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Abstract

We study moduli spaces of O’Grady’s ten-dimensional irreducible
symplectic manifolds. These moduli spaces are covers of modular va-
rieties of dimension 21, namely quotients of hermitian symmetric do-
mains by a suitable arithmetic group. The interesting and new aspect
of this case is that the group in question is strictly bigger than the
stable orthogonal group. This makes it different from both the K3 and
the K3[n] case, which are of dimension 19 and 20 respectively.

0 Introduction

Irreducible symplectic manifolds are simply connected compact Kähler mani-
folds which have a (up to scalar) unique 2-form, which is non-degenerate.
In dimension two these are the K3 surfaces. In higher dimension there are,
so far, four known classes of examples. These are deformations of degree n
Hilbert schemes of K3 surfaces (the K3[n] case), deformations of generalised
Kummer varieties, and two examples of dimensions 6 and 10 due to O’Grady
([OG2], [OG1]).

From the point of view of the Beauville lattice these examples fall into
two series. The first consists of K3 surfaces, the K3[n] case and O’Grady’s
example of dimension 10. The Beauville lattices are the unimodular K3-
lattice LK3 = 3U ⊕ 2E8(−1), the lattice LK3 ⊕ 〈−2(n− 1)〉 and LK3 ⊕
A2(−1). The moduli spaces of polarised irreducible symplectic manifolds of
these classes are of dimensions 19, 20 and 21. The second series consists
of generalised Kummer varieties and O’Grady’s 6-dimensional variety with
Beauville lattices 3U ⊕ 〈−2〉 and 3U ⊕ 〈−2〉 ⊕ 〈−2〉 respectively. Here the
dimensions of the moduli spaces of polarised varieties are 4 and 5.

In order to describe moduli spaces of irreducible symplectic manifolds
one must first classify the possible types of the polarisation. We do this in
Section 3 for O’Grady’s 10-dimensional example. As in the K3[n] case we
find that we have a split and a non-split type. In this paper we shall mostly
concentrate on the split case, when the modular group is maximal possible,
but we shall also comment on the low degree non-split cases.
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In the non-split case we expect Kodaira dimension −∞ for the three
cases of lowest Beauville degree, namely 2d = 12, 30, 48. For the next case
of Beauville degree 2d = 66 we prove general type: see Corollary 4.3. The
arguments used also suggest that 2d = 12, 30, 48 might be the only degrees
of non-split polarisations giving unirational moduli spaces.

We should like to comment that there is a natural series consisting of
moduli of K3 surfaces of degree 2 (double planes branched along a sextic
curve), the non-split K3[2] case of Beauville degree 2d = 6 (corresponding to
cubic fourfolds and treated by Voisin in [Vo]) and O’Grady’s example of di-
mension 10 with a non-split polarisation of degree 12. The lattices which are
orthogonal to the polarisation vector in this series are 2U⊕2E8(−1)⊕An(−1)
for n = 1, 2, 3. It would be very interesting to find a projective geomet-
ric realisation of O’Grady’s 10-dimensional irreducible symplectic manifolds
with non-split Beauville degree 12.

In the split case we prove that the modular variety is of general type for
most degrees using the method of constructing low weight cusp forms, as in
the case of K3 surfaces. The existence of such a modular form proves that
the modular variety is of general type, provided the form vanishes along the
branch divisors. We construct these modular forms by using quasi-pullbacks
of Borcherds’ form Φ12. There is, however, one important difference between
the split case for O’Grady varieties and the previous cases of K3 surfaces
[GHS1] and the irreducible symplectic manifolds of K3[n]-type [GHS2]. The
modular group is now no longer a subgroup of the stable orthogonal group:
in fact it is a degree 2 extension related to the root system G2 (see Theo-
rem 3.1 and (4) below). This fact changes considerably the geometry of the
corresponding modular varieties. It makes the case of the O’Grady varieties
with a split polarisation very interesting. We modify the original method
of [GHS1] and [GHS2] by considering involutions of the Dynkin diagrams
and use this to prove results for the split polarisation case (Sections 4–5).
Here we make strong use of the classification of lattices of small rank and
determinant (see Conway-Sloane [CS]).

The case of Beauville degree 2d = 2n is exceptional because of very special
relations between the root systems E6 and F4. We cannot obtain any results
about the birational type of these modular varieties. However, if we take
the double cover given by the stable orthogonal group, we can prove general
type with the only exceptions the split polarisations 2d = 2, 4, 8.

The geometry of roots is very special in this case and quite different from
the K3 and the K3[n] case. Because of some very special coincidences we
require no explicit Siegel type formulae for the representation of an integer
by a lattice, nor do we have to enlist the help of a computer.
Acknowledgements: We should like to thank Eyal Markman for infor-
mative conversations on monodromy groups. We are grateful for financial
support under grants DFG Hu/337-6 and ANR-09-BLAN-0104-01. The au-
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1 Irreducible symplectic manifolds and moduli

We first recall the following.

Definition 1.1 A complex manifold X is called an irreducible symplectic
manifold or hyperkähler manifold if the following conditions are fulfilled:

(i) X is a compact Kähler manifold;

(ii) X is simply-connected;

(iii) H0(X, Ω2
X) ∼= Cσ where σ is an everywhere nondegenerate holomor-

phic 2-form.

It follows from the definition that X has even complex dimension, dimC(X) =
2n, and that the canonical bundle ωX is trivial (a trivializing section is
given by σn). Moreover, the irregularity q(X) = h1(X,OX) = 0. Irre-
ducible symplectic manifolds are, together with Calabi-Yau manifolds and
abelian varieties, one of the building blocks of compact Kähler manifolds
with trivial canonical bundle (complex Ricci flat manifolds). In dimension 2
the irreducible symplectic manifolds are the K3 surfaces. So far only four
deformation types of such manifolds have been found. These are (deforma-
tions of) Hilbert schemes of points on K3 surfaces (also called irreducible
symplectic manifolds of K3[n]-type), (deformations of) generalised Kummer
varieties and two types of examples constructed by O’Grady (see [OG1],
[OG2]).

For a K3 surface S the intersection form defines a non-degenerate, sym-
metric bilinear form on the second cohomology H2(S,Z), giving this coho-
mology group the structure of a lattice. More precisely

H2(S,Z) ∼= 3U ⊕ 2E8(−1) = LK3

where U is the hyperbolic plane and E8(−1) is the unique even, negative
definite unimodular lattice of rank 8. Similarly, one can also define a lattice
structure on H2(X,Z) for all irreducible symplectic manifolds X, called the
Beauville lattice. The easiest way to define this is the following. There
exists a positive constant c, the Fujiki constant, such that the quadratic
form q on H2(X,Z) defined by (α)2n = cq(α)n is the quadratic form of a
primitive non-degenerate symmetric bilinear form. This form has signature
(3, b2(X)− 3).

Let L be an abstract lattice isomorphic to the Beauville lattice of an
irreducible symplectic manifold. This defines a period domain

Ω = {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x̄) > 0}.
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Given a marking on an irreducible symplectic manifold, i.e. an isometry
φ : H2(X,Z) ∼→ L, one can define the period point of X as the point in Ω
defined by the line φC(H2,0(X)). As in the K3 case, irreducible symplectic
manifolds are unobstructed and local Torelli holds: that is, the period map of
the Kuranishi family is a local isomorphism (see [Be]). Moreover Huybrechts
[Huy] proved surjectivity of the period map.

We are interested in moduli of polarised irreducible symplectic manifolds.
By a polarisation we mean a primitive ample line bundle L on X and we
call h = c1(L) ∈ H2(X,Z) the polarisation vector. Since L is ample, the
Beauville degree q(h) is strictly positive. Note that the geometric degree of
the polarisation is cq(h)n.

