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Counting divisors of Lucas numbers

Pieter Moree

Abstract

The Lucas numbers L, are defined by Lg = 2, L1 = 1 and the recurrence
Ly = Ly—1 + Ln—2. In [7] Lagarias investigated prime divisors of {L,}. We
will establish an estimate for the number of positive divisors m of {L,} with m
not exceeding , having an crror of order « log®™! 2 for every ¢ > 0. A similar
result for the sequences {¢"™ + 0™} with @ and b integers was established in [9)].

1 Introduction

Let {Sa} be a second order linear recurrence consisting of integers only. Several
authors investigated prime divisors of such sequences; see [1] for a very readable
survey. M. Ward [17] proved that, except [or some degenerate cases, there are always
an infinite number of distinct primes dividing the terms of {S,}. P. J. Stephens [16]
proved for a large class of second order linear recurrences that under the generalized
Riemann hypothesis the set of prime divisors has a positive prime density. (If S
is any set of natural numbers, then S(x) denotes the number of elements n in S
with 1 < n < 2. In case S is a set of primes we define the prime density of S
to be limgp_o S(®)/7(2), if it exists, where m(x) denotes the number of primes not
exceeding z. J. C. Lagarias {7] gave sufficient conditions under which the prime density
ol prime divisors ol a second order linear recurrence exists unconditionally and can
be computed. He showed, for example, that the prime density of Lucas divisors,
that is divisors of {L,}, equals % Lagarias’ method goes back to H. Hasse [5] who
expressed the prime density of sequences {a* +6¥}92, in terms of degrees of Kummer
extensions. This method will be used in Section 3. The analytic aspects ol prime
divisors of sequences {a* + b¥}52, were explored by K. Wiertelak in several papers
[18, 19, 20, 21, 22].

The problem of general divisors of second order linear recurrence sequences has
not received much attention. Let ¢ and b be fixed coprime integers such that |e| # [].
In {9] the set of divisors, (7, 4, of the sequence {a* 4+ *} was considered. The results
obtained there have an application in coding theory [14]. 1t was shown that [or given
1>,

v t—1 2 .
Gap(a) = ——(cplog™ @ + 3 ciy;log”" "z + O(log™ 2)), (1)
g T j=0
as z tends to infinity, where ¢j, - - -, ¢ and o and B are positive constants depending at
most on ¢ and b. The implied constant depends at most on «, b and ¢. The constants
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a and F can be explicitly given. They are rational numbers.
The purpose of this paper is to establish the following analogue of (1):

Theorem 1 Let L(z) denote the number of divisors not ezxceeding x of the sequence
of Lucas numbers. Then, fort > 1,

t—-1

L(z) = —(3 ¢;logd ¥ z + O(logs * 1)), 2)
logz i
where ¢y, -+, ¢; are positive constants and the implied constant depends at most on t.

The sequence of exponents {% . 51;}9‘;0 appearing in (2) coincides with that appearing
in (1) in case a/b # *1, a/b & +Q? and a/b & +2¢? [9].

Although the strategy of proof is similar, establishing (2) is more difficult than
establishing (1). Firstly because one now has to work over the base field Q(v/5)
rather than Q and secondly since many ingredients required in the proof of (1) can
be found in the literature, whereas this is only rarely the case for their counterparts
in the proof of (2). In order to explain the strategy of proof, a little bit of notation
is needed. If {S,} is a sequence of integers, the smallest index k such that m|Sy for
some non-zero element Sy, is called the rank of apparition of m provided it exists.
Let { F,,} be the Fibonacci sequence. Thus Fp =0, Fi =1, F, = Froy+ Fhg, n. 2> 2.
For the Fibonacci sequence denote the rank of apparition of n by p{n). (It exists
for arbitrary n as will be seen later.) Let o(n) denote the rank of apparition of n
in the Lucas sequence, if it exists. The proof of Theorem 1 proceeds as follows. In
Section 2 a characterization for Lucas divisors is derived. This result shows the need
of estimating the growth of the sets C. := {p > 2 : 2¢||p(p)}, for e > 0. Using a
method of Wiertelak an estimate of the form

4

Ce(z) = 6,Li(z) + 0(%“1), (3)

where 6, > 0 is a constant and Li(z) denotes the logarithmic integral, is derived.

