm\left(e_{3}-e_{4}\right)+e_{5}-e_{6}-e_{7}+e_{8}\right)$ and $\frac{1}{2}\left(-e_{1}+e_{2}+e_{3}+e_{4}-e_{5}-e_{6}-e_{7}+e_{8}\right)$. Then $\left(l_{16}\right) \stackrel{\perp}{E_{6}} \cong A_{3}$ where

$$
A_{3}=\left\langle\frac{1}{2}\left(-e_{1}+e+2-e_{3}+e_{4}+e_{5}-e_{6}-e_{7}+e_{8}\right), e_{3}-e_{4}, e_{4}-e_{5}\right\rangle
$$

2) Let $2 d=32$. We put $l_{32}=4 e_{1}+3 e_{2}+2 e_{3}+e_{6}+e_{7}-e_{8} \in E_{6}$. Then $\left(l_{32}\right) \frac{\perp}{E_{6}} \cong A_{2} \oplus A_{1}$ where $A_{1}=\left\langle e_{4}+e_{5}\right\rangle$ and

$$
A_{2}=\left\langle\frac{1}{2}\left(e_{1}-e+2+e_{3}-e_{4}+e_{5}-e_{6}-e_{7}+e_{8}\right), e_{4}-e_{5}\right\rangle
$$

The quasi pull-backs of Φ_{12} to $2 U \oplus 2 E_{8}(-1) \oplus A_{2}(-1) \oplus\langle-2 d\rangle$ for the vectors l_{16} and l_{32}) are cusp forms of weights 18 and 16 respectively, for the groups $\widetilde{\mathrm{O}}^{+}\left(L_{A, 16}\right)$ and $\left.\widetilde{\mathrm{O}}^{+}\left(L_{A, 32}\right)\right)$). The set of plus or minus reflections in $\widetilde{\mathrm{O}}^{+}\left(L_{A, 2 d}\right)$ is a subset of the reflections considered in Lemma 4.5. Therefore we can prove that $F_{l_{16}}$ (resp. $F_{l_{36}}$) vanishes on the branch divisor of the modular projection using the arguments of the proof of Corollary 4.6. To finish the proof we apply Theorem 4.2 .

References

[Be] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom. 18 (1983), 755-782.
[Bo] R.E. Borcherds, Automorphic forms on $\mathrm{O}_{s+2,2}(\mathbb{R})$ and infinite products. Invent. Math. 120 (1995), 161-213.
[BKPS] R.E. Borcherds, L. Katzarkov, T. Pantev, N.I. Shepherd-Barron, Families of K3 surfaces. J. Algebraic Geom. 7 (1998), 183-193.
[Bou] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris 1968.
[CS] J.H. Conway, N.J.A. Sloane Low-dimensional lattices I: quadratic forms of small determinant. Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 17-41.
[Fr] E. Freitag, Siegelsche Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254. Springer-Verlag, Berlin-GöttingenHeidelberg, 1983.
[GH] V. Gritsenko, K. Hulek, Minimal Siegel modular threefolds. Math. Proc. Cambridge Philos. Soc. 123 (1998), 461-485.
[GHS1] V. Gritsenko, K. Hulek, G.K. Sankaran, The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169 (2007), 519-567.
[GHS2] V. Gritsenko, K. Hulek, G.K. Sankaran, Moduli spaces of irreducible symplectic manifolds. Compos. Math. 146 (2010), 404-434.
[GHS3] V. Gritsenko, K. Hulek, G.K. Sankaran, Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type. Documenta Math. 13 (2008), 1-19.
[GHS4] V. Gritsenko, K. Hulek, G.K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties. J. Algebra 322 (2009), 463-478.
[Huy] D. Huybrechts, Compact hyper-Kähler manifolds: basic results. Invent. Math. 135 (1999), 63-113.
[Ko] S. Kondo, On the Kodaira dimension of the moduli space of K3 surfaces. II. Compos. Math. 116 (1999), 111-117.
[OG1] K. O'Grady, Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512 (1999), 49-117.
[OG2] K. O'Grady, A new six-dimensional irreducible symplectic variety. J. Algebraic Geom. 12 (2003), 435-505.
[Mar1] E. Markman, On the monodromy of moduli spaces of sheaves on K3 surfaces. J. Algebraic Geom. 17 (2008), 29-99.
[Mar2] E. Markman, On the monodromy of moduli spaces of sheaves on K3 surfaces II. math. AG/0305043.
[Mar3] E. Markman, Integral constraints on the monodromy group of the hyperkähler resolution of a symmetric product of a K3 surface. Intern. J. Math. 21 (2010), 169-223.
[Nik] V.V. Nikulin, Integral symmetric bilinear forms and some of their applications. Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177. English translation in Math. USSR, Izvestiia 14 (1980), 103-167.
[Ra] A. Rapagnetta, On the Beauville form of the known irreducible symplectic varieties. Math. Ann. 340 (2008), 77-95.
[Ve] M. Verbitsky, A global Torelli theorem for hyperkähler manifolds. arXiv:0908.4121.
[Vo] C. Voisin, Théorème de Torelli pour les cubiques de \mathbb{P}^{5}. Invent. Math. 86 (1986), 577-601.

V.A. Gritsenko
Université Lille 1
Laboratoire Paul Painlevé
F-59655 Villeneuve d'Ascq, Cedex
France
valery.gritsenko@math.univ-lille1.fr
K. Hulek
Institut für Algebraische Geometrie
Leibniz Universität Hannover
D-30060 Hannover
Germany
hulek@math.uni-hannover.de
G.K. Sankaran
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY
England
gks@maths.bath.ac.uk