In order to discuss moduli spaces of polarised irreducible symplectic vari-
eties, one has to fix discrete data. These are firstly the Beauville lattice and
the Fujiki invariant (which together determine the so-called numerical type
of an irreducible symplectic manifold) and secondly the type of the polarisa-
tion. Since the Beauville lattice L of an irreducible symplectic manifold is, in
general, not unimodular, we cannot expect that any two polarisation vectors
of the same degree are equivalent under the orthogonal group O(L). (The
case of K3 surfaces is an exception, since the K3-lattice is unimodular.) In
general there will be several, but finitely many, O(L)-orbits of such vectors.
We call the choice of such an orbit the choice of a polarisation type. Given a
polarisation type we fix a representative h ∈ L of it and consider the lattice
Lh = h⊥L , which has signature (2, b2(X) − 3), and defines a homogeneous
domain

Ωh = Ω(Lh) = {[x] ∈ P(Lh ⊗ C) | (x, x) = 0, (x, x̄) > 0}.

This is a type IV bounded symmetric hermitian domain. It is of dimension
b2(X)− 3 and has two connected components

Ω(Lh) = D(Lh)
∐

D(Lh)′.

The orthogonal group O(Lh) of the lattice Lh has an index 2 subgroup
O+(Lh) that fixes the components D(Lh) and D(Lh)′. We also need the
group

O(L, h) = {g ∈ O(L) | g(h) = h}. (1)

Since this group maps the orthogonal complement Lh to itself, we can con-
sider it as a subgroup of O(Lh). Let O+(L, h) = O(L, h) ∩O+(Lh).

Let Mh be the moduli space of polarised irreducible symplectic mani-
folds (X,L) where X has numerical data as chosen above and where L is a
primitive ample line bundle such that c1(L) is of the given polarisation type.
This moduli space exists by Viehweg’s general theory as a quasi-projective
variety. We do not know how many componentsMh has, but Propostion 1.2
below allows us to work with each component separately.
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Proposition 1.2 Every component M0
h of the moduli space Mh admits a

dominant finite-to-one morphism

ϕ : M0
h → O+(L, h)\D(Lh).

Proof. See [GHS2, Theorem 1.5]. 2

This is the starting point of our investigations. The importance of this result
is that if the quotient O+(L, h)\D(Lh) is of general type, then so is M0

h.
We shall use this in Sections 4 and 5 to prove the main result of this paper.

For some irreducible symplectic manifolds, such as irreducible symplec-
tic manifolds of K3[n]-type, the situation can be improved by introducing
the group Mon2(X) ⊂ O(H2(X,Z)), which is the group generated by the
monodromy group operators acting on the second cohomology. This group
was studied intensively by Markman ([Mar1], [Mar2], [Mar3]). If it is a nor-
mal subgroup, then it defines a subgroup Mon2(L) ⊂ O(L). One can then
show (the proof of [GHS2, Theorem 2.3] for the K3[n]-type goes through
unchanged) that one can factor the map ϕ from Proposition 1.2 as follows:

M0
h

ϕ̃ //

ϕ

))SSSSSSSSSSSSSSSS (Mon2(L) ∩O+(L, h))\D(Lh)

²²
O+(L, h)\D(Lh).

(2)

2 O’Grady’s 10-dimensional example

O’Grady constructed his 10-dimensional irreducible symplectic manifolds
using moduli spaces of sheaves on K3 surfaces. More precisely, let S be an
algebraic K3 surface and consider the rank 2 sheaves F on S with trivial
first Chern class c1(F) = 0 and second Chern class c2(F) = 4. Let H be
a sufficiently general polarisation, i.e. a polarisation such that there is no
non-trivial divisor class C with C.H = 0 and C2 ≥ −4. It is easy to find ex-
amples: in particular every projective K3 surface with Picard number 1 has
such a polarisation. Let M4 be the moduli space of H-semistable sheaves.
This is a singular variety whose smooth part carries a symplectic structure.
The singularities occur at the semi-stable sheaves and these are sums of
ideal sheaves IZ⊕IW where Z and W are 0-dimensional subschemes of S of
length 2. O’Grady then considers Kirwan’s desingularisation M̂4 which has
a canonical form vanishing on an irreducible divisor. He shows that this di-
visor is a P2-bundle whose normal bundle has degree −1 on each P2. Hence
it can be contracted and the resulting 4-fold M̃4 is O’Grady’s irreducible
symplectic manifold of dimension 10. It has second Betti number b2 = 24.
This also shows that these varieties have 22 deformation parameters and
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hence there are deformations of M̃4 which do not arise from deformations
of the underlying K3 surface.

In the case of O’Grady’s 10-dimensional examples the Beauville lattice is
(as an abstract lattice) of the form:

L = 3U ⊕ 2E8(−1)⊕A2(−1)

where A2(−1) is the negative definite root lattice associated to A2. The
Fujiki invariant of O’Grady’s 10-dimensional example is c = 945. This was
shown by Rapagnetta [Ra]. Since the second cohomology of K3 surfaces
is of the form L = 3U ⊕ 2E8(−1) and the Beauville lattices of irreducible
symplectic manifolds of K3[n]-type are of the form L = 3U ⊕ 2E8(−1) ⊕
〈−2(n− 1)〉, one can see O’Grady’s 10-dimensional example as the third
type in a series. We previously treated the case of K3 surfaces in [GHS1] and
the case of polarised varieties of K3[n]-type in [GHS2], where we restricted
ourselves to the case of split polarisations (see [GHS1, Example 3.8] for a
definition and details).

In the 10-dimensional case the situation with respect to the monodromy
group is as follows. Let Oor(L) be the group of oriented orthogonal trans-
formations of L (see [Mar1, Section 4.1] and in particular Remark 4.3 for a
definition of oriented orthogonal transformations). By a result of Markman
(unpublished) it is known that Mon2(L) = Oor(L).

Since O(L, h) ∩Oor(L) = O+(L, h) the factorisation (2) does not, unlike
in some cases of K3[n]-type, improve the situation. In view of Verbitsky’s
results [Ve] we conjecture that the map ϕ : M0

h → O+(L, h)\D(Lh) from
Proposition 1.2 is indeed an open embedding.

There are two differences between the cases treated previously and this
case. Firstly, the arithmetic group in question is no longer necessarily a sub-
group of the stable orthogonal group (see Section 3). Secondly, the discrim-
inant group of the lattices orthogonal to a polarisation vector is no longer
cyclic. This requires new considerations concerning the quasi-pullbacks of
the Borcherds form. We would also like to point out that the lattice theoretic
part of this case is very different from the previous papers. The geometry of
roots is very special here, and as a result we need neither arguments from
analytic number theory nor any kind of Siegel formulae. The root geometry
arguments in this paper are all elementary, but they are far from trivial.

3 The modular orthogonal group and the root sys-
tem G2

In this section we determine the modular group associated to the moduli
spaces of polarised O’Grady varieties (see Theorem 3.1 below). A polarisa-
tion corresponds to a primitive vector h with h2 = 2d > 0 in

LA = 3U ⊕ 2E8(−1)⊕A2(−1). (3)
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For any even lattice L we denote the discriminant group of L by D(L) =
L∨/L where L∨ is the dual lattice of L. The discriminant group carries
a discriminant quadratic form qL (if L is even) with values in Q/2Z. The
orthogonal group of the finite discriminant form is denoted by O(D(L)). If
g ∈ O(L) we denote by ḡ its image in O(D(L)). The stable orthogonal group
Õ(L) is defined by

Õ(L) = ker(O(L) → O(D(L))).