Using Hasse’s method the densities 8, are computed in Section 3. Lagarias [7] only

computed dp; it equals % Using a result on multiplicative functions that are constant

on average in prime arguments, a formula for G.(z) is obtained, where G, denotes the

number of Lucas divisors not exceeding z composed only of primes from C,. From this

and the characterization of Lucas divisors it is straightforward to obtain an expression

of the form (2) for odd Lucas divisors. Going from there to all Lucas divisors requires
a bit of elementary trickery.

I would like to thank Gerhard Niklasch for an enjoyable whiteboard session and
functioning as a stand-in for the LaTeX-manual. Furthermore I'd like to thank Peter
Stevenhagen and many people from MPI for sharing their thoughts on how to prove
Lemma 11.

2 Characterization of Lucas divisors

Put ¢ = 18 7= 158 ¢ = ¢/e. Note that 6 = —e2 = —3¥5 Recall that Z[¢] is
the ring of algebraic integers of Q(v/5). The Fibonacci numbers F, and the Lucas
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numbers L, satisfy

et -t

V5

respectively. The symbols p, B will be exclusively used to denote rational primes
respectively prime ideals. In this section the prime ideals will be from Z[e]. From
elementary number theory recall that an ideal (p) is a prime ideal of degree 2 if
(5/p) = =1, re. if p = £2(mod 5) and (p) = PP with P of degree 1 if (5/p) = 1,
ie. il p= £1(mod 5). Furthermore (5) = $* with § = (v/5). Notice that m|F, for
some n > 1 if and only if 7 = I(mod (m)), where the congruence is in Z[¢] and has
a solution satislying « > 1. Since # is a unit in Z[¢] this is the case for arbitrary m.
Thus p(r) exists. For Lucas numbers the sitnation is slightly more complicated. We
have for p #5, r > 1,

P, =  Lp =t

Py <= 0" =—=1(mod (p7)) <= 6" = —1(mod P7), (4)

where P is any prime ideal dividing (p). The <= part of the final iff statement in
(4) is trivial if (p) is a prime ideal. Otherwise we have (p) = PP and (L,P) = 1.

By conjugation it follows from 0* = —I{(mod $7) that §* = —1(mod $7), hence
0" = —1(mod P7) and thus 6" = —1(mod (p")) by the chinese remainder theorem
for prime ideals. a

In the sequel we make use several times of the observation that, for P of odd norm,
z* = 1(mod P7) has precisely the solutions z = 1(mod $7) and = = —1(mod $7).
If it were to have another one, then both x £ 1 € P and hence P = (2), which we
excluded.

Lemma 1 Lel P be a prime ideal of odd norm in Zle] and v > 1. Lel o € Q(\/3) with
(1, ) = 1. Then ¢ = —L(mod P") for some e if and only if ordy () is even. In

case ordg (1) is even, the smallest e such that ¥ = —1(mod PB7) equals ordyr (1) /2.
Furthermore,

¢/ = —l{mod P") <= [ = ordy-(3)/2 (mod ordy-(¥)). (5)

Proof: Suppose that —1 can be represented as a power of ¥ modulo $". et ¢
be the smallest number such that ° = —1(mod P7). Clearly ordyr(2) cannot be a
divisor of e. Thus ordgr(¥) = 2¢ for some c dividing e. Since ¥° % 1(mod P7), we
must have ¢ = —1(mod P") and thus by the minimality of ¢, ¢ = e. Thus ordy-(¢)
is even and e = ordgr () /2.

On the other hand if ordgr () is even, then ¢¢ with e = ordy-()/2 is a solution
# 1(mod P") of 2* = I(mod P7) and thus 1 = —1(mod P7). Suppose that 1/ =
—1(mod $7) and [ is not a multiple of e. Then 2(f,€) < 2e = ordgr () and §%(*9) =
L{(mod 7). This contradiction shows that f must be a multiple of e. 1i is obvious
that f must be an odd multiple ol ¢ and that this is also sufficient. O

Lemma 2 Let p be a prime, B|(p). Then p(p") = ordgr(8), cacept when p = 5 in
which case p(57) = 5" forr > 1.