If h ∈ L its divisor div(h) is the positive generator of the ideal (h,L) ⊂ Z.
Therefore h∗ = h/div(h) is a primitive element of the dual lattice L∨ and
div(h) is a divisor of det(L).

For the lattice LA of (3), D(LA) ∼= D(A2(−1)) = 〈c̄〉 is the cyclic group
of order 3 and qLA

(c̄) = 2
3 mod 2Z.

For any h ∈ LA with h2 > 0 and Lh = h⊥LA
we determine the structure of

the modular group O+(LA, h) = O(LA, h) ∩ O+(Lh) (see (1) and (2)). We
have det(LA) = 3, so div(h) divides (2d, 3).

Theorem 3.1 Let h ∈ LA be a primitive vector of length h2 = 2d > 0.
The orthogonal complement Lh = h⊥LA

is of signature (2, 21). If div(h) = 3
then

Lh
∼= LQ = 2U ⊕ 2E8(−1)⊕Q(−1),

where Q(−1) is a negative definite even integral ternary quadratic form of
determinant −2d/3. Its discriminant group D(Q(−1)) ∼= D(Lh) is cyclic of
order 2d/3 and

O+(LA, h) ∼= Õ
+
(Lh).

If div(h) = 1, then Lh
∼= LA,2d where

LA,2d = 2U ⊕ 2E8(−1)⊕A2(−1)⊕ 〈−2d〉,

D(Lh) ∼= D(A2(−1))⊕D(〈−2d〉),
and

O+(LA, h) ∼= OG(LA,2d) = {g ∈ O+(LA,2d) | ḡ|D(〈−2d〉) = id}.

Any totally isotropic subgroup of D(A2(−1))⊕D(〈−2d〉) is cyclic.

A polarisation determined by a primitive vector hd with div(hd) = 1 is
called split. We note that if (3, d) = 1 then the polarisation is always split. If
3|d then the polarisation h = 2d is split if and only if the discriminant group
of Lh is not cyclic. In the split case the modular group OG(LA,2d) is larger
than the stable orthogonal group Õ

+
(Lh) because the elements of OG(LA,2d)

induce trivial action only on the second component of the discriminant group
D(Lh) ∼= D(A2(−1))⊕D(〈−2d〉).

7



We recall that
[O(A2) : W (A2)] = 2

where O(A2) is the orthogonal group of the lattice A2 and W (A2) is the
Weyl group generated by reflections with respect to the roots of A2. The
group O(A2) contains also reflections with respect to the vectors of square
6. The 2- and 6-roots of the lattice A2 form together the root system G2

and O(A2) = W (G2) (see [Bou]).
For any vector l ∈ Lh with l2 < 0 the reflection σl with respect to l belongs

to O+(Lh ⊗ R). In particular, O(A2(−1)) = W (G2(−1)) is a subgroup of
O+(L, h). Therefore

OG(LA,2d)/Õ
+
(Lh) ∼= W (G2(−1))/W (A2(−1)) ∼= Z/2Z. (4)

We note that in the case of polarised K3 surfaces or of polarised symplectic
manifolds of K3[n]-type the modular group of the corresponding modular
varieties is identical to a stable orthogonal group (see [GHS2]). The de-
gree 2 extension of the stable orthogonal group changes the geometry of the
modular varieties considerably. This can be compared to the case of the
moduli spaces of (1, p)-polarised abelian and Kummer surfaces (see [GH]).

Theorem 3.1 shows the difference between split and non-split polarisa-
tions. To prove it we study the orbits of vectors in L. Using the standard
discriminant group arguments (see [Nik] and the proof of Proposition 3.6 in
[GHS1]) we get

Lemma 3.2 Let L be any non-degenerate even integral lattice and let h ∈
LA be a primitive vector with h2 = 2d. If Lh is the orthogonal complement
of h in LA then

det Lh =
(2d) · det LA

div(h)2
.

A proof of the following classical result, known as the Eichler criterion,
is given in [GHS4, Proposition 3.3].

Lemma 3.3 Let L be a lattice containing two orthogonal isotropic planes.
Then the Õ(L)-orbit of a primitive vector l ∈ L is determined by two invari-
ants: its length l2 = (l, l), and its image l∗ + L in the discriminant group
D(L).

According to this Lemma 3.3, all primitive 2d-vectors l ∈ LA with
div(l) = 1 belong to the same Õ(LA)-orbit. If div(l) = 3 then l∗ + LA is a
generator of D(LA) = D(A2(−1)). Therefore there are two Õ(LA)-orbits of
such vectors. An element of W (G2(−1)) makes these two Õ(LA)-orbits into
one O(LA)-orbit.
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Lemma 3.4 If h2d is a vector of a non-split polarisation then 2d ≡ 12
mod 18. For any positive even integer 2d satisfying this congruence there
exists a primitive h2d ∈ LA with div(h2d) = 3.

Proof. We put h2d = u + xa + yb ∈ LA, where u ∈ 3U ⊕ 2E8(−1) and
xa + yb ∈ A2(−1) = 〈a, b〉, where a, b are simple roots of A2(−1). Any
primitive vector of a unimodular lattice has divisor 1. Therefore u = 3v with
v ∈ 3U ⊕ 2E8(−1). A straightforward calculation shows that div(xa + yb)
is divisible by 3 if and only if x + y ≡ 0 mod 3. We have x ≡ ±1 mod 3
and y ≡ ∓1 mod 3 since h2d is primitive. Therefore

h2
2d = 9v2 − 2(x + y)2 + 6xy ≡ 12 mod 18.

To construct a polarisation vector of degree 18n − 6 we take a vector h =
3nu1 + 3u2 + (2a + b) where U = 〈u1, u2〉 is the first hyperbolic plane in
LA. 2

Now we can calculate Lh. If the polarisation is non-split we take the vec-
tor h2d ∈ U ⊕A2(−1) indicated above. We denote by Q(−1) the orthogonal
complement of h2d in U ⊕ A2(−1). According to Lemma 3.2 it is an even
integral negative definite lattice of rank 3 and of determinant −2d/3, i.e.

Lh
∼= 2U ⊕ 2E8(−1)⊕Q(−1), det Q(−1) = −2d

3
.

To prove that D(Q) is cyclic we consider

〈h〉 ⊕ Lh ⊂ LA ⊂ L∨A ⊂ 〈 1
2d

h〉 ⊕ L∨h .

The lattice L defines the finite subgroup

H = LA/(〈h〉 ⊕ Lh) < D(〈h〉)⊕D(Lh).

We have |H| = detLh = 2d/3 because H ∼= (〈 1
2dh〉 ⊕ L∨h)/L∨A. The projec-

tions

ph : H → D(〈h〉), pLh
: H → D(Lh) (5)

are injective because 〈h〉 and Lh are primitive in LA (see [Nik, Prop. 1.5.1]).
Therefore H ∼= D(Lh) and H is isomorphic to a subgroup of the cyclic group
D(〈h〉).

To determine O(LA, h) we consider the action of elements of this group
on the discriminant group. Any g ∈ O(LA, h) acts on 〈h〉∨⊕L∨h and induces
an element ḡ ∈ O(D(LA)). Moreover ḡ acts on the subgroup H. For any
ā ∈ ph(H) there exists a unique b̄ ∈ pLh

(H) such that ā + b̄ ∈ H. The
action of ḡ on D(〈h〉) is trivial. Therefore it is also trivial on the second
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component b̄ ∈ pLh
(H). But pLh

(H) is isomorphic to the whole group D(Lh)
if div(h) = 3. Therefore O(LA, h) ∼= Õ(LAh). This proves the statement of
Theorem 3.1 in the non-split case.

For a split polarisation we can take h2d = du1 + u2 ∈ U . Then (h2d)⊥U ∼=
〈−2d〉 and

Lh
∼= 2U ⊕ 2E8(−1)⊕A2(−1)⊕ 〈−2d〉.