Proof: Analogously to (4), p|F}, iff 07 = 1(mod P7), in case p # 5. Thus p(p7) =
ordgr (). The latter part of the assertion is left as an exercise to the reader. a
By (4), Lemma 1 and Lemma 2 we have:

Lemma 3 The odd prime power p” is a divisor of {L,} if and only if p(p”) is even.
If p" is a divisor of {Ln} then o(p™) = p(p")/2 and

plln <= n=p(p")/2 (mod p(p")). (6)
Lemma 4 [fP is of degree 1, then ordy(0)|p—1, if B is of degree 2, then ordy(0)|p+1.

Proof: Since Z{c}/P = F, when P is of degree 1 and F}, is cyclic of order p — 1,
the first part of the assertion follows. In the second case we have Z[¢|/P = F. Recall
that Fp 2 {P*! 4 € F},} and that 0 = —e. Thus 0 = (—)E’?e"“ = ¢(mod p)

+1

for some integer c. Conjugating we find that P = c(mod p). Thus | = (80)F =
ct(mod p) and so 0P = 1(mod P). o

Noting that p(5) = 5 and that for p # 5, N(p) = Pt(;f.nl, with (5/p) the Legendre
symbol, we find from Lemma 4 the classical result due to Lucas that p(p) divides

p—(5/p).

The next proposition relates p(p™) to p(p).

Proposition 1 Lel p” be an odd prime power. Then for some 0 < 57 < r — 1,
p(p") = p(p)p’.

Proof: By Lemma 2 the result holds for p = 5. Assume p # 5. Then, by
Lemma 2 p(p") = ordgr(0), where B is a prime ideal dividing (p). We have 07(P) =
I(mod 9) and, using induction and the binomial theorem, 07 ™ = |(mod 7).
Thus p(p™)|p(p)p™" so p(p™) = cp? for some c|p(p) and 0 < j < r — 1. In case P is of
degree 1, we have 87 = O(mod $) by Lemma 4. Then, since 1 = 0 = 0°(mod §),
¢ = ordg(#) = p(p). In case P is of degree 2, we have §7 = L(mod P) by Lemma 4.
Again it follows that 1 = 0°(mod ) and hence c = ordy(0) = p(p). 0

In order to prove the main result of this section we need one more lemma.
Lemma 5 [9] Let ay,...,ax be natural numbers. The system of congruences
z = ar(mod 2@y ), -,z = a;(mod 2¢;),- -+, = ax(mod 2ay)
has a solubion x iff there exisls ¢ 2 0 such that 2°||a; for | <i < k.

Theorem 2 An odd integer m divides {L,} if and only if there exists e > 1 such
that 2¢||p(p), the rank of apparition of p in {Fy}, for every prime p dividing m.

Proof: Note that by Lemma 2 we may assume that (m,5) = 1. ‘=’. Let m be an
odd divisor of {L,}. Let py,- -, px be its prime divisors. Define e; by pf|jm. Choose
prime ideals Py, -, Py lying over p; for 1 <1 < k. By (6) there exists ¢ such that
0° = —1(mod P7*) for 1 < 7 < k. Now using Lemma 1, we obtain that ordg, () is
even and

¢ = ordy,(60)/2 (mod ordg,«(0)), 1 <z < k. (7)
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Lemma 5 with «; = ordg,«(6)/2, 1 <7 < k and Lemma 2 then yields the existence
of an e > 1 such that 2¢||p(p{*) for 1 <7 < k. The implication ‘=’ then follows on
using Proposition 1.

‘«=’. By assumption, Proposition 1 and Lemma 2, there exists e > 1 such that
2°||ordg,e (0) for 1 < @ < k. By Lemma 5 there exists an integer ¢ satisfying ¢ =
orda,e: (0)/2 (mod ordg,e(0)) for 1 < 7 < k. Thus, by (5), 0° = —1(mod $;%) for
1 < <k and hence, by (4), §° = —1(mod (m)) and m|L.. 0

3 Computing the densities 6,

In order to prove the estimate (3) we need to compute, for e > 0, the prime density
. of the set C, := {p > 2 : 2°||p(p)}. This can be almost carried out by algebraic
number theory only. For s =1,2, e >0, 7 2 1 put

Ny(e,7) = {p: p = ts(mod 5), p =3~ 2s+ 2/ (mod 27*7), 2°|jord,»(0)].