Then |H| = 2d, pLh
(H) ∼= D(〈−2d〉) and ḡ acts trivially on D(〈−2d〉).

To finish the proof of Theorem 3.1 we analyse the isotropic elements of
the discriminant group D(A2(−1))⊕D(〈−2d〉) of the lattice Lh in the split
case. If (3, d) = 1, then the latter group is cyclic. So we assume that 3|d.

Let l̄ = (±c̄, x
2d h̄) where c̄ is a generator of D(A2(−1)) and x is taken

modulo 2d. We put d = 3d0 = 3ef2 where e is square free. It is easy to see
that l̄ is isotropic if and only if x = 2yef , where y is taken modulo 3f , and
1 + ey2 ≡ 0 mod 3. The element l̄ is isotropic if and only if

2
3

+
x2

2d
≡ 0 mod 2d.

Then

4d + 3x2 ≡ 0 mod 12d or 12ef2 + 3x2 ≡ 0 mod 36ef2.

We see that x = 2x0 and ef2 + x2
0 ≡ 0 mod 3ef2. Therefore x0 ≡ 0 mod ef

and x = 2x0 = 2efy where y is taken modulo 3f and

1 + ey2 ≡ 0 mod 3.

The last congruence is true if and only if

e ≡ 2 mod 3 and y 6≡ 0 mod 3.

We proved that for d = 3ef2 the isotropic elements with non trivial first
component are (±c̄, y

3f h̄). All these elements belong to the union of two
totally isotropic cyclic groups generated by (c̄, (h̄/3f)) and by (c̄, −(h̄/3f)).
If a subgroup of the discriminant group contains two isotropic elements
(c̄, yi(h̄/3f)), where y1 6≡ y2 mod 3, then (0̄, (y1−y2)(h̄/3f)) is not isotropic
because

6ef2(y1 − y2)2

9f2
=

2e(y1 − y2)2

3
6≡ 0 mod 2Z.

Thus Theorem 3.1 is proved.
Example 1. The smallest non-split polarisations 12, 30, 48, 66. In the non-
split case the isomorphism class of the lattice Lh with h2 = 2d is uniquely
defined by the genus of the ternary form Q of determinant 2d/3. For the
small polarisations of this example the genus of Q contains only one class.
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The corresponding classes can be found in [CS, Table I]. We give a modi-
fied description of them using the language of root lattices, indicating the
maximal root subsystem in the lattices Q and Q⊥

E8
:

det Q = 4, Q = A3, Q⊥
E8
∼= D5,

det Q = 10, Q = (A1)⊥A4
, Q⊥

E8
∼= A1 ⊕A4,

det Q = 16, Q ⊃ A2 ⊕ 〈48〉, Q⊥
E8
⊃ A4 ⊕ 〈48〉,

det Q = 22, Q ⊃ A2 ⊕ 〈66〉, Q⊥
E8
⊃ A3 ⊕A1 ⊕ 〈44〉.

4 Cusp forms of small weight and the Borcherds
form Φ12

Now we can formulate the main theorem of the paper.

Theorem 4.1 Let d be a positive integer not equal to 2n with n ≥ 0. Then
the modular variety

MA,2d = OG(LA,2d) \ D(LA,2d)

is of general type. Every component M0
h of the moduli space Mh of

ten-dimensional polarised O’Grady varieties with split polarisation h of
Beauville degree h2 = 2d 6= 2n+1 is of general type.

Remark. In Corollary 4.3 below we prove general type of the moduli spaces
M0

h for the fourth non-split polarisation, of Beauville degree 66 (see Example
1 of §3).

According to Proposition 1.2 it is enough to prove the main Theorem 4.1
for the modular varieties

MA,2d = OG(LA,2d) \ D(LA,2d) or M
(2d)
Q = Õ

+
(LQ) \ D(LQ)

(see notations of Theorem 3.1). The dimension of the modular variety MA,2d

is 21, which is larger than 8. Therefore we can use the low weight cusp form
trick from [GHS1].

Let L be an even integral lattice of signature (2, n) with n ≥ 3. A modular
form of weight k and character det with respect to a subgroup Γ < O+(L)
of finite index is a holomorphic function F : D(L)• → C on the affine cone
D(L)• over D(L) such that

F (tZ) = t−kF (Z) ∀ t ∈ C∗ and F (gZ) = det(g)F (Z) ∀ g ∈ Γ.

A modular form is a cusp form if it vanishes at every cusp. Cusp forms of
character det vanish to integral order at any cusp (see [GHS4]). We denote
the linear spaces of modular and cusp forms of weight k and character det
for Γ by Mk(Γ, det) and Sk(Γ, det) respectively.

11



Theorem 4.2 The modular variety MA,2d (or the modular variety M
(2d)
Q )

is of general type if there exists a cusp form F ∈ Sk(OG(LA,2d), det), (or

F ∈ Sk(Õ
+
(LQ), det)) of weight k < 21 that vanishes of order at least one

along the branch divisor of the modular projection

π : D(LA,2d) → OG(LA,2d) \ D(LA,2d)

(or the analogous projection for Õ
+
(LQ)).

This is a particular case of Theorem 1.1 in [GHS1].
The dimension of the modular variety is smaller than 26. Then we can

use the quasi pull-back (see [Bo], [BKPS], [Ko], [GHS1] and equation (6)
below) of the Borcherds modular form

Φ12 ∈ M12(O+(II2,26), det) where II2,26
∼= 2U ⊕ 3E8(−1).

We note that Φ12(Z) = 0 if and only if there exists r ∈ II2,26 with r2 = −2
such that (r, Z) = 0. Moreover, the multiplicity of the divisor of zeroes of
Φ12 is 1 (see [Bo]). We used the quasi pull-back of Φ12 in order to construct
cusp forms of small weight on the moduli spaces of polarised K3 surfaces
(see [GHS1]) and on moduli spaces of split-polarised symplectic manifolds
of K3[2]-type (see [GHS2]), which have dimension 19 and 20 respectively.
The present case is of dimension 21. The non-split case is similar to the
cases considered in [GHS1]–[GHS2] (see also the example at the end of this
section) but the split case is different from the previous ones because we
need a cusp form with respect to the modular group OG(LA,2d), which is
strictly larger than the stable orthogonal group Õ

+
(LA,2d). For this reason

we will concentrate in this paper on the split case.
Let S ⊂ E8(−1) be a sublattice (primitive or not) of rank 3. For our

present purpose we take the sublattice of polarisations S = A2(−1)⊕〈−2d〉
or S = Q(−1) from Theorem 3.1. The choice of S in E8(−1) determines an
embedding of LS = 2U ⊕ 2E8(−1) ⊕ S into II2,26. The embedding of the
lattice also gives us an embedding of the domain D(LS) ⊂ P(LS ⊗ C) into
D(II2,26) ⊂ P(II2,26 ⊗ C).

We put RS = {r ∈ E8(−1) | r2 = −2, (r, S) = 0}, and NS = #RS . Then
the quasi pull-back of Φ12 is given by the following formula:

FS =
Φ12(Z)∏

{r∈RS , r>0}(Z, r)

∣∣∣∣∣
D(LS)

∈ M
12+

NS
2

(Õ
+
(LS), det). (6)

We fix a system of simple positive roots in E8(−1) and the notation r > 0
in the above formula means that we take the positive roots in RS , i.e. we
pick only one root in any A1 ⊂ RS . (The particular choice of a system of
the simple roots is not important.) The form FS is a non-zero modular form

12



of weight 12 + NS
2 . By [GHS1, Theorems 6.2 and 4.2] it is a cusp form if

NS 6= 0, since any isotropic subgroup of the discriminant form of the lattice
LS is cyclic, by Theorem 3.1.
Example 2. The smallest non-split polarisations. We illustrate the method
of Theorem 4.2 together with the quasi pull-back construction for the po-
larisations from Example 1 of §3. For the first three polarisations the cusp
form FQ is of weight 32, 23 and 22 respectively. But for the lattice Q of
determinant 22 (h2 = 66) we have a cusp form of small weight 19 < 21

F
(22)
Q ∈ S19(Õ

+
(LQ), det).