Then it follows on using Lemma 2 that Co = USZ{Ni(e,j) U No(e,7)} U {5} and
Ce = USZ1{M(e,7) U Na(e,j)} for e 2 1. Note that all sets in this union are dis-
joint. As a first step we compute A,(e,j), the prime density of the set N,(e, 7). In
the case s = 1 this problem can be reduced to computing degrees of certain number
fields. This reduction is due to Hasse [5) and was used by several subsequent authors
(1, 7,12, 18]. The case s = 2 is almost trivial; here one only needs the prime number
theorem for arithmetic progressions. The densities Aq(e, j), Aa(e,7) are recorded in
Table 1 and Table 2 respectively. The entry e in the last column gives E?il Agle, 7).
The entry 7 in the last row gives 3.ooy Ay(e, 7).

The case s = 1. Here some some information on the number fields iy, :=
Q(V5, (an), n > 1, is needed. Koy, 18 normal over @ as it is isomorphic to the splitting
field of (X*" — 1)(X2 —5). It is of degree 2" over Q. As is well-known the absolute
value of the discriminant of Q@((yn) is (m/2)™/2, where m = 2*. The discriminant of
Q(v5) is 5. Now if K C L € M is a tower of fields, then (sce e.g. [11, Proposition
4.9])

dagj = (N!,/r\'fln-r/L)fl[lj‘}}(L]- (8)

Thus the absolute value of the discriminant of Ky, equals 5™/2(m/2)™ and conse-
quently the primes outside {2,5} do not ramify. The primes that split completely in
Ko are precisely the primes satislying p = £1(mod 5) and p = 1{(mod 2").

Lemma 6 Put K,, = Q(V5,0"* (). Then, forb>a > 1,
dop:=[Kep:Q] = gotb-1
Furthermore dop = 2%, b> 1, dyy =4 and dyy = 2°°7 for b > 2.

Proof: When b > a > 1, Kep = Q5,672 Coanr, Cov) = Q127 (1), Using
the well-known fact that @((as) contains at most the quadratic subfields Q(\/—2), Q(z)
and Q(v/2), the fields Q(c!/2*™) and Q(¢q) are seen to be linearly disjoint and hence

doy = [Q(*) : QlQ(Cn) : @] = 2%,
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The claim on dpp is almost immediate, that on dy is proved in [7, Lemma 3.1]. O
Lemma 7 A prime p satisfies
p=+l(mod 5), p=1+42(mod 2711), 0 = 1(mod ), (9)

where t < § and P is a prime ideal in Z|e] dividing (p) if and only if p splits completely
in Ky, but does not split complctcly in Nyjpr. The prime density of the set of all

primes satisfying (9) equal’s ity :'+1'
Proof: Suppose that p satisfies (9). Then p spllts completely in Ky ;. Furthermore
0% = 1(mod P) implies by Euler’s criterion that 2* = 0(mod $) has a solution mod

P. Let 9 be a prime ideal of Oy, ; lying over . Since the inertial degree [(Q[P) =1,
22" = 0(mod P) has a solution mod P iff z2° = 0(mod 9) has a solution mod 9. Using
the Kummer-Dedekind theorem in the formulation of Pohst and Zassenhaus [15, p.
390], together with part (b) of the Lemma at p. 392 and the fact that the discrimi-
nant of K ; contains no prime factors outside the set {2,5}, it follows that Q splits
in Ky ;. Fort =0, Ky jis norn_ml over Q as has been remarked belore, for ¢ > 1 1t is
the splitting field of (ij — 02’_‘)()\’21 - 525-!) € Z[X] and hence also normal over Q.
That means that p splits completely in K, ;. Since p # 1(mod 27+1), p does not split
completely in Ky j11. The proof of the reverse equivalence should be evident to the
reader now. The proof of the last part of the assertion follows from the Chebotarev
density theorem. ' 0

The next lemma gives the densities Aq(e,7) for ¢ > 0 and § > 1. For the conve-
nience of the reader these prime densities are recorded in Table 1.

A (0,7) = 1[4 for 3 > 2. For

Lemma 8 Aq(e,7) = 0 fore > j. A(0,1) = 0,
= 0. Ar(e,3) = 1/25%17¢ for e > 2 and

2L AL j) = 1/48 Forj > 2, Aq(34,5)
Jze+t 1.