To apply Theorem 4.2 we need a cusp form of small weight with zero along
the ramification divisor of the modular projection. According to [GHS1,
Corollary 2.13] this divisor is determined by plus or minus reflections ±σr

in the corresponding modular group. If σr is a reflection in this group then
F

(22)
Q (σr(Z)) = −F

(22)
Q (Z) and F (22)(Z) = 0 if (Z, r) = 0. If −σr ∈ Õ

+
(LQ)

then det(−σr) = 1 because the dimension is odd. The weight of F
(22)
Q is also

odd, i.e. F
(22)
Q (−Z) = −F

(22)
Q (Z). Therefore

−F
(22)
Q (σr(Z)) = F

(22)
Q (−σr(Z)) = det(−σr)F

(22)
Q (Z) = F

(22)
Q (Z)

and F
(22)
Q vanishes along the divisor defined by r. Applying Theorem 4.2 we

obtain

Corollary 4.3 The modular variety M
(66)
Q is of general type. Every com-

ponent M0
h of the moduli space Mh of 10-dimensional polarised O’Grady

varieties with non-split polarisation h of Beauville degree h2 = 66 is of
general type.

Any vector l of length 12, 30 or 48 with div(l) = 3 is orthogonal to at
least 20 roots in E6. Hence we cannot apply the low weight cusp form trick.
We conjecture that for the three lowest non-split polarisations, of Beauville
degrees 2d = 12, 30 and 48, the corresponding moduli spaces are unirational.
Using the arithmetic and analytic methods developed in [GHS1]–[GHS2] we
hope to prove that for other non-split polarisations the moduli spaces are of
general type. In this paper we study the split polarisation because this case
is very different and has new phenomena appearing.

The Weyl group of E8 acts transitively on the sublattices A2. Let us fix a
copy of A2(−1) in E8(−1). Then (A2(−1))⊥E8(−1)

∼= E6(−1). Let l ∈ E6(−1)
satisfy l2 = −2d. We denote the quasi pull-back FS for S = A2(−1)⊕〈l〉 by
Fl. The problem is to find such a vector l in E6(−1) that yields a modular
form with respect to the larger group OG(LA,2d).

13



Lemma 4.4 Let us assume that l ∈ E6(−1), l2 = −2d, is invariant with
respect to the involution of the Dynkin diagram of E6(−1). Then the quasi
pull-back Fl is modular with respect to OG(LA,2d).

Proof. We see that OG(LA,2d) = 〈Õ+
(LA,2d), σ6〉 where σ6 is a reflec-

tion with respect to any −6-vector in A2(−1) (see (4)). The involution
σ6 ∈ W (G2(−1)) induces − id on the first component D(A2(−2)) of the
discriminant group D(LA,2d). The Weyl group W (E6) is a subgroup of in-
dex 2 in O(E6). The involution J of the Dynkin diagram of the fixed system
of simple roots of E6(−1) induces − id on D(E6(−1)), which is also cyclic
of order 3. Using the fact that (A2)⊥E8

∼= E6 we can extend the element
J6 = (σ6, J) to an element in O(E8) < O+(II2,26) where we consider σ6 as
an element in O+(2U⊕2E8(−1)⊕A2(−1)). Let us introduce the coordinates
(Z1, z2, Z3) ∈ D(II2,26) corresponding to the sublattice

(
2U ⊕ 2E8(−1)⊕A2(−1)

)⊕ 〈l〉 ⊕ l⊥E6(−1) ⊂ II2,26

where z2 ∈ l ⊗ C and Z3 ∈ l⊥E6(−1) ⊗ C. We calculate the function

Φ12(J6(Z1, z2, Z3))∏
{r∈Rl, r>0}(J6(Z1, z2, Z3), r)

∣∣∣∣∣
D(LA,2d)

where Rl = {r ∈ E6(−1) | r2 = −2, (r, l) = 0} is the set of roots in E8(−1)
orthogonal to S = A2(−1)⊕ 〈l〉. First, we find that it is equal to

Φ12((σ6Z1, z2, J(Z3)))∏
{r∈Rl, r>0}((σ6Z1, z2, J(Z3)), r)

∣∣∣∣∣
D(LA,2d)

= Fl(σ6(Z1, z2))

because J(l) = l and J6(z2) = z2. Second, using the fact that Φ12 has
character det we find that the same function is equal to

(detJ6)Φ12(Z1, z2, Z3)∏
{r∈Rl, r>0}((Z1, z2, Z3), J(r))

∣∣∣∣∣
D(LA,2d)

= −Fl((Z1, z2))

because detJ = 1, detσ6 = −1, det J6 = −1 and the involution J per-
mutes the positive roots in l⊥E6

. We note also that (σ6Z1, z2, J(Z3), r) =
(J(Z3), r)E6 = (Z3, J(r))E6 . Therefore

Fl ∈ S
12+

Nl
2

(OG(LA,2d), det) (7)

where Nl = #{r ∈ E6(−1) | r2 = −2, (r, l) = 0}. 2

The weight of Fl is smaller than 21 if Nl < 18. In Section 4 we determine
all d for which there exists a (−2d)-vector in E6(−1) invariant with respect
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to the automorphism of the Dynkin diagram. In the next lemma we study
the ramification divisor of the modular projection of OG(LA,2d). We studied
this divisor for the modular groups Õ

+
(L) in [GHS1, Proposition 3.2] but

the ramification divisor of OG(LA,2d) is much larger.

Lemma 4.5 If −σr ∈ OG(LA,2d), then r2 = −2d and div(r) = 2d, or
r2 = −6d and div(r) = 3d, or r2 = −2d and div(r) = d.

Proof. Let r ∈ LA,2d be a primitive vector and r2 = −2e. If σr : v 7→
v − 2(v,r)

(r,r) r ∈ O+(LA) then

div(r) | r2 | 2 div(r) and div(r) | lcm(3, 2d).

We assume that −σr ∈ O+(LA,2d). Then σr|D(〈−2d〉) = − id and for any
v ∈ L∨A,2d we have

σr(v) + v = 2v − 2(v, r)
(r, r)

r = 2v − (v, r)
r

e
∈ A2(−1)∨ + LA,2d

where (v, r) ∈ Z. This is true because we have no D(〈−2d〉)-part in the sum
σr(v) + v. In particular, there are the following relations between abelian
groups

2 ·D(LA,2d) ∼= Z/3Z⊕ Z/dZ < Z/3Z+ Z/eZ,

where the sum of the subgroup is taken in the discriminant group. Therefore
d|e. We have

d | e | div(r) | 2e and div(r) | lcm(3, 2d).

Our aim is to calculate the two lattices

L
(r)
A,2d = r⊥LA,2d

and Tr,d = (L(r)
A,2d)

⊥
II2,26

. (8)

According to Lemma 3.2 we have

detTr,d = detL
(r)
A,2d =

12de

(div(r))2
.