Proof: Suppose that p € Ny(e, ). By (4) the assertion 2°||ord(,)(8) is equivalent
with

2ordg(6), (10)
where B|(p). The first part of the assertion is immediate by Lemma 4. So assume
e < j. In case e = 0 the condition (10) is equivalent with 0% = I{(mod ). Then,
by Lemma 7, A4(0,7) = 1/d;; — 1/d; j+1. Using Lemma 6 we find A4(0,1) = 0
and A(0,7) = 1/47 for j 2 2. In case ¢ > 1 the condition (10) is equivalent with
gi=r = L(mod B) and g % 1(mod B). Thus, using Lemma 7, we {ind that for
ezl e<y,

A1(e,j)=d_1 IR D B

jmeg  di—egt1 dipi—ej  dipi-ej

The remainder of the assertion now follows on invoking Lemma 6. O



The case s = 2. Let
é(mod (p)) and €€ = —1, ¢?

= £2(mod 5). Recall that ord,(0)|p + 1. Since €?
V= —1(mod (p)). Hence il p = —1427(mod 27+1), § >
—L{m
-1

+"@
ol

then " = (—1)&;—161""1 od (p)). Thus 27| ord,(8) and therefore No(7, 7)
{p:p=22(mod 5), p + 27(mod 27t1)}. In particular Ag(j,7) = 577 and
As(e,7) =0 when e # j. In case § = | and p = 1(mod 4), then 0 = (—])L;'l'cp“
1(mod (p)). Thus, since (p + 1)/2 is odd, No(0,1) = {p : p = £2(mod 5),p
1(mod 4)}, A2(0,1) = 1/4 and, for ¢ > 1, Ay(e,1) = 0. This finishes the computation
of the densities Ay(e, 7). They are recorded in Table 2

The analytic arguments in the next section will show that 8, = 352, {A(e,5) +
As(e,7)}. Using the lormulae derived in this section for the prime densities Aq(e,j)
and As(e,7) it then follows that

l

1ol

|
'55(621)-

W

4 Counting primes dividing Lucas numbers

In this section Theorem 3 will be proved following Wiertelak [18], who on his turn
used some ideas of P. D. T'. A. Elliott [3]. Wiertelak used character sums over prime
ideals to evaluate Wy, (z), where W, := {p : miord,(a/b)}, with ¢ and b non-zcro
integers. A slightly easier alternative approach to deal with W,,(z), as explored by
R. W. K. Odoni [12], would only yield an error of exp{—cloglog z/ log log log 2}, for
some constant ¢ > 0, which, however, is not sharp enough for our purposes.

Theorem 3 Let p(p) denote the rank of apparition of p in the Fibonacci sequence.

Fore>0 put Co = {p>2:2°p(p)}. Then

Culz) = 6uLi(2) +0(-(il’%-]£?)—),
og'

where &g = %, 8, =

m|co
ml__.

s for e 2 1 and the implied constant may depend on e.

This result together with Theorem 2 and the prime number theorem with error
O(z log™ ) implies the following improvement of [7, Theorem BJ:

Theorem 4 The sel of prime divisors of the sequence of Lucas nwimnbers, P, salisfies
[ J 1

Pla) = ;L]( N+ 0(%-).

In particular the sel P has prime density

Wty

Before embarking on the proof of Theorem 3 we need a few prerequisites.

Let A" be a number field of discriminant di /g and degree n over the rationals. Let
Ok be its ring of integers, % an arbitrary integral ideal and @ an arbitrary integral
prime ideal. Let x be a character ol the group of ideal classes modulo 2 and ((s, x) the
Hecke zeta function (see [§]). By the group of ideal classes modulo 2 we understand
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the following. We say that 8 ~ %'(mod ) iff (B,%) = (B',2%) = | and there exist
totally positive £ and é in Dy such that £ = 6 = 1(mod @) and (£)B = (§)®8'. The
principal character of the group ol ideal classes modulo % will be denoted by o, the
exceptional real character by x; and the hypothetical Siegel zero of ((s, x1), which
is real and simple, by f;. We denote the product of |dgg| and N9, the norm of %,
by A. Set Eg(x) = 1 if x = xo is the principal character and zero otherwise. Set
E1(x) = 1if x = y1 is the exceptional real character and zero otherwise.