Analysing all possible e and div(r) we see that detTr,d is a divisor of 12.
The possible cases are

e = d, r2 = 2d, div(r) = d, det Tr,d = 12;

e = d, r2 = 2d, div(r) = 2d, det Tr,d = 3;

e = 2d, r2 = 4d, div(r) = 2d, det Tr,d = 6;

e = 3d, r2 = 6d, div(r) = 3d, det Tr,d = 4;

e = 3d, r2 = 6d, div(r) = 6d, det Tr,d = 1;

e = 6d, r2 = 12d, div(r) = 6d, det Tr,d = 2.
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In [CS, Table I] one can find all indecomposable lattices of small rank and
determinant. Analysing all lattices of determinant det | 12 and of rank n ≤ 6
we find the five classes

det = 3, E6; det = 4, D6; det = 12, A5⊕A1, D4⊕A2, [D5⊕〈12〉]2 (9)

where [D5 ⊕ 〈12〉]2 denotes an overlattice of order 2 of D5 ⊕ 〈12〉. The root
system of [D5⊕〈12〉] is D5. The formula for detTr,d given above shows that
only the cases mentioned in the lemma are possible. 2

Corollary 4.6 Let l be as in Lemma 4.4. We assume that Nl < 18. Then
the quasi pull-back Fl vanishes along the ramification divisor of the modular
projection

π : D(LA,2d) → OG(LA,2d) \ D(LA,2d).

Proof. The components of the branch divisor are

Dr = { [Z] ∈ D(LA,2d) | (r, Z) = 0 }

where r ∈ LA,2d and σr or −σr is in OG(LA,2d) (see [GHS1, Corollary 2.13]).
If σr ∈ D(LA,2d), then Fl vanishes along Dr because Fl is modular with
character det. Let −σr ∈ O+(LA,2d). The divisor Dr coincides with the
homogeneous domain D(L(r)

A,2d). The Borcherds modular form Φ12 vanishes
of order N/2 where N ≥ |R(D4 ⊕ A2)| = 30 is the number of roots in the
lattice det Tr,d. Since Nl < 18 then the form Fl vanishes along Dr with order
at least 7. 2

5 The 2d-vectors in E6 and the root system F4

In this section we finish the proof of Theorem 4.1. To prove it we use
Theorem 4.2, Lemma 4.4 and Lemma 4.6. We want to know for which
2d > 0 there exists a vector l ∈ E6 of length l2 = 2d, invariant with respect
to the involution J of the Dynkin diagram of E6 and orthogonal to at least
2 and at most 16 roots in E6. The answer is given in the next theorem.

Theorem 5.1 A J-invariant vector l of length l2 = 2d that is orthogonal
to at least 2 and at most 16 roots in E6 exists if d is not equal to 2n where
n ≥ 0.

We give the proof of the theorem in Lemmas 5.2–5.5 below. We use the
notation An, Dn or En both for a lattice and for its root system because it
is always clear from the context which is meant. We consider the Coxeter
basis of simple roots in the lattice E6 = 〈α1, . . . , α6〉 (see [Bou, Table V])
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t
α1

-t
α3

-t
α4

?t
α2α2

-t
α5

-t
α6

where

α1 =
1
2
(e1 + e8)− 1

2
(e2 + e3 + e4 + e5 + e6 + e7),

α2 = e1 + e2, αk = ek−1 − ek−2 (3 ≤ k ≤ 6)

and (e1, . . . , e8) is a Euclidean basis in Z8. To get the extended Dynkin
diagram one has to add the maximal root

α̃ =
1
2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8)

= α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6.

Then (−α̃, α2) = −1 and −α̃ is orthogonal to all other simple roots.
In the Euclidean basis (ei) we have the following representation of E6

E6 = {l = x1e1 + · · ·+ x5e5 + x6(e6 + e7 − e8)}, (10)

l2 = x2
1 + · · ·+ x2

5 + 3x3
6

where the xi are either all integral or all half-integral, and in both cases
x1 + · · ·+ x6 is an even integer. We recall that

Aut(E6) = W (E6)×Aut(Dynkin diagram of E6)

where the second factor is the cyclic group of order 2 generated by the
involution J given by J(α1) = α6, J(α3) = α5, J(α4) = α4, J(α2) = α2.

Lemma 5.2 The involution J defines sublattices EJ,+
6 ⊕EJ,−

6 ⊂ E6 of index
4 in E6, where

EJ,+
6 = {l ∈ E6 |J(l) = l} ∼= D4,

EJ,−
6 = {l ∈ E6 | J(l) = −l} ∼= A2(2)

and A2(2) is the lattice with the quadratic form
(

4 −2
−2 4

)
(the renormalisa-

tion of the lattice A2 by 2).

Proof. From the definition of J we have EJ,+
6 = 〈α2, α4, α1 + α6, α3 + α5〉.

This has another basis, namely

EJ,+
6 = 〈α2, α4, α3 + α4 + α5, (α1 + α6) + 2(α3 + α4 + α5) + 2α2 + α4〉

= 〈α2, α4, α3 + α4 + α5, −α̃〉 ∼= D4
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where α2 is the central root of the Dynkin diagram of D4. We denote EJ,+
6

by D+
4 .

If J(u) = u and J(v) = −v then (u, v) = −(u, v) = 0. Therefore

EJ,−
6 = (D+

4 )⊥E6
⊇ 〈α1 − α6, α3 − α5〉 ∼= A2(2) =

(
4 −2
−2 4

)
.

A direct calculation shows that we have equality in the above inclusion of
lattices. Then we have detD4 = 4 and detA2(2) = 12, so [E6, D

+
4 ⊕A2(2)] =

4. 2

In what follows we need some properties of the root systems D4 and F4.
The lattice Dn is a sublattice of the Euclidean lattice Zn

Dn = {l = (x1, . . . , xn) ∈ Zn |x1 + · · ·+ xn ∈ 2Z}.

The lattice D4 contains the twenty-four 2-roots

R2(D4) = {±(ei ± ej), 1 ≤ i < j ≤ 4}

which form the root system D4. But the lattice D4 contains also the twenty-
four 4-roots

R4(D4) = {±e1 ± e2 ± e3 ± e4, ±2ei, 1 ≤ i ≤ 4}.

By definition of the root system F4 equals

F4 = R2(D4) ∪R4(D4).

The Weyl group of F4 coincides with the orthogonal group of the lattice D4:

O(D4) = W (F ), W (F4)/W (D4) ∼= Aut(Dynkin diagram of D4) ∼= S3.

Lemma 5.3 Let J be the involution of the Dynkin diagram of E6.
1) For any root r ∈ R2(E6) we have

J(r) 6= r ⇔ (J(r), r) = 0.

2) For D+
4 = EJ,+

6 we have

R4(D+
4 ) = { r + J(r) | r ∈ R2(E6), r 6= J(r)}.

3) Let l ∈ D+
4 be orthogonal to a vector l4 ∈ R4(D+

4 ). Then l is orthogonal
to the roots r and J(r) from E6 such that l4 = r + J(r) and r 6= J(r).

Proof. 1) Lemma 5.2 gives us the following inclusion of lattices:

D+
4 ⊕A2(2) ⊂ E6 ⊂ E∨

6 ⊂ (D+
4 )∨ ⊕A2(2)∨. (11)
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We proved above that

[E6 : (D+
4 ⊕A2(2))] = [D∨

4 : D4] = detD4 = 4.

It is easy to see that

D∨
4 /D4 = {0, e1 + D4,

1
2
(e1 + e2 + e3 ± e4) + D4} ∼= Z/2Z× Z/2Z

where

qD4(e1 + D4) = qD4

(1
2
(e1 + e2 + e3 ± e4) + D4

) ≡ 1 mod 2Z.

Analysing the discriminant form A2(2)∨/A2(2) we see that it contains only
three classes 1

2a, 1
2b and 1

2(a + b) modulo A2 (where a, b are simple roots
in A2) of square 1 mod 2Z. Using (5) we see that the natural projection
E6/(D+

4 ⊕A2(2)) onto D∨
4 /D4 is surjective. It follows that if

l ∈ E6, l = l∗+ + l∗−, where l∗+ ∈ (D+
4 )∨, l∗− ∈ A2(2)∨, l∗+ 6∈ D+

4

then (l∗+, l∗+) ≡ 1 mod 2Z.
Let consider this representation r∗+ + r∗− for a root r in E6. Then r2 =

(r∗+)2 + (r∗−)2 = 2 and the second component r∗− is non-trivial if and only if
(r∗+)2 = (r∗−)2 = 1 according to the argument above. Then J(r) 6= r if and
only if (r, J(r)) = (r∗+)2 − (r∗−)2 = 0.

2) We showed in Lemma 5.2 that E6 contains exactly 24 J-invariant roots
of D+

4 . Therefore there are 72− 24 = 48 non-invariant roots. For any non-
invariant root r we proved in 1) that (r, J(r)) = 0. This gives us 24 pairs
(r, J(r)) of non-invariant roots satisfying (r+J(r))2 = 4 and r+J(r) ∈ D+

4 .
To show that there is a bijection between the J-pairs and 4-roots in D+

4 one
can simply pick α1 + J(α1) and take into account the fact that the Weyl
group of D4 acts transitively on the set of 4-vectors in D4.

3) If l ∈ D+
4 then (l, r) = (l, J(r)) for any root. Therefore 2(l, r) =

(l, r + J(r)) = 0. 2

Lemma 5.4 For any positive integer d there exists a vector l2d ∈ D+
4 =

EJ,+
6 of square 2d which is orthogonal to at least one root in E6.

Proof. We denote by NL(2d) the number of vectors of square 2d in a positive
definite lattice L. We consider two cases: a vector l2d is orthogonal to
a J-invariant root rJ or to a non-J-invariant root rn. In the first case
l2d ∈ (rJ)⊥

D+
4

∼= 3A1. (See the fourth case in the proof of Lemma 5.5 below.)
Then

N3A1(2d) = r3(d)
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where r3(d) is equal to the number of representations of d as a sum of three
squares. It is classically known that

r3(4md) = r3(d) and r3(d) > 0 if d 6= 22m(8n + 7). (12)

If (l2d, rn) = 0 then (l2d, rn + J(rn)) = 0 where rn + J(rn) = l4 ∈ D+
4 . But

(l4)⊥D+
4

∼= A3.

This follows from the form of the extended Dynkin diagram of D4. For l4
we can take the alternating sum of two orthogonal simple roots. Then the
three other roots of the extended diagram form the orthogonal complement
of l4. We have A3

∼= D3. According to the definition of D3 we have that
NA3(2d) = r3(2d). The last number is not zero if d 6= 22m−1(8n + 7). This
and formula (12) shows that for any d we have N3A1(2d) + NA3(2d) > 0.
This proves the lemma. 2

Lemma 5.5 Let l2d be a vector as in Lemma 5.4. Then the number of roots
in E6 orthogonal to l2d is smaller than 18 if and only if d is not equal to 2n

where n ≥ 0.

Proof. Let us assume that |R2((l2d)⊥E6
)| ≥ 18. The root systems of rank at

most 5 having at least 18 roots are

A5, D5, A4 ⊕A1, D4 ⊕A1, A3 ⊕A2, A4, D4.

1) The cases of A3 ⊕ A2 and D4 ⊕ A1 are not possible. W (E6) acts
transitively on the roots and on the A2-sublattices of E6. We have (A1)⊥E6

∼=
A5 and (A2)⊥E6

∼= A2 ⊕ A2. But A5 does not contain D4 and A2 ⊕ A2 does
not contain A3.

2) Let us assume that R2((l2d)⊥E6
) = A4 or A4⊕A1. We show that neither

case is possible. The vector l2d is J-invariant. Therefore J(A4) = A4. The
lattice A4 is generated by its simple roots a1, a2, a3 and a4:

t
a1

-t
a2

-t
a3

-t
a4

First we assume a1 6= J(a1) and J(a4) 6= a4. Then (a1, J(a1)) =
(a4, J(a4)) = 0 according to Lemma 5.3. Therefore we have J(a4) ∈ 〈a1, a2〉
and J(a1) ∈ 〈a3, a4〉. If J(a1) 6= ±a4 then A4 contains two orthogonal sub-
lattices 〈a1, J(a4)〉 and 〈a4, J(a1)〉 isomorphic to A2, which is impossible.

If J(a1) = ±a4 then 0 = (J(a1), J(a3)) = (±a4, J(a3)) and J(a3) ∈
〈a1, a2〉. But J(a3) 6= ±a1 and we obtain that J(a3) 6= a3 and (J(a3), a3) 6=
0. This contradicts Lemma 5.3. Therefore we can assume that a1 = J(a1)
or a4 = J(a4). If a1 = J(a1) then (a1, J(a4)) = 0 and J(a4) ∈ 〈a3, a4〉. It
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follows that J(a4) = a4. An analogous argument shows that J(a3) = a3 and
J(a2) = a2. Therefore J is the identity on A4 and we obtain that A4 is a
sublattice of D+

4 = EJ,+
6 , which is impossible. If R2((l2d)⊥E6

) = A4⊕A1 then
again we have that J(A4) = A4 and J |A4 = id.

3) We have mentioned above that (A1)⊥E6
∼= A5 and that there is only

one W (E6)-orbit of A1 in E6. Therefore (A5)⊥E6
∼= A1 = 〈2〉. Any non-zero

vector l ∈ A1 (l2 = 2m2) will have the same orthogonal complement. Let
us take a J-invariant vector l ∈ 3A1 such that l2 = 22n+1k2 where k is odd.
Then N3A1(2) = r3(1) = 6 and

N3A1(2
2n+1k2) = r3(k2) =

∑

f |k
rpr
3 (k2/f2) = rpr

3 (1) + · · ·+ rpr
3 (k2),

which is > 6 if and only if k > 1. Here we denote by rpr
3 (n) the number of

primitive representation of n by three squares. According to Gauss rpr
3 (n) =

0 if and only if n ≡ 0 mod 4 or n ≡ 7 mod 8. Therefore if 2d = 22n+1 then
any 2d-vector in 3A1 is a multiple of a root. If l2d ∈ A3 the situation is
quite similar. We conclude that for 2d = 22n+1k2 there is a 2d-vector which
satisfies the conditions of the lemma if and only if k > 1.

4) We can compare the case when l⊥E6
= D5 with the case of A5. We

have (D5)⊥E6
∼= 〈12〉. To see this we consider (D5)⊥E8

= A3 and (A2)⊥E8
= E6.

There is only one W (A3)-orbit of A2 in A3 and (A2)⊥A3
∼= 〈12〉. This gives

us the sublattice A2 ⊕ D5 ⊕ 〈12〉 in E8. But we can find another orbit
of 12-vectors in E6 by taking a copy of A2 in D5. In fact, the 12-vector
corresponding to the decomposition 〈12〉 ⊕D5 ⊂ E6 is not J-invariant. To
get a J-invariant vector we take

l+12 = 2α2 + α4 = 2e1 + e2 + e3 ∈ EJ,+
6

(see the diagram of E6 above). The roots of E6 are the vectors

±ei ± ej (1 ≤ i < j ≤ 5), ±1
2
(
e8 − e7 − e6 ± e1 ± · · · ± e5

)

where the number of minus signs in the last case is even. We see that there
are six integral and eight half-integral roots orthogonal to l+12. Up to sign
they are

e3 − e2, e4 − e5, e4 + e5;
1
2
(
e8−e7−e6+e1−e2−e3±(e4+e5)

)
,

1
2
(
e8−e7−e6−e1+e2+e3±(e4−e5)

)
.