Lemma 9 [18] There ezxists an absolute positive conslant gy such that

3T X(B) = Eo(x)Li(z) — £ (x)Li(=™) + O(R),

Np<z

where log(20) |
zlog(2 _ _ ogx
Viog x exp{=g max{/nlogz, A} }

and the implied constant and ¢, are absolute.

R=

A similar estimate for more general characters can be found in a paper of B. Z. Moroz

[10].
Lemma 10 [18] Let K be normal over Q. Then for any € > 0 there exisls C(c) such

that
1 L C )
32log(AVNY)  (AVNa)e/n)

Let m > 1 be an integer. Put L = K((,;y). For 4 € O and a prime ideal P of 9y,
(B, my) = 1, we denote by (%) the mth power residue symbol. It ts the unique mth
m

5 < ma.x(l -

Nep-—1

root of unity such that (ﬂ)m =a"w (mod ). For the ideal % of O, (A, map) = 1,

T
we put
AN AN
(5. 1LG5)..

Lemma 11 Let m > 1 be an integer. Let K be a number field. Lel o € Dk, o # 0.
I/ B and B' are ideals of O ¢,y coprime to (m*a) and B'B~" = (¢), where ¢ is lolally

(%' )711 (am)m
= N

Proof. The proof easily follows on combining [2, Exercise 1.8] and [6, Satz 121]. An
]
class to which 9 belongs mod f, where f is the conductor of K {(pm, /™) (sec c.g. [2,
p- 273]). The proof then follows on using an estimate due to Hasse for the conductor
of Kummerian fields ([6, Satz 166]; the meaning of the symbols v and sg appearing
in Satz 166 is explained in Satz 164). O

Lemma 11 was proved in case K = Q by Elliott [4] with m3« replaced by mia.

alternative proof arises on using the well-known fact that ( ) depends only on the
m



Elliott made heavy use of classical reciprocity results due to Hasse. The point of
Lemma 11 is that it shows that the conductor of K(al/™), viewed as a function of
m, 1s polynomial in m. A trivial estimate lor the conductor is provided by the dis-
criminant (since the conductor divides the discriminant) and hence is O(m™). Usage
of this estimate would result in a larger error term in Theorem 3.

Implicit error terms appearing in the remainder of this section that are not
subindexed may depend at most on 1 and K.

Theorem 5 Let K be a normal extension of Q, 1 € Ox and M = K (Con, '), Lel
mar(z) denote the number of rational primes not exceeding x that split completely in
M. Then for any C > 0 there exists a constant go > 0 depending al most on o, K
and C, such that

alz) = 0 ,
7{'”(1,) [A’j@] (logc’b)
uniformly for
log
2" < ggm———n 7 < n. 11
_g“(logloga’:)?’ e (11)

The implied constani also depends at most on , K and C.

Proof of Theorem 5. Put L = K((,) and M = I)(tj)il"). For the duration of this proofl
P will be used to denote a prime ideal from 9,. Note that L as a compositum ol two
normal extension of Q is itsell normal over Q. Let » < n. Let Spy denote the set of
primes

{p:(p,2Nks(¥)) =1, p splits completely in L, X7 = ¢(mod ), 3|(p)}.

Using the Kummer-Dedekind theorem {15, p. 390], together with part (b) of the
Lemma on p. 392 and the fact that the prime divisors of dps.g depend at most on 1
and K, it follows that

Tar(w) = Sm(x) + O(1). (12)

Since for p in Sar, NP = p = L(mod 27), we can by the Euler criterion also write

{p: (2, 2Nke(¥h)) =1, p splits completely in L, zp%_"l = [(mod ), B|(»)}

for Sa;. On using the power residue symbol we can finally write
: . .
Sa=1{p: (1, 2Nk0()) =1, p splits completely in L, (5)21’ = L, B|l(p)}

Now let us define Ty = {P : (B,2") = 1, (%)m_ =1, f(Blp) = 1} and
Tar = {P: (P,2) = 1, (-;'f; ,. = 1}. Using that L is normal over @ it follows
that Sar(z) = Tara(2)/IL : Q) + O(1). Since T'a(z) = Tar1(z) + O([L : Q}\/z log a),
we find n

IM(’B)

(L : Q)

Sam(z) = + O(V/x log ). (13)



Next we estimate Tas(2). Let ¢ be a primitive kth root of unity. Note that
k . .
_l_z( ) /CAJ_{] if (%)k=€k;
k j=1 0 otherwise.
Using this with & = 2" and o = ¥ we obtain