These roots form a root system A1 ⊕A3 where A1 = 〈α4〉 = 〈e3 − e2〉 and

A3 = 〈e4 − e5, e4 + e5,
1
2
(
e8 − e7 − e6 + e1 − e2 − e3 − e4 − e5

)〉.
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Therefore in the case 2d = 12 a vector giving a low weight cusp form does
exist.

5) Let us assume that R2((l2d)⊥E6
) = D4. Then J(D4) = D4. We can fix

a system of simple roots (a1, a2, a3, a4) of D4 (a2 is the central root of the
diagram).

First we prove that J(a2) = a2. Consideration of the extended Dynkin
diagram of D4 shows that (A1)⊥D4

∼= 3A1. The four pairwise orthogonal
copies of A1 in D4 correspond to the vertices of the extended Dynkin diagram
of D4: a1, a3, a4 and −ã where ã = a1 + 2a2 + a3 + a4 is the maximal root
of D4 (see [Bou, Table IV]). If J(b) 6= b for a root b then J(b) is orthogonal
to b (Lemma 5.3). Therefore J permutes the roots a1, a3, a4 and −ã with
some possible changes of signs. Therefore

J(2a2) = J(ã− a1 − a3 − a4) = ±(a1 + 2a2 + a3 + a4 ± a1 ± a3 ± a4)

where all ± are independent. The maximal root ã is the only root re-
presented by a linear combination of the simple roots having a coefficient
greater than 1. That leaves only two possibilities: J(2a2) = ±2(a1 + a2 +
a3 + a4) or J(2a2) = ±2a2. The first of those two does not occur because
the root a1 + a2 + a3 + a4 is not orthogonal to a2. Therefore J(a2) = a2.

Let us assume that J does not fix any of the four pairwise orthogonal
copies A1 in D4. Let J(a1) 6= ±a3 (the other cases are similar). Then
the root J(a1 + a2 + a3) = a2 + J(a1) + J(a3) is not equal to the root
a1 + a2 + a3 and it is not orthogonal to it. This contradicts Lemma 5.3-3).
Therefore J fixes at least one A1 among the four copies of A1. So J fixes at
least two copies, which form together with a2 a root system A3 on which J
acts trivially. Therefore we have proved that if l2d ∈ E6, J(l2d) = l2d and
R2((l2d)⊥E6

) = D4, then the orthogonal complement of l2d in D+
4 = EJ,+

6

contains A3. But (A3)⊥D4
∼= 〈4〉. To see this one bears in mind two facts:

W (F4) = O(D4) acts transitively on the set of 4-vectors in D4 and

〈a3 − a4〉⊥D4
= 〈a1, a2, −ã〉 ∼= A3.

It follows that the vector l2d is a multiple of a 4-vector l4 in D+
4

l2d = ml4, l4 ∈ 3A1 ⊂ D+
4 or l4 ∈ A3 ⊂ D+

4

(see Lemma 5.4).
If 2d = 4m2 then any 2d-vector in 3A1 ⊂ D+

4 or in A3 ⊂ D+
4 is a multiple

of a corresponding 4-vector if and only if 2d = 4 · 22n. We use an argument
similar to the case d = 1 (see part 3) of the proof above). If 2d = 4 · 22nk2,
with k odd, then

N3A1(4 · 22nk2) = r3(2k2) =
∑

f |k
rpr
3 (2

k2

f2
) = rpr

3 (2) + · · ·+ rpr
3 (k2),
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which is > r3(2) = 12 if and only if k > 1. This finishes the proof of Lemma
5.5 and of Theorem 5.1. 2

We note that by a remark of Freitag [Fr, Hilfssatz 2.1, Kap. 3] one can cal-
culate the geometric genus of a modular variety using cusp forms of canonical
weight. In particular we have

pg(MA,2d) = dimS21(OG(LA,2d),det).

In the cases of polarised K3 surfaces or polarised symplectic varieties of
type K3[2] we constructed canonical differential forms on the corresponding
modular varieties using the quasi-pullback of Φ12. In the case considered in
this paper this is not possible. From the proof of Lemma 5.5 we obtain

Corollary 5.6 1. There are no J-invariant 2d-vectors in E6 which are
orthogonal to exactly 18 roots in E6.
2. There are no OG(LA,2d)-modular quasi-pullbacks of Φ12 of weight 21.

We think that cusp forms of canonical weight exist for OG(LA,2d), but we
expect the Beauville degree of the polarisation to be rather large. To prove
that the modular variety MA,2d with d = 2n is of general type for n large we
could use the explicit formula for the Mumford-Hirzebruch volume found in
[GHS3]. We conjecture that this variety is not of general type for small n,
for example, for n = 0, 1, 2. An argument for this is given in Proposition
5.7 below.

The modular variety of symplectic 10-dimensional O’Grady varieties with
a split polarisation is a 2 : 1 quotient of the modular variety

Õ
+
(LA,2d) \ D(LA,2d) → OG(LA,2d) \ D(LA,2d) = MA,2d

because [OG(LA,2d) : Õ
+
(LA,2d)] = 2.

Proposition 5.7 The modular variety Õ
+
(LA,2d) \ D(LA,2d) is of general

type if d 6∈ { 1, 2, 4 }.

Proof. We only have to consider the series 2d = 2n. If 2d = 2, 4 or 8 then
any vector l of length l2 = 2d is orthogonal to at least 20 roots. We have
seen this for 2d = 2 and 2d = 4. The argument for 2d = 8 is similar. Hence
we cannot apply the low weight cusp form trick here.

The lattice LA,2d for 2d = 2n with n > 5 can be considered as a sublattice
of LA,16, if n is even, or of LA,32, if n is odd. Therefore the corresponding
modular variety is a covering of finite order of one of the two varieties for
2d = 16 or 32. Hence it is enough to prove that Õ

+
(LA,16) \ D(LA,16) and

Õ
+
(LA,32) \ D(LA,32) are of general type.
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1) Let 2d = 16. Using the representation (10) of E6 we put l16 = 3e1 +2e2 +
e3 + e4 + e5 ∈ E6. Inspection shows that there are 12 orthogonal roots (6
copies of A1). Three “integral” copies are

e3 − e4, e4 − e5, e3 − e5.

Three “half-integral” copies are 1
2

(−e1 + e2 ± (e3 − e4) + e5 − e6 − e7 + e8

)
and 1

2

(−e1 + e2 + e3 + e4 − e5 − e6 − e7 + e8

)
. Then (l16)⊥E6

∼= A3 where

A3 = 〈 1
2
(−e1 + e + 2− e3 + e4 + e5 − e6 − e7 + e8

)
, e3 − e4, e4 − e5〉.

2) Let 2d = 32. We put l32 = 4e1 + 3e2 + 2e3 + e6 + e7 − e8 ∈ E6. Then
(l32)⊥E6

∼= A2 ⊕A1 where A1 = 〈e4 + e5〉 and

A2 = 〈 1
2
(
e1 − e + 2 + e3 − e4 + e5 − e6 − e7 + e8

)
, e4 − e5〉.

The quasi pull-backs of Φ12 to 2U ⊕ 2E8(−1) ⊕ A2(−1) ⊕ 〈−2d〉 for the
vectors l16 and l32) are cusp forms of weights 18 and 16 respectively, for the
groups Õ

+
(LA,16) and Õ

+
(LA,32))). The set of plus or minus reflections in

Õ
+
(LA,2d) is a subset of the reflections considered in Lemma 4.5. Therefore

we can prove that Fl16 (resp. Fl36) vanishes on the branch divisor of the
modular projection using the arguments of the proof of Corollary 4.6. To
finish the proof we apply Theorem 4.2. 2
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