- 1 &1 P! |
< x 2"

J
wuge. (§) =1 0 3= O N

where the summation is over all prime ideals P in Oy, satisfying (P, 2"%)) = 1. For a

., 2nr

given integer 1 < j < 27 we define y;(%) to be (%{—);n in case (%,8™)) =1 and zcro

otherwise. Thus we can rewrite (14) as

> Xi(P

j=1 & Np<Lz

AI Zr

From this, Lemma 10, (13) and (12) we obtain

rar(z) = —2_Li(z) - Li(z®) + O(R) + O(Vz log ), (15)

(L Q] (L @]

with 0 < Jad, |bar] < 1, R as in Lemma 10 and A = |day/g] - Ning(8™9). If » and n
satisfy (11) then

log A < ¢1932"n, (16)

where g3 depends at most on ¢ and K. Lel € > 0 be given. Using the estimate (16)
and Lemma 10 to deal with the exceptional zero fy in (15), we see that we can choose
g1 so small as to ensure that 7y (z) = [L Ll('l':) + O(z log™ © @) wniformly in the re-
gion (11). By the Chebotarev density theorem it follows that aps/[L : Q] = 1/[M : Q]
(hence apy = 1/[M : L]). So the result follows. a

It should be remarked that the best known uniform version of the Chebotarey
theorem yields only a far weaker result (cf. [12]). Our approach, however, does not
work for arbitrary number fields and hence does not lead to a better uniform version
of the Chebotarev density theorem.

Proof of Theorem 3. Applying Theorem 5 to K = Q(v/5) and ¢ = —%, we find us-
g Lemma 7 that there exists an absolute positive constant gy such that uniformly for
27 < gylogz(loglogz)~?, e < 5,

Ni(e,3)(@) = A (e, j)Li() + O(—5—). (7)

log_., x
Next we estimate T(x) := 3252, Ni(e, j)(x). Since Nq(e, j) is empty for J < e, we can
write I(x) = L (x)+12(x), where [ (2) = 5L, Ni(e, g)(2), La(2) = 52,000 Mile, 5) (=)
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and m is the largest integer such that 2™ < g4 log z(log log 2)~%. Using equation (17)
and Aq(e,j) € 1/47 (see Lemma 8) we find

m

h) = (X e hita) + Ofnr_s)

og

Ll( )

= Z_\l e, 7)Li(z) + O(——=) + O(m )
= log @
co o r:;(loz.;:logru)4
= ;I Ha(z) + O(————).
(2 &1(ea)1ile) + O(HEL)
The primes counted by /o(z) all satisfy the congruences p = +I(mod 5), p =

1(mod 2™) and r-1/2" = = 1(mod B), where P|(p). Thus lr(z) < 7x,, () (cf. the
proof of Lemma 7). By Lemma 6 [Kym : Q] > 4™. It follows [rom this est,lmate,
Theorem 5 and 2™ < g4(logz)(loglogz)~? that lr(z) = O(x(loglogz)*log™ z).
Thus - oo )
1) = {3 e, i) + OB
e og”

Put J(z) = 152, Na(e,7)(2). In every row in Table 2 there is at most one non-
zero prime density. As was seen in the computa.Lion of the prime densities As(e, j),
the set corresponding to the non-zero prime density consists of all primes in a (inite
union of arithmetic progressions and furthermore the sets corresponding to the zero
prime densities are all empty. Hence it follows using the prime number theorem for
arithmetic progressions that

J(w) = {3 Mo, 3)Li(x) + Ol
Thus - on |
) = {3 S1d) + Sl i) + O(ZESED

and on recalling the conclusion of Section 3, the proof of Theorem 3 becomes complete.

5 Counting Lucas divisors

Once Theorem 3 is established it is rather straightforward to prove Theorem 1, which
will be done in this section. Recall that é; = j’ . ;1;, J 2 1. Let Loga denote the set of
odd Lucas divisors and £ the sct ol Lucas divisors. We first, show that

=1
T

= —(Z d; log‘strl @ -+ O(logls‘+1 x)), (18)

Loaalw) log
CRer!

with do, -, d,—1 positive constants. From this it is then deduced that a similar
estimate holds for £(x), with different constants d;. This then finishes the proof of



Theorem 1.
By Theorem 2,

(e 0]
Loga = | G,
r=1

where G, is the set of natural numbers including 1 which are composed of primes in
C, only. The sets &, are completely multiplicative; ab € G if and only if «,b € G,
where « and b are natural numbers. Furthermore G, NG, = {1} for » # s. Thus the
problem of estimating L,q44(2), and, as we will see, that of estimating £(z), reduces
to that of estimating G/'-(z) for » > 1. In order to estimate G .(z), we use the following
estimate:

Theorem 6 (9] Let S be a completely multiplicalive sel of nalural numbers such that

S 1= rLife) + o(HE ke’

] 3.
PES, p<c og

), (19)

where 7 > 0 and g > 0 are fived. Then
S(z) = cxlog" ' z + O(z(log log )9+ log™ % 2),
where ¢ > 0 1s a constant.

(In order to prove Theorem 1 this result is stronger than necessary. The weaker result

[13, Theorem 2], for example, will do.) By Theorem 3 the estimate (19) is satisfied

with S =G, 7 =6, and g = 4. Applying Theorem 6 and using 8, < ;—, we obtain

Go(z) = dralog’ ™ o+ O(z log” ™' a), (20)
for some positive constant d,.. The estimate (18) for L,4q(2) now follows once we show
that

0
> Go(x) =0 log®*+ ™1 g). (21)

r=t+1

To this end, notice that the primes in Cy, » > s > 1, satisfy p = £1(mod 2°). Thus

Z Gr(a) < Z 1.

T>s n<z
- pin=p=tlimed 2*)

This latter sum can be estimated with the help of Theorem 6 and the estimate

T

2
m(z;2°,1) = >, 1= Li(z) + O
e 2s-1 log3 @
:‘E:i:l?r;md 24

),

which follows from the prime number theorem for arithmetic progressions. Thus
by choosing s large enough (taking 2°~? > 1/6,4; will do), we can ensure that
Trrs Grlz) = Oz log®+' =" 2). By (20) and the fact that {6,}%2, is monotonic de-

creasing, we have
S Grela) = Oz log™ ™" 2).
14+1<r<s

12



T'hus (21) holds and (18) follows.

It remains to deal with even Lucas divisors. Note that 2| L, iff n = 0(mod 6), that
4{| Ly iff n = 3(mod 6) and that 8 is not a Lucas divisor. Suppose m is an odd Lucas
divisor, say m|L,. Then 2m|Ls, and so 2m is a Lucas divisor, 4m is only a Lucas
divisor if the rank of apparition of all the prime divisors of m is exactly divisible by
2, finally 8m is never a divisor. Thus L£(2) = Loga(z) + Lowa(F) + G1(F). Theorem 1
follows on invoking the estimate (18) and (20) with r = 1. 0

Remark. Let A > 1 be an integer. Let £y denote the set of divisors of {Lp,}52,. 1t
is possible to formulate and prove an analogue of Theorem 1 for £, ().
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The rank of apparition of p in the
Fibonacci sequence is denoted by p(p).

Table 1

Prime density of the set
{p:p==£1(mod 5), p=1+ 2/ (mod 27+), 2%||p(p)}

lev |12 ]3[4 5 [ 6] 7 [.] |
0 ? 11? 61%1 "%_6 1(1}4 40196 16%84 11_0
1 4 | 16 [ g4 | 236 | 1024 JOISG 16384 %
2 100 |5 sl sp | o ow 2
3 0100 ;_4 "nlﬁ 10104 40195 41_3
4 0 0 0 0 1% ﬁ 2048 .91_6
5 01010 0 0 ,,?E 10104 3%
6 01010 0 0 0 _5}2 _dﬁ

L lilslelmlalolaml |3

Table 2

Prime density of the set

{p:p==£2(mod 5), p= ~1+29(mod 27+1), 2¢||p(p)}

(v Li2][3 45617 -] |
0 [s]oJoJoJoJoTJo :
Il JoJoJoJoJoJo]oO 0
2 Jolglojojofo]oO g
3 0[]0+ ? 0[o]o TIE
4 JoJoJo|[0]o0]o0 g
5 JoJoJojo[L] ol o 1
6 foJolojofo]zg]0 oF

L lslalwloslalmloml] 2]
